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BACKGROUND
Although the clinical efficacy of antimalarial artemisinin-based combination 
therapies in Africa remains high, the recent emergence of partial resistance to 
artemisinin in Plasmodium falciparum on the continent is troubling, given the lack 
of alternative treatments.

METHODS
In this study, we used data from drug-efficacy studies conducted between 2016 
and 2019 that evaluated 3-day courses of artemisinin-based combination therapy 
(artesunate–amodiaquine or artemether–lumefantrine) for uncomplicated malaria 
in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent 
P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed 
parasites for mutations in Pfkelch13 as predictive markers of partial resistance to 
artemisinin and screened for deletions in hrp2 and hrp3 that result in variable per-
formance of histidine rich protein 2 (HRP2)–based rapid diagnostic tests for malaria.

RESULTS
We noted an increase in the percentage of patients with day-3 positivity from 0.4% 
(1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An 
increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which 
was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 
to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 
6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I 
variant parasites. Partial resistance to artemisinin, as defined by the World Health 
Organization, was observed in Eritrea. More than 5% of the patients younger than 
15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. 
In vitro, the R622I mutation conferred a low level of resistance to artemisinin 
when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 
were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, 
which made them potentially undetectable by HRP2-based rapid diagnostic tests.

CONCLUSIONS
The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated 
partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten 
to compromise regional malaria control and elimination campaigns. (Funded by 
the Bill and Melinda Gates Foundation and others; Australian New Zealand Clini-
cal Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and 
ACTRN12619000859189.)
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Artemisinin-based combination 
therapies, which combine fast-acting and 
potent artemisinin derivatives with longer-

acting partner drugs, are essential first-line treat-
ments for uncomplicated Plasmodium falciparum 
malaria.1 Over the past 15 years, P. falciparum 
parasites in the Greater Mekong Subregion in 
Southeast Asia have developed partial resistance 
to artemisinin, which manifests as delayed para-
site clearance or persistence of parasites 3 days 
after the initiation of artemisinin-based combi-
nation therapy. Resistance in vitro results from 
a decreased susceptibility to artemisinin in intra-
erythrocytic ring-stage parasites.1-6 Artemisinin-
based combination therapy has had an increas-
ing incidence of failure in this subregion, where 
parasites have also acquired resistance to the 
partner drug piperaquine and previously to the 
partner drug mefloquine.7

Although the clinical efficacy of artemisinin-
based combination therapies in African regions 
is currently high, the recent emergence of partial 
resistance to artemisinin in Rwanda and Uganda 
is a major concern.1,8-13 Molecular studies have 
confirmed the presence of nonsynonymous mu-
tations in Pfkelch13 (PF3D7_1343700), the pri-
mary determinant of partial resistance to arte-
misinin.14,15 These mutations include R561H in 
Rwanda and C469Y and A675V in Uganda. All 
three are associated with delayed parasite clear-
ance, persistent parasitemia on day 3, or both and 
have displayed increasing prevalence over time 
(7.8% in 2015 to 12.8% in 2018 in Rwanda and 
3.9% in 2015 to 19.8% in 2019 in Uganda).10,12 
Results of ex vivo and in vitro assays measuring 
survival of Pfkelch13 R561H and C469Y parasites 
(either gene-edited lines or field isolates) sup-
port these mutations as markers of in vitro 
partial resistance to artemisinin in a manner 
dependent on the genetic background of the 
parasite.10,11,16 Genomic analyses have shown the 
independent emergence and local expansion of 
these Pfkelch13-variant parasites.10-12

In Eritrea, artesunate–amodiaquine, first in-
troduced in 2007 as the first-line treatment for 
uncomplicated falciparum malaria, is now avail-
able free of charge at health facilities and at the 
community level. In 2015, a single dose of pri-
maquine was added to artesunate–amodiaquine 
as a transmission-blocking agent.13 Artemether–
lumefantrine, which has been recommended as 

second-line treatment, was implemented in 2019 
at health facilities as an alternative first-line 
treatment for uncomplicated malaria.

