Paul Cousin

Triangular Automata The 256 Elementary Cellular Automata of the 2D Plane

Keywords: cellular automata, triangular grid, dynamical systems, complexity paulcousin.github.io/triangular-automata, Package demonstration: paulcousin.github.io/triangular-automata-mathematica

Triangular Automata (TA) stands for cellular automata in the triangular grid. This work focuses on the simplest type of TA called Elementary Triangular Automata (ETA). They are argued to be the two-dimensional counterpart of Wolfram's Elementary Cellular Automata. Conceptual and computational tools for their study are presented along with an initial analysis. The paper is accompanied by a website where the results can be explored interactively. The source code is available in the form of a Mathematica package.

Introduction

Cellular automata in the triangular grid, or Triangular Automata (TA) for short, have already been studied in a few papers [START_REF] Gerling | Classification of triangular and honeycomb cellular automata[END_REF][START_REF] Bays | Cellular Automata in the Triangular Tessellation[END_REF][START_REF] Imai | A computation-universal two-dimensional 8-state triangular reversible cellular automaton[END_REF][START_REF] Naumov | Generalized coordinates for cellular automata grids[END_REF][START_REF] Lin | Application of Unstructured Cellular Automata on Ecological Modelling[END_REF][START_REF] Bays | Cellular Automata in Triangular, Pentagonal and Hexagonal Tessellations[END_REF][START_REF]The game of life in non-square environments[END_REF][START_REF] Zawidzki | Application of Semitotalistic 2D Cellular Automata on a Triangulated 3D Surface[END_REF][START_REF] Breckling | Cellular automata in ecological modelling[END_REF][START_REF] Saadat | Cellular Automata in the Triangular Grid[END_REF][START_REF] Ortigoza | ACFUEGOS: An Unstructured Triangular Cellular Automata for Modelling Forest Fire Propagation[END_REF][START_REF] Uguz | Structure and reversibility of 2D von Neumann cellular automata over triangular lattice[END_REF][START_REF] Saadat | Cellular Automata Approach to Mathematical Morphology in the Triangular Grid[END_REF][START_REF] Wainer | An introduction to cellular automata models with cell-DEVS[END_REF][START_REF] Pavlova | Using cellular automata in modelling of the fire front propagation through rough terrain[END_REF][START_REF] Saadat | Generating Patterns on the Triangular Grid by Cellular Automata including Alternating Use of Two Rules[END_REF][START_REF] Saadat | Copy Machines -Self-reproduction with 2 States on Archimedean Tilings[END_REF]. This work will focus on a natural subset of TA called Elementary Triangular Automata (ETA). ETA cells hold only binary states, each cell will thus either be:

• "alive" and colored purple , with a state s = 1

• "dead" and colored white with a state s = 0 ETA rules determine the future state of a cell based on its current state and the states of its neighbors, regardless of their orientation. This results in only 8 possible local configurations. This paper uses a graph-theoretical framework developed in a previous work on Graph-Rewriting Automata [START_REF] Cousin | Organic structures emerging from bio-inspired graphrewriting automata[END_REF]. The triangular grid will here be considered as a graph (Figure 3). This graph must be expanded at each time step to simulate an infinite grid. The region of influence of a single cell grows in hexagonal layers (Figure 3a). This is thus the most efficient way to expand the graph as well. How to do it in practice will be detailed in Section 4.2. It is useful to see the triangular grid as a graph because computing the evolution of ETA is made quite easy by properties of its adjacency matrix A and state vector S. Every vertex v of this graph will hold a state s(v). The neighborhood N (v) of a vertex is defined as the set of its adjacent vertices.

Aij = 1 if vi ∈ N (vj) 0 otherwise Si = s(vi) ∈ {0, 1} (1)
The configuration c(v) of a vertex is a number which, when they are indexed as in Figure 2, can be expressed as follows:

c(v) = 4 × s(v) + i∈N (v) s(i) (2)
The space of possible ETA rules is finite. For each one of the 8 configurations, a rule must specify whether the vertex will be dead or alive at t + 1. Consequently, there are only 2 8 = 256 possible rules. For this reason, ETA can be seen as the two-dimensional counterpart of Wolfram's 256 Elementary Cellular Automata [START_REF] Wolfram | A new kind of science[END_REF][START_REF] Weisstein | Elementary cellular automaton[END_REF]. Furthermore, the triangle is the regular polygon tiling 2D space with the smallest number of neighbors per cell. ETA are thus the most basic 2D cellular automata and have a fundamental aspect in this regard.

