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Interior point methods in optimal control problems of affine systems: Convergence results and solving algorithms

This paper presents an interior point method for pure-state and mixed-constrained optimal control problems for dynamics, mixed constraints, and cost function all affine in the control variable. This method relies on resolving a sequence of two-point boundary value problems of differential and algebraic equations. This paper establishes a convergence result for primal and dual variables of the optimal control problem. A primal and a primal-dual solving algorithm are presented, and a challenging numerical example is treated for illustration.

Introduction

This paper deals with Optimal Control Problems (OCPs) with pure state and mixed constraints. These arise naturally in numerous engineering problems such as aerospace [START_REF] Betts | Practical Methods for Optimal Control Using NonlinearProgramming[END_REF][START_REF] Bryson | Applied Optimal Control[END_REF], control of hybrid electric vehicles [START_REF] Namwook | Optimal control of hybrid electric vehicles based on pontryagin's minimum principle[END_REF], or innate immune response [START_REF] Stengel | Optimal control of innate immune response[END_REF], among other examples. Unfortunately, these problems are difficult to solve [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF][START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF][START_REF] Maurer | First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems[END_REF]. This difficulty mainly stems from the pure state constraints. Indeed, as shown in [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF][START_REF] Maurer | First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems[END_REF], the first-order optimality conditions of these problems imply that the adjoint state of Pontryagin can be discontinuous when state constraints switch from active to inactive and vice-versa. To handle these problems, three main approaches are found in the literature. The first is a discretization-based approach that treats an OCP as a finite-dimensional optimization problem [START_REF] Betts | Practical Methods for Optimal Control Using NonlinearProgramming[END_REF]. This approach is, in practice, the most widely used and the easiest to implement. However, these methods can be computationally slow and might lack precision. The second approach consists of computing the optimal trajectory without constraints and, step-by-step, computing the trajectory's structure, that is to say, the sequence of constrained and unconstrained arcs along the trajectory. Therefore, these methods assume that the optimal trajectory contains finitely many constrained arcs. Unfortunately, this is not always the case, and trajectory structures can be much more complicated, even for simple cases [START_REF] Robbins | Junction phenomena for optimal control with state-variable inequality constraints of third order[END_REF]. These methods are known as continuation or homotopy methods [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF][START_REF] Bonnans | Well-posedness of the shooting algorithm for state constrained optimal control problems with a single constraint and control[END_REF][START_REF] Bonalli | Analytical initialization of a continuation-based indirect method for optimal control of endo-atmospheric launch vehicle systems[END_REF]. Finally, the third approach consists in adapting Interior Point Methods (IPMs), widely studied and successfully implemented in software for numerical optimization [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Wright | Primal-Dual Interior-Point Methods[END_REF][START_REF] Wächter | On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[END_REF], to state and inputconstrained OCPs [START_REF] Lasdon | An interior penalty method for inequality constrained optimal control problems[END_REF][START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF][START_REF] Graichen | Incorporating a class of constraints into the dynamics of optimal control problems[END_REF][START_REF] Malisani | An interior penalty method for optimal control problems with state and input constraints of nonlinear systems[END_REF][START_REF] Weiser | Interior point methods in function space[END_REF]. This approach entails minimizing an augmented cost function defined as the sum of the original cost function and so-called penalty functions, which have a diverging asymptotic behavior in the vicinity of the constraints. IPMs then define a sequence of OCPs indexed by a sequence of decreasing positive parameters converging to zero. These parameters serve as weights for the penalty functions in the augmented cost. Each OCP of this sequence is then solved as a constraints-free problem whose solution strictly satisfies the constraints and asymptotically converges to the solution of the original problem. From a practical viewpoint, these methods are appealing since off-the-shelves OCP solvers such as [START_REF] Soetaert | Solvers for boundary value problems of differential equations[END_REF] can be used. However, adapting IPMs to OCPs is not straightforward and has yet to be wholly performed. Indeed, to be complete, this adaptation requires proving two things. Firstly, the optimal trajectories of the penalized problem are interior, i.e., strictly satisfy the constraints. Secondly, it requires establishing the convergence of the method to a point satisfying the first-order optimality conditions [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF][START_REF] Maurer | First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems[END_REF][START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF]. In other words, to prove the convergence of primal variables (namely state and control variables) and the dual variables (namely the adjoint state of Pontryagin and the inequality constraints multipliers). In [START_REF] Lasdon | An interior penalty method for inequality constrained optimal control problems[END_REF][START_REF] Graichen | Incorporating a class of constraints into the dynamics of optimal control problems[END_REF], the interiority of solutions is left as an assumption, and convergence is proved only for state and control variables. In addition, the authors assume the uniqueness of the optimal solution and strong convexity of the optimal control problem allowing them to prove convergence of the global minimum only. In [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF], the authors prove the interiority of solutions and the convergence of control, state, and adjoint state variables in the case of linear control constraints for dynamical systems affine with respect to the control. To establish the proof, the authors assume the uniqueness of the optimal solution and the strong convexity of the optimal control problem. In [START_REF] Weiser | Interior point methods in function space[END_REF], a primal-dual IPM for OCPs is presented, and convergence of control, state, adjoint state, and constraint multipliers is proved only for control-constrained problems using a strong Legendre-Clebsch type condition, which is a sufficient condition for strong convexity [START_REF] Bonnans | Second-order sufficient conditions for strong solutions to optimal control problems[END_REF]Theorem 5.4]. In [START_REF] Malisani | An interior penalty method for optimal control problems with state and input constraints of nonlinear systems[END_REF], the authors exhibit sufficient conditions on the penalty functions guaranteeing the interiority of solutions for state and control-constrained problems. However, the convergence of the method is only proved for control and state variables, again assuming the uniqueness of the optimal solution and strong convexity of the problem. This paper's contribution is proving the convergence of primal variables and constraint multipliers for pure-state and mixed constraints. In addition, the proof of convergence does not rely on the optimal solution's uniqueness or the problem's strong convexity assumptions. As in [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF][START_REF] Graichen | Incorporating a class of constraints into the dynamics of optimal control problems[END_REF], the result is established for non-linear systems and mixed constraints affine with respect to the control. To do so, we prove that using logarithmic penalties guarantees the interiority of any locally optimal solution. In addition, we prove that the derivative of the penalty functions associated with any locally optimal solutions satisfies a uniform boundedness property. Using some standard compactness argument, we can prove weak convergence of the control and strong convergence of the state. In turn, this allows us to prove weak or strong convergence (depending on the case) of the derivatives of the penalty to the constraints multipliers. Then, the strong convergence of the adjoint state stems from the convergence of the state, control, and constraint multipliers. Finally, strong convergence of state and adjoint state allows proving strong convergence of the control variable. Finally, this paper provides a primal and a primal-dual solving algorithm based on Two Point Boundary Value Problems solver. The paper is organized as follows. Section 2 contains the problem statement, the main assumptions, and the paper's main results. In section 3, some preliminary technical results are recalled. In section 4, we prove both the uniform boundedness properties of the derivatives of the penalty functions and the interiority of penalized trajectories when using logarithmic penalties. In section 5, we prove that the solutions of the penalized optimal control problem converge to a solution of the classical first-order optimality conditions of constrained optimal control problems. Section 6 presents a primal and a primal-dual solving algorithm. Finally, in section 7, the Robbins problem [START_REF] Robbins | Junction phenomena for optimal control with state-variable inequality constraints of third order[END_REF] is treated using the primal and the primal-dual interior point algorithm. In addition, source codes for the Robbins and the Goddard problems [START_REF] Seywald | Goddard problem in presence of a dynamic pressure limit[END_REF] are available at https://ifpen-gitlab.appcollaboratif.fr/detocs/ipm_ocp.

Notations:

We denote R -(resp. R + ) the set of non-positive (resp. non-negative) real numbers. We denote N * (resp. R * ) the set of non-zero natural integers (resp. real numbers). Given p ∈ [1, +∞], we denote L p (A; B) (or L p ) the Lebesgue spaces of functions from A to B and we denote . L p the corresponding p-norm. In addition, we also denote meas(.) the Lebesgue measure on R. Given p ∈ [1, +∞], we denote W 1,p (A; B) the Sobolev space of measurable functions from A to B with weak derivative in L p (A; B). Given n ∈ [0, +∞], we denote C n (A; B) (or C n ) the set of n-times continuously differentiable functions from A to B. We denote BV(A), the set of functions with bounded variations from A to R. We also denote M(A) the set of Radon measures on A ⊂ R. The topological dual of a topological vector space E is denoted E * . Given a topological vector space E, we denote σ(E, E * ) the weak topology on E and σ(E * , E) the weak * topology on E * . Let x n , x ∈ E, we denote x n ⇀ x the weak convergence in σ(E, E * ) and let y n , y ∈ E * , we denote y n * ⇀ y the weak * convergence in σ(E * , E). For x * ∈ E * and x ∈ E, we denote x * , x , the duality product. Given f ∈ C k≥1 (R n ; R) we denote f ′ (.) the gradient of the function. Given

f ∈ C k≥1 (R n × R m ; R p ), we denote f ′ x (x, y) := ∂f ∂x (x, y) ∈ R p×n (resp.f ′ y (x, y) := ∂f ∂y (x, y) ∈ R p×m ) and we denote f ′ i,x := ∂fi ∂x (x, y) (resp. f ′ i,y := ∂fi ∂y (x, y)). Given f ∈ C k≥1 (R n × R m ; R), we denote f ′ x,i (x, y) := (f ′ x (x, y)) i (resp. f ′ y,i (x, y) := f ′ y (x, y) i ).
We also denote f ′′ xy (x, y) := ∂ 2 f ∂y∂x (x, y). Let G : X → Y with X, Y Banach spaces, we denote DG(x) the derivative of the mapping G at point x ∈ X. The finite dimensional euclidean norm is denoted

. and the scalar (resp. matrix) product between x, y ∈ R n (resp. x ∈ R m×n , y ∈ R n ) is denoted x.y. Given a set E, we denote |E| its cardinal. We also denote B N (x, r) the closed ball of radius r centered in x for the topology induced by norm N . We denote x[u, x 0 ] (or x[u] if x 0 is fixed) the solution of the differential equations ẋ = f (x, u) with initial condition x 0 . Finally, we denote const(.) a positive finite constant depending on the parameters in argument.

