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Introduction

The coexistence of two compatible algebraic structures on a ring, the multiplicative (semigroup) one and the additive one confers a ring some strong rigidity relative to mere semigroups. For instance, it is well-known that strongly regular rings are exactly those rings where each element admits a unique reflexive inverse (inverse rings), and that they also coincide with abelian regular rings. By contrast, completely regular semigroups, inverse semigroups and Clifford semigroups form distinct classes of semigroups. In this note, we consider neither regular not necessarily unital rings whose multiplicative semigroup is Esolid, and prove that they are characterized by their idempotents being central modulo the Jacobson radical. We also provide the reader with various other characterizations of such rings in terms of the Jacobson radical, reflexive inverses, chains of idempotents or square stable range one. In particular, we prove that unital E-solid rings coincide with the strongly IC rings of Khurana, Lam and Wang [START_REF] Khurana | Rings of square stable range one[END_REF], the J-abelian rings (see [START_REF] Halicioglu | A class of abelian rings[END_REF], [START_REF] Lam | On some generalizations of abelian rings[END_REF] and also [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF]), the strongly perspective rings [START_REF] Ibrahim | Perspectivity, exchange and summand-dual-square-free modules[END_REF], [START_REF] Lam | On some generalizations of abelian rings[END_REF], the superspective rings [START_REF] Saad | Continuous and discrete modules[END_REF] or the 1/2-perspective rings of the present author [18]. First, we quickly review a few of the basics concepts here. In the sequel, rings will be associative but not necessarily unital.

An element x of a ring R is said to be regular if there exists some y ∈ R such that xyx = x. The element y is called an inner inverse (formerly quasi-inverse) of x. When the pair of equalities xyx = x and yxy = y hold, we say that x and y are reflexive inverses of each other, or that (x, y) forms a reflexive pair. We denote by V (x) the set of reflexive inverses of x. It is well known that every regular element has a reflexive inverse (take y ′ = yxy).

An element x ∈ R is strongly regular if it admits a commuting inner (equiv. reflexive) inverse, and unit-regular if it admits an inner inverse that is also a unit. A ring such that every element is regular (resp. strongly regular, unit-regular) is called a regular ring (resp. strongly regular ring, unit-regular ring).

An idempotent e ∈ idem(R) is left semicentral if (∀x ∈ R) xe = exe. Two idempotents e, f ∈ idem(R) are isomorphic (denoted by e ≃ f ) if eR and f R are isomorphic submodules of R R , iff e = xy, f = yx for some x, y ∈ R. Moreover, we can always choose y ∈ V (x).

The idempotents e and f are left (resp. right) associates, and we write e ∼ ℓ f (resp. e ∼ r f ) if Re = Rf or equivalently if ef = e and f e = f (resp. eR = f R or equivalently ef = f and f e = e). Finally, any two idempotents e, f are weakly (resp. strongly) 2-chained if e ∼ r g ∼ ℓ f for some g ∈ idem(R) or (resp. and) e ∼ ℓ h ∼ r f for some h ∈ idem(R).

Since we consider non necessarily unital ring, we recall the characterization of the Jacobson radical in terms of quasi-regular elements:

J(R) = {s ∈ R|(∀p ∈ R) sp is right quasiregular}
where an element x ∈ R is right quasiregular if x + y -xy = 0 for some y ∈ R. As is well-known, the elements of J(R) are themselves both left and right quasiregular [13].

The previous purely multiplicative notions also make sense in semigroups. Traditionally, idempotents of a semigroup S are however denoted by E(S) and strongly regular elements are termed completely regular. We finally recall Clifford and Miller's theorem, interpreted in terms of associated idempotents. Theorem 3]). Let S be a semigroup and let e, f ∈ E(S) be isomorphic idempotents (e = ab, f = ba for some a, b ∈ S with b ∈ V (a)). Then e ∈ Rf e, f ∈ f eR iff e ∼ r h ∼ ℓ f for some h ∈ E(S) iff a is completely regular.

