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Model P(¢)4 Quantum Field Theory: A Nonstandard
Approach Based on Nonstandard Pointwise-Defined
Quantum Fields

Jaykov Foukzon

Center for Mathematical Sciences, Technion Israel Institute of Technology City, Haifa 3200003 Israel

jaykovfoukzon@list.ru

Abstract. A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field
operator ¢ (x, t) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function.
We prove using this novel approach that the quantum field theory with Hamiltonian P(¢), exists and that the
corresponding C*- algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We
prove that the A(¢*), quantum field theory model is Lorentz covariant.

INTRODUCTION

Extending the real numbers R to include infinite and infinitesimal quantities originally enabled Laugwitz [1] to
view the delta distribution §(x) as a nonstandard point function. Independently Robinson [2] demonstrated that
distributions could be viewed as generalized polynomials. Luxemburg [3] and Sloan [4] presented an alternate re-
presentative of distributions as internal functions within the context of canonical Robinson's theory of nonstandard
analysis. For further information on nonstandard real analysis, we refer to [5, 6].

Abbreviation 1.1.11n this paper we adopt the following notations. For a standard set E we often write E;. For a
set Eg; let °E,; be a set®Eg, = {*x|x € E;}. We identify z with °z i.e., z = °z for all z € C. Hence, °Ey = E; if
EcC eg, °C=C, °‘R=R, °P =P, °L} =L}, etc. Let "R, "R., *Rgp, R, and *N,, denote the sets of
infinitesimal hyper-real numbers, positive infinitesimal hyper-real numbers, finite hyper-real numbers, infinite
hyper-real numbers and infinite hyper natural numbers, respectively. Note that *Rg, = "R\'R,,, *C = "R +i'R,
*Cfin = *Rfin + i*]Rfin'

Definition 1.1Let {X, 0} be a standard topological space and let *X be the nonstandard extension of X. Let O,
de-note the set of open neighbourhoods of point x € X. The monad mon,(x) of x is the subset of *X defined by
mony(x) =N {*0|0 < 0,}.The set of near standard points of *X is the subset of *X defined by nst (*X) =U
{mon,(x)|x € X}. It is shown that {X, O} is Hausdorff space if and only if x # y implies mon,(x) N mon,(y) =
@. Thus for any Hausdorff space{X, 0}, we can define the equivalence relation =, on nst (*X) so that x =, y if and
only if x € mon,(z) and y € mon,(z) for some z € X.

Definition 1.2 The standard Schwartz space of rapidly decreasing test functions on R",n € N is the standard
function space is defined by S(R™,C) = {f € C*(R",C)|Va,p € N"[llfllaﬁ < o]}, where

1fllas = Supsesn |x® (DEF ().
Remark 1.1 If f is a rapidly decreasing function, then for all @ € N the integral of |x“DB f (x)| exists
f |x*DE f(x)|d™x < 0
RN

Definition 1.3 The internal Schwartz space of rapidly decreasing test functions on *R"™,n € *N is the function
space defined by *SC'R™, *C) = {*f € *C"*('R", *O)|Va, B € *N*[*||*fllop < *o0|}, where




W llap = sup {x° (DPf@O)) Ix € R"}.
Remark 1.2 If f is a rapidly decreasing function, f € S(R", C), then for all a, f € *N™ the internal integral of

*x*DP*f(x)| exists
J.o
Here DF*f(x) = (DB f(x)).
Definition 1.4 The Schwartz space of essentially rapidly decreasing test functions on *R",n € *N is the function
space defined by

“x*DP*f(x)| d™x < *oo.

“Stin CR™,°C) =
{f €*C=(R" OV (@ B)(@ B € N 3cap(cap € Ren )V2(x € RY) [[x% ("DF*F ()| < cag]}
Remark 1.3 If *f € *Sg, (*R™, *C), then for all @ € *N™ the internal integral of [*x*D#*f (x)| exists and finitely

bounded above
fopnl XEDP ()| d"x < g, dp € "R -

Abbreviation 1.2 The standard Schwartz space of rapidly decreasing test functions on R" we will be denote by
S(R™). Let*S("R™), n € *N denote the space of *C-valued rapidly decreasing internal test functions on *R",n € *N
and let S, ("R™), n € *N denote the set of *Cy;,, -valued essentially rapidly decreasing test functions on*R™,n € *N.
If h(w,x): R X R™ and f: R™ — C are Lebesgue measurable on R*" we shall write (*h, *f) for internal Lebesgue
integral *f*Rn *h*f d*x with *f € *Sg, (FR™). Certain internal functions *h(w, x): "R X *R™ = *C define classical

distribution 7(f) by the rule [3, 4]:

7(f) = st(("h, " ). (M

Here st(a) is the standard part of a and st({*h, *f)) exists [5].

Definition 1.5 We shall say that *h(w, x) with w = @ € "R, is an internal representative to distribution 7(f)
and we will write symbolically t(xy, ..., x,) = "h(w, X4, ..., X,) if the equation (1) holds.

Definition 1.6 [6] We shall say that certain internal functions *h(w, x): "R X *R™ = *C is a finite tempered
distribution if *f € *Si,("R™) implies |*h, *f| € ‘R =R. A functions *h(w,x): "R X *R" - *C is called
infinitesimal tempered distribution if *f € *Sg, (*R™) implies |*h, *f| € *R. .The space of infinitesimal tempered
distribution is denoted by *S.(*R™).

Definition 1.7 We shall say that certain internal functions *h(w, x): *R X *R*"* - *C is a Lorentz =~ -invariant
tempered distribution if *f € *Sg, (*R™) and A € °LYimplies (*h, *f (Axy, ..., Ax,)) = (*h, *f (X1, or) X))

Example 1.1 Let us consider Lorentz invariant distribution

D(x) = s [y €™ 2 dPk = - 5(r? — t?)sign(0). 2)

Here w = |k| =+ ki+k3+kZand 7= (x;,%,%3), ¥ =+/x% +x% + x2. It easily verify that distribution
D (x) has the following internal representative

_ 1 ikr Sinwt ;3
D(x,®) = romo flklsave —d’k. 3)
Here w € *R,,. By integrating in (3) over angle variables we get
1 * w . _ i _ . i
D(X, ’(IS) — — f() {elw(r t) +e iw(r-t) _ piw(r+t) _ , lw(r+t)}dw. (4)

From (4) by canonical calculation finally we get

1 [sinw(r-t) sinw(r+t)] L 8a-0-6@+t) _ 1 2 12\ei
D(x' ’(IT) = an2r [ r—t r+t - 4m2r T om 6(1" t )Slgn(t)' (5)
Example 1.2 We consider now the following Lorentz invariant distribution:
_ 1 ikr COSwt 43, Li
Dl(X) = WIW e _a) d°k = 2 22" (6)
It easily verify that distribution D (x) has the following internal representative
_ 1 ikr COSwt ;3
D,(x,®) = rewor fllewe ——d°k. 7
Here w € *R,,. By integrating in (7) over angle variables we get
~ l * w . _ i _ . _ i t
Dl(x, ‘(IS) N = fo {elw(r t) _ p-iw(r-t) + elw+t) _ p-iw(r+ )}dw. (8)

From (8) finally we get



i -2 -2 2cosw(r—t) | 2cosw(r+)] 1 1
b, (@) ~ 8m2r [i(r—t) i(r+t) i(r-t) i(r+t) T 2m2 x2' ©)
Example 3.We consider now the following Lorentz invariant distribution
@)(_; 2
S [ pitkr—elen £k _ _ m B (Cim2)
A () 2(2m)3 flR3 € e(k) 8m my/|x2| ’ (10)