2 Problem statement and main result

Optimal control problem

The problem we are interested in consists of finding a solution (x, u) of the following Constrained Optimal Control Problem (COCP) min

(u,x)∈U×X J(x, u) := ϕ(x(T )) + T 0 ℓ 1 (x(t)) + ℓ 2 (x(t)).u(t)dt (1a) 
:= ϕ(x(T )) + T 0 ℓ(x(t), u(t))dt (1b) ẋ(t) = f 1 (x(t)) + f 2 (x(t)).u(t) := f (x(t), u(t)) (1c) 0 = h(x(0), x(T )) (1d) 0 ≥ g(x(t)); ∀t (1e) 0 ≥ a(x(t)).u(t) + b(x(t)) := c(x(t), u(t)) a.e. ( 1f 
) U := L ∞ ([0, T ]; R m ) (1g) X := W 1,∞ ([0, T ]; R n ) (1h)
where the time horizon T > 0 is fixed.

Definition 1. We denote V ad ⊂ U × R n the set of admissible controls and initial conditions as follows

V ad := (u, x 0 ) ∈ U × R n s.t. eqs. (1c)to (1f) holds (2) 
The set V ad is endowed with the following norm

(u, x 0 ) V ad := u L 1 + x 0 (3) 
And we denote Vad (n) the following set

Vad (n) := (u, x 0 ) ∈ V ad s.t. g(x[u, x 0 ](t)) < 0, ∀t ess sup t c(x[u, x 0 ], u) ≤ -1 n (4)

Main assumptions and technical definitions

Assumption 1. The functions ℓ :

R n × R m → R, f : R n × R m → R n , g : R n → R ng , c : R n × R m → R nc are at least twice continuously differentiable.
Assumption 2. Any locally optimal solution (x[ū, x0 ], ū) such that (ū, x0 ) ∈ V ad satisfies the following interiority accessibility assumption

(ū, x0 ) ∈ cl . V ad lim inf n Vad (n) := V ad ∞ ( 5 
)
where cl . V ad stands for the closure in the . V ad -topology.

Assumption 3. The set of admissible initial-final states h -1 ({0}) ⊂ R n × R n from eq. (1d) is closed and bounded.

Assumption 4. There exists R v ∈ (0, +∞) such that

(u, x 0 ) V ad ≤ R v , ∀(u, x 0 ) ∈ V ad (6) 
and for all R v ∈ (0, +∞), there exists R x ∈ (0, +∞) such that

x[u, x 0 ] L ∞ ≤ R x , ∀ (u, x 0 ) V ad ≤ R v (7) 
Definition 2 (Set of near state-saturated times and near-saturated indices). For all (u, x 0 ) ∈ V ad from definition 1 and ∀δ ≥ 0 we define the set of near state-saturated times (resp. mixed-saturated times), denoted S g u,x 0 (resp. S c u,x 0 ) , as follows

S g u,x 0 (δ) := t ∈ [0, T ] s.t. max i g i (x[u, x 0 ](t)) ≥ -δ (8) 
S c u,x 0 (n) := t ∈ [0, T ] s.t. max i c i (x[u, x 0 ](t), u(t)) ≥ - 1 n (9) 
In addition, we define the set of near state-saturated indices (resp. mixed-saturated indices), denoted I g u,x 0 (resp. I c u,x 0 ) , as follows

I g u,x 0 (t, δ) := i ∈ {1, . . . , n g } s.t. g i (x[u, x 0 ](t)) ≥ -δ (10) 
I c u,x 0 (t, n) := i ∈ {1, . . . , n c } s.t. c i (x[u, x 0 ](t), u(t)) ≥ - 1 n (11) 
Assumption 5. For all (u, x 0 ) ∈ V ad , the mixed constraints eq. (1f) satisfy the following qualification condition. There exists γ > 0 and n ∈ N * such that

γ ξ ≤ c ′ I c u,x 0 (t,n),u (x[u, x 0 ](t), u(t)) ⊤ .ξ , ∀ξ ∈ R |I c u,x 0 (t,n)| , a.a. t ∈ [0, T ] (12) 
Assumption 6. The set of singular multipliers for problem eq. (1) is empty.

Remark 1. Sufficient conditions on pure-state and mixed constraints such that assumption 6 holds are given in [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF]. In addition, these assumptions guarantee the existence of optimal solutions of problem eq. (1) (see [START_REF] Haberkorn | Convergence results for smooth regularizations of hybrid nonlinear optimal control problems[END_REF]).

Definition 3 (State-constraint measure). For all (u, x 0 ) ∈ B L ∞ (0, R u ) × B . (0, R x )
and for all E ⊂ R, we denote m[u, x 0 , g i ] the push-forward g i -measure of E defined as follows

m[u, x 0 , g i ](E) := meas g i • x[u, x 0 ] -1 (E) (13) 

First-order necessary conditions of stationarity

In this section, the first order necessary conditions of optimality for Problem eq. (1). To do so, let us introduce the infamous pre-Hamiltonian.

Definition 4 (pre-Hamiltonian). The pre-Hamiltonian H : R n × R m × R n → R of the optimal control problem is defined by

H(x, u, p) := ℓ(x, u) + p.f (x, u) (14) 
Definition 5 (Stationary point). The trajectory (x, ū) with associated multipliers (p, μ, ν, λ)

∈ BV([0, T ]; R) n × M([0, T ]) ng × L ∞ ([0, T ]; R nc ) × R n h , is a stationary point for Problem (1) if it satisfies ẋ(t) =f (x(t), ū(t)) (15a) -dp(t) = H ′ x (x(t), ū(t), p(t)) + nc i=1 c ′ i,x (x(t), ū(t))ν i (t) dt + ng i=1 g ′ i (x(t))dμ i (t) (15b) 0 =H ′ u (x(t), ū(t), p(t)) + nc i=1 c ′ i,u (x(t), ū(t))ν i (t) (15c) 0 =h(x(0), x(T )) (15d) 0 =p(0) + h ′ x(0) (x(0), x(T )) ⊤ . λ (15e) 0 =p(T ) -ϕ ′ (x(T )) -h ′ x(T ) (x(0), x(T )) ⊤ . λ (15f) 0 = T 0 g i (x(t))dμ i (t), i = 1, . . . , n g (15g) 0 = T 0 c i (x(t), ū(t))ν i (t)dt, i = 1, . . . , n c (15h) 0 = λ⊤ .h(x(0), x(T )) (15i) 0 ≤dμ i (t), i = 1, . . . , n g (15j) 0 ≤ν i (t), i = 1, . . . , n c (15k) 0 =μ i (T ), , i = 1, . . . , n g (15l) 
It is a well-established results [START_REF] Maurer | First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems[END_REF][START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF] that any local solution of problem eq. ( 1) is a stationary point as defined in definition 5. Unfortunately, solving Problem eq. ( 15) is a difficult task. Indeed, the dual variable dµ associated with the state constraints appearing in eqs. (15b), (15g), (15j) and (15l) are Radon measures, therefore, in full generality, they can be decomposed in an absolutely continuous measure with respect to the Lebesgue measure, a discrete and finally a singular part. Computing these measures' discrete and singular parts can be dramatically complex.