Theorem 1.1 ([20,

E-solid rings

2.1. Classes of semigroups. Apart groups, the following classes of regular semigroups are among the most notable ones:

(1) Inverse semigroups (each element admits a unique reflexive inverse; equiv. regular semigroups whose idempotents commute); (2) Completely regular semigroups (each element admits a commuting inner inverse);

(3) Clifford semigroups (each element admits a unique reflexive inverse, that moreover commutes with the element; equiv. regular semigroups with central idempotents); (4) Orthodox semigroups (regular semigroups whose set of idempotents forms a subsemigroup); (5) Locally inverse semigroups (each local submonoid is inverse); (6) E-solid regular semigroups (the idempotent generated subsemigroup ⟨E(S)⟩ is completely regular).

Inverse semigroups appear naturally in connections with other areas of mathematics to model partial symmetries [START_REF] Mark V Lawson | Inverse semigroups: the theory of partial symmetries[END_REF], while completely regular semigroups proved one of the most elegant classes of semigroups, with a well established structure. Moreover, these two classes carry a natural inversion, and with this inversion they form varieties of unary semigroups. The other classes form e-varieties of regular semigroups [START_REF] Hall | Identities for existence varieties of regular semigroups[END_REF], which allows an equational description (by a generalization of Birkhoff theorem). Inverse semigroups are orthodox, and orthodox semigroups are E-solid regular.

Regarding non-regular semigroups, we say that:

(1) S is an E-semigroup if E(S) is a subsemigroup;

(2) S is E-commutative if E(S) is commutative;

(3) S is E-solid if for any three idempotents e, f, g ∈ E(S), if e ∼ r g ∼ ℓ f then there exists h ∈ E(S) such that e ∼ ℓ h ∼ r f , and dually if e ∼ ℓ g ∼ r f then there exists h ∈ E(S) such that e ∼ r h ∼ ℓ f . In terms of chains of idempotents, S is E-solid iff any weakly 2-chained idempotents are strongly 2-chained.

2.2. The ring case. For any ring R = (R, +, .), its multiplicative part (R, .) forms a semigroup. We say that the ring R = (R, +, .) is inverse (resp. strongly regular, resp. Clifford, resp. E-solid) if (R, .) is an inverse (resp. completely regular, resp. Clifford, resp. E-solid) semigroup.

As recalled in the introduction, in the case of regular rings, a remarkable collapsing occurs: strongly regular rings and inverse rings coincide, and are therefore Clifford rings, more usually called abelian regular rings (regular rings whose idempotents are central). It is also known that they coincide with orthodox rings [START_REF] Zeleznikow | Orthodox semirings and rings[END_REF]. They admit many other characterizations, among others they are the reduced regular rings, the regular subdirect products of division rings, or the regular rings such that (∀e, f ∈ idem(R)) ef = 0 ⇒ f e = 0. In 1997, J. Loyola proved that they also coincide with E-solid regular rings [START_REF] Oesmer | E-free objects in e-varieties of inverse rings[END_REF]. The proofs therein rest heavily upon regularity. Actually, a little more is true: such rings can also be characterized locally (by considering their corner rings eRe, e ∈ idem(R)) as the locally inverse rings or the locally E-solid regular rings [START_REF] Heatherly | Adjoint regular rings[END_REF]Proposition 3.1].

