Sustainability and reuse of chemical engineering educational resources

Marie DEBACQ

$\operatorname{la}_{\text {PARIS-SACLAY }} \quad$ AgroParistech $/ \sim$

The tip of the iceberg

« What You See »

Initial context and ressources

Lifelong learning in Chem. Eng. (Engineer degree):

$>$ learners not always present (family and professional constraints)
$>$ highly varied profiles
$>$ learners scattered throughout France

Resources:

$>$ extensive teaching resources
$>$ additional resources

$>$ rapid development of distance learning (from 2003)

Extension in new contexts with other teachers

Université Numérique Ingénierie et Technologie Engineering and Technology Digital University
$>$ annual calls for proposals
> opportunities for funding collaborative projects to develop open educational resources
$>$ in charge of 2 projects (hydraulics; multiphase reactors) and a very active participant in a $3^{\text {rd }}$ (chemical reaction engineering)
$>$ very fruitful exchanges with teaching colleagues in different contexts, on how to explain things to learners
$>$ pooling exercises and exam subjects

19/09/2023
European Congress of Chemical Engineering

le cnam

chaire de Chimie Industrielle - Génie des Procédés
case 302,2 rue Conté, 5003 PARIS accès 31 , 4ème étage chindus@cnamty

- 27.23 .92 - © 01.40.27.29.81 www.cnam.fr/CFGP

Génie de la Réaction Chimique réacteurs homogènes

CGP218
CGP218

Lilian BEZARD,
Nicole CORSYN, AgroParistech
Marie DEBACQ, Agrón
Clément HAUSTANT,
Jean-LouisHAVET, Christophe LE NOUAIL
Guillaume VATAN
\& Stéphane VITU

2021

Google is evil, but also your ally for open education!

$>$ No analytics on website «iprocédés»
> Many analytics on YouTube channel «Cnam Génie des procédés »
$\checkmark 264$ public videos
https://www.youtube.com/channel/UCNRZ9IB7FbfvYDcimUY64yQ
$\checkmark 22.5$ k subscribers; 1864381 views (2 June 2016-13 Sept. 2023)
$\checkmark 127125$ and 126902 views for the 2 more viewed videos
$\checkmark 2$ nasty messages in 7 years; many thanks; some questions
\checkmark average percentage of videos watched: 33\%
@AIChEAcademy:
16k subscribers; 175 videos @LearnChemE:
168k subscribers; 2k videos
\checkmark audience (videos in French): Algeria 25.6\%, France 24.3\%, Morocco 16.2\%, Tunisia 4.8\%, Belgium 1.9\%, Senegal 1,6\%, Cameroon 1,2\%
\checkmark age:

Transposition to a different audience

université PARIS-SACLAY

Master's degree at Paris-Saclay University
$>$ Chem. and Biochem. Eng.
$>$ initial training
$>$ less heterogeneous population
$>100 \%$ face-to-face and synchronous teaching
Reuse previous educational resources + flipped classroom
$>$ each week, a section of the module to study and exercises to do "at home"
$>$ class work exclusively on questions + exercises and problems in groups ("little islands")

1. Réacteurs \#1-23 septembre 2021
2. Modélisation \#1-30 septembre 2021
3. Réacteurs \#2-7 octobre 2021
3.1. Préparation de la séance

Réacteurs \#2
3.2. Contenu de la séance

Réacteurs \#2
4. Modélisation \#2-14 octobre 2021
4.1. Préparation de la séance Modélisation \#2
4.2. Contenu de la séance

Modélisation \#2
5. Réacteurs \#3-21 octobre 2021
5.1. Préparation de la séance Réacteurs \#3
5.2. Contenu de la séance

Réacteurs \#3
6. Réacteurs \#4-4 novembre 2021
6.1. Préparation de la séance

Réacteurs \#4

Programme de travail - Réacteurs et

 modélisationRécapitulatif đu travail préparatoire à faire avant chaque séance et du contenu de chacune des séances
5. Réacteurs \#3-21 octobre 2021
5.1. Préparation de la sėance Rėacteurs \#3

Prèparez vos questions te
Réacteurs pistons isothermes :
Regarder la fin de la vidéo sur les bilans dans les réacteurs idẻaux à partir de $5^{\prime} 50$

et essayer de faire rexercice Réacteur piston en phase gazeuse en régime permanent (sans aller tout de suite voir la solution !!)

Satisfaction index:
 content:

1.9 (2021-2022); 1.8 (2022-2023) organization:
2.1 (2021-2022);
1.6 (2022-2023)

1=best; 4=worst

université PARIS-SACLAY

Under the bonnet of the machine

 «What You See Is What You ... »
From Microsoft Office to Scenari

What You See Is What You Get WYSIWYG

>both a washing machine and a dishwasher
$>$ digital accessibility
> history => traceability, quality control
$>$ translation
$>$ granularization, fragmentation

What You See Is What You Mean WYSIWYM SCENARI
$>$ open-source editorial chain
\checkmark focus on the content
\checkmark automatic page layout
> 5 M
\checkmark structured writing Models
\checkmark Multimedia
\checkmark Multi-authors (collaborative writing)
\checkmark Multi-purpose (reuse)
\checkmark Multi-publication

Nombre d'Étages Théoriques : méthodes de McCABE et THIELE

\&) 3grain_NET_McCabeThiele.xml - Grain de contenu
h \rightarrow +

三 Partie

Titre
Cas où le diluant et le solvant sont immiscibles quelle que soit leur teneur en solutéInformation
Titre
\equiv
Lorsque le diluant et le solvant sont immiscibles, on peut travailler avec u droite> opératoire>sur le diagramme rectangulaire en <rapports>massiques. Ressource