Penalized Optimal Control Problem (POCP)

To solve problem eq. ( 1), we use an interior point method based on log-barrier functions defined as follows Definition 6 (log-barrier function). The log-barrier function ψ : R → R is defined as follows

ψ(x) := -log(-x) ∀x < 0 +∞ otherwise (16) 
The corresponding penalized optimal control problem is defined as follows min

(x,u)∈X×U J ǫ (x, u) := J(x, u) + ǫ T 0 ng i=1 ψ • g i (x(t)) + nc i=1 ψ • c i (x(t), u(t)) dt (17a) ẋ(t) = f (x(t), u(t)) (17b) 0 = h(x(0), x(T )) (17c) 
The pre-Hamiltonian associated with this penalized problem is defined here after Definition 7 (Penalized pre-Hamiltonian). The penalized pre-Hamiltonian 17) is defined by

H ψ : R n × R m × R n × R → R of POCP eq. (
H ψ (x, u, p, ǫ) := H(x, u, p) + ǫ ng i=1 ψ(g i (x)) + nc i=1 ψ(c i (x, u)) (18) 
Definition 8 (Penalized stationary point). The trajectory (x ǫ , ūǫ ) with associated multipliers

(p ǫ , λǫ ) ∈ W 1,1 ([0, T ]; R n )× R n h , is a penalized stationary point for Problem (17) if it satisfies ẋǫ (t) =f (x ǫ (t), ūǫ (t)) (19a) ṗǫ (t) = -H ψ x ′ (x ǫ (t), ūǫ (t), pǫ (t), ǫ) (19b) 0 =H ψ u ′ (x ǫ (t), ūǫ (t), pǫ (t), ǫ) (19c) 0 =h(x ǫ (0), xǫ (T )) (19d) 0 =p ǫ (0) + h ′ x(0) (x ǫ (0), xǫ (T )) ⊤ . λǫ (19e) 0 =p ǫ (T ) -ϕ ′ (x ǫ (T )) -h ′ x(T ) (x ǫ (0), xǫ (T )) ⊤ . λǫ (19f) 
Remark 2. Handling mixed constraints using an interior point method rather than a Pontryagin minimization has two main advantages. Firstly, it allows for using off-the-shelves index-1 BVPDAE solvers. Secondly, it also allows for implementing primal-dual methods in optimal control as described in [START_REF] Weiser | Interior point methods in function space[END_REF], which are numerically efficient as will be illustrated later in section 7 and in the numerical examples available at https: // ifpen-gitlab. appcollaboratif. fr/ detoc

Contribution of the paper

The main contribution of the paper is a convergence theorem for interior point methods optimal control problem with logarithmic penalty functions.

Theorem 1. Let (ǫ n ) be a sequence of decreasing positive parameters with ǫ n → 0. The associated sequence of penalized stationary points (x ǫn , ūǫn , pǫn , λǫn ) n as defined in definition 8 contains a subsequence converging to a stationary point (x, ū, p, μ, ν, λ) of the original problem as defined in definition 5 as follows

ūǫn k -ū L 1 → 0 (20a) xǫn k -x L ∞ → 0 (20b) h xǫn k (0), xǫn k (T ) -h (x(0), x(T )) → 0 (20c) J ǫn k (x ǫn k , ūǫn k ) -J(x, ū) → 0 (20d) λǫn k -λ → 0 (20e) pǫn k -p L 1 → 0 (20f) ǫ n k ψ ′ • c i (x ǫn k , ūǫn k ) * ⇀ νi , i = 1, . . . , n c (20g) 
ǫ n k ψ ′ • g i (x ǫn k )dt * ⇀ dμ i , i = 1, . . . , n g (20h)
3 Preliminary results

This section gathers useful definitions and preliminary results, which will be recurrently used throughout the paper. The proofs of these results are given in appendix A.

Proposition 1 (State Lipschitz continuity). Let u 1 , u 2 ∈ U and x 0 1 , x 0 2 ∈ R n , there exists const(f ) < +∞ such that x[u 1 , x 0 1 ] -x[u 2 , x 0 2 ] L ∞ ≤ const(f )( u 1 -u 2 L 1 + x 0 1 -x 0 2 ) (21) 
Proof. See appendix A.1

Proposition 2. Let (u n , x 0 n ) n converging to (ū, x0 ) in the weak topology σ(L 2 × R n , L 2 × R n ) then we have x[u n , x 0 n ] -x[ū, x0 ] L ∞ → 0 ( 22 
)
and for all α

∈ C 0 (R n ; R p×m ), β ∈ C 0 (R n ; R p ) we have α(x[u n , x 0 n ]).u n + β(x[u n , x 0 n ]) * ⇀ α(x[ū, x0 ]).ū + β(x[ū, x0 ]) (23) 
Proof. See appendix A.2

Remark 3. The affine property of the dynamics and the mixed constraints eqs. (1c) and (1f) are crucial in the proof of proposition 2. Indeed, if the dynamics, for example, is not affine with respect to the control, the sequence (x[u n ]) n uniformly converges to a limit which can be different from x[ū]. Take, for example, ẋ(t) = u(t) 2 and u n := sin(nt).

Then

u n ⇀ ū = 0 and x n (t) → t/2 = x[ū](t).
Proposition 3. For all u ∈ U satisfying assumption 4, for all

x 0 ∈ R n bounded, let E ⊆ g i • x[u, x 0 ]([0, T ]) ⊂ R
be a Lebesgue-measurable set, the state-constraint measure from definition 3 is lower bounded as follows

m[u, x 0 , g i ](E) ≥ const(f, g)meas(E) (24) 
Proof. See appendix A.3

Proposition 4. For all δ > 0, ∃(G δ , C δ ) > 0 such that, ∀(u, x 0 ) ∈ V ad ∞ , ∃(v, y 0 ) ∈ B . V ad ((u, x 0 ), δ)∩V ad satisfying the following condition sup t g i (x[v, y 0 ](t)) ≤ -2G δ , i = 1, . . . , n g (25) 
ess sup

t c i (x[v, y 0 ](t), v(t)) ≤ -2C δ , i = 1, . . . , n c (26) 
and we also have

g i (x[v, y 0 ](t)) ≤ g i (x[u, x 0 ](t)) -G δ , ∀t ∈ S g u,x 0 (G δ ), i = 1, . . . , n g (27) 
c i (x[v, y 0 ](t), v(t)) ≤ c i (x[u, x 0 ](t), u(t)) -C δ , a.a. t ∈ S c u,x 0 (C δ ), i = 1, . . . , n c (28) 
Proof. See appendix A.4.

4 Uniform boundedness and interiority analysis of penalized optimal solutions

State constraints analysis

In the following, we present an interior point optimal control problem to handle pure state constraints, which writes:

min (x,u) J 1 ǫ (x, u) =ϕ(x(T )) + T 0 ℓ(x(t), u(t)) + ǫ ng i=1 ψ(g i (x(t)) dt (29a) ẋ(t) = f (x(t), u(t)) (29b) h(x(0), x(T )) = 0 (29c) c(x(t), u(t)) ≤ 0 (29d)
Lemma 1. ∀ǫ > 0, any locally optimal solution (x[u ǫ , x 0 ǫ ], u ǫ ) of Problem eq. (29) satisfies

g i (x[u ǫ , x 0 ǫ ](t)) < 0, ∀t ∈ [0, T ], i = 1, . . . , n g (30) 
and ∃K g < +∞ such that ∀ǫ ∈ (0, ǫ 0 ) we have

ǫψ ′ • g i (x[u ǫ , x 0 ǫ ]) L 1 ≤ K g , i = 1, . . . , n g (31) 
Proof. It is sufficient to prove for n g = 1, that is to say, for just one state constraint. Assume (

u ǫ , x 0 ǫ ) ∈ V ad ∞ is a local optimal solution satisfying sup t g(x[u ǫ , x 0 ǫ ](t)) = 0 (32) From proposition 4, ∀δ > 0, ∃(v δ , x 0 δ ) ∈ B . V ad ((u ǫ , x 0 ǫ ), δ) ∩ Vad and G δ > 0 such that g(x[v δ , x 0 δ ](t)) ≤ -2G δ , ∀t ∈ [0, T ] (33a) g(x[v δ , x 0 δ ](t)) ≤ g(x[u ǫ , x 0 ǫ ](t)) -G δ , ∀t ∈ S g uǫ,x 0 ǫ (G δ ) (33b) with S g uǫ,x 0 ǫ (G δ ) = ∅.
In the following, to alleviate the notations, we denote

z δ := (v δ , x 0 δ ) (34) z ǫ := (u ǫ , x 0 ǫ ) (35) ∆z := z δ -z ǫ (36) ∆x := x[z δ ] -x[z ǫ ] (37) ∆g := g(x[z δ ]) -g(x[z ǫ ]) (38) 
Now, one can exhibit an upper-bound on the difference

J 1 ǫ (x[z δ ], v δ ) -J 1 ǫ (x[z ǫ ], u ǫ ) as follows J 1 ǫ (x[z δ ], v δ ) -J 1 ǫ (x[z ǫ ], u ǫ ) = ∆ 1 + ǫ∆ 2 (39) 
where

∆ 1 := ϕ(x[z δ ](T )) -ϕ(x[z ǫ ](T )) + T 0 [ℓ(x[z δ ](t), v δ (t)) -ℓ(x[z ǫ ](t), u ǫ (t))] dt (40) ∆ 2 := T 0 [ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))] dt (41) Now, let us upper-bound ∆ 1 ∆ 1 ≤ T 0 const(ℓ) ( x[z δ ](t) -x[z ǫ ](t) + v δ (t) -u ǫ (t) ) dt + const(ϕ) ∆x L ∞ (42) ≤const(ℓ, T, ϕ) ∆x L ∞ + const(ℓ) v δ -u ǫ L 1 ≤ const(ℓ, f, g, ϕ, T, R v , R x ) (43) 
Now, let us upper-bound ∆ 2 from eq. (41). To do so, let us introduce the following useful subsets of [0; T ]