Here —x2 < 0, e(k) = +/|k?| + m? and Hl(z) is a Hankel function of the second kind. It easily verify that
distribution A, (x) has the following internal representative

-t ikr-e()le]) 2k
Ac@) =50 Jew® ) an
From (10)-(11) it follows *A.(x) = A.(x, @) + A,(x) where
E(x)=—" itkr-e(R)|e]) 4k
Ac(x) = 2(2m)3 f|k|>we e(k) (12)
Note that for all A € °L,, A.(Ax) € *S.(*R™) and therefore for all A € °L,, A, (Ax,w) ~ A (x, @), i.e.,
A.(x, @) is a Lorentz =~ -invariant tempered distribution, see definition 4. Thus we can set t = 0 in (11). By
integrating in (11) over angle variables and using substitution of variables |k| = m sinh(u) we get
* 1 L
A(x, @) = # f_rllfw exp(lmrsmh(u))du. (13)
Note that
*Hl(z)(x) = %f_:o exp(imrsinh(u))du:Ac (x, @) + E(x, m), (14)
Ex, @) = ? f__:;w exp(imrsinh(u) )du + fllﬂi exp(imrsinh(u))du. (15)

From (13)-(15) finally we obtain A.(x, @) = Hl(z) (x), since E(x, @) € *S.("R™).
Example 1.4 Let us consider Lorentz invariant distribution

A(x —y) = [{exp[—ip(x — y)] — expip(x — N} 6(p* — m*)I(p°)d*p. (16)
From (16) one obtains A(x —y) = E;(x —y) — E,(x — y), where
E,(x — ) = [{exp{lip(x — )] — iw @) — y")}} Jp—”m (17)
2, (x —¥) = [{exp{[-ip(x = )] + i )" -y} 755 (18)
w(p) = /p? + m?. It easily verify that distribution (17) and (18) has the following internal representatives
E(x = y,0) = [ lexpllip@ - »)] — iw @) -y} = (19)
80 = 9,@) = fyeol—exp[lipCx - )] + 0@ -y} s (20)
Note that *A(x —y) = [E;(x — ¥, @) + E,(x —y,@)] + [E,(x — y, @) + E,(x — y,@)], where
B G-y = [ {expllip(x - »)] - iw@)(x® -y} p—J—”m 21)
50 =y,@) = [ ol—exp[lipx — )] + iw®)(x° - )]} J% : (22)

Note that for all A€ L), E,(A(x—y),®)+Z(A(x—y), @) € *S.("R™) and therefore for all A€
ortl, *A(A(x - y)) ~ AMAx—-y),@) =5, Ax—-y),®)+E,AKX—-y),®), e, A(x—y,@) is a Lorentz
~-invariant tempered distribution, see definition 4. From (20) by replacement p = —p we obtain

E1(x = 3,) = = [y lexpllipte - )] + 0@ ~ YO} s (23)
From (19) and (23) we get
Ax =7,®) = B = 3,0) + E(x = 7,@) = [, sinfo® ~ yVexplipx - V] s 4)
Thus for any points x and y separated by space-like interval from (24) we obtain that
A(x —y,@) = 0, (25)

since A(x — y, @) is a Lorentz =-invariant tempered distribution. From (25) for any points x and y separated by
spacelike interval we obtain that: St(A(x -, w)) =0.

Definition 1.8 [7] Let for eachm>0: H,={p €ER*p-p=m%m>p,>0}, wherep=
(p°, —p', —p?, —p?). Here the sets H,, which are standard mass hyperboloids, are invariant under °L',. Let j,, be
the homeomorphism of H,, onto R3 given by j,: (Do, P1, P2, P3) = (01,02 P3) = p. Define a measure Q,,(E)
on H,, by



- a’p
Qm(E) - f]'m(E) JIplZ+m2’

The measure Q,,(E) is °L', -invariant [7].

Theorem 1.1 [7] Let u is a polynomially bounded measure with support in V,. If u is °L!, = L', - invariant, there
exists a polynomially bounded measure p on [0,c0) and a constant ¢ so that for any f € S(R*)

_ o F(VIpP+mZp1,p2p3 )dp
Jpafdu =cf(0)+ [ deM(LW T ).

Theorem 1.2 Let y is a polynomially bounded L', - invariant measure with support in V,. Let F(f) be a linear

*-continuous functional F: *Sg, (*R*) - *Rg, defined by " Jira f d pand there exists a polynomially bounded

(26)

R4

measure p on [0,00) such that fo*oo d *p (m) € *Rg, and a constant ¢ € *Rg,. Then for any f € *S . (*R*) and for

fin

any % € "R, the following property holds
“f( |p|2+m2.p1,pz,p3)d#3p) @7

FCH~cfO)+ [,“d"p (m>( Jipix i m?

Definition 1.9 Let y(»,p) be a function such that: y(¢,p) =1 if |p| <»,x0Ge,p) =0 if |p| >xn, x €
“Re,.Define internal measure £, ,, on “H,, by
_ xGep)d3p
U (B) = [.,, SEBLE, 28)
Theorem 1.3 [7] Let W, (x4, x,) be the two-point function of a field theory satisfying the Wightman axioms and
the additional condition that (¥, @(f)Y,) = 0 for all f € S(R*). Then there exists a polynomially bounded
positive measure p(m) on [0,00) so that for all for all f € S(R*)

Wo(f) = (o, 0(F@(F o) = [ FODF () Wyty — x)d*xdy = [ ([, fd,)dp(m). (29)
Theorem 1.4 Let W, (x4, x,) be the two-point function of a field theory mentioned in Theorem 1.3. Then for all
f € Sgn(*R*) and for any » € *R,, the following property holds

W) ~ 1,7 ([ fdQms) d"p(m). (30)

Definition 1.10 (1) Let L(H) be algebra of the all densely defined linear operators in standard Hilbert space H.
Operator-valued distribution on R", that is a map ¢:S(R™) — L(H) such that there exists a dense subspace D C
H satisfying:

1. for each f € S(R™) the domain of ¢ contains D,

2. the induced map: S = End(D), f = ¢ (f), s linear,

3. for each h; € D and h, € H the assignment f — {(h,, @(f)h,) is a tempered distribution.

(2) Certain operator-valued internal function ¢ (*f, @): *S ( *]R{") — *L(*H) is an internal representative for standard

operator valued distribution ¢ (f) if for each near standard vectors h, € *D and h, € *H the equality holds
(ha, @(FRy) = st(*(hy, @ (*f, @)hy)), €2y

where hy ~ h; and h, ~ h,.

Definition 1.11 [8] Let H be a Hilbert space and denote by H" the n-fold tensor product H* = HQ H® - ®H.
Set HY = Cand define F(H) = H". F(H)is called the Fock space over Hilbert space H. Notice F(H) will be
separable if H is. We set now H = L,(R?) then an element ¥ € F(H) is a sequence of C-valued functions ¢ =
{Wo, W1 (), W, (1, x3), Wo (g, X9, X3), woo, Wy (X4, ..., X))}, 1 € N and such that the following condition holds

ol + Zne w([ o (s, x)IPd¥5) < 0.

Definition 1.12 [7] Let us define now external operator a(p) on F, with domain Dy by

(a@P)™ = Vn+ 1T (p, ky, .. ky). (32)
The formal adjoint of the operator a(p) reads
(at ()™ = % L1 — k)Y D (ko kisg kg, oo ) (33)

Definition 1.13 [7] Let 1" be a vector " = {w(n)}:’:l for which ™ = 0 for all except finitely many n is

called a finite particle vector. We will denote the set of finite particle vectors by F,. The vector Q, = (1,0,0,...) is
called the vacuum.