XML

Visualisation non disponible

(®i) videoDistante_ContreC_McCabe1.net
vidéo ELL : extracteur à contre-courants - construction de de MacCabe et Thiele (cas 1)

Mode de publication (web et diaporama) \quad Embarquée
Type d'index (papier)
-
Consignes
Consigne (pour le web et diaporama)

Consigne (pour le papier)

VIDÉO: /https://youtu.be/QMLOXf4oNKk

Ressource

HTML

Rechercher

- Extracteur simple
- Extracteur à courants croisés
- Extracteur à contre-courant Introduction

Bilans matière
Point somme

. Exercice : acide acétique - eau acétate de butyle : EXERCICE 5 cas d'un extracteur à contrecourant (point somme) NET : McCabe \& Thiele

责 Exercice : acide acétique - eau acétate de butyle : EXERCICE 6 : cas d'un extracteur à contrecourant (NET) NET : pôle opératoire
Exercice : acide acétique - eau acétate de butyle : EXERCICE 7 : cas d'un extracteur à contrecourant (NET par la méthode du nầ onnimtainal

Cas où le diluant et le solvant sont immiscibles quelle que soit leur teneur en soluté

Lorsque le diluant et le solvant sont immiscibles, on peut travailler avec une droite opératoire $\hat{\hbar}$ sur le diagramme rectangulaire en rapports massiques.

vidéo ELL : extracteur à contre-courants - construction de de MacCabe et Thiele (cas 1)

Solution en vidéo

5.4. Nombre d'Étages Théoriques : méthodes de McCABE et THIELE

La détermination du Nombre d'Etages Théoriques ${ }^{\mathrm{P} .56}$ (NET) permettra de dimensionner l'extracteur, par exemple de calculer la hauteur d'une colonne d'extraction.

La relation entre rapport et titre massique est la suivante: $X=\frac{x}{1-}$ et $Y=\frac{y}{1-y}$

En extraction, on peut être amené à utiliser

- les débits massiques totaux (L, V) et les titres massiques en soluté (x, y))
- ou bien le débit massique de raffinat hors soluté ${ }^{\mathrm{P} .57} \mathcal{L}$ et le débit massique d'extrait hors soluté
${ }^{\text {p. }}{ }^{57} \mathcal{V}$ avec les rapports massiques en soluté (X, Y).
Ce deux systèmes de notations sont précisés sur la figure ci-dessous.
PDF
Procédés d'extraction liquide/liquide
vidéo ELL: : extracteur à contre-courants - construction de de MacCabe et Thiele (cas 1) [cf. vidéo ELL: extracteur à contre-courants - construction de de MacCabe et Thiele (cas 1)]
Effectuer le tracé correspondant sur le diagramme rectangulaire. Noter les grandes étapes de la démonstration.

\checkmark
VIDÉO : https://youtu.be/hyfgB9zflac contre-courants - double système de notation

Le bilan en soluté sur les étages 1 à i de l'extracteur en régime permanent s'écrit $x_{A} \cdot L_{A}+y_{i+1} \cdot V_{i+1}=x_{i} \cdot L_{i}+y_{1} \cdot V_{1}$
mais également: $X_{A} \cdot \mathcal{L}_{A}+Y_{i+1} \cdot \mathcal{V}_{i+1}=X_{i} \cdot \mathcal{L}_{i}+Y_{1} \cdot \mathcal{V}_{1}$
a) Cas où le diluant et le solvant sont immiscibles quelle que soit leur teneur en soluté

Lorsque le diluant et le solvant sont immiscibles, on peut travailler avec une droite opératoire ${ }^{\mathrm{p} .54}$ sur e diagramme rectangulaire en rapports massiques.

IDEO : https://youtu.be/QMLOXf4oNKK

34 Marie DEBACQ

Procédés d'extraction liquide/liquide
c) Cas général

Dans le cas général, on doit travailler avec la courbe opératoire sur le diagramme rectangulaire en rapports massiques. La courbe opératoire est tracee point par point à l'aide de relevés effectués sur le diagramme triangulaire à partir du pôle opératoire Δ.IDÉO : https://youtu.be/IHVqX8_pDg
vidéo ELL : extracteur à contre-courants - construction de de MacCabe et Thiele (cas général) [cf. vidéo ELL: extracteur à contre-courants - construction de de MacCabe et Thiele (cas général)] Effectuer les tracés correspondants sur les diagrammes triangulaire et rectangulaire et noter les étapes successives des constructions.

b) Cas où le diluant et le solvant sont immiscibles ET où le soluté est dilué

Massive production of videos

>5 to 10 min
$>$ one subject
$>$ perfect sound
$>$ look the camera "in the eye"
$>$ writing down vs. show equations

$$
\begin{aligned}
& \text { Extracteur simple } \\
& \text { Bilans \& titre fictif } \\
& \text { bilan matière global sur l'extracteun en régime permanent } \\
& \qquad L_{A}+V_{A}=L_{\Lambda}+V_{\Lambda} \\
& \text { bilan en soluté sur l'extracteur en régime permanent } \\
& \mathscr{X}_{A} \cdot L_{A}+y_{A} \cdot V_{A}=x_{A}+y_{A} \cdot V_{\Lambda}
\end{aligned}
$$

What about sustainability?!...

$>$ LMS-independent resources
> low-tech software \& skins
$>$ videos: NOT sustainable!!!
$>$ think "reuse" from the design stage
\checkmark granules \& fragments
\checkmark avoid internal references
\checkmark clarify prerequisites (and limit them as much as possible)
\checkmark ban any notion of date, time, or curricula
\checkmark adopt a common nomenclature for all courses

AgroParistech

le cnam
Génie
des procédés

THANK you for your attention!

 marie.debacq@agroparistech.fr