In case of non-regular rings, the first result was probably the characterization of unital rings whose regular elements are strongly regular by Khurana, Lam and Wang [START_REF] Khurana | Rings of square stable range one[END_REF] in terms of elements of square stable range one (an element a ∈ R has (right) square stable range one if aR + bR = R (for any b ∈ R) implies that a 2 + by is a unit for some y ∈ R). Such rings are also called strongly IC rings by analogy with rings with internal cancellation (IC rings [START_REF] Khurana | Rings with internal cancellation[END_REF]) that are characterized by their regular elements being unit-regular. Otherwise, few results were known in relations with the previous notions until recently and the obtainment by Khurana, Lam, Nielsen, Patricio and the present author of different results based on the Jacobson radical [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF]Theorem 3.13], [START_REF] Lam | On some generalizations of abelian rings[END_REF]Theorem 3.11], [17, Theorems 2.1 and 2.2], [18, Proposition 4.16 and Corollary 4.17], [START_REF] Mary | Characterizations of special clean elements and applications[END_REF]Theorem 6.3]. Among these results, while a relation between strongly regular elements and the Jacobson radical was already observed for instance in [START_REF] Mary | Characterizations of special clean elements and applications[END_REF], it is Khurana and Nielsen [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF] that discovered the full strength of the relation between strongly IC rings and the Jacobson radical, and the link with chains of idempotents. They notably established equivalences instead of mere implications (many of these equivalences are recalled below). As such, [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF] served as a catalyst for much of the subsequent research on the subject, including the present article. To try to be thorough on this topic, let us add two comments. First, rings having idempotents central modulo their Jacobson radical are called J-abelian in [START_REF] Halicioglu | A class of abelian rings[END_REF] and [START_REF] Lam | On some generalizations of abelian rings[END_REF], and we will use this terminology afterwards. Second, those rings are determined by a very nice property in terms of the direct summands of the module R R , as proved independently in [11, Theorem 3.17], [START_REF] Lam | On some generalizations of abelian rings[END_REF]Theorem 3.11] or [18, Corollary 4.10]: R is J-abelian iff for any two isomorphic direct summands A, B of R R , any direct complement of A is a direct complement of B (quoting [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF] "isomorphic direct summands share all their complements"). For this reason, they are also called strongly perspective rings [START_REF] Ibrahim | Perspectivity, exchange and summand-dual-square-free modules[END_REF], [START_REF] Lam | On some generalizations of abelian rings[END_REF], 1/2-perspective rings [18] or superspective rings [START_REF] Saad | Continuous and discrete modules[END_REF].

We collect all these known results below (unital ring case). While most of the proofs carry verbatim to the non-unital ring case, we nevertheless provide the reader with a general scheme to prove they remain true in the non-unital ring case.

Theorem 2.1 ([10], [START_REF] Khurana | Perspectivity and von Neumann regularity[END_REF], [START_REF] Lam | On some generalizations of abelian rings[END_REF], [START_REF] Mary | Rings with transitive chaining of idempotents[END_REF]). Let R be ring, and consider the following statements:

(1) regular elements of R are strongly regular (R is strongly IC);

(2) regular elements of R have (right) square stable range one;

(3) strong 2-chaining is transitive; (4) weak 2-chaining is transitive;

(5) isomorphic idempotents are strongly 2-chained; (6) isomorphic idempotents are weakly 2-chained; [START_REF] Heatherly | Adjoint regular rings[END_REF] isomorphic idempotents of R are equal modulo the Jacobson radical; (8) idempotents of R are central modulo the Jacobson radical (R is J-abelian).

Then all these statements are equivalent in case R is unital. Moreover, the equivalences (without statement (2)) remain valid in non-unital rings.

We propose here to prove the non-unital case by using the classical unitization (Dorroh extension) of a ring as a general methodology. Indeed, let R be a ring and R = R ⊕ Z be its classical Dorroh extension, with product (a, n)(b, p) = (ab + pa + nb, np). Then idempotents of R are of the form e 0 = (e, 0) or e 1 = (-e, 1) = 1 -e 0 , where e ∈ idem(R). Moreover, isomorphic (in particular associate) idempotents in R share the same second coordinate. It follows that chains of idempotents of R either live in the ideal R of R, or so does the chain of their complementary idempotents (if e 1 ∼ r f 1 then 1 -e 1 ∼ ℓ 1 -f 1 for any two idempotents e 1 , f 1 of a unital ring). Then almost each of the equivalences follow from the previously proved unital results, and this general structural relationship. Below, we derive all but one equivalence (in the non-unital case) by this method. The remaining one cannot be proven this way because isomorphic idempotents in R of the form e 1 = (-e, 1), f 1 = (-f, 1) need not have e and f isomorphic in R in general. The remaining equivalence will thus be proved independently in Lemma 2.2. Some equivalences will also be proven directly in Theorem 2.3.