Here, we describe the results of therapeutic 
efficacy studies conducted between 2016 and 
2019 at five sites in Eritrea evaluating 3-day 
courses of artesunate–amodiaquine or arte-
mether–lumefantrine for uncomplicated falci-
parum malaria. We assessed the percentage 
of patients with day-3 positivity (i.e., persistent 
P. falciparum parasitemia 3 days after the initia-
tion of therapy) and assayed parasites for molecu-
lar signatures of partial resistance to artemis-
inin. We also screened for deletions in hrp2 and 
hrp3 that result in variable performance of 
HRP2-based rapid diagnostic tests for malaria.

Me thods

Study Design and Population

We conducted an analysis of three previously 
unpublished, open-label, single-group, multisite, 
clinical drug-efficacy studies that were designed 
to assess clinical partial resistance to artemis-
inin in Eritrea, as determined by the percentage 
of patients with day-3 positivity after artesunate–
amodiaquine or artemether–lumefantrine treat-
ment. The studies were conducted in 2016, 2017, 
and 2019 at health centers or hospitals at five 
sites in western Eritrea, and the three study pro-
tocols are available with the full text of this ar-
ticle at NEJM.org. The studies were approved by 
the Eritrean ethical committee and the World 
Health Organization (WHO) ethical review com-
mittee. Patients were at least 6 months of age, 
and eligibility was determined according to 
WHO inclusion and exclusion criteria. Informed 
written consent was obtained from the adult 
patients and from the parents or caretakers of 
children enrolled in the studies.

Treatment, Follow-up Procedure,  
and Outcomes

Patients were assigned a supervised standard 
3-day course of artesunate–amodiaquine (2016 
and 2019) or artemether–lumefantrine (2017) 
and were monitored clinically. Thick and thin 
blood smears were obtained by finger prick on 
the day of recruitment (day 0) and during follow-
up visits on days 1, 2, 3, 7, 14, 21, and 28 to 
screen for P. falciparum and estimate parasite 
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density. Additional follow-up visits were sched-
uled if further symptoms occurred. Dried blood-
spot filter papers were used for molecular stud-
ies. The primary outcome was day-3 positivity, as 
assessed by microscopic examination of thick 
blood smears on day 3 after a 3-day course of 
artemisinin-based combination therapy (days 0, 
1, and 2).1 A secondary outcome was the poly-
merase-chain-reaction (PCR)–adjusted clinical 
response to the designated treatment on day 28.

Molecular Analysis

We used the QIAamp DNA Blood Mini Kit (Qia-
gen) to extract parasite DNA from dried blood 
spots before and after (in cases of recurrence) 
treatment. Genotyping of the polymorphic ge-
netic markers msp1, msp2, and polyα was carried 
out by PCR testing, and post-treatment infec-
tions were classified as either recrudescent (same 
genotype as on day 0) or new (different geno-
type) infections.17

Paired DNA samples (obtained on day 0 and 
on the day of recurrence) were analyzed for mu-
tations in the propeller domain of Pfkelch13 (co-
dons 430 to 720) and in pfcrt, pfmdr1, dhfr, and 
dhps, which are associated with decreased para-
site susceptibility to artemisinin derivatives, 
4-aminoquinolines (piperaquine and chloroquine), 
amino alcohols (mefloquine and lumefantrine), 
pyrimethamine, and sulfadoxine, respectively.18 
We also screened for hrp2 and hrp3 deletions that 
can cause false negative results with HRP2-
based rapid diagnostic tests.19

Whole-genome sequencing was performed 
with the use of Illumina paired-end sequenc-
ing after selective amplification of parasite 
DNA.20 Read alignments against the 3D7 ge-
nome (PlasmoDB, Release 45) were used to infer 
a phylogenetic tree. The Genome Analysis Tool-
kit21 was used to identify single-nucleotide 
polymorphisms, genotype isolates, and assess 
the genetic identity of Pfkelch13 variants from 
Eritrea. Principal coordinate analysis, hierarchi-
cal clustering, and an analysis of molecular vari-
ance were performed on the basis of pairwise 
Euclidean genetic distances between samples.