Definition 1.14 We let now *D-s = {*¢|"y) € *F,, "hp™ € *S ("R®"),n € "N} and for each p € 'R®" we define
an internal operator *a(p) on *F,; with domain *D+; by



Ca@P)™ = Vn+ T9PpT0(p, ky, . ky). (34
The formal *-adjoint of the operator *a reads
Cat@yp)® = % 16 (p — k) YV ey, s kg g s K. (35)
We express the free internal scalar field and the time zero fields with hyperfinite momentum cut-off » € *R,, in
terms of *at(p) and *a(p) as quadratic forms on *D+5 by

B (6, 1) =
@m) [ A(expu®)t — ipx))a’ () + (expup)t + ip0)*a (p)} 7 (36)
Gt ) = @072 [ {(exp(=ip) a @) + (exp(ipn) @ ()} s, (37)
T, 8) = @2 [ {(exp(=ip)) at (p) + (exp(ipm) a ()} 7o (38)

Theorem 1.5 Let ®,,(x,t) and @,,(x,t), m,,(x,t) be the free standard scalar field and the time zero fields
respectively. Then for any »x € *R,, the operator valued internal functions (35)-(37) gives internal representatives
for standard operator valued distributions ®,,(x, t) and @, (x,t), T, (x, t) respectively.

Definition 1.15 Let {X, ||||} be a standard Banach space. For x € *X and € > 0, & = 0 we define the open ~-ball
about x of radius € to be the set B (x) = {y € *X|*|[x — y|| < &}.

Definition 1.16 Let {{X, ||-||} be a standard Banach space, Y c X, thus *Y c *X and let x € *X.Then x is an *-

accumu-lotion point of *Y if for any € € *R_, there is a hyper infinite sequence {xn};oilin *Y such that {xn}::l n
(Be()\{x} = 0).

Definition 1.17 Let {{X, ||-||} be a standard Banach space, let*Y € *X,*Y is * -closed if any *-accumulation point
of *Y is an element of *Y.

Definition 1.18 Let {{X,||"|]|} be a standard Banach space. We shall say that internal hyper infinite sequence

{xn}:::lin *X is x-converges to x € "X as n — *oo if for any € € *R., there is N € *N such that for any n >
N:*lx—yll <e.

Definition 1.19 Let {{X, |||}, {{Y,|I'lly} be a standard Banach spaces. A linear internal operator A: D(A4) <
*X - 'Y is = -closed if for every internal hyper infinite sequence {xn}:ﬁl in D(A) * -converging to x € *X such
that Ax,, > y € Y as n — *oo one has x € D(A) and Ax = y. Equivalently , A is *-closed if its graph is * -closed in
the direct sum *X @ *Y.

Definition 1.20 Let H be a standard external Hilbert space. The graph of the internal linear transformation
T:*H — *H is the set of pairs {{p, T@)|@ € D(T)}. The graph of T, denoted by I'(T), is thus a subset of *H X *H
which is internal Hilbert space with inner product ({¢q, V1), (@2, ¥2)) = (@1, 9,) + (P1,¥,).The operator T is
called a *-closed operator if I'(T) is a * -closed subset of Cartesian product *H X *H.

Definition 1.21 Let H be a standard Hilbert space. Let T; and T be internal operators on internal Hilbert
space *H. Note that if ['(T'1) D I'(T), then T; is said to be an extension of T and we write T; D T. Equivalently, T; D
T if and only if D(T;) © D(T) and T, = T¢ for all ¢ € D(T).

Definition 1.22 Any internal operator T on *H is *-closable if it has a *-closed extension. Every *-closable
internal operator T has a smallest *-closed extension, called its *-closure, which we denote by *-T.

Definition 1.23 Let H be a standard Hilbert space. Let T be a *-densely defined internal linear operator on
internal Hilbert space *H. Let D(T™) be the set of ¢ € *H for which there is a vector £ € *H with (TY, @) = (¢, &)
for all Y € D(T), then for each ¢ € D(T*), we define T*p = &. T* is called the *-adjoint of T. Note that S < T
implies T* < §*.

Definition 1.24 Let H is a standard Hilbert space. A *-densely defined internal linear operator T on internal
Hilbert space *H is called symmetric (or Hermitian) if T < T*. Equivalently, T is symmetric if and only if
(Te,¥) = (¢, Ty) forall 9,3 € D(T).

Definition 1.25 Let H be a standard Hilbert space. A symmetric internal linear operator T on internal Hilbert
space *H is called essentially self- *-adjoint if its *-closure *-T is self- x-adjoint. If T is *-closed, a subset D < D(T)
is called a *-core for T if *- (m) =T.If T is essentially self- *-adjoint, then it has one and only one self
-x-adjoint extension.

Theorem 1.6 Let n;,n, € N and suppose that W(kl, vk, D1 ...,pnz) € *LZ(*R3(”1+”2)) where

W(kl, vk, D1 ...,pnz) is a *C-valued internal function on *R3™1*72) Then there is a unique operator Ty, on
*F(*L,(*R?)) so that *D«; < D(T},) is a * - core for T}, and



(1) as *C-valued quadratic forms on *Dxg X *Dxg

* ny ny
Ty = f W (ky, ...kn,, D1y s Pry) (1_[ *a*(kl-)) (1_[ *a(pi)) d™kd™p
*R3(M1+n2) i=1 =1

(2) As *C-valued quadratic forms on D+ X Dxg

* nq ny
o= | Wl knpunn) ([ at00) ([ ] ewo) dmkarep
*R3(M1+n2) i=1 =1

(3) On vectors in *F, the operators Ty, and Ty, are given by the explicit formulas

(T () ™™ =
" =
K(l, ny, nz)*S [ flpllsﬁ *J‘|Pn2|5w W(kl, knl; D1y« pnz)*lp(l)(pl, ’ple‘ kl' knl)d3n2 p:|’ (39)
(TV’[,(*I,D))H =0ifn<n; —n,,
* [k (I-ny+n3)
(TwCw) ™ =
K(l,nz,nl)*S[ flpllsw *f|pn2|smw(k1' ik D1 s D0y ) WO (D1 ooy Py Ka o b )™ k] (40)
(TV’[,(*lp))n =0,ifn <n, —n,.
1(l+nq—ny)!

1/2 .
U2 ] ,n,n, € Nl € *N.

Proof. For vectors *y € D+; we define Ty, (") by the formula (39). By the Schwarz inequality and the fact that
*S is a projection we get

(*||(TW(*,¢)))(1—112+”1) )2 < K(l,nl,nz)* (*l,b(l))

Let us now define the operator Ty, (*ip) on D+ by the formula (39), then for all *p, *ip € D+, then one obtains
directly *(*¢, Ty, ") = *(Ty, *@, “y). Thus, Ty, is * -closable and Ty, is the restriction of the * -adjoint of T}, on
D+s. We will use Ty, to denote * -Ty,, and Ty, to denote the * -adjoint of Ty,,. By the definition of Ty, D+gis a * -core
and further, since Ty, is bounded on the [-particle vectors in D«gwe get *Fy, € D(Ty,). Since the right-hand side of
(39) is also bounded on the [-particle vectors, equation (38) represents Ty, on all [-particle vectors. The proof of the
statement (2) about Ty, is the same.

Definition 1.26 [7] Define standard Q -space by Q =Xyz—; R. Let o be the o-algebra generated by infinite
products of measurable sets in R and set u = ®p_, 1, With dy, = m~/?exp(—x2/2). Denote the points of Q by
q = {(q1, q, ... ). Then (Q, ) is a measure space and the set of the all functions of the form B,(q) = P(q1,92) -, qn),
where P,(q) is a polynomial and n € N is arbitrary, is dense in L,(Q, du). Remind that there exists a unitary map
S:F,(H) - L,(Q,du) of Fock space F,(H) onto L,(Q,du) so that Sp(f;,)S™! = q, and SQ, = 1. Here {f,}7=, is
an orthonormal basis for H. Then by transfer one obtains internal measure space *(Q, 1) = (*Q, *u) and internal
unitary map *S:F,(H) - *L,(*Q,d*u) so that *So(f,)*St=gq,, r € *N and *SQ, = 1. Here {fr}:o:o1 is an
orthonormal basis for *H.