Proof of Theorem 2.1. We prove that (1) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) ⇐⇒ (6) ⇐⇒ (8) ⇒ (7) in the non-unital case. First, we observe that the following implications are straightforward even in the non-unital case: (5) ⇒ (3), ( 5) ⇒ (6) and ( 6) ⇒ (4). Also (1) ⇐⇒ (5) by Miller and Clifford's Theorem 1.1. Let R = R⊕Z and e ∈ idem(R) be central modulo J(R). As is well-known, J( R) = (J(R), 0) so that for any x ∈ R and n ∈ Z, the commutator [e i ; (x, n)] = ((-1) i (ea -ae), 0) ∈ J( R) (i ∈ {0, 1}), and e 0 , e 1 ∈ idem( R) are central modulo J( R). Second, if e ∈ idem(R) is associate to f ∈ idem( R), then f ∈ R as R is an ideal of R. By the same argument, a ∈ R is strongly regular in R iff it is strongly regular in R. We conclude that (8) ⇒ (1), ( 3), ( 4), ( 5), ( 6), [START_REF] Heatherly | Adjoint regular rings[END_REF] in non-unital rings. We finally prove that (3) ⇒ (8) (the proof of (4) ⇒ (8) is similar). Assume [START_REF] Chen | Rings in which nilpotents belong to Jacobson radical[END_REF] and let e i , f j , g k ∈ idem( R) (i, j, k ∈ {0, 1}) be such that e i , f j and f j , g k are strongly 2-chained in R. Suppose first that i = 0. Then j = k = 0 (associate idempotents in R share the same second coordinate) and e, f and f, g are strongly 2-chained in R. By the transitivity assumption, e and g are strongly 2-chained in R hence e 0 , g 0 are strongly 2-chained in R. Suppose now that i = 1. Then j = k = 1 and e 1 = 1 -e 0 , f 1 = 1 -f 0 and f 1 = 1 -f 0 , g 1 = 1 -g 0 are strongly 2-chained, so that their complementary idempotents are also strongly 2-chained. Thus as previously, e 0 , g 0 are strongly 2-chained in R and so are their complementary idempotents. □

In passing, we have proved that, if R has central idempotents modulo its Jacobson radical, then so does its Dorroh extension R = R ⊕ Z. We will return to the Dorroh extension, unitizations and square stable range 1 at the end of this section.

The remaining implication (7) ⇒ (5) is the content of Lemma 2.2. As pointed out by Pace Nielsen, this result is actually a specialization of [2, Proposition 2.4]. Lemma 2.2. Let R be a ring, and e, f ∈ idem(R) be such that e ≡ f (mod J(R)). Then e and f are strongly 2-chained.

Proof. By duality, we only have to prove that e and f are left 2-chained. So assume that f = e -j for some j ∈ J(R), and let q ∈ R be such that j + q -jq = 0. Then ef (f -q) = ef -ef q = (e -ej) -(eq -ejq) = e -e(j + q -jq) = e. This proves that e ∈ ef R. By duality f ∈ Ref and we conclude by Miller and Clifford's Theorem 1.1. □

Our main theorem proves that E-solid rings are exactly J-abelian rings. Moreover, they can also be characterized by uniqueness of reflexive inverses modulo the Jacobson radical, commutation of idempotents modulo the Jacobson radical or by product of idempotents being idempotents modulo the Jacobson radical.

Theorem 2.3. Let R be a (possibly non-unital) ring. Then the following statements are equivalent:

(1) reflexive inverses are unique modulo the Jacobson radical;

(2) idempotents of R are central modulo the Jacobson radical (R is J-abelian);

(3) idempotents commute modulo the Jacobson radical; (4) for all e, f ∈ idem(R), ef ≡ f (mod J(R)) ⇐⇒ f e ≡ f (mod J(R));

(5) weakly 2-chained idempotents are equal modulo the Jacobson radical; (6) isomorphic idempotents are equal modulo the Jacobson radical; (7) isomorphic idempotents are strongly 2-chained; (8) regular elements are strongly regular (R is strongly IC); (9) products of idempotents are idempotents modulo the Jacobson radical; (10) R is E-solid (weakly 2-chained idempotents are strongly 2-chained).

(they are also equivalent with statements (3), ( 4), ( 6) of Theorem 2.1.)