E 1 := (g • x[z ǫ ]) -1 ((-∞, -G δ ]) (44) E 2 (ρ) := (g • x[z ǫ ]) -1 ((-G δ , -ρ]) (45) 
E 3 (ρ) := (g • x[z ǫ ]) -1 ((-G δ , -ρ)) (46) 
Given eq. ( 32), for all ρ ∈ [0, G δ ), these sets are not empty and ∀t /

∈ (E 1 ∪ E 2 (ρ)) we have ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t)) < 0 which yields ∆ 2 ≤ E1 ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))dt + E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))dt (47)
By convexity of the log penalty, i.e. ψ, we have

E1 ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))dt ≤ E1 ψ ′ (G δ ) ∆g L ∞ dt := const(T, f, g, G δ ) (48) 
In addition, ∀t ∈ E 2 (ρ), we have

E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))dt = E2(ρ) 1 0 ψ ′ (g(x[z ǫ ](t) + s∆g(t))ds ∆g(t)dt (49) 
Since ∀t ∈ E 2 (ρ), ∆g(t) < -G δ , we also have

E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))dt ≤ -G δ E2(ρ) 1 0 ψ ′ (g(x[z ǫ ](t)) + s∆g(t))ds dt (50)
From the mean value theorem, ∀t ∈ E 2 (ρ), ∃σ t such that

ψ ′ (g(x[z ǫ ](t)) + σ t ∆g(t)) = 1 0 ψ ′ (g(x[z ǫ ](t)) + s∆g(t))ds (51) 
Since for all t ∈ E 2 (ρ), we have g(x[z ǫ )(t))g(x[z δ ](t)) ≥ G δ and since ψ ′ is strictly increasing we have σ t ∈ (0, 1) and

ψ ′ • g(x[z δ ](t)) < ψ ′ (g(x[z ǫ ](t)) + σ t ∆g(t)) < ψ ′ • g(x[z ǫ ](t)) (52) 
From the intermediate value theorem, ∃σ ∈ (0, 1) such that ∀t ∈ E 2 (ρ) we have

ψ ′ (g(x[z ǫ ](t)) + σ t ∆g(t)) ≥ (1 -σ)ψ ′ • g(x[z ǫ ](t)) + σψ ′ • g(x[z δ ](t)) (53) 
Gathering eqs. ( 50), ( 51) and (53) yields

E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ǫ ](t))dt ≤ -G δ E2(ρ) (1 -σ)ψ ′ • g(x[z ǫ ](t)) + σψ ′ • g(x[z δ ](t)) dt ≤ -G δ (1 -σ) E2(ρ) ψ ′ • g(x[z ǫ ](t))dt + const(σ, ψ, T, g, G δ ) (54) 
Gathering eqs. ( 48) and (54) we have

ǫ∆ 2 ≤ const(T, f, g, G δ , ǫ 0 , ψ, σ) -ǫG δ (1 -σ) E2(ρ) ψ ′ • g(x[z ǫ ](t))dt (55) 
Now, let us prove that any optimal solution is strictly interior with respect to the state constraint. The proof is by contradiction. Using definition 3, one can make the following change in measure

E3(ρ) ψ ′ • g(x[z ǫ ](t))dt = -ρ -G δ ψ ′ (s)m[z ǫ , g](ds) (56) 
Then, using proposition 3 and eqs. ( 45) and (46) yields

E2(ρ) ψ ′ • g(x[z ǫ ](t))dt ≥ E3(ρ) ψ ′ • g(x[z ǫ ](t))dt ≥ const(f, g) (ψ(ρ) -ψ(G δ )) (57) 
Gathering eqs. (39), (43), ( 55) and (57) yields that ∀ρ > 0 we have

J 1 ǫ (z δ ) -J 1 ǫ (z ǫ ) ≤ const(ℓ, f, g, ϕ, T, ǫ 0 , ψ, G δ , R u , σ) -ǫG δ const(f, g, σ) (ψ(ρ) -ψ(G δ )) (58) 
For ρ small enough, this yields J 1 ǫ (z δ ) < J 1 ǫ (z ǫ ) and contradicts the local optimality of z ǫ and proves eq. ( 30). Now, to prove eq. ( 31), let us ensure that the left-hand side of this equation is well-defined. From eq. (30) we have

(g(x[z ǫ ])) -1 ({0}) = ∅, thus [0, T ] = lim ρ→0 ((g(x[z ǫ ])) -1 ((-∞, ρ)) (59) 
Hence, using definition 3, one has

ψ ′ • g(x[z ǫ ]) L 1 = T 0 ψ ′ • g(x[z ǫ ](t))dt := lim ρ→0 -ρ -∞ ψ ′ (s)m[z ǫ , g](ds) (60) 
which is well-defined. Now, let us prove eq. ( 31) by contradiction and assume that

∀K g > 0, ∃ǫ > 0 s.t. ǫψ ′ • g(x[z ǫ ]) L 1 > K g (61) 
Then, from eqs. ( 44), ( 45) and ( 59), one has

lim ρ→0 ǫ -ρ -G δ ψ ′ (s)m[z ǫ , g](ds) > K g -ǫ -G δ -∞ ψ ′ (s)m[z ǫ , g](ds) > K g - ǫ 0 T G δ (62) 
Gathering eqs. ( 43), ( 55) and (62) yields

∆ 1 + ǫ∆ 2 ≤ const(ℓ, f, g, ϕ, T, ǫ 0 , ψ, G δ , R v , R x , σ) -G δ (1 -σ)K g (63) 
Since G δ (1σ) > 0, ∃K g > 0 such that ∆ 1 + ǫ∆ 2 < 0 which contradicts the optimality of z ǫ , proves eq. ( 31) and concludes the proof.

Mixed constraints interiority analysis

Lemma 2. There exists a constant K c < +∞ such that for all ǫ > 0 and for any (x[u ǫ , x 0 ǫ ], u ǫ ) locally optimal solution of Problem eq. ( 17) the following holds

ǫψ ′ • c i (x[u ǫ , x 0 ǫ ], u ǫ ) L 1 ≤ K c , i = 1, . . . , n c (64) 
Proof. It is sufficient to prove the case where n c = 1, i.e., when there is a single mixed constraint. From proposition 4,

∀δ > 0, ∃(v δ , x 0 δ ) ∈ B . V ad ((u ǫ , x 0 ǫ ), δ) ∩ V ad and C δ > 0 such that c(x[v δ , x 0 δ ](t), v δ (t)) ≤ -2C δ , a.a. t ∈ [0, T ] (65a) c(x[v δ , x 0 δ ](t), v δ (t)) ≤ c(x[u ǫ , x 0 ǫ ](t), u ǫ (t)) -C δ , ∀t ∈ S c uǫ,x 0 ǫ (C δ ) (65b) with S c uǫ,x 0 ǫ (C δ ) = ∅.
In the following, to alleviate the notations, we denote

z δ := (v δ , x 0 δ ) ( 66 
)
z ǫ := (u ǫ , x 0 ǫ ) ( 67 
) ∆z := z δ -z ǫ (68) ∆x := x[z δ ] -x[z ǫ ] ( 69 
) ∆g := g(x[z δ ]) -g(x[z ǫ ]) (70) ∆c := c(x[z δ ], v δ ) -c(x[z ǫ ], u ǫ ) (71) 
In addition, From lemma 1, and by continuity of the mapping z → x[z] one can chose δ > 0 such that the following holds

sup t g(x[z δ ](t)) < 0 (72) ǫψ ′ • g(x[z δ ]) L 1 ≤ 2 ǫψ ′ • g(x[z ǫ ]) L 1 ≤ 2K g (73) 
Now, one can exhibit an upper-bound on the difference

J ǫ (x[z δ ], v δ ) -J ǫ (x[z ǫ ], u ǫ ) as follows J ǫ (x[z δ ], v δ ) -J ǫ (x[z ǫ ], u ǫ ) = ∆ 1 + ∆ 2 + ǫ∆ 3 (74) 
where

∆ 1 := ϕ(x[z δ ](T )) -ϕ(x[z ǫ ](T )) + T 0 [ℓ(x[z δ ](t), v δ (t)) -ℓ(x[z ǫ ](t), u ǫ (t))] dt (75) 
∆ 2 := ǫ T 0 i [ψ • g i (x[z δ ](t)) -ψ • g i (x[z ǫ ](t))] dt (76) 
∆ 3 := T 0 [ψ • c(x[z δ ](t), v δ (t)) -ψ • c(x[z ǫ ](t), u ǫ (t))] dt (77) 
Now, let us upper-bound ∆ 1

∆ 1 ≤ T 0 const(ℓ) ( x[z](t) -x[z ǫ ](t) + v(t) -u ǫ (t) ) dt + const(ϕ) ∆x L ∞ ≤ const(ℓ, f, g, ϕ, T, R v , R x ) (78) Now, let us upper-bound ∆ 2 . ∆ 2 = ǫ T 0 i [ψ • g i (x[z δ ](t)) -ψ • g i (x[z ǫ ](t))] dt = ǫ i T 0 1 0 ψ ′ [g i (x[z ǫ ](t)) + s∆g i (t)] ∆g i (t)dsdt (79) 
From the mean value theorem, eqs. ( 72) and (73), ∃θ t ∈ [0, 1] such that