Each rule R is a map from configuration space to state space.

R : {0, 1, 2, 3, 4, 5, 6, 7} → {0, 1} R ct(v) = st+1 v (3)
Each rule can be labeled by a unique rule number n (see Equation 4). We will use the labeling system which was independently proposed in [START_REF] Zawidzki | Application of Semitotalistic 2D Cellular Automata on a Triangulated 3D Surface[END_REF] and [START_REF] Cousin | Organic structures emerging from bio-inspired graphrewriting automata[END_REF], since it must be somewhat natural and because it has useful properties. This system, inspired by the Wolfram code [START_REF] Wolfram | A new kind of science[END_REF], is such that a rule number in its binary form displays the behavior of the rule. Starting from the right, its digits indicate the future state for each configuration as they have been ordered previously. Figure 4 shows the example of rule 181.

n = 7 i=0 2 i R(i) (4)
       

Behavior

Before going into the details of how to compute these automata, we can take a look at how they behave. In this section, a preliminary study of ETA will be presented to motivate a future, more in-depth analysis. It is of particular interest to see what happens to a single living cell under different ETA rules so, unless otherwise noted, the following figures come from this starting point.

Beauty

One of the most striking aspects of these automata is their aesthetic quality, which cannot be better illustrated than by a few selected examples.

Chaos

Given the existing literature on cellular automata, it is quite expected to see some of these rules behave chaotically. The example of rule 53 confirms it. Starting from two randomly generated 64 layers wide grids that are completely similar except for the central cell which is alive in [START_REF] Gerling | Classification of triangular and honeycomb cellular automata[END_REF] and dead in (2), the trajectories strongly diverge.

(1) at t = 0 (2) at t = 0

(1) at t = 512

(2) at t = 512

Fractals

Some ETA rules produce remarkable scale-free structures.

Space-Time

Similar to the way Elementary Cellular Automata [START_REF] Wolfram | A new kind of science[END_REF][START_REF] Weisstein | Elementary cellular automaton[END_REF] are most often represented, the evolution of an ETA can be displayed in one single plot. Here, an instant is twodimensional, so adding the dimension of time creates a 3D structure. In these spacetime plots, time flows downward. The successive grids are stacked beneath each other, starting from the initial conditions at the top. To avoid the infinite planes created by an alive environment, we can display only the cells that have the opposite state to it at each time step. A lot of information is therefore lost. We do not see most of the internal structure and we cannot know the state of the environment. Nevertheless, this representation helps visualize some properties of ETA that are difficult to notice otherwise. For instance, certain rules create 3D space-time fractals.

Self-Reproduction

As mentioned in [START_REF] Saadat | Copy Machines -Self-reproduction with 2 States on Archimedean Tilings[END_REF], one of the original motivations for the development of cellular automata was to create a mathematical model of self-reproduction. Interestingly, 4 of the 256 ETA rules naturally reproduce any finite pattern given as initial conditions: rules 85, 90, 165 and 170. A proof of self-reproduction based on path counting already exists for rule 170 [START_REF] Saadat | Copy Machines -Self-reproduction with 2 States on Archimedean Tilings[END_REF]. Similarly spirited proofs could probably be proposed for the others.

t

Noise

Some rules seem to generate a pretty good noise. For example, if we pick a simple starting point without symmetries, rule 37 will usually turn it into an expanding disk with a random-looking interior.

Textures

Organic textures can be obtained by applying other rules to this pseudorandom grid.

Boring Rules

There is an identity rule which leaves any grid unchanged: rule 240.

Twins

A simple procedure can be followed to find the evil twin of a rule that has the same effect but in the negative world. To find it, take the number in its binary form (with the leading zeros needed for the number to be 8 digits long), swap ones and zeros and read it backwards. Let us take rule 214 as an example.