Theorem 1.7 Let ¢, (x,t) be internal free scalar boson field of mass m at time t = 0 with hyperfinite
momentum cutoff x in four-dimensional space-time. Let g(x) be a real-valued internal function
in*L, (*R3) N *L, (*R3). Then the operator

Hip(9) =400 [.g5 9(0) "0, (x): dx (42)

is a well-defined internal symmetric operator on *D-g. . Here :*gofl(x) = *(pi(x) +d,(x) (*(pi(x)) +d, ().

Here S is the symmetrization operator defined in [8] and K (I, n,, n,) = [

2, 5
W |*. (41)

where the coefficients d,(3¢) and d, (3) are independent of x. Let S denote the unitary map of F,(H) onto L,(Q, du)
considered in [7]. Then V = *S*H,,,(g)*S™* is multiplication by internal function V; ,,(q) which satisfies:

(@) Vie(q) € "L, ("Q,d"w) for all p € °N, (b) exp (—tV;,,(@)) € "Ly ("Q, d"w) for all ¢ € [0,c0).
Proof: Note that for each x € *R3, the operator *S(*¢,,(x))*S™? is just the operator on internal measurable space
*L,(*Q,d*w) on which this operator acts by multiplying by the function X, ~, c;(x,%)qy, where ¢ (x,) =

@)% (fio (@) exp(ipx)). Furthermore, 3,2, (6,012 = @32 [w@)[[> so *5 (0300 S and

*S (*goi(x)) *S~lare in *L,(*Q,d*u) and the corresponding *L,(*Q,d*u)-norms are uniformly bounded in x.




Therefore, since g € *L;(*R?) the operator *S (*H,'”(g)) *S~1 is just the operator on internal measurable space

*L,(*Q, d"u) on which this operator acts by multiplying by the "L, (*Q, d*u)-function which we denote by V,, ; (q).
Let us consider now the expression for *H;,,(g)*Q, obviously this is a vector (0,0,0,0,*,0, ...) with

2609 () Ty [x Gep)] exp(-ix TiZ1p;)adx
4 —
l)b (pl' p2' p3' p4) - f*lR3 (27.[)3/2 H?:l[zﬂ(Pi)]l/z . (43)

Here y(x,p) = 1if |p| < x, x(3,p) = 0 if [p| > %, 2 € "R,,. We choose now the parameter A = A(3) = 0 such
* 2 * 2
that *[lp*I3 € R and therefore we obtain || *H,'H‘A(M)(g)ﬂ(,”z €R, since || *H,'H'A(M)(g)_(zonz = *|lp*||%. But,

since *S*(}, = 1, we get the equalities
|*Lz(*Q,d*u)'

|| *Hl,u,l(n)(g)!)O”z =
) € R and it is easily verify, that each polynomial P(q, gy, ..., q,),

*S HI,;{,A(;{) (g) *S_l

|*L2(*Q'd*#
is n € "N in the domain of the operator V;,, 10,(q) and *S *H;, 160(9)*S™ =V}, 200(q) on that domain. Since
“Qy is in the domain of "H? (9),v € 'N, 1 is in the domain of the operator V?, , ;,,(q) for all p € *N. Thus,
forallp € "N V;, 300(q) € "Ly, ("Q, d"p), since *u (*Q ) is finite, we conclude that V;,, ;0 (q) € "L, ("Q, d"w) for
allp € *N.

(b) Remind Wick's theorem asserts that :*@f,(x) = ZE’;/OZ ](—1)"#05*@%?0(@ with ¢,

2 *
*qom’%(x)*QO”Z. For j =4 we get —0(c2) <: *@p,(x): and therefore —( f*m@g(x) d3x)0(c§)

oo = Wineaco @ (44)

From (43) we get that *||V,’,{_MH) (@

*

IA

*H200(g). Finally we obtain f*Q exp (—t(: *go;‘;l_,[(x):))d *u <exp(0(c2))and this inequality
finalized the proof.

Theorem 1.8 [7] Let (M, u) be a og-measure standard space with u(M) = land let H, be the generator of a
hyper- contractive semigroup on L,(M,du). Let V be a R-valued measurable function on (M, 1) such that V €
L,(M,dy) for all p € [1,0) and exp(—tV) € L;(M,du) for all t > 0. Then H, + V is essentially self-adjoint on
C*®(Hy ) N D(V) and is bounded below. Here €% (Hp ) = Npey D(Hg).

Theorem 1.9 Let (M, i) be a o-measure space with (M) = land let H, be the generator of a hypercontractive
semi-group on L,(M, du). LetV be a *R-valued internal measurable function on ("M, "u) such that V € "L, ("M, d"u)
for all p € [1,*) and *exp(—tV) € *L,(*M, d*u) for all t > 0. Assume that a set C °(*H, ) N D(V) is internal.
Then operator *H, + V is essentially self-* -adjoint internal operator on € *(*H, ) N D(V) and it is hyper finitely
bounded below. Here € *(*Hy) = Npe-y D(*HY).

Proof. It follows immediately by transfer from theorem 8.

Remark 1.4 Let V;, ; be operator on internal measurable space *L,(*(, d*u) on which this operator acts by
multiplying by the *L,(*Q,d"u)-functionV;, ; , see proof to Theorem 1.7. Note that for this operator a set
C’°(*Hy) N D(VI',,_ ,1) is not internal and therefore Theorem9 no longer holds. But without this theorem we cannot
conclude that operator *H, + V; ,, ; is essentially self-* -adjoint internal operator on C " (*Hy) N D(V,_Myl). Thus
Robinson’s transfer is of no help in the case corresponding to operator V;,,; considered above. In order to resolve
this issue, we will use non conservative extension of the model theoretical nonstandard analysis, see [9-13].

NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL
NONSTANDARD ANALYSIS

Remind that Robinson nonstandard analysis (RNA) many developed using set theoretical objects called super-
structures [2-6, 14]. A superstructure V(S) over a set S is defined in the following way: V,(S) =S, V,;1(S) =
V,(Su P(Vn(S)), V(S) = Upen Vis1(S). Making S = R will suffice for virtually any construction necessary in
analysis. Bounded formulas are formulas where all quantifiers occur in the form: Vx (x €y —» -+ ),Ix (x €y -
-+ ). A nonstandard embedding is a mapping #*: V(X) = V(Y) from a superstructure V(X) called the standard
universe, into another superstructure V(Y) called nonstandard universe, satisfying the following postulates:

.Y ="X



2. Transfer Principle For every bounded formula ®(x;, ...,x,) and elements a, ...,a, € V(X) the property
®(ay, ...,a,) is true for ay,..,a, in the standard universe if and only if it is true for *a,, ..., "a, in the
nonstandard universe V (X) |=CI)(x1, v Xp) © V() |=CID(*CL1 yeees Q).

3. Non-triviality For every infinite set A in the standard universe, the set {*a|a € A} is a proper subset of *A.

Definition 2.1 A set x is internal if and only if x is an element of *A for some A € V(R). Let X be a set and

A = {A;};¢; a family of subsets of X .Then the collection A has the infinite intersection property, if any infinite sub
collection J € I has non-empty intersection. Nonstandard universe is o -saturated if whenever {4;};c; is a
collection of internal sets with the infinite intersection property and the cardinality of I is less than or equal to o.