Proof. The implications (2) ⇒ (3) ⇒ (4) and ( 3) ⇒ (9) are straightforward, ( 6) ⇒ (7) by Lemma 2.2, ( 7) ⇐⇒ (8) by Theorem 1.1 and ( 7) ⇒ (10), ( 6) ⇒ (5) as associate idempotents are isomorphic (and isomorphy is transitive). We prove that (4) ⇒ (5) ⇒ (1) ⇒ (2) and that ( 9) ⇒ (10) ⇒ (2) ⇒ (6). ( 4) ⇒ (5) : Assume (4) and let e, f, g ∈ E(S) so that e ∼ r g ∼ ℓ f (the other case e ∼ ℓ g ∼ r f is dual). As e = ge, eg = g = gf , f g = f then by (4) e ≡ g ≡ f (mod J(R)).

(5) ⇒ (1) : Let a ∈ R be a regular element and let b, b ′ ∈ V (a). Then ab ∼ r ab ′ hence ab ≡ ab ′ (mod

J(R)), so that b ≡ bab ′ (mod J(R)). Dually ba ∼ ℓ b ′ a hence ba ≡ b ′ a (mod J(R)), so that bbab ′ ≡ b ′ (mod J(R)). Finally b ≡ b ′ (mod J(R)).
(1) ⇒ (2) : Let e ∈ idem(R) and x ∈ R. Pose f = e + (ex -exe). Then f ∈ V (e) hence f ≡ e (mod J(R)) by assumption or equivalently, f -e ≡ ex -exe ≡ 0 (mod J(R)). This proves that e is right semicentral modulo J(R) and we conclude by duality.

(9) ⇒ (10) : Assume [START_REF] Khurana | Rings with internal cancellation[END_REF] and let e, f, g ∈ idem(R) be such that e ∼ r g ∼ ℓ f (the other case e ∼ ℓ g ∼ r f is dual). As e = ge, eg = g = gf and f g = f then ef = ef g = ef gf = ef egf = gef egf = gf ef egf . By ( 9), (f e) 2 ≡ f e (mod J(R)) so that ef ≡ gf egf ≡ egf ≡ g (mod J(R)). Recall that an ideal I of R is enabling [START_REF] Alkan | Strong lifting splits[END_REF] if for any x ∈ R and e ∈ idem(R),

x ≡ e (mod I) implies the existence of f ∈ xR such that f 2 = f and f ≡ e (mod I). Now the Jacobson radical is always an enabling ideal by [1, Proposition 5] (or [2, Corollary 3.2]) so that we can use [2, Proposition 3.4]: there exists an idempotent h ∈ f Re such that h ≡ f ge (mod J(R)). Moreover, as e, f ∈ idem(R) and ge = e, f g = f then h satisfies additionally that e ∼ ℓ h ∼ r f . Finally e and f are strongly 2-chained and R is E-solid.

(10) ⇒ (2) : Assume that R is E-solid and let e ∈ R. We prove that e is right semicentral modulo J(R) (ex -exe ∈ J(R) for all x ∈ R). Let any x, p ∈ R and pose s = ex -exe. We want to prove that sp is right quasi-regular. We decompose sp = spe + (sp -spe). Let t = pe-epe (so that spe = st). Then e+s, e+t are idempotents and e+s ∼ r e ∼ ℓ e+t. As R is E-solid then e+s ∼ ℓ h ∼ r e+t for some idempotent h and by Clifford and Miller's theorem, (e+s)(e+t) = e+st is a unit in eRe. Let q be its inverse in eRe, and let z = -qsp. As eq = q and spe = st then sp + z -spz = sp -qsp + spqsp = sp -qsp + speqsp = sp -qsp + stqsp and as es = s and (e + st)q = e = eq + stq = q + stq then sp = esp = qsp + stqsp, so that finally sp + z -spz = 0. It follows that sp is right-quasiregular, and by universality of p ∈ R, s ∈ J(R). Since x ∈ R is also arbitrary e is right semicentral modulo J(R). The conclusion follows by duality.