Gene-Edited Lines and In Vitro Susceptibility

The Pf kelch13 R622I mutation was introduced 
into African (NF54) and Asian (Dd2) parasite 
lines by CRISPR-Cas9 (clustered regularly inter-

spaced short palindromic repeats and associated 
Cas9 homing endonucleases)–mediated gene 
editing. Susceptibility to artemisinin in the edited 
parasites and wild-type controls was assessed in 
vitro with the use of the ring-stage survival as-
say, performed on ring-stage parasites synchro-
nized to a 0-to-3-hour window after merozoite 
invasion of red cells (RSA0-3hr) (see the Supple-
mentary Appendix, available at NEJM.org).22

Statistical Analysis

Data were analyzed with the use of GraphPad 
Prism, version 9.3.1 (GraphPad Software). Be-
cause the analyses presented here were not 
originally specified in the protocols for the three 
component studies, all analyses are descriptive. 
All estimates include 95% confidence intervals, 
but the widths of the confidence intervals have 
not been adjusted for multiple comparisons 
and should not be used in place of hypothesis 
testing. The primary analysis was conducted on 
the basis of complete cases only and excluded 
data from patients with missing outcomes. The 
Kaplan–Meier analyses were conducted as an 
alternative to the complete-case analysis.

R esult s

Patients and Study Design

A total of 852 patients with uncomplicated P. fal-
ciparum malaria were enrolled (Table 1). Of these, 
841 patients (98.7%) were assessed for the day-3 
positivity outcome and 825 (96.8%) for the 
clinical efficacy outcome (PCR-adjusted clinical 
response to the designated treatment on day 28). 
The remaining patients either withdrew consent 
(10 patients) or were lost to follow-up (17 pa-
tients) (Fig. S1 in the Supplementary Appendix).

Day-3 Positivity

Among 841 patients, 20 (2.4%) from the towns 
of Guluj, Shambuko, and Tokombia, Eritrea, re-
mained parasitemic 3 days after the initiation of 
therapy (Fig. 1A and Table S1). The percentage 
of patients with day-3 positivity increased from 
0.4% (95% confidence interval [CI], 0.0 to 2.0 
[1 of 273 patients]) in 2016 to 1.9% (95% CI, 0.5 
to 4.9 [4 of 209]) in 2017 and 4.2% (95% CI, 2.3 
to 6.9 [15 of 359]) in 2019. The towns with the 
highest percentages of patients with day-3 posi-
tivity in 2019 were Tokombia (10.2%) and Sham-
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Table 1. Characteristics of the Three Eritrean Studies and of the Patients at Baseline, Day-3 Positivity, and Pfkelch13 Genotypes in Blood 
Samples Collected before Artemisinin-Based Combination Therapy.*

Variable Study Year Total

2016 2017 2019

Study characteristic

Period Jan.–Dec. Sept.–Dec. Aug.–Nov.

Antimalarial treatment Artesunate–  
amodiaquine

Artemether–  
lumefantrine

Artesunate–  
amodiaquine

Patients — no.

Total† 280 211 361 852

Distribution according to site

Akordat 58 19 88 165

Ghindae NA 15 NA 15

Guluj 73 25 97 195

Shambuko 73 64 88 225

Tokombia 76 88 88 252

Patient characteristic at baseline

Median age (IQR) — yr 13.0 (8.0–19.0) 13.0 (9.0–22.7) 17.5 (12.0–29.0) 15.0 (10.0–25.0)

Female/male — no. 120/160 82/129 119/242 321/531

Median body temperature (IQR) — °C 38.0 (38.0–39.0) 38.0 (38.0–38.3) 38.0 (38.0–38.5) 38.0 (38.0–39.0)

Median parasite density (IQR) — μl 7530 (2736–18,036) 7900 (2677–22,335) 9312 (2720–23,933) 8280 (2715–21,902)

Day-3 positivity

Patients with day-3 positivity  
— no./total no. (%)

Total 1/273 (0.4) 4/209 (1.9) 15/359 (4.2) 20/841 (2.4)

Distribution according to site

Akordat 0/54 0/19 0/88 0/161

Ghindae NA 0/15 NA 0/15

Guluj 0/71 0/23 1/95 (1.1) 1/189 (0.5)

Shambuko 1/73 (1.4) 4/64 (6.2) 5/88 (5.7) 10/225 (4.4)

Tokombia 0/75 0/88 9/88 (10.2) 9/251 (3.6)