∆ 2 = ǫ i T 0 ψ ′ • g i (x[z ǫ ](t) + θ t ∆g(t))∆g(t)dt ≤ i 2K g ∆g L ∞ ≤ const(f, g, K g , R x , T ) (80) 
Now, let us upper-bound ∆ 3 defined in eq. (77). To do so, let us introduce the following useful subsets of [0, T ]

E 1 := (c(x[z ǫ ], u ǫ )) -1 ((-∞, -C δ ]) (81) 
E 2 := (c(x[z ǫ ], u ǫ )) -1 ((-C δ , 0]) (82) 
Let us decompose ∆ 3 as follows ∆ 3 := ∆ 3,1 + ∆ 3,2 , with

∆ 3,i := Ei ψ • c(x[z δ ](t), v δ (t)) -ψ • c(x[z ǫ ](t), u ǫ (t))dt, i = 1, 2 (83) 
By convexity of the log penalty, i.e. ψ, we have

∆ 3,1 ≤ E1 ψ ′ (C δ ) ∆c L ∞ dt ≤ const(T, f, c, ψ, C δ ) z δ -z ǫ V ad ≤ const(T, f, c, ψ, C δ , R v ) (84) 
In addition, we have

∆ 3,2 = E2 1 0 ψ ′ (c(x[z ǫ ](t), u ǫ (t)) + s∆c(t))∆c(t)ds dt (85)
Since ∀t ∈ E 2 , ∆c(t) < -C δ , we also have

∆ 3,2 ≤ -C δ E2 1 0 ψ ′ (c(x[z ǫ ](t), u ǫ (t)) + s∆c(t))ds dt (86)
From the mean value theorem, ∀t ∈ E 2 , ∃σ t ∈ [0, 1] such that

ψ ′ (c(x[z ǫ ](t), u ǫ (t)) + σ t ∆c(t)) = 1 0 ψ ′ (c(x[z ǫ ](t), u ǫ (t)) + s∆c(t))ds (87) 
Since for all t ∈ E 2 , we have c(x[z ǫ )(t), u ǫ (t))c(x[z δ ](t), v δ (t)) ≥ C δ and since ψ ′ is strictly increasing we have σ t ∈ (0, 1) and

ψ ′ • c(x[z δ ](t), v δ (t)) < ψ ′ (c(x[z ǫ ](t), u ǫ (t)) + σ t ∆c(t)) < ψ ′ • c(x[z ǫ ](t), u ǫ (t)) (88) 
From the intermediate value theorem, ∃σ ∈ (0, 1) such that ∀t ∈ E 2 we have

ψ ′ (c(x[z ǫ ](t), u ǫ (t)) + σ t ∆c(t)) ≥ (1 -σ)ψ ′ • c(x[z ǫ ](t), u ǫ (t)) + σψ ′ • c(x[z δ ](t), v δ (t)) (89) 
Gathering eqs. ( 86), ( 87) and (89) yields

∆ 3,2 ≤ -C δ E2 (1 -σ)ψ ′ • c(x[z ǫ ](t), u ǫ (t)) + σψ ′ • c(x[z δ ](t), v δ (t)) dt (90) ≤ -C δ (1 -σ) E2 ψ ′ • c(x[z ǫ ](t), u ǫ (t))dt + const(σ, ψ, T, c, C δ ) (91) 
Gathering eqs. ( 84) and (91) we have

ǫ∆ 3 ≤ const(T, f, c, C δ , ǫ 0 , ψ, σ, R v ) -ǫC δ (1 -σ) E2 ψ ′ • c(x[z ǫ ](t), u ǫ (t))dt (92) 
Gathering eqs. (78), ( 80) and (92) yields

J ǫ (z δ ) -J ǫ (z ǫ ) = ∆ 1 + ∆ 2 + ǫ∆ 3 ≤ const(ℓ, f, g, ϕ, T, K g , R v , R x , C δ , c, ǫ 0 , ψ, σ) -ǫC δ (1 -σ) E2 ψ ′ • c(x[z ǫ ](t), u ǫ (t))dt (93)
Now let us prove eq. ( 64) by contradiction and assume that

∀K c > 0, ∃ǫ > 0 s.t. ǫψ ′ • c(x[z ǫ ], u ǫ ) L 1 > K c ( 94 
)
From the definition of E 1 and E 2 , we have

ǫψ ′ (c(x[z ǫ ], u ǫ ) L 1 = E1 ǫψ ′ (c(x[z ǫ ](t), u ǫ (t))dt + E2 ǫψ ′ (c(x[z ǫ ](t), u ǫ (t))dt (95)
which, in turns yields

E2 ǫψ ′ (c(x[z ǫ ](t), u ǫ (t))dt > K c -ǫ 0 ψ ′ (C δ )T (96)
gathering eqs. ( 93) and (96) yields

J ǫ (z δ ) -J ǫ (z ǫ ) ≤ const(ℓ, f, g, ϕ, T, K g , R v , R x , C δ , c, ǫ 0 , ψ, σ) -C δ (1 -σ)K c (97) 
For K c large enough, J ǫ (z δ )-J ǫ (z ǫ ) < 0, which contradicts the optimality of (x[z ǫ ], u ǫ ), proves eq. ( 64) and concludes the proof.

In addition, using lemma 1 and lemma 2, one can also prove a uniform boundedness property for the adjoint state pǫ from definition 8.

Corollary 1. Let (ū ǫ , xǫ ) be a locally optimal solution of Problem eq. ( 17) and let (p ǫ , λǫ ) be the corresponding constraint multipliers, then there exists K p < ∞ such that pǫ L ∞ ≤ K p Proof. First, using eq. (19b) one has

pǫ (T ) -pǫ (s) ≤ T s ( ℓ ′ x (x ǫ , ūǫ ) L ∞ + f ′ x (x ǫ , ūǫ ) L ∞ pǫ (t) ) dt + i g ′ i (x ǫ ) L ∞ ǫψ ′ • g i (x ǫ ) L 1 + i c ′ i,x (x ǫ , ūǫ ) L ∞ ǫψ ′ • c i (x ǫ , ūǫ ) L 1 (98) From the continuity of ℓ ′ x , f ′ x , g ′ i , c ′ i,
x and since xǫ and ūǫ are bounded, we have ℓ

′ x (x ǫ , ūǫ ) L ∞ < const(ℓ, f ) and f ′ x (x ǫ , ūǫ ) L ∞ < const(f ).
In addition, the terms on the right-hand side of eq. (19f) are bounded which yields that pǫ (T ) ≤ const(f, h). The derivatives of the penalty functions being uniformly L 1 -bounded one can use Grönwall Lemma which proves that ∃K p < +∞ such that ∀s ∈ [0, T ] we have pǫ (s) ≤ K p which concludes the proof. Lemma 3. There exists a constant K c < +∞ such that for all ǫ > 0, any (x ǫ , ūǫ ) locally optimal solution of Problem eq. (17) satisfies c(x ǫ (t), ūǫ (t)) ≤ -ǫ/K c , a.e.

Proof. For all K c > 0, assume that there exists E ⊆ [0, T ] of strictly positive measure such that I c ūǫ,xǫ(0) (t, K c /ǫ) = ∅ for all t ∈ E. Now, let us denote C(t) := a I c ūǫ ,xǫ (0) (t,Kc/ǫ) (x ǫ ) and let us define v as follows

v(t) := -C(t) ⊤ C(t)C(t) ⊤ -1 .e v , ∀t ∈ E 0 otherwise ( 100 
)
where

R |I c ūǫ,xǫ (0) (t,Kc/ǫ)| ∋ e v := ǫ/K c . . . ǫ/K c ⊤ .
Since ūǫ is a locally optimal solution, we have for almost all

t ∈ E H ψ (x ǫ (t), ūǫ (t) + v(t), pǫ (t), ǫ) -H ψ (x ǫ (t), ūǫ (t), pǫ (t), ǫ) = H(x ǫ (t), ūǫ (t) + v(t), pǫ (t)) -H(x ǫ (t), ūǫ (t), pǫ (t)) + ǫ i∈I c ūǫ ,xǫ (0) (t,Kc/ǫ) log c i (x ǫ (t), ūǫ (t)) c i (x ǫ (t), ūǫ (t) + v(t)) (101) 
From the mean value theorem and the definition of v, ∃s ∈ [0, 1] such that

H ψ (x ǫ (t), ūǫ (t) + v(t), pǫ (t), ǫ) -H ψ (x ǫ (t), ūǫ (t), pǫ (t), ǫ) ≤ H ′ u (x ǫ (t), ūǫ (t) + sv(t), pǫ (t)).v(t) -ǫ i∈I c ūǫ ,xǫ (0) (t,Kc/ǫ) log(2) (102)
Since ℓ, f are at least C 2 and from corollary 1 we have

H ψ (x ǫ (t), ūǫ (t) + v(t), pǫ (t), ǫ) -H ψ (x ǫ (t), ūǫ (t), pǫ (t), ǫ) ≤ ǫ   const(ℓ, f, K p , T, R u ) K c - i∈I c ūǫ ,xǫ (0) (t,Kc/ǫ) log(2)   (103)
which is negative for K c large enough and contradicts the local optimality of ūǫ and proves the result.