First, find the binary form of the rule number, 214 = 110101102 then swap ones and zeros 001010012 and finally reverse it. 100101002 = 148 1. ⋄ here represents an operator that joins matrices corner to corner.

a ⋄ b c d e ⋄ f g h =     a 0 0 0 0 0 0 b c 0 0 0 0 d e 0 0 0 0 0 0 f g h     (5)
2. ↘ shifts diagonally the elements of a matrix and places the last row and column first.

  a b c d e f g h i j k l   ↘ =   l i j k d a b c h e f g   (6)
3. @ will be an operator applying a function to every element of a matrix.

f @ a b c d = f (a) f (b) f (c) f (d) (7)
4. Ii is the i × i identity matrix. Si will be a i × (i + 1) "stairs" matrix.

I1 = 1 I2 = 1 0 0 1 I3 =   1 0 0 0 1 0 0 0 1   . . . (8)
S1 = 1 1 S2 = 1 1 0 0 1 1 S3 =   1 1 0 0 0 1 1 0 0 0 1 1   . . . (9)

Growing the triangular grid

As mentioned in Section 2, the grid is going to be grown from a single cell by adding layers. This will be done with a precursor of the adjacency matrix called the grid matrix G. Up to the third layer, the grid matrix is better hand-coded. The third matrix G3 can be seen in Figure 25. The subsequent layers will follow a repeating pattern.

               
0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 Each layer consists in a sub-matrix and the grid matrix will be :

               
G l = m1 ⋄ m2 ⋄ . . . ⋄ m l-1 ⋄ m l (10)
From m4, these sub-matrices become:

mi =      S i 2 ⋄ I (i 2 -1) ⋄ S i 2 ⋄ I (i 2 -1) ⋄ S i 2 ⋄ I (i 2 -1)
if i is even

I ⌈ i 2 -2⌉ ⋄ S ⌈ i 2 ⌉ ⋄ I ⌈ i 2 -2⌉ ⋄ S ⌈ i 2 ⌉ ⋄ I ⌈ i 2 -2⌉ ⋄ S ⌈ i 2 ⌉ ↘ if i is odd (11)
Assuming that I0 is a 0 × 0 matrix, this pattern actually holds for m2 and m3. However, depending on how this is implemented, coding the first 3 layers by hand might be the best option.

Once the grid matrix is built, it is easy to obtain the adjacency matrix by turning it into a symmetric matrix as illustrated in Figure 26. The limit of this series of matrices A∞ is the adjacency matrix of the graph corresponding to the infinite triangular grid.

        →                    

Evolving the state

The environment will be simulated by using two layers around the region of the influence of our initial structure. If the initial structure is a single triangle, then the computed grid will contain t + 2 layers.

Updating the state of the grid will come in four steps.

1. First, a layer is added with the same state as the last vertex (both the grid/adjacency matrix and the state vector must be updated).

2. Second, a configuration vector C is computed (o is the order of the graph).

C =    c(v1) . . . c(vo)    = 4 × S + A • S (12)
3. The state vector S is then updated as follows.

S = R @ C (13)
4. Finally, the state of all vertices of the last layer (created in step 1) is set to the value of the last vertex of the now penultimate layer. This removes the artefacts coming from the edges of the computed grid.

Remarks

• Evolving the state of the grid is where this framework pays off the most. Steps 2 and 3 are mathematically sufficient if we consider working in an infinite graph. They would also be the only steps required in a closed grid, like a triangulated surface [START_REF] Zawidzki | Application of Semitotalistic 2D Cellular Automata on a Triangulated 3D Surface[END_REF] for example.

• For this process to be efficient, it is necessary to encode the grid/adjacency matrix in a sparse array format.

• Step 1 can be avoided in the case where the three outermost layers have a uniform state, which is easy to check.

• It is useful here to be able to retrieve the number of layers in the graph, just by knowing its order.

layer = 1 6 3(8 order -5) -3 (14)
• It is also useful to note that each layer l contains 3l vertices or cells (except when l = 0).

Plotting the result

2D coordinates are required to plot the resulting grid. These can be computed in a coordinates matrix K. Algorithm 1 can be used to expand K from the coordinates of the first vertex, placed at the origin 0 0 .

K =            x1 y1 x2 y2 x3 y3 xo-2 yo-2 xo-1 yo-1 xo yo            (15)
These coordinates will serve to translate a base triangle whose orientation depends on the layer it is in.