Remark 2.1 For each standard universe U = V(X) there exists canonical language L; and for each nonstandard

universe W = V(Y) there exists corresponding canonical nonstandard language *L = Ly, [5, 14]

4.The restricted rules of conclusion If Let A and B well formed, closed formulas so that A,B € *L.If W E A,
then —A Wgyp B. Thus, if a statement A holds in nonstandard universe, we cannot obtain from formula —A
any formula B whatsoever.

Definition 2.2 [9-13] A set S € *N is a hyper inductive if the following statement holds in V' (Y):

/\ (a€S—>ates).
ae*N

Here a™ = a + 1.0bviously a set *N is a hyper inductive.
5. Axiom of hyper infinite induction
VS(S € "N){VB(B € "N)[Arcacpla €S » at € 5)| » S = "N}

Example 2.1 Remind the proof of the following statement: structure (N, <, =) is a well-ordered set.

Proof. Let X be a nonempty subset of N. Suppose X does not have a <-least element. Then consider the set N\ X.

Casel. N\X = @. Then X = N and so 0 is a < -least element but this is a contradiction.

Case2. N\X # @. Then 1 € N\X otherwise 1 is a < -least element but this is a contradiction. Assume now that
there exists some n € N\X such that n # 1, but since we have supposed that X does not have a < -least element,
thus n + 1 € X. Thus we see that for all n the statement n € N\X implies that n + 1 € N\X. We can conclude by
axiom of induction that n € N\X for all n € N. Thus N\X = N implies X = @. This is a contradiction to X being a
non-empty subset of N. Remind that structure (*N, <, =) is not a well-ordered set [5, 6, 14]. We set now X; = *N\N
and thus*N\X; = N. In contrast with a set X mentioned above the assumption n € *N\X; implies that n+ 1 €
*N\X; if and only if n is finite, since for any infinite n € *N\N the assumption n € *N\X; contradicts with a true
statement V(Y) £ n € *N\X,=N and therefore in accordance with postulate 4 we cannot obtain from n € *N\X, any
closed formula B whatsoever.

Theorem 2.1 [13] (Generalized Recursion Theorem) Let S be a set, c € S and g: S X "N — § is any function
with dom(g) = S X *N and range(g) S S, then there exists a function F: *N — S such that: 1) dom(F) = *N and
range(F) € S;2) F(1) =c¢; 3) forallx € *N,F(n + 1) = g(F(n),n).

Definition 2.3 [11-13] (1) Suppose that S is a standard set on which a binary operations (- + ) and (-X-) is
defined and under which S is closed. Let {x; };c+y be any hyper infinite sequence of terms of *S. For every hyper
natural n € *N we denote by Ext-).}_, x; the element of *S uniquely determined by the following canonical
conditions: (a) Ext-Yj—q X, = x;; (b) Ext-20t1x, = Ext-Yp_1 X + X4 foralln € *N.

(2) For every hyper natural n € *N,, we denote by Ext-[[-; x; the element of *S uniquely determined by the

following canonical conditions: (a) Ext-[[i—; x; = x;; (b) Ext-[1%1x, = (Ext-[1¢-1 xx) X X,,41 for all
n € *N.

Theorem 2.2. [13] (1) suppose that S is a standard set on which a binary operation (- + ) is defined and under
which S is closed and that (- + -) is associative on S. Let {x, },c+y be any hyper infinite sequence of terms of *S.
Then for any n,m € *N we have: Ext- Y31 x; = Ext- Yp_; X, + Ext-Ype Xy ;

(2) suppose that S is a standard set on which a binary operation (-X-) is defined and under which S is closed and

that (-x-) is associative on S. Let {x; };e+y be any hyper infinite sequence of terms of *S. Then for any
n,m € *N we have: Ext-[[}1 1 x, = (Ext-[Ti=; %) X (Ext- 18-, xx); (3) for any z € *S and for any n €
*N,, we have:

z X (Ext- Y51 %) = Ext-Y7 -1 2 X xy.



External non-Archimedean Field “R¥ by Cauchy Completion of the Internal Non -
Archimedean Field *R.

Definition 2.4 A hyper infinite sequence of hyperreal numbers from *R is a function a: *N - "R from the
hyper- natural numbers *N into the hyperreal numbers *R.We usually denote such a function by n = a, , so the
terms in the sequence are written as {a,, a,, ..., a,, ... }.To refer to the whole hyper infinite sequence, we will write
{an}noz1 or {an}ne*N‘

Abbreviation 2.1 For a standard set E we often write E, let °Eg, = {*x|x € E,}.We identify z with °z i.e., z =
oz for all z € C. Hence, “Eg, = Eg if E € C, e.g., °C=C, °R = R, etc.Let "RE, "RE_,"RE_,,"REgq,,"RE N,
de-note the sets of Cauchy hyper-real numbers, Cauchy infinitesimal hyper-real numbers, Cauchy positive
infinitesimal hyperreal numbers, Cauchy finite hyper-real numbers, Cauchy infinite hyper-real numbers and infinite
hypernatural numbers, respectively. Note that *R¥ 5 = "R¥\"R? .

¢ fin
Definition 2.5 Let {an};oil be a hyper infinite *R- valued sequence mentioned above. We shall say that

{an}:lozl #-tends to O if, given any € € "R, there is a hyper natural number N € *N such that for all n > N,
|a,, | < e. We denote this symbolically by a,, =4 0.

Definition 2.6 Let {an};ozl be a hyper infinite *R-valued sequence mentioned above. We shall say that {an}::l
#-tends to g € "R if, given any € € "R, , there is a hyper natural number N € *N such that for alln > N,
|a,, — gl < & and we denote this symbolically by a,, =4 q or by #-1}11}100 a, =q.

Definition 2.7 Let {an}:::l be a hyper infinite *R-valued sequence mentioned above. We shall say that sequence
{an}:lozl is bounded if there is a hyperreal M € *R such that for any n € *N, |a,| < M.

Definition 2.8 Let {an};ozl be a hyper infinite *R-valued sequence mentioned above. We shall say that {an}::l
is a Cauchy hyper infinite *R-valued sequence if , given any € € "R, there is a hyper natural number N(¢) € *N
such that for any m,n > N, |a,, — a,,| < €.

Theorem 2.3 If {an};ozl is a #-convergent hyper infinite *R-valued sequence, i.e., that is, a,, =4 q for some
hyper-real number g, ¢ € *R then {an};‘zl is a Cauchy hyper infinite *R-valued sequence.

Theorem 2.4 If {an}:z1 is a Cauchy hyper infinite *R-valued sequence, then it is finitely bounded or hyper
finitely bounded; that is, there is some finite or hyperfinite M € *R, such that |a, | < M for all n € *N.

Definition 2.8 Let S be a set, with an equivalence relation (-~ -) on pairs of elements. Fors € S, denote by
cl[s] the set of all elements in S that are related to s. Then for any s,t € S, either cl[s] = cl[t] or cl[s] and cl[t] are
dis-joint.

Remark 2.2 The hyperreal numbers *R¥ will be constructed as equivalence classes of Cauchy hyper infinite *R-
valued sequences. Let F{*R} denote the set of all Cauchy hyper infinite *R-valued sequences of hyperreal numbers.
We define the equivalence relation on a set F{*R}.

Definition 2.9 Let {an};oz1 and {bn}:;:l be in F{*R}. Say they are #-equivalent if a,, — b, =4 0 i.e., if and only
if the hyper infinite *R-valued sequence {a,, — bn};oil #-tends to 0.

Theorem 2.5 [13] Definition above yields an equivalence relation on a set F{*R}.