Pfkelch13 genotype detected in pre-
treatment blood sample

Missing samples — no./total no. (%) 0/280 0/211 23/352 (6.5) 23/852 (2.7)

Missing data — no./total no. (%) 2/280 (0.7) 0/211 9/352 (2.5) 11/852 (1.3)

Pfkelch13 wild type 251/278 (90.3) 193/211 (91.4) 254/329 (77.2) 698/818 (85.3)

Pfkelch13 position: amino acid  
substitution

503: K→W 1/211 (0.5) 1/818 (0.1)

515: R→G 1/211 (0.5) 1/818 (0.1)

520: V→A 1/278 (0.3) 1/818 (0.1)

532: C→W 1/329 (0.3) 1/818 (0.1)

533: G→N 1/329 (0.3) 1/818 (0.1)

543: I→V 1/329 (0.3) 1/818 (0.1)

548: G→C 1/329 (0.3) 1/818 (0.1)
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buko (5.7%). A total of 825 of 852 (96.8%) pa-
tients were evaluated at day 28 (Table S2). Of the 
27 recurrent infections, 17 were classified as 
recrudescent. The PCR-corrected complete-case 
and Kaplan–Meier estimates of efficacy with 
artesunate–amodiaquine and with artemether–
lumefantrine were greater than 94%, which is 
above the 90% threshold recommended by the 
WHO for a treatment policy change (Tables S3, 
S4, and S5).

Pfkelch13 Genotyping

Of the 828 available pretreatment samples, 818 
(98.8%) were successfully genotyped. Twelve 
Pf kelch13 nonsynonymous mutations were de-
tected in 120 samples (Table 1). The Pfkelch13 
R561H mutation, a validated marker for partial 
resistance to artemisinin, was observed in one 
isolate (Shambuko, 2019).11,12 A novel Pfkelch13 
R622I mutation was detected in 109 of 818 
samples (13.3%). The prevalence of this variant 
increased from 8.6% (95% CI, 5.5 to 12.8 [24 of 
278 patients]) in 2016 and 7.6% (95% CI, 4.3 to 
12.3 [16 of 211]) in 2017 to 21.0% (95% CI, 16.3 
to 26.5 [69 of 329]) in 2019 (Fig. 1B and 1C and 
Table S6). In 2019, the prevalence was 8.1% in 
Shambuko, 21.9% in Guluj, 26.2% in Akordat, 
and 29.1% in Tokombia.

A Novel Marker of Partial Resistance  
to Artemisinin

The percentage of patients with parasites carry-
ing the Pfkelch13 R622I mutation before treat-
ment was higher among those with day-3 posi-
tivity (45%; 95% CI, 20.6 to 85.4 [9 of 20 
patients]) than among those who were negative 

on day 3 (12.3%; 95% CI, 10.0 to 15.0 [97 of 
787]) (risk ratio, 5.4; 95% CI, 2.3 to 12.7). In vivo 
partial resistance to artemisinin was confirmed 
in Eritrea. Among the patients with day-3 posi-
tivity who were younger than 15 years of age, 
parasites carrying Pfkelch13 R622I were detected 
on day 0 in more than 5% in Tokombia (7.0% in 
2019) and Shambuko (5.4% in 2017) (Table S7).23 
The odds of day-3 positivity were higher by a 
factor of 6.2 (95% CI, 2.5 to 15.5) among the 
patients with the Pfkelch13 622I variant in iso-
lates collected before artemisinin-based combi-
nation therapy than among those with Pfkelch13 
wild-type parasites (Table 2). Although the fail-
ure rates of artesunate–amodiaquine treatment 
were similar among patients with parasites car-
rying Pfkelch13 R622I and those with wild-type 
parasites on day 0 (2.3% [2 of 87] vs. 3.0% [15 
of 495]), Pfkelch13 genotyping of paired isolates 
obtained on day 0 and on the day of recrudes-
cence indicated selective pressure for the 622I 
variant after artesunate–amodiaquine adminis-
tration (an increase by a factor of 4.4, from 12% 
on day 0 to 53% on the day of recrudescence). 
Using amplicon deep sequencing, we detected 
the presence of Pfkelch13 622I genotypes in minor 
percentages (1.4 to 3.2% in 7 of 9 samples ob-
tained on day 0 that had been previously classi-
fied as wild type), findings that provide evidence 
of intrahost selection after administration of 
artesunate–amodiaquine (Table S8).