(2) ⇒ (6) : Let e = ab, f = ba be isomorphic idempotents in R with b ∈ V (a). As aba = a and ab ∈ idem(R) then a ≡ a 2 b ≡ ba 2 (mod J(R)), and multiplying by b on the right and on the left gives ab ≡ ba 2 b ≡ ba (mod J(R)). □

The proof of ( 9) ⇒ (10) relies on deep results of [START_REF] Victor | Half-orthogonal sets of idempotents[END_REF]. We can avoid them and prove directly that (9) ⇒ (8). In due course, we will however need the following result due to Lam that has not appeared yet [START_REF] Lam | On some generalizations of abelian rings[END_REF]Theorem 4.3]: A ring R is a strongly IC ring iff eR(1 -e)Re ⊆ J(R) for every idempotent e ∈ idem(R) (and this works also for nonunital rings). Then assume [START_REF] Khurana | Rings with internal cancellation[END_REF] and let e ∈ idem(R), x, y ∈ R. Pose s = ex -exe and t = ye -eye. As s 2 = se = 0 = et = t 2 and es = s, te = t then e + s and e + t are idempotents and by ( 9) (e + t)(e + s) = e + s + t + ts is idempotent modulo J(R). But e ((e + t)(e + s)) 2 e = (e + s)(e + t) = e + st so that passing to the equivalences classes we obtain e + st ≡ e ((e + t)(e + s)) 2 e ≡ e ((e + t)(e + s)) e ≡ e (mod J(R)). Finally, st ∈ J(R) and we conclude by Lam's theorem that R is strongly IC. By using the (folklore) result the strong regularity of elements passes to corner rings, we derive directly from Theorem 2.3 that corner rings of E-solid rings are E-solid. Another proof goes as follows: let e, f, g, h ∈ idem(R) such that f, h ∈ eRe and f ∼ r g ∼ ℓ h. As ef = f and f g = g then eg = g, and dually as he = h and gh = g then ge = g. Finally g = ege ∈ eRe. This proves that 2-chains pass to corner rings. Next example proves that the converse statement is false in general: locally E-solid rings need not be E-solid.

Example 2.4. Let R = Z 2Z 2Z 2Z ⊆ M 2 (Z).
The ring R is non-unital, and non-zero idempotents of the ring M 2 (Z) have rank 1 (in M 2 (Z)). Let E ∈ idem(R) be a non-zero idempotent matrix. As Z is projective-free, then E is conjugate to 

E 1 = 1 0 0 0 in M 2 (Z), E = U E 1 U -1 for some invertible matrix U . Let A ∈ ERE. Then A = U E 1 U -1 AU E 1 U -1 hence U -1 AU = E 1 U -1 AU E 1 = zE 1 for some z ∈ Z, and A = U E 1 zE 1 E 1 U -1 =
J(R) = J(Z) * * J(2Z) = 0 * * 0 .
Consider the two matrices E 1 and A = 1 2 2 4 . Then A, E 1 ∈ V (E 1 ) but A -E 1 = 0 2 2 4 does not belong to J(R). Thus reflexive inverses are not unique modulo the Jacobson radical and R is not E-solid. Finally, by using arguments of [START_REF] Khurana | Rings of square stable range one[END_REF], we derive the following result that deals with unitizations and square stable range 1.

Corollary 2.5. Let R be a ring. Then the following statements are equivalent:

(1) R is E-solid;

(2) for any unitization R and any a ∈ R, b ∈ R, if a is regular and a R + b R = R then a 2 + by is a unit in R for some y ∈ R; (3) for some unitization R and any a ∈ R, b ∈ R, if a is regular and a R + b R = R then a 2 + by is a unit in R for some y ∈ R.