Definition 2.10 The external hyperreal numbers *R¥ are the equivalence classes cl[{a,}] of Cauchy hyper
infinite *R-valued sequences of hyperreal numbers, as per definition above. That is, each such equivalence class is
an external hyperreal number.

Definition 2.11 Given any hyperreal number q € *R, define a hyperreal number g*to be the equivalence class of
the hyper infinite *R-valued sequence {a,, = q};oilconsisting entirely of g € *R. So we view *R as being inside *R#
by thinking of each hyperreal number g € *R as its associated equivalence class g¥. It is standard to abuse this
notation, and simply refer to the equivalence class as q as well.

Definition 2.12 Lets,t € *R¥ so there are Cauchy hyper infinite *R-valued sequences {an}:’:l, {bn};oz1 of
hyper-real numbers with s = cl[{a,}] and t = cl[{b,}].

(a) Define s + t to be the equivalence class of the hyper infinite sequence {a,, + bn};oil.

(b) Define s X t to be the equivalence class of the hyper infinite sequence {a,, + bn};oil.
Theorem 2.6 [13] The operations +,X in definition above by the requirements (a) and (b) are well-defined.



Theorem 2.7 Given any hyperreal number s € *R¥, s # 0 there is a hyperreal number ¢t € *R¥ such that s X t =
1.

Theorem 2.8 If {an};oil is a Cauchy hyper infinite sequence which does not #-tend to 0, then there is some N €
*N such that, foralln > N, a, # 0.

Definition 2.13 Let s € *R¥. Say that s is positive if s # 0, and if s = cl[{a,,}] for some Cauchy hyper infinite
sequence of hyperreal numbers such that for some N € "N, a,, > 0 for all n > N. Then for a given two hyperreal
numbers s, t, say that s > t if s — ¢ is positive.

Theorem 2.9 Let s, t € *R¥ be hyperreal numbers such that s > t, and let r € *R¥, thens +r >t + 7.

Theorem 2.10 Let s,t € “R¥ be hyperreal numbers such that s, t > 0. Then there is m € *N such that m X s >
t.

Theorem 2.11 Given any hyperreal numberr € *R¥, and any hyperreal number & > 0,& ~ 0, there is a
hyperreal number g € *R¥ such that |r — q| < .

Definition 2.14 Let S & *R¥ be a nonempty set of hyperreal numbers. A hyperreal number x € *R¥ is called an
upper bound for S if x = s for all s € S. A hyperreal number x is the least upper bound (or supremum: supS) for S if
x is an upper bound for S and x < y for every upper bound y of S.

Remark 2.3 The order < given by definition above obviously is <-incomplete.

Definition 2.15 Let S & *R¥ be a nonempty set of hyperreal numbers. We will say that:

(1) S is < -admissible above if the following conditions are satisfied:

(a) S is finitely bounded or hyper finitely bounded above;

(b) let A(S) be a set such that Vx[x € A(S) & x = S] then for any € > 0,& = 0 there are @ € S and B € A(S)

suchthat f —a < e = 0.

(2) S is < -admissible belov if the following conditions are satisfied:

(a) S is finitely bounded or hyper finitely bounded below;

(b) let L(S) be a set such that Vx[x € L(S) © x < S] then for any € > 0,& = 0 there are @ € S and 8 € L(S)

suchthata — f < e = 0.

Theorem 2.12 [13] (a) Any <-admissible above subset S € *R¥ has the least upper bound property.

(b) Any <-admissible above subset S c *R¥ has the greatest lower bound property.

Theorem 2.13 [13] (Generalized Nested Intervals Theorem) Let {In}:lozl = {[a,, bn]};oil, [a,, b,] € *R¥ be a
hyper infinite sequence of #-closed intervals satisfying each of the following conditions:

@L2L2L2 21,2

(b) b, —a, =24 0asn - oo, Then 0:21 I,consists of exactly one hyperreal number x € *R¥.

Theorem 2.14 [13] (Generalized Squeeze Theorem) Let {an}:::l, {cn}:z1 be two hyper infinite sequences

#-converging to L, and {bn};ﬁl a hyper infinite sequence. If Yn > K, K € *N we have a,, < b, < ¢,, then b,, also
#-converges to L.

Theorem 2.15 [13] If ﬁjl&pl a,| = 0, then #;Liogn, a, =0.

Theorem 2.16 [13] (Generalized Bolzano -Weierstrass Theorem) Any finitely or hyper finitely bounded hyper
infinite *R¥ -valued sequence has #-convergent hyper infinite subsequence.

Definition 2.16 Let {an}:::l be *R¥-valued sequence. Say that a sequence {an};ozl #-tends to O if, given any
£ > 0, € = 0, there is a hyper natural number N € *N,,, N = N(¢) such that, foralln > N, |a,| < .

Definition 2.17 Let {an};oi1 be *R#-valued hyper infinite sequence. We call {an}:::l a Cauchy hyper infinite
sequence if given any hyperreal number € € *R¥ ., there is a hypernatural number N = N(¢) such that for any
m,n>N, |la, —a,| <e.

Theorem 2.17 If {an};oilis a #-convergent hyper infinite sequence i.e., a,, =4 b for some hyperreal number b €
“R¥, then {a,,},, is a Cauchy hyper infinite sequence.

Theorem 2.18 If {an};ozl is a Cauchy hyper infinite sequence, then it is bounded; that is, there is some M €
*R¥ such that |a,| < M foralln € *N.

Theorem 2.19 [13] Any Cauchy hyper infinite sequence {an};ozl has a #-limit in *R¥; that is, there exists b €
*R¥ such that a,, -4 b.

Remark 2.4 Note that there exists canonical natural embedding *R © *R¥.



Remark 2.5 A nonempty set S of Cauchy hyperreal numbers *R¥ is unbounded above if it has no hyperfinite
upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient to adjoin to Cauchy
hyperreal number system *R¥ two points, +00# = (*+00)*  (which we also write more simply as c* ) and —co*,
and to define the order relationships between them and any Cauchy hyperreal number x € *R¥ by —oo* < x < oo,

Definition 2.18 We will call —co* and oo are points at hyper infinity. If S € *R¥ is a nonempty set of Cauchy
hyperreals, we write sup(S) = oo* to indicate that S is unbounded above, and inf(S) = —oo* to indicate that S is un-
bounded below.

Definition 2.19 That is (&, &) definition of the #-limit of a function f: D — *R¥ is as follows: let f(x) is a
*R#- valued function defined on a subset D c *R¥ of the Cauchy hyperreal numbers. Let ¢ be a #-limit point of D
and let L € *R¥ be Cauchy hyperreal number. We say that #- J}imc f(x) =L ifforevery € = 0,& > 0 there exists

—#

ad =~ 0,8 > 0suchthat, forallx € D,if 0 < |x —c| < §, then |[f(x) — L| < &.
Definition 2.20 [12] The function f: *R¥ — *R# is a #-continuous (or micro continuous) at some point c of its
domain if the #-limit of f(x), as x #-approaches c through the domain of f,exists and is equal to

f©):#-lim f(x) = f(c).