In Vitro Survival of Pfkelch13 622I Variant 
Parasites

The Pf kelch13 R622I mutation was edited into 
NF54 (African) and Dd2 (Asian) parasites. Re-

Variable Study Year Total

2016 2017 2019

556: E→K 1/329 (0.3) 1/818 (0.1)

561: R→H 1/329 (0.3) 1/818 (0.1)

591: G→N 1/278 (0.3) 1/818 (0.1)

622: R→I 24/278 (8.6) 16/211 (7.6) 69/329 (21.0) 109/818 (13.3)

658: K→E 1/278 (0.3) 1/818 (0.1)

*  Day-3 positivity was defined as persistent P. falciparum parasitemia on 3 days after the initiation of therapy. IQR denotes interquartile range, 
and NA data not available.

†  The target number of patients to be enrolled at each study site was 73, as estimated on the basis of power calculations. Lower-than-expected 
numbers of patients were enrolled in Akordat (2016 and 2017), Ghindae (2017), and Guluj (2017), mainly because of the low number of 
 malaria cases seen at health centers in this low malaria-transmission region during the study period.

Table 1. (Continued.)
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combinant clones were tested with the RSA0-3hr, 
which measures the survival of early ring-stage 
parasites exposed to 700nM dihydroartemisinin 
for 6 hours. Survival (calculated relative to 

dimethylsulfoxide mock-treated parasites) great-
er than 1% indicates in vitro resistance to arte-
misinin. Results showed that the Pfkelch13 R622I 
mutation conferred low-level partial resistance 
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to artemisinin in NF54 622I parasites as com-
pared with the isogenic wild-type control line 
(survival, 3.3% vs. 0.6%). In vitro resistance was 
borderline in the Dd2 R622I line (survival, 1.5% 
in the variant vs. 0.7% in the isogenic control). 
In NF54 parasites, the R622I mutation conferred 
somewhat lower levels of resistance than the 
C580Y mutation that predominates across South-
east Asia (RSA0-3hr survival, 4.3%) (Fig. 2).

Origins of the Pfkelch13 622I Genotype

We compared whole-genome sequences of 291 
samples, including 128 Eritrean P. falciparum 
sequences generated for this study, 162 publicly 
available sequences, and the 3D7 reference ge-
nome from Africa (Table S9). A maximum-likeli-
hood phylogenetic tree showed that the Pfkelch13 
622I variants were scattered among the East 
African wild-type isolates (Fig. 3).

We then explored haplotype diversity in the 
genomic regions flanking the R622I mutation. 
A principal coordinate analysis based on a pair-
wise genetic distance matrix indicated a shared 
genetic background between Eritrean 622I vari-
ants and wild-type isolates (Figs. S2 and S3). 
Haplotype similarity in a region of approximately 

300 kb around the mutation pointed to a shared 
ancestry among variants found across different 
sites (Fig. S4). In the absence of accurate esti-
mates of recombination rates in populations of 
P. falciparum, the age of the R622I mutation could 
not be properly assessed. Nevertheless, the lim-
ited segment of haplotype homozygosity, as well 
as the lack of space–time structure in the distri-
bution of haplotypes, does not suggest a recent 
clonal expansion of the Pfkelch13 R622I mutation 
(Figs. S5 and S6 and Table S10).