5 Convergence of interior point methods in optimal control with logarithmic penalty functions

Convergence of state variable and initial-final conditions

Let us denote (x ǫn , ūǫn ) n a sequence of locally optimal solutions of eq. ( 17). The associated sequence (ū ǫn , xǫn (0)) n being L 2 × R n -bounded, it contains a weakly converging subsequence (ū ǫn k , xǫn k (0)) k satisfying i.e. From proposition 2, we also have

lim k→+∞ x[ū ǫn k , xǫn k (0)] -x[ū, x0 ] L ∞ = 0 (106) lim k→+∞ h x[ū ǫn k , xǫn k (0)](0), x[ū ǫn k , xǫn k (0)](T ) -h x[ū, x0 ](0), x[ū, x0 ])(T ) = 0 (107)
which proves eqs. (20b) and (20c).

Convergence of initial-final constraints multipliers

Let (λ ǫn ) n be the sequence of multipliers associated with the initial-final constraints eq. (19d). These multipliers being bounded there exists a converging subsequence to some λ, which writes lim k→+∞ λǫn k -λ = 0.

Convergence of state penalties

In this paragraph, we prove that the derivative of the state-constraint penalty converges to a Radon measure μ ∈ M([0, T ]) ng . To do so, let us denote

L 1 ([0, T ]; R + ) ∋ θ gi ǫn := ǫ n ψ ′ • g i (x ǫn ) = - ǫ n g i (x ǫn ) (108)
Identifying any element of the sequence (θ gi ǫn ) n with a linear form on continuous functions Θ gi ǫn ∈ M([0, T ]) defined as follows Θ gi ǫn : v ∈ C 0 ([0, T ], R) → T 0 v(t)θ gi ǫn (t)dt. From lemma 1 and eq. ( 31) we have

|Θ gi ǫn k (v)| ≤ K g v L ∞ , thus
∀ǫ n , Θ gi ǫn ∈ B M([0,T ]) (0, K g ) From the weak * compactness of the unit ball of M([0, T ]) (see [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 3.16]), there exists a subsequence Θ gi ǫn k k∈N and a measure μi ∈ M([0, T ]) with μi (T ) = 0 such that lim k→+∞ Θ gi k * ⇀ μi , i = 1, . . . , n g which proves eq. (20h). Now, let us prove that μ satisfies conditions eqs. (15g) and (15j). From lemma 1 and eq. ( 30) and from eq. ( 108), we have θ gi ǫn k > 0, ∀t ∈ [0, T ] and ∀ǫ n k > 0. Therefore, ∀φ ∈ C 0 ([0, T ]; R + ) one has φdμ i = lim k φθ gi ǫn k dt ≥ 0, which proves eq. (15j). Finally, let us prove that μ satisfies the complementarity condition eq. (15g). From eq. (108), we have

g i (x ǫn k (t))θ gi ǫn k (t) = -ǫ n k hence lim k→+∞ T 0 g i (x ǫn k (t))θ gi ǫn k (t)dt = lim k→+∞ -ǫ n k T = 0 (109)
From the continuity of g i , the sequence (g i (x ǫn k )) k uniformly converges to g i (x). In addition, from lemma 1 and eq. ( 31), the sequence

θ gi ǫn k (t) is uniformly L 1 -bounded, hence lim k→+∞ T 0 g i (x(t)) -g i (x ǫn k (t)) θ gi ǫn k (t)dt ≤ lim k→+∞ g i (x) -g i (x ǫn k ) L ∞ θ gi ǫn k L 1 = 0 (110)
Gathering eqs. ( 109) and (110) yields

lim k→+∞ T 0 g i (x(t))θ gi ǫn k (t)dt = lim k→+∞ T 0 g i (x ǫn k (t))θ gi ǫn k (t)dt = 0 (111)
which in turns gives

T 0 g i (x(t))dμ i (t) = lim k→+∞ T 0 g i (x(t))θ gi ǫn k (t)dt = 0 (112)
and proves that μ satisfies the complementarity condition eq. (15g).

Convergence of mixed-constraint penalties

In this paragraph, we prove that the derivative of the mixed-constraint penalty converges to an assentialyy bounded function ν ∈ L ∞ ([0, T ]; R ng + ). To do so, let us denote

η ǫn,i := ǫ n ψ ′ • c i (x ǫn , ūǫn ) (113) 
Proposition 5. Let (x ǫ , ūǫ ) be a locally optimal solution of eq. ( 17), then the following holds

η ǫn ∈ L ∞ ([0, T ]; R nc + ) (114) 
where η ǫn,i := η ǫn,1 . . . η ǫn,nc

⊤

Proof. The proof of this result consists in proving that the mapping

Ψ ǫ : L 1 ∋ w → T 0 η ǫn (t)w(t)dt ∈ R (115) 
is a continuous linear form on L 1 . From lemma 3, c(x ǫ , ūǫ ) is strictly negative (not active) almost everywhere. Therefore the Hamiltonian minimization condition of the Pontryagin maximum principle writes H ′ u (x ǫ , ūǫ , pǫ ) + nc i=1 η ǫ,i a i (x ǫ ) = 0 for almost all time. Then, for all v ∈ U, one has

T 0 nc i=1 η ǫn,i (t)a i (x ǫ (t)).v(t)dt ≤ H ′ u (x ǫ , ūǫ , pǫ ) L ∞ v L 1 ≤ const(f, ℓ, h) v L 1 (116) 
Let us denote

C(t) := a I c ūǫ ,x 0 ǫ (t,n) (x ǫ ) and for all w ∈ L 1 ([0, T ]; R nc ), let us define v ∈ U as follows v(t) := C(t) ⊤ C(t)C(t) ⊤ -1 w I c ūǫ ,x 0 ǫ (t,n) (t) if I c ūǫ,x 0 ǫ (t, n) = ∅ 0 otherwise (117) Since C(t) is L ∞ -bounded, there exists M > 0 such that v L 1 ≤ M w L 1 . In addition, let us define λ ǫ ∈ L 1 ([0, T ]; R nc ) as follows λ ǫ,i (t) := η ǫn,i if i ∈ I c ūǫ,x 0 ǫ (t, n) 0 otherwise (118) 
Gathering eqs. ( 116) to (118) yields

T 0 nc i=1 η ǫn,i (t)a i (x ǫ (t)).v(t)dt = T 0 λ ǫ (t).w(t)dt (119) 
Gathering eqs. ( 116) and (119) we have T 0 λ ǫ (t).w(t)dt ≤ const(f, ℓ, h, M ) w L 1 and using the density of L ∞ ([0, T ]; R nc ) in L 1 ([0, T ]; R nc ) proves that Ψ ǫ is continuous linear form over L 1 ([0, T ]; R nc ) and concludes the proof.

From lemma 3 and proposition 5, η ǫn,i ∈ B L ∞ (0, K c ), thus there exists a subsequence and a function νi

∈ L ∞ ([0, T ]; R + ) such that lim k→+∞ η ǫn k ,i * ⇀ νi (120) 
which proves eq. (20g). Now, let us prove that ν satisfies conditions eqs. (15h) and (15k). From lemma 2 and lemma 3, we have η ǫn k ,i > 0, ∀t ∈ [0, T ] and ∀ǫ n k > 0 which proves that ν satisfies the non negativity condition eq. (15k). Finally, let us prove that ν satisfies the complementarity condition eq. (15h). First, we have

lim k→∞ η ǫn k ,i , c i (x ǫn k , ūǫn k ) = lim k→∞ -ǫ n k T = 0 (121) Using proposition 2, yields lim s→∞ lim r→∞ η ǫn s ,i , c i (x ǫr , ūǫr ) = lim r→∞ lim s→∞ η ǫn s ,i , c i (x ǫr , ūǫr ) = νi , c i (x, ū) (122) 
which, in turn, gives νi , c i (x, ū) = lim inf

s lim inf r η ǫn s ,i , c i (x ǫr , ūǫr ) ≤ lim k→∞ η ǫn k ,i , c i (x ǫn k , ūǫn k ) = 0 ≤ lim sup s lim sup r η ǫn s ,i , c i (x ǫr , ūǫr ) = νi , c i (x, ū) (123)
which proves that ν satisfies the complementarity condition eq. (15h).