Proof. The implication (2) ⇒ (3) is a tautology. To prove that (1) ⇒ (2), assume that R is E-solid, and let R be any unitization of R. Let also a ∈ R be regular. As R is E-solid then by Theorem 2.3 a is strongly regular in R hence in R. By [START_REF] Khurana | Rings of square stable range one[END_REF]Theorem 5.2] the element a has (right) square stable range 1 in R, that is for any b ∈ R such that a R + b R = R then a 2 + by is a unit in R for some y ∈ R. Finally, we prove that (3) ⇒ (1). So assume (3) for some unitization R. Let a ∈ R be regular with reflexive inverse a ′ ∈ R. As aa ′ R = a R with aa ′ idempotent then a (R) is Dedekind-finite (as a right R-module) iff the corner ring C = aa ′ Raa ′ is Dedekind-finite (as a unital ring). Let x, y ∈ C be such that xy = 1. Then yxy = y and y is regular. Moreover, y ∈ R since a ∈ R and R is an ideal of R. By (4), as y R + (1 -yx) R = R then y 2 + (1 -yx)z is a unit for some z. Thus y = (y 2 + (1 -yx)z)t for some t ∈ R and right multiplying by x = xyx we obtain that 1 = xy = xyxy = xyxy 2 t = y 2 t since yx(1 -yx) = 0. Finally y is a left and right invertible, x = xy 2 t = yt and yx = 1. This proves that a R is Dedekind-finite. By [10, Theorem 5.2], a is then strongly regular in R hence admits a commuting reflexive inverse a ♯ ∈ R. But a ♯ satisfies the equation a ♯ = (a ♯ ) 2 a hence lies in the ideal R of R. This proves that R is strongly IC (equiv. E-solid). □

The last two equivalent conditions may be seen as a "regular square stable range 1" condition for non-unital rings in the spirit of Vaserstein [START_REF] Vaserstein | Bass's first stable range condition[END_REF].

Remarks

(1) As the Jacobson radical of regular rings is 0, we recover that R is E-solid regular iff R is abelian regular (equiv. Clifford, equiv. strongly regular, equiv. inverse, equiv. orthodox); (2) If nilpotents of R belong J(R) (equiv. are central modulo J(R)), then idempotents are central modulo J(R) (note that for all x ∈ R and e ∈ idem(R), n = ex-exe is nilpotent); (3) This happens also if R/J(R) is abelian (because the quotient map sends idempotents of R to idempotents of R/J(R)). For instance, in [4, Theorem B] (see also [START_REF] Heatherly | Adjoint regular rings[END_REF]Proposition 4.5]), it is proved that any adjoint regular ring with a principal idempotent e ∈ idem(R) decomposes as a direct sum of subrings R = eRe ⊕ J(R), with eRe strongly regular. Consequently, such rings are E-solid. (4) Recently, Lam [START_REF]An introduction to q-central idempotents and q-abelian rings[END_REF] introduced q-abelian rings (where eR(1 -e)Re = 0 for all e ∈ idem(R)) and proved that they are strongly IC (E-solid). He also proved that T 2 (S) is q-abelian iff S is abelian; Consequently, if S is E-solid but not abelian, then T 2 (S) is E-solid (by [5, Theorem 3.8]) but not q-abelian. (5) In [START_REF] Chen | Rings in which nilpotents belong to Jacobson radical[END_REF], the authors consider the following example: S denotes the localization of Z at 3Z, and Q the quaternions over the ring S. They prove that Nil(Q) ⊆ J(Q), so that regular elements of Q are strongly regular (actually, as Q is a noncommutative domain, regular elements are either 0 or invertible), and that T = Q/J(Q) ≃ M 2 (Z 3 ). It follows that T contains non-central idempotents. This proves that for a ring R, the equivalent conditions of Theorem 2.3 are strictly weaker that R/J(R) being abelian. (6) On the other hand, the condition Nil(R) ⊆ J(R) (being J-reduced ) is not necessary for R to be E-solid. Consider the (non-unital) semigroup algebra R = F 2 ⟨a, b|a 2 = b 2 = 0⟩. Then a is nilpotent but ab is not quasi-regular, and a / ∈ J(R). However, R is trivially E-solid since its only idempotent is 0.
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  zE. It follows that ERE ⊆ ZE is a commutative ring, and any regular element of ERE is strongly regular. Thus R is locally E-solid. To prove that R is not E-solid, we use the characterization (1) of Theorem 2.3. By the general theory of radicals over Morita contexts[START_REF] Sands | Radicals and morita contexts[END_REF] Theorem 1]