Genetic Background of Eritrean Pfkelch13 
622I Variants

We investigated the genetic background of Eritrean 
Pfkelch13 622I variants by profiling both variant 
and wild-type parasites at known antimalarial 
drug-resistance loci and by measuring the fre-
quency of hrp2 and hrp3 deletions, a genomic 
feature previously observed in P. falciparum in 
Eritrea (Table S11).24 We assessed 67 Pf kelch13 
622I and 311 wild-type parasite samples for mu-
tations in four genes. Differences in the muta-
tion frequencies were observed in pfcrt and dhfr, 
which mediate resistance to chloroquine and 
piperaquine and to pyrimethamine, respectively.25 
Most of the parasites carrying Pfkelch13 R622I 
had PfCRT M74I/N75E/K76T mutations (present 
in 92.5% of the 622I variants vs. 66.9% of 
Pfkelch13 wild-type parasites), and N51I/S108N 
dhfr mutations (74.6% of the variant parasites vs. 
49.5% of the wild-type parasites). We evaluated 
29 Pfkelch13 622I and 139 wild-type parasites for 
amplification of plasmepsin II or pfmdr1, as these 
are considered to be markers of reduced suscep-
tibility to piperaquine and to lumefantrine and 
mefloquine, respectively.25 No parasites had 
pfmdr1 amplification, and the percentage of iso-
lates harboring at least two copies of plasmepsin2 
was similar in both variant (31.0%) and wild-
type (32.4%) parasites.

We also tested for hrp2 and hrp3 deletions in 
65 Pfkelch13 622I variant and 280 wild-type para-
sites. The majority (69.2% [45 of 65]) of Pfkelch13 
622I parasites had an hrp3 deletion, as compared 
with 22.5% (63 of 280) of wild-type parasites. 
More worrisome is that we detected both hrp2 
and hrp3 deletions in a substantial percentage of 
622I variant parasites (16.9% [9 of 65]), as com-
pared with 21.8% (61 of 280) in wild-type para-
sites, a finding that potentially threatens the 

Figure 1 (facing page). Evidence of Delayed Parasite 
Clearance Associated with the Expansion of Pfkelch13 
622I Variants in Eritrea.

Panel A shows the percentages of patients with day-3 
positivity (i.e., persistent P. falciparum parasitemia 3 days 
after the initiation of artemisinin-based combination 
therapy). Day-3 positivity was not observed in Akordat 
in 2016, 2017, and 2019; Ghindae in 2017 (no data were 
available in 2016 and 2019); Guluj in 2016 and 2017; or 
Tokombia in 2016 and 2017. Panel B shows the frequen-
cy of the Pfkelch13 622I variant according to site and 
year. Only Pfkelch13 wild-type parasites were observed 
in Akordat and Ghindae in 2017 (no data were available 
in 2016 and 2019). Panel C shows the distribution of 
Pfkelch13 genotypes according to site and year. The 
proportions of each Pfkelch13 allele are shown per year 
in pie charts (except for Ghindae, where only 2017 data 
were available). In the pie charts, the Pfkelch13 wild-type 
allele is shown in light blue, the Pfkelch13 622I allele in 
orange, and other Pfkelch13 variants in purple. The size 
of the pie chart is proportional to the sample size. The 
study sites in green correspond to areas where no cas-
es of day-3 positivity were observed, and those in red 
correspond to areas where day-3 positivity was detect-
ed (Guluj, Tokombia, and Shambuko). Additional infor-
mation is provided in Tables S1, S6, and S7 in the Sup-
plementary Appendix.

The New England Journal of Medicine 
Downloaded from nejm.org at Institut Pasteur - CeRIS on October 2, 2023. For personal use only. No other uses without permission. 

 Copyright © 2023 Massachusetts Medical Society. All rights reserved. 



n engl j med 389;13 nejm.org September 28, 20231198

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

efficacy of HRP2-based rapid diagnostic tests. 
No parasites carrying the Pfkelch13 R622I muta-
tion had only an hrp2 deletion, as compared with 
5.7% (16 of 280) of wild-type parasites.

Discussion

Partial resistance to artemisinin in P. falciparum 
is now firmly established in Africa. Although 
partial resistance has been confirmed only in 
Central (Rwanda) and East (Uganda) Africa to 
date,10-12 here we provide evidence of an addi-
tional hotspot of partial resistance to artemis-
inin in the Horn of Africa. More worrisome was 
the finding that the emergence and spread of a 
novel Pfkelch13 622I variant lineage was accom-
panied by deletions in both hrp2 and hrp3 in a 

Figure 2. Pfkelch13 R622I and Low-Level In Vitro 
 Artemisinin Resistance in P. falciparum Parasites.