Convergence of Pontryagin adjoint

Let q n ∈ BV([0, T ]) n be the solution of

-dq n (t) = [ℓ ′ x (x ǫn (t), ūǫn (t)) + f ′ x (x ǫn (t), ūǫn (t)).q n (t)] dt + nc i=1 c ′ x,i (x ǫn (t), ūǫn (t))ν i (t)dt + ng i=1 g ′ i (x ǫn (t))dμ i (t) (124a) 
q n (0) = -h ′ x(0) (x ǫn (0), xǫn (T )) ⊤ . λ (124b) q n (T ) = ϕ ′ (x ǫn (T )) + h ′ x(T ) (x ǫn (0), xǫn (T )) ⊤ . λ (124c) 
Then, we have

q n (T ) -p(T ) + p(t) -q n (t) = T t ℓ ′ x (x(s), ū(s)) -ℓ ′ x (x ǫn (s), ūǫn (s))ds + 
T t f ′
x (x(s), ū(s)).p(s)f ′ x (x ǫn (s), ūǫn (s)).q n (s)ds

+ nc i=1 T t c ′ i,x (x(s), ū(s)) -c ′ i,x (x ǫn (s), ūǫn (s)) νi (s)ds + ng i=1 T t [g ′ i (x(s)) -g ′ i (x ǫn (s))] dμ i (s) (125)
Using proposition 2, we have lim n q n (T )p(T ) = 0 and

lim n p(t) -q n (t) = lim n T t f ′ x (x(s), ū(s)).p(s) -f ′ x (x ǫn (s), ūǫn (s)).q n (s)ds (126) = lim n T t f ′ x (x ǫn (s), ūǫn (s)).(p(s) -q n (s))ds + lim n T t [f ′ x (x(s), ū(s)) -f ′ x (x ǫn (s), ūǫn (s))] .p(s)ds (127) 
≤ const(f )

T t p(s) -q n (s) ds (128) 
Therefore, q n pointwise converges to p and since both are bounded we have

lim n→+∞ q n -p L 1 = 0 (129) 
In addition, using eq. ( 108), we have 

q n (t) -pǫn (t) ≤ T t f ′ x (x ǫn (s), ūǫn (s)).(q n (s) -pǫn (s))ds + ng i=1 T t g ′ i (x ǫn (s)) dμ i (s) -θ gi ǫn (s)ds + nc i=1 T t c ′ i,x (x ǫn (s), ūǫn (s)) (ν i (s) -η ǫn,i (s)) ds (130) ≤const(f ) T t q n (s) -pǫn (s) ds + ng i=1 T t g ′ i (x ǫn (s)) dμ i (s) -θ gi ǫn (s)ds + nc i=1 T t c ′ i,x (x ǫn (s), ūǫn (s)) [ν i (s) -η ǫn,i (s) 
0 = lim inf n lim inf m η ǫn,i -νi , c ′ i,x (x ǫm , ūǫm ) ≤ lim n→∞ η ǫn,i -νi , c ′ i,x (x ǫn , ūǫn ) ≤ lim sup n lim sup m η ǫn,i -νi , c ′ i,x (x ǫm , ūǫm ) = 0 (135)
which yields lim n→∞ T t c ′ i,x (x ǫn (s), ūǫn (s)) [ν i (s)η ǫn,i (s)] ds = 0. Thus, h n pointwise convergences to 0. In addition, from the boundedness of (h n ) n there exists a subsequence such that

lim k→+∞ q n k (t) -pǫn k (t) ≤ const(f, T ) T t lim k→+∞ h n k (s)ds = 0 (136)
q n k pointwise converges to pǫn k and since both are bounded, from Lebesgue-Vitali's Theorem, we have

lim k→+∞ q n k -pǫn k L 1 = 0
Gathering with eq. ( 129) yields ppǫn k L 1 → 0 which proves eq. (20f).

Convergence of control variable and cost function

From, the convexity of ℓ(x, u) with respect to u and from the strict convexity of the penalty function we have ∀n > 0, for a.e. 

v n := N (n) k=n α[n] k u ǫ k (139) 
converges in L 2 -norm to ū. Therefore, there exists a subsequence denoted (v m ) m converging almost everywhere to ū. Now, for almost all t ∈ [0, T ], we have

ū(t) -z(t) = lim m→+∞ v m (t) -z(t) ≤ lim m→+∞ N (m) k=m α[m] k ūǫm (t) -z(t) = 0 (140)
which proves that there exists a subsequence(ū ǫn k ) k which converges almost everywhere to ū and since (ū ǫn ) n is L ∞ -bounded the subsequence converges in L 1 -norm to ū which proves eq. (20a) and eq. (20d) from ℓ ∈ C 1 .

Convergence of stationary conditions on the Hamiltonian

Let us prove that the limit point of the solution of eq. ( 19) is also a solution of eq. (15c). From eqs. (20a) and (20b)

lim n→+∞ H ψ u ′ (x ǫn , ūǫn , pǫn , ǫ n ) -H ′ u (x, ū, p) -b(x) ⊤ .ν L 1 ≤ lim n→+∞ ℓ ′ u (x ǫn , ūǫn ) -ℓ ′ u (x, ū) L 1 + f 2 (x ǫn ) ⊤ .p ǫn -f 2 (x) ⊤ .p L 1 + nc i=1 ǫ n ψ ′ • c i (x ǫn , ūǫn )b i (x ǫn ) -νi b i (x) L 1 (141)
Each term of the sum converges in L 1 -norm to 0. Thus, taking a subsequence if necessary, eq. (19c) converges to 0 almost everywhere and proves eq. (15c).

6 Solving Algorithms

Primal solving algorithm

In theorem 1 we have proved that any sequence of solutions of eq. ( 19) contains a converging subsequence. In the following, we denote S P (ǫ) := (x ǫ , pǫ , ūǫ , λǫ ) any solution of eq. ( 19). Now, the primal solving algorithm naturally writes as follows 1: Define ǫ 0 > 0, α ∈ (0, 1), tol = o(1), k = 0 2: while ǫ k > tol do 3:

S P (ǫ k+1 ) ←solution of eq. ( 19) initialized with S P (ǫ k )

4:

ǫ k+1 ← αǫ k 5:
k ← k + 1 6: end while 7: return S P (ǫ k ) Algorithm 1: Primal algorithm for optimal control problems

Primal-dual solving algorithm

Before describing the primal-dual solving algorithm, we need the following convergence result, which is a direct consequence of theorem 1.

Theorem 2. Let (ǫ n ) be a sequence of decreasing positive parameters with ǫ n → 0 and let 

(x ǫn , ūǫn , pǫn , θǫn , ηǫn , λǫn ) n ∈ W 1,∞ ([0, T ]; R n ) × U × W 1,1 ([0, T ]; R n ) × L 1 ([0, T ]; R ng + ) × L ∞ ([0, T ]; R nc + ) × R n h (
- nc i=1 ηǫn,i (t)c ′ i,x (x ǫn (t), ūǫn (t)) (143b) 0 =H ′ u (x ǫn (t), ūǫn (t), pǫn (t)) + nc i=1 ηǫn,i (t)c ′ i,u (x ǫn (t), ūǫn (t)) (143c) 0 = θǫn,i (t) -g i (x ǫn (t)) -θǫn,i (t) 2 + g i (x ǫn (t)) 2 + 2ǫ n (143d) 0 =η ǫn,i (t) -c i (x ǫn (t), ūǫn (t)) -ηǫn,i (t) 2 + c i (x ǫn (t), ūǫn (t)) 2 + 2ǫ n (143e) 0 =h(x ǫn (0), xǫn (T )) (143f) 0 =p ǫn (0) + h ′ x(0) (x ǫn (0), xǫn (T )) ⊤ . λǫn (143g) 0 =p ǫn (T ) -ϕ ′ (x ǫn (T )) -h ′ x(T ) (x ǫn (0), xǫn (T )) ⊤ . λǫn (143h) 
Then (x ǫn , ūǫn , pǫn , θǫn , ηǫn ) n contains a subsequence converging to a stationary point of the original problem (x[ū, x0 ], ū, p, μ, ν, λ) as follows

ūǫn k -ū L 1 → 0, xǫn k -x[ū, x0 ] L ∞ → 0, |J(x ǫn k , ūǫn k ) -J(x[ū, x0 ], ū)| → 0 λǫn k -λ → 0, pǫn k -p L 1 → 0, ηǫn * ⇀ ν, θǫn dt * ⇀ dμ (144a)
Proof. From lemma 1 and lemma 3, we have g i (x ǫn (t)) < 0 and c i (x ǫn (t), ūǫn (t)) < 0 for all ǫ n > 0. Therefore eq. ( 143d) is equivalent to θǫn,i (t) = -ǫ n /g i (x ǫn (t)) and eq. ( 143d) is equivalent to ηǫn,i (t) = -ǫ n /c i (x ǫn (t), ūǫn (t)).

Combining with eqs. (143b) and (143c) proves that any solution of eq. ( 143) is also solution of eq. ( 19) and using theorem 1 concludes the proof.

Let us denote S P D (ǫ) := (x ǫ , ūǫ , pǫ , θǫ , ηǫ , λǫ ) any solution of eq. ( 143), then the primal-dual algorithm writes as follows.

1: Define ǫ 0 > 0, α ∈ (0, 1), tol = o(1), k = 0 2: while ǫ k > tol do 

ǫ k+1 ← αǫ k 5: k ← k + 1 6: end while 7: return S P D (ǫ k )
Algorithm 2: Primal-dual algorithm for optimal control problems Even though algorithms 1 and 2 are equivalent, the primal-dual algorithm can explore non-admissible trajectories without becoming singular. For example, the primal-dual algorithm can be initialized with non-admissible trajectories and still be numerically tractable which is of course, not the case with the primal algorithm.