Layer

Coordinates of the base triangle Illustration even

-1 √ 3 0 1 2 √ 3 1 2 1 2 √ 3 -1 2 odd 1 √ 3 0 -1 2 √ 3 1 2 -1 2 √ 3 -1 2
Table 2: Coordinates of the base triangle's vertices.

Algorithm 1 Adding a layer to the coordinates matrix K 1: if l is odd then ▷ l is the number of the new layer 2:

step ← -1

√ 3 0 3: else 4: step ← -1 2 √ 3 -1 2 5: end if 6: K.append K -3(l -1) + step ▷ K[-n] ≡ n th coords from the end 7: for i ← 0, 3l -2 do 8: if i < ⌊ l 2 ⌋ then step ← 0 1 9: else if i < ⌊ l 2 ⌋ + ⌈ l 2 ⌉ then step ← - √ 3 2 1 2
10:

else if i < 2⌊ l 2 ⌋ + ⌈ l 2 ⌉ then step ← - √ 3 2 -1 2
11:

else if i < 2⌊ l 2 ⌋ + 2⌈ l 2 ⌉ then step ← 0 -1 12: else if i < 3⌊ l 2 ⌋ + 2⌈ l 2 ⌉ then step ← √ 3 2 -1 2
13:

else if i < 3⌊ l 2 ⌋ + 3⌈ l 2 ⌉ then step ← √ 3 2 1 2
14:

end if 15:

K.append K -1 + step 16: end for

Conclusion

The triangular tessellation plays an important role in many disciplines, from computer graphics to architecture. TA are a way of populating it with aesthetic patterns. Beyond the possible applications, ETA are somewhat fundamental cellular automata, making them an elegant model of complexity. With the framework presented here, the 256 ETA rules can now be thoroughly explored, even with limited computational resources.

Here are some possible directions for future work:

1. ETA rules could be classified according to some common criteria, 2. the approach taken in this paper could easily be applied to a wider class of TA, 3. a GPU-accelerated implementation could be used to explore longer timescales, as has already been done for Graph-Rewriting Automata [START_REF] Cousin | Graph-rewriting automata[END_REF],

4. Turing completeness and other interesting properties could be searched for in ETA rules.

Figure 1 :

 1 Figure 1: The triangular grid

Figure 2 :

 2 Figure 2: All possible local configurations

Figure 3 :

 3 Figure 3: Structure of the triangular grid

Figure 4 :

 4 Figure 4: Rule 181 = 1011, 0101 2

Figure 5 :Figure 6 :

 56 Figure 5: Rule 89 at t = 200

Figure 7 :Figure 8 :

 78 Figure 7: Rule 73 at t = 256

Figure 9 :Figure 10 :

 910 Figure 9: Chaotic behavior of rule 53

Figure 11 :Figure 12 :

 1112 Figure 11: Rule 65 at t = 512

Figure 13 :

 13 Figure 13: Rule 50 at t = 352

Figure 14 :Figure 15 :

 1415 Figure 14: Space-time plot of rule 10 up to t = 512 (perspective)

Figure 16 :

 16 Figure 16: Simple asymmetric starting point

Figure 17 :

 17 Figure 17: Result at t = 512 with rule 37

Figure 18 :

 18 Figure 18: Rule 204 at at t = 32 starting from Figure 17

Figure 19 :

 19 Figure 19: Rule 252 at at t = 32 starting from Figure 17

Figure 20 :

 20 Figure 20: Rule 100 at at t = 64 starting from Figure 17

Figure 21 :

 21 Figure 21: Rule 108 at at t = 512 starting from Figure 17

Figure 22 :

 22 Figure 22: Rule 240

Figure 23 :

 23 Figure 23: Rule 15

Figure 24

 24 Figure 24: Twin rules

Figure 25 :

 25 Figure 25: Grid matrix G 3 (with layers 1, 2 and 3)

Figure 26 :

 26 Figure 26: From the grid matrix G to the adjacency matrix A

Table 1 :

 1 Pattern self-reproduction from a recognizable starting point

	rule 85	rule 90	rule 165	rule 170
	0			
	16			
	32			
	48			
	112