The Pfkelch13 R622I mutation was introduced into Afri-
can (NF54) and Asian (Dd2) parasite lines by CRISPR-
Cas9 (clustered regularly interspaced short palindromic 
repeats and associated Cas9 homing endonucleases)–
mediated gene editing. The ring-stage survival assay, 
performed on ring-stage parasites synchronized to a 
0-to-3-hour window after merozoite invasion of red 
cells (RSA

0-3hr
), was used to measure the survival of 

early ring-stage parasites exposed to 700nM dihydro-
artemisinin for 6 hours, relative to dimethylsulfoxide 
mock-treated parasites that were assayed in parallel. 
Percent survival values are shown as means; I bars in-
dicate standard errors. The dashed horizontal line indi-
cates the 1% threshold for survival, above which para-
sites are considered to exhibit in vitro resistance to 
dihydroartemisinin. Results were obtained from three 
to five independent experiments (circles), each per-
formed in duplicate or triplicate.
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Table 2. Multiple Regression Analysis of Day-3 Positivity among 841 Patients with Uncomplicated P. falciparum Malaria 
in Eritrea (2016–2019).*

Covariate Coefficient Standard Error Odds Ratio (95% CI)

Age −0.0063 0.016 0.99 (0.96–1.02)

Sex −0.0081 0.487 0.98 (0.38–2.57)

Initial parasitemia 0.0000087 0.0000058 1.00 (1.00–1.00)

Pfkelch13 622I 1.824 0.466 6.2 (2.5–15.5)

*  Multiple regression was used to analyze the relationship between day-3 positivity and age (which is related to host im-
munity and the capacity of the immune system to clear parasites independent of treatment), sex, initial parasitemia 
(an initially high degree of parasitemia can lead to parasite persistence on day 3), and Pfkelch13 622I variant status. 
We found that when all other covariates were kept constant, the odds of day-3 positivity were higher among patients 
carrying the Pfkelch13 R622I mutation in isolates before artemisinin-based combination therapy than among patients 
carrying Pfkelch13 wild-type parasites by a factor of 6.2 (95% CI, 2.5 to 15.5). The goodness-of-fit of our multiple regres-
sion model was evaluated with the use of the Hosmer–Lemeshow test (P>0.05) and by receiver-operating-characteristic 
(ROC) curve analysis (mean [±SD] area under the ROC curve estimate, 0.726±0.07; 95% CI, 0.69 to 0.75).

Figure 3 (facing page). Genomewide Phylogenetic Tree.

This maximum-likelihood tree is based on 128 P. falci-
parum Eritrean isolates, together with 162 isolates col-
lected worldwide (Africa, Asia, and South America) 
and the 3D7 reference genome from Africa. Labels  
on Eritrean isolates include the year of collection. The 
non-Eritrean isolates were sourced from the Malaria-
GEN P. falciparum Community Project (https://www 
. malariagen . net/  data/  open - dataset - plasmodium 
- falciparum - v70) and are labeled with their accession 
identifier. Each leaf represents one sample and is col-
ored according to the country of collection. Eritrean 
parasites carrying the Pfkelch13 R622I mutation are 
identified by red stars at the tip. Eritrean parasites 
 carrying Pfkelch13 622I are closely related to Pfkelch13 
wild-type parasites originating from East African coun-
tries. The scale bar corresponds to 0.00005 nucleotide 
substitutions per character.
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substantial percentage of parasites (16.9%), 
thereby rendering these parasites more likely to be 
undetected by HRP2-based rapid diagnostic tests.

In vivo partial resistance to artemisinin in 
Eritrea was evidenced by a substantial increase 
over time in the percentage of patients with day-3 
positivity after artemisinin-based combination 
therapy (from 0.4% in 2016 to 4.2% in 2019). We 
also witnessed a substantial rise in the percent-
age of parasites carrying the Pfkelch13 R622I 
mutation (from 8.6% in 2016 to 21.0% in 2019). 
We determined that this mutation, which has 
not been observed previously in Southeast Asia, 
confers in vitro resistance to dihydroartemisinin 
in the African parasite strain NF54, at slightly 
lower levels than the C580Y mutation that pre-
dominates in Southeast Asia (mean RSA0-3hr 
survival, 3.3% vs. 4.3%). The R622I mutation 
conferred only low-level survival (1.5%) in Dd2 
parasites (an Asian reference strain), a finding 
consistent with previous evidence that Pfkelch13 
mutations do not afford resistance across all 
strains and that in vitro resistance to artemis-
inin levels can be substantially modulated by the 
parasite genetic background.16 We also docu-
mented substantial intrahost selection of the 
Pfkelch13 R622I mutation in recrudescent infec-
tions after artesunate–amodiaquine treatment 
(from 12% on day 0 to 53% on day 28, an in-
crease by a factor of 4.4). These findings suggest 
that the Pfkelch13 R622I mutation is a molecular 
marker of partial resistance to artemisinin.