Theorem 2.20 [13] Let {an};ozl and {bn}:z1 be *R#-valued hyper infinite sequences. Then the following
equalities hold for any n, k,[,j,m € "N :

b x (Ext-)",a;) = Ext-}-, b X q; (45)

Ext-Yi_, a; + Ext- Y-, by = Ext-Yi_,(a; £ b;) (46)
Ext-Yit (Ext-TiL, a;) = Ext-Xb, (Ext-Ti%, ay) (47)
(Ext-Y7,a;) X (Ext- =1 bj) = Ext- Z?zl(Ext- Yi=1a; X bj) (48)
(Ext-TIiz1 @) X (Ext-TIiZ, b)) = Ext-I[i- a; X by (49)
(Ext-[iz; @)™ = Ext- Iz, ai™. (50)

Theorem 2.21 [13] Let {a,}, and {b,}", be *R¥-valued monotonically non-decreasing hyperfinite
sequences. Suppose that a; < b;, 1 < i < n, then the following equalities hold for any n € *N:
Ext-[[L, a; < Ext-1]i b;. (51)
Theorem 2.22 [13] Let {a,}l-; and {b,}l-; be *R#-valued hyperfinite sequences. Then the following
inequalities hold for any n € *N:
(Ext-TIi=; a; X b)? < (Ext-[I=y af) x (Ext-TIi=; bY). (52)
Definition 2.21 [12] Assume that {an}:::l is a “R#- valued hyper infinite sequence, the symbol Ext- 2:21 a,isa
hyper infinite series, and a,, is the n-th term of the hyper infinite series.

Definition 2.22 [12] We shall say that a series Ext- Z;Ozl a, #-converges to the sum A € *R¥ and write

Ext-Y.°. a, = A if the hyper infinite sequence {4,},7, defined by 4, = Ext- Y™, a, #-converges to the sum A.

# #

The hyperfinite sum A4,, is the n-th partial sum of Ext- 2:1021 a,. If #-limA,, = " or —oo

m—*oo,

, we shall say that

Ext-Y,2, a, #-diverges to oo* or to —oo*.

Theorem 2.23 [12] The hyper infinite sum Ext- Z::l a, ofa#-convergent hyper infinite series is unique.

Hyper Infinite Sequences and Series of *R¥- Valued Functions

Definition 2.23 [12] If f1, fo, <o fir fiew1r ++e» frr -1t € *N are *R¥- valued functions on a subset D c *R¥ we say
that {fn};oil is a hyper infinite sequence of *R#- valued functions on D.

Definition 2.24 [12] Suppose that { fn};ozl is a hyper infinite sequence of *R#- valued functions on D c *R¥ and
the hyper infinite sequence of values {fn(x)}:lozl #-converges for each x in some subset S of D. Then we say that

{fn(x)};oil #-converges pointwise on S to the #-limit function f, defined by f(x) = lim f,(x).
n—"oo

Definition 2.25 [12] If {fn(x)};ozl is a hyper infinite sequence of *R¥- valued functions on D c *R¥, then

Ext-%,2, fu(x) (53)
is a hyper infinite series of functions on D. The partial sums of (1), are defined by F,(x) = Ext-Y5-; fn(x). If
hyper infinite sequence



{Fn (x) }noi 1 -
converges  pointwise to the  #-limit functionF(x) on a subsetScD, we say that

{F(0)}niy ]
converges pointwise to the sum F(x) on S, and write F(x) = Ext- Zno; fn ().

Definition 2.26 [12] A hyper infinite series of the form Ext- Z;oil(x —x,)", n € *N is called a hyper infinite
power series in x — X,.

The #-Derivatives and Riemann #-Integral of *“R#-Valued Functions f: D - *R¥®

Definition 2.27 [12] A function f: D - *R¥ #-differentiable at an #-interior point x € D of its domain D c *R#
if the difference quotient flx) = fxe)/x —xq has a
#-limit:

- lim (F(0) = £ (o) /x = xo).

In this case the #-limit is called the #-derivative of f at interior pointX,, and is denoted by f #’(xo) or by
d*f (xy)/d*x.

Definition 2.28 If f is defined on an #-open setS c *R¥, we say that f is #-differentiable on S if f is
#-differentiable at every point of S. If f is #-differentiable on S, then f # (x) is a function on S.We say that f is
#-continuously #-differentiable on S if f #'(x) is #-continuous on S.

Definition 2.29 If f is #-differentiable on a #-neighbourhood of x,, it is reasonable to ask if f* (x) is
#-differentiable at x,. If so, we denote the #-derivative of f*'(x) at x, by f#(x,) or by f#®(x,) and this is the
second #-derivative of f at x,. Continuing inductively by hyper infinite induction, if f#"~V(x) is defined on a
#-neighbourhood of x,, then the n-th #-derivative of f at x, denoted by f#™(x,) or by d*™f (x,)/d*x™, where
n € *N.

Theorem 2.24 [12] If f is #-differentiable at x,, then f is #-continuous at x.

Theorem 2.25 [12] If f and g are #-differentiable at x,, then so are f + g and f X g with:

@ (f £9)%(x0) = f* (x0) £ g% (%), (0) (f X g)* (x0) = ¥ (x0)g (x0) + g* (x0) f (xo).-

#1 owr
(c) The quotient f/g is #-differentiable at x, if g(x,) # 0 with (f/g)* =1 ("0)9(";()x % (o) (ro)
0

(d)Ifn € "N and f;,1 < i < n are #-differentiable at x,, then so are Ext- ).}, f; with:

(Ext-Xi, f)¥ (x0) = Ext- XL, £ (xo)-
(e)Ifn € *Nand f*™(x,), g*™ (x,) exist, then so does (f X g )*™(x,) and
n #(D

n L .
Fxg) ) =Ext-) () o)g" ")
i=
Theorem 2.26 [12] (The Chain Rule) Suppose that g is #-differentiable at x, and f is #-differentiable at g(x,).
Then the composite function h = f o g defined by h(x) = f(g(x)) is #-differentiable at x, with h* (x,) =
F#(9(x0))g* (xo)-
Theorem 2.27 [12] (Generalized Taylor's Theorem) Suppose that f# (x),n € *N exists on an #-open interval
I about x,, and let x € I. Let P,(x,x,) be the n-th Taylor hyper polynomial of f about x,, P,(x,x,) =
n O x=x0)"
Bt Yy L0l

T

Then the remainder R(x, xy) = f(x) — B,(x, x,) can be written as

#(n"'i)(c)(x—x m
R(x, %) =+ reT

Here ¢ depends upon x and is between x and x,.

Definition 2.30 [12] Let [a, b] € *R#. A hyperfinite partition of [a, b] is a hyperfinite set of subintervals
[x0, %11, > [%p—1, X5 ], Withn € *N,, where a = x5 < x4 ... < x, = b. A set of these points xy, Xy, ..., X, defines a
hyperfinite partition P of [a, b], which we denote by P = {x;}I=,. The points X, x;, ..., X, are the partition points of
P.The largest of the lengths of the subintervals [x;_;,X;], 0 < i < n is the norm of P = {x;}}=, denoted by ||P||;
thus, [IP[l = max (x; — x;_).

(54)

Definition 2.31 Let P and P’ are hyperfinite partitions of [a, b], then P’ is a refinement of P if every partition
point of P is also a partition point of P’; that is, if P’ is obtained by inserting additional points between those of P.



Definition 2.32 Let f be *R¥- valued function f: [a, b] - *R¥, then we say that external hyperfinite sum og£*
defined by
o = Ext-XiL f(c) (6 — x-1), %m0 S ¢ S x5, (55)

is a Riemann external hyperfinite sum of f over the hyperfinite partition P = {x;}}-,.