Numerical example: Robbin's problem

The numerical example and the Differential Algebraic Equations (DAEs) solver used in this example are freely available at https://ifpen-gitlab.appcollaboratif.fr/detocs/ipm_ocp. The solver is a two point boundary differential algebraic equations solver adapted from [START_REF] Kierzenka | A bvp solver based on residual control and the maltab pse[END_REF] to solve index-1 differential algebraic equations. 

x ′′′ (t) = u(t) (145b)

x(0) = 1 (145c) x ′ (0), x ′′ (0) = 0 (145d) 0 ≥ -x(t) (145e) u ∈ [-1, 1] (145f) 
This problem is challenging since the optimal solution exhibits a Fuller-like phenomenon both on the adjoint state p and on the control ū. For this problem, one can check that conditions eqs. (19e) and (19f) are equivalent to dropping the end initial-final constraint multiplier and add the constraint p(T ) = 0.

Resolution using the primal algorithm

The parameterization of the primal algorithm for the Robbins problem is as follows ǫ 0 = 0.1, α = 0.8, tol = 10 -8 , S P (ǫ 0 )(t) := (1, 0, 0, 0, 0, 0, 0)

Using this setting, the execution time is 0.97s.

Resolution using the primal-dual algorithm

The parameterization of the primal-dual algorithm for the Robbins problem is as follows ǫ 0 = 0.1, α = 0.5, tol = 10 -9 , S P D (ǫ 0 )(t) := (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

One can see that the decay rate of the primal-dual method is smaller than the one used in the primal case. Both parameters have been set to the lower value achieving convergence. In addition, the tolerance can also be set lower using the primal-dual version of the algorithm. The execution time with the primal-dual method is 0.20s thanks to the smaller decay rate.

A Proofs of section 3

A.1 Proof of proposition 1

From assumption 4, x[u, x 0 ] is valued in a compact subset of R n , In addition, f being C 2 there exists const(f ) < +∞ such that for all (u 1 , x

1 ), (u 2 , x 0 2 ) ∈ L ∞ × R n ẋ[u 1 , x 0 1 ](t) -ẋ[u 2 , x 0 2 ](t) ≤ const(f ) x[u 1 , x 0 1 ](t) -x[u 2 , x 0 2 ](t) + u 1 (t) -u 2 (t) 0 
Using Grönwall inequality [12, Lemma A.1, p.651] again, there exists const(f ) < +∞ such that x[u 1 , x 0 1 ]x[u 2 , x 2 0 ] L ∞ ≤ const(f )( u 1u 2 L 1 + x 0 1x 0 2 ).

A.2 Proof of proposition 2

To alleviate the notation, we denote x n := x[u n , x 0 n ] and x := x[ū, x0 ]. using these notations, we have

x n (t 2 )x n (t 1 ) := t2 t1 f 1 (x n (t)) + f 2 (x n (t)).u n (t)dt (149)

First, ∀t 1 , t 2 ∈ [0, T ], From Hölder inequality, we have

x n (t 2 ) --x n (t 1 ) ≤ sup n f 1 (x n ) + f 2 (x n ).u n L 2 |t 1 -t 2 | (150) 
Therefore, the sequence (x n ) n is bounded and equicontinuous. From Arzela-Ascoli [14, Theorem 1.3.8, p.33], it contains a uniformly converging subsequence to some x. Let (x k ) k be the uniformly converging sequence, one has x(t)x(t) = lim k→+∞ x k (t)x(t) = t 0 f 1 (x(s))f 1 (x(s)) + (f 2 (x(s))f 2 (x(s))).ū(s)ds (151) Since x(0) = x0 , the term inside the integral in eq. ( 151) is always zero, thus x = x. Now, let us prove that the whole sequence (x n ) n uniformly converges to x by contradiction. Assume that, there exists a subsequence (x k ) k such that ∃K > 0 and ǫ > 0 satisfying x kx L ∞ ≥ ǫ for all k ≥ K. One can extract a sub-subsequence (x kj ) j uniformly converging to some x 1 with x 1x L ∞ > 0. However, V ad being weakly compact in the topology σ(L 2 × R n , L 2 × R n ), one can extract from (u kj , x 0 kj ) j a weakly convergent subsequence. By definition, this sequence weakly converges to (ū, x0 ) and proves that (x kj ) j contains a subsequence converging to x which contradicts the initial assumption and proves the uniform convergence of (x n ) n . As a consequence, α(x n ) and β(x n ) uniformly converges to α(x) and β(x) respectively. In addition, the sequence (α(x n ).u n + β(x n )) n is uniformly L ∞ -bounded, thus contains a weakly * converging subsequence to some θ. Assume that θ is not equal to α(x).ū + β(x) and Let ϕ ∈ L 2 ([0, T ]; R nc ) ∩ L 1 ([0, T ]; R nc ) we have ϕ, θα(x).ūβ(x) = lim k→+∞ ϕ, α(x n k ).u n k + β(x n k )α(x).ūβ(x) = lim k→+∞ ϕ, α(x)(u n kū) = 0 (152) Since L 2 ([0, T ]; R nc ) ∩ L 1 ([0, T ]; R nc ) is dense in L 1 ([0, T ]; R nc ) this contradicts the initial assumption and proves that the weak * limit is α(x).ū + β(x). To prove that the whole sequence weakly * converges, we use the same argument as the one we used to prove uniform convergence of the state, which concludes the proof.

A.3 Proof of proposition 3

Using assumption 4, ∀u ∈ U we have

|g i (x[u](t)) -g i (x[u](s))| ≤ const(g) x[u](t) -x[u](s) ≤ const(f, g)|t -s| (153) 
To prove the proposition, we only need to prove the lower bound holds on any interval (α 1 , α 2 ) ⊆ E. From the continuity of g i , ∃t 1 , t 2 such that g i (x[u](t 1 )) = α 1 , g i (x[u](t 2 )) = α 

From assumption 2, we have γ δ (u, x 0 ) < 0. Then, ∀(u, x 0 ) ∈ V ad ∞ , ∃(v, y 0 ) ∈ B . V ad ((u, x 0 ), δ) ∩ V ad such that sup t g(x[v, y 0 ](t)) ≤ γ δ (u, x 0 ) ≤ sup 

From assumption 2, for all (u, x 0 ) ∈ V ad ∞ , ∃(v n , y 0 n ) n ∈ Vad (n) converging to (u, x 0 ). Thus, for all δ > 0, ∃N δ [u, x 0 ] > 0, such that ∀n ≥ N δ [u, x 0 ], we have (v n , y 0 n ) ∈ B . V ad ((u, x 0 ), δ), which yields κ δ (u, x 0 ) ≤ -1/N δ (u, x 0 ). Now, ∀(u, x 0 ) ∈ V ad ∞ , ∃(v, y 0 ) ∈ B . V ad ((u, x 0 ), δ) ∩ V ad such that ess sup 

3 :S

 3 P D (ǫ k+1 ) ←solution of eq. (143) initialized with S P D (ǫ k ) 4:

  min

2

 2 and such that (t 1 , t 2 )⊆ g i (x[u]) -1 ((α 1 , α 2 )) and m[u, g i ]((α 1 , α 2 )) ≥ |t 1t 2 | ≥ const(f, g)|g i (x[u](t 1 ))g i (x[u](t 2 ))| ≥ const(f, g)|α 1α 2 |(154)A.4 Proof of proposition 4Let δ > 0, and for all (u, x 0 ) ∈ V ad ∞ let us denote γ δ (u, x 0 ) := inf v∈B . V ad ((u,x 0 ),δ)∩V ad sup t g(x[v, y 0 ](t))

(u,x 0

 0 )∈V ad ∞ γ δ (u, x 0 ) := -2G δ < 0 (156) In addition, if S g u,x 0 (G δ ) = ∅ , then ∀t ∈ S g u,x 0 (G δ ) we have g(x[v, y 0 ](t))g(x[u, x 0 ](t)) ≤ -2G δ + G δ = -G δ (157)Now, let us denoteκ δ (u, x 0 ) := inf v∈B . V ad ((u,x 0 ),δ)∩V adess sup t c(x[v, y 0 ](t), v(t))

t

  c(x[v, y 0 ](t), v(t)) ≤ κ δ (u, x 0 ) ≤ sup (u,x 0 )∈V ad ∞ -1 N δ [u, x 0 ] := -2C δ < 0 (159) In addition, if S c u,x 0 (C δ ) = ∅ , then ∀t ∈ S c u,x 0 (C δ ) we have c(x[v, y 0 ](t), v(t))c(x[u, x 0 ](t), u(t)) ≤ -2C δ + C δ = -C δ(160)

  By continuity of λ t and from the strong L ∞ (resp. L 1 ) convergence of xǫn (resp. pǫn ), ūǫn pointwise converges to some z ∈ BV([0, T ]) m . Now, since the sequence (ū ǫn ) n weakly converges to ū, from Mazur's lemma[20, lemma 10.19, pp. 350], there exists a function N : N → N and a sequence of sets of real positive numbers ({α[n] k : k = n, . . . , N (n)}) n satisfying N (n) k=n α[n] k = 1 and such the sequence (v n ) n defined as follows

	t ∈ [0, T ], H ψ uu	′′ (x ǫn (t), ūǫn (t), pǫn (t), ǫ n ) > 0	(137)
	From the implicit function theorem [22, Theorem 9.27, pp. 224-225], for almost all time, there exists a mapping λ t
	such that		
	ūǫn (t) := λ t (x ǫn (t), pǫn (t), ǫ n )	(138)