Eritrean Pfkelch13 622I variants were phyloge-
netically closely related to other African para-
sites, clustering with both Eritrean and Ethiopian 
wild-type isolates. Hallmarks of the spread of a 
newly arisen mutation would be expected to in-
clude extended haplotype homozygosity in the 
genomic region flanking the Pf kelch13 R622I 
mutation. By contrast, we observed a limited 
identity of core haplotypes among the variants. 
This finding may reflect the spread of a preexist-
ing Pf kelch13 resistance allele in P. falciparum 
populations from the Horn of Africa, as sup-
ported by previous reports of low-frequency de-
tection of the Pfkelch13 622I variant in Eritrea and 
neighboring countries (0.8% in Eritrea [2013 
and 2014], 2.4% in Ethiopia [2013–2014], 0.7% 
in Somalia [2016–2017], and 0.3% in Zambia 
[2012]),26-29 and in Chinese travelers returning 
from Mozambique or Somalia (2016–2018).30

Although recent data on treatment efficacy at 

sites with a high prevalence of Pfkelch13 variants 
are limited in Eritrea,31-33 our data showed that 
more than 94% of cases of uncomplicated falci-
parum malaria were cured with artesunate–
amodiaquine or artemether–lumefantrine, a re-
sult that is presumably attributable to the 
continued efficacy of the partner drugs amodia-
quine and lumefantrine. These data are con-
cordant with those from a recent study of 
artemether–lumefantrine efficacy conducted 
in Rwanda.12 The lower efficacy of artemether–
lumefantrine (<90%) that was recently reported 
in Angola,34 the Democratic Republic of Congo,35 
and east-central Uganda36 remains questionable, 
because the methodologic deviation from the 
WHO standard genotyping protocol might have 
underestimated the efficacy.

Our study also showed that a substantial per-
centage (16.9%) of parasites carrying the 
Pfkelch13 R622I mutation had deletions in both 
hrp2 and hrp3 (a similar percentage to that 
among Pfkelch13 wild-type parasites), a charac-
teristic that may result in false negative results 
on HRP2-based rapid diagnostic tests.19 This 
genomic trait, frequently observed in Eritrea37 
with a prevalence ranging from 7% in Sham-
buko to 81% in Ghindae,24 resulted in a policy 
switch to the use of lactate dehydrogenase–
based rapid diagnostic tests in 2016. This find-
ing emphasizes the need to conduct further re-
search to evaluate the performance of lactate 
dehydrogenase–based tests for detecting the 
Pf kelch13 622I variant with hrp2 and hrp3 dele-
tions.

Over the past two decades, Eritrea has 
achieved substantial reductions in malaria-related 
morbidity and mortality through active govern-
ment engagement and effective implementation 
of insecticide-treated nets, indoor residual spray-
ing, larvicidal activities, and malaria case man-
agement.38,39 However, decreased malaria preva-
lence may in turn have favored the emergence 
and spread of partial resistance to artemisinin 
by reducing parasite genetic diversity and natu-
rally acquired immunity and increasing per-
patient drug pressure as fewer infections are 
cleared naturally and therefore require treat-
ment.40 These data suggest that in locations 
where strategies to reduce malaria transmission 
are efficiently implemented, surveillance of the 
emergence and spread of drug resistance should 
be prioritized.
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The results of our study show the presence of 
partial resistance to artemisinin in P. falciparum, 
along with deletions in both hrp2 and hrp3 in 
parasite populations in Eritrea. Strategies to 
contain the spread of these lineages across the 
Horn of Africa are needed because the potential 
occurrence of partner-drug resistance could lead 
to an increased incidence of treatment failure 
and uncontrolled expansion of P. falciparum para-
sites beyond this region.
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