Definition 2.33 [12] Let f be *R¥- valued function f: [a, b] —» *R¥, then we say that f is Riemann #-integrable
on [a, b] if there is a number L € *R¥ with the following property: for every € ~ 0, > 0, there isa § ~ 0,6 > 0
such that |L — oE*t| < § if 0E* is any Riemann external hyperfinite sum of f over a partition P of [a, b] such that
||P]| < 8. In this case, we say that L is the Riemann #-integral of f over [a, b], and we shall write

L= Ext- [ f(x)d*x. (56)

Thus the Riemann #-integral of *R#- valued function f:[a, b] — *R¥ over [a,b] is defined as #-limit of the
external hyperfinite sums (55) with respect to partitions of the interval [a, b]:

Ext- [ f(x)d*x = #-lim(Ext-T1t, £(e)) (i = %i-)). (57)

Definition 2.34 A coordinate rectangle R in *R¥"*,n € *N is the external finite or hyperfinite Cartesian product
of n #-closed intervals; that is, R = Ext- X]=; [a;, b;]. The content of R isV(R) = Ext-[[=,(b; — a;). The
hyperreal numbers b; — a;, 1 < i < n are the edge lengths of R. If they are equal, then R is finite or hyperfinite
coordinate cube. If a; = b, for somer, then V(R) =0 and we say that R is degenerate; otherwise, R is
nondegenerate.

Definition 2.35 If R = Ext-Xi_, [a;, b;] and B, = a,¢ < @,y <**< @y, is an external hyperfinite partition of
[a,,b,],1 <1 <mn, then the set of all rectangles in*R#™ that can be written as Ext- X[, [ai:ji—ﬂ ai'ji], 1<j,<m,
1 < r < nis a partition of R. We denote this partition by P = Ext- X}'_; P and define its norm to be the maximum
of the norms of P;, 1 < i < n; thus, ||P|| = miax{Pi|1 <i<n}l

Definition 2.36 If P = Ext- X}, P, and P' = Ext- X}, P; are partitions of the same rectangle, then P’ is a
refinement of P if P; is a refinement of P;, 1 < i < n as defined above.

Definition 2.37 Suppose that f is a *R¥- valued function defined on a rectangle R in *R#",n € *N, P =
{P;}¥_,is a partition of R, and x; is an arbitrary point in R;, 1 < j < k. Then a Riemann external hyperfinite sum
aB* of f over the partition P is defined by

ot = Ext- S, £ () V(R) (58)

Definition 2.38 Let f be a *R¥- valued function defined on a rectangle R in *R#",n € *N. We say that f is
Riemann #-integrable on R if there is a number L with the following property: for every € = 0, > 0, thereisa § =
0,8 > 0 such that |L — oB*| < § if 05** is any Riemann external hyperfinite sum of f over a partition P of R such
that ||P|| < &. In this case, we say that L is the Riemann #-integral of f over R, and write

L = Ext- [ f(x)d*"x. (59)

Thus the Riemann #-integral of *R¥- valued function f defined on a rectangle R in *R¥™ is defined as #-limit of

the external hyperfinite sums (58) with respect to partitions of the rectangle R:

Ext- [ f(x)d*"x = #-lim (Ext- T, f () VR ). (60)

The *R#-Valued #-Exponential Function Ext-exp(x) and *R?-Valued Trigonometric
Functions Ext-sin(x), Ext-cos(x)

We define the #-exponential function Ext-exp(x) as the solution of the #-differential equation

];#’(x) =fC),f(0) =1. (61)
We solve it by setting f(x) = Ext-Y,,x™, f#(x) = Ext- X, -, nx™ Therefore
Ext-exp(x) = Ext- Z;ﬁo %l (62)

From (1) we get (Ext-exp(x))(Ext-exp(y)) = Ext-exp(x + y) for any x,y € *R¥.
We define the #- trigonometric functions Ext- sin x and Ext- cos x by

e _ ) *00 _ n x2n+1 : _ : *00 _ n
Ext-sinx = Ext-),_,(—1) D’ Ext-cosx = Ext-},,_,(—1) TSk
It can be shown that the series (1) #-converges for all x € *R¥ #-differentiating yields

(Ext-sinx )* = Ext- cos x, (Ext-cos x )* = —(Ext-sinx ). (64)

x2n

(63)



*R¥ -Valued Schwartz Distributions

Definition 2.39 [12] Let U be an #- open subset of *R¥™ and f: U — *R¥. The partial derivative of f at the point
X = (X4, Xg, e, X, -, X ) With respect to the i-th variable x; is defined as
a#f — #.1lim fx,x0,0Xi+h, X)) = f(X1,X2,.0X ], 0Xn)
% x; h>40 h ’
Definition 2.38 A multi-index of size n € *N is an element in *N", the length of a multi-index a =
(@, ..., a,) € *N™is defined as Ext-)[—; a; and denoted by |a|. We introduce the following notations for a given

.. ; gt .
multi-index a = (ay, ..., a,) € *N™: x% = Ext-[[L, x5 ; 0%% = Ext-[[.,—= or symbolically 9%% =
1 n =17 L 16#x.‘ y y
1A

ofta
Ext- m..
Definition 2.40 The Schwartz space of rapidly decreasing *C¥#- valued test functions on *R#",n € *N is the
function space defined by
SYCRE™, *CH) = {f € C"°(CREY, *CH|V(a, B) (@, B € "NM)Vx(x € “REM)[|x* D*F f(x)| < o*]}.

Remark 2.6 Note that if f € S*(*R#™, *C¥) the integral of x%| D*# f(x)| exists
Ext-f | x¥D*B f(x)|d*" < oo,
*Rgn

Definition 2.41 The Schwartz space of essentially rapidly decreasing *C#- valued test functions on *R#" ,n € *N
is the function space defined by
S*CRE™, *CH) = {f € C°(REY, *CH)|Va(a € NMVE(B € 'NMVx(x € *R¥™)[|x* D*F f(x)| < o0 ]}
Remark 2.7 Note that if f € S*(*R#™, *C¥) the integral of x%| D*# f(x)|,a@ € N™, € *N™ exists and

Ext-f | x¥D*F f(x)|d*" < oo.

Definition 2.42 The Schwartz space of rapldly decreasing *C#- valued test functions on *]RC tin M € "N is the
function space defined by
S*('R¥%,, *CH) = {f € C°("R¥L,, *CH)|V(a, B)(a, B € *NM)Vx(x € *R¥E )[|x D*F f(x)| < o*]}.
Remark 2.8 Note that if f € S¥(*RE%, *C#) the integral of x%| D*# f(x)|,a € *N", § € "N™ exists and

Ext-f | x*D*F f(x)|d*" < o
"Refin

Definition 28.43 The Schwartz space of essentially rapidly decreasing *C#- valued test functions on
‘R¥%, ,n € "N is the function space defined by

S?in ( RC fin’ *(C#) =

{f ec Oo( Rcfm'*c#)lv(a ﬁ)(a € N7, ﬁ € Nn)acaﬁ(caﬁ’ € Rcfln)vx(x € *Rcfm) [|xa (D#B f(x))| < Caﬁ‘]}~

Remark 2.9 Note that if f € Sf, (*R#™, “C¥) the integral of | *“D*# £ (x)| exists and finitely bounded above

Ext- f*Rg,&J x*D* f(x)|d*™ < dyp, dgp € "Rl

Abbreviation 2.2 1) The Schwartz space of rapidly decreasing test functions on *R#™ we will be denoting by
S*('R#™) and let SE, (*R¥™) denote the set of *C¥-valued essentially rapidly decreasing test functions on *R#™ .
2) The Schwartz space of rapidly decreasing *C#- valued test functions on *]RC tin We will be denoting by
S#( R¢ fm) and let Sfm( ]RC fin ) denote the set of *C#-valued essentially rapidly decreasing test functions on
*Rc fin -
Definition 2.44 A linear functional u: S¥(*R#") — *C# is a #-continuous if there exist C,k € *N and constants

Cqp such that [u(p)| < C(Ext-Z|a|<k|ﬁ|<k cop)- Here Vx(x € "RE™) Hx“ (D#B (p(x))| < caﬁ].
Definition 2.45 A linear functional u: S*(*R? fm) — *C¥ is a strongly #-continuous if there exist C,k € *N and
constants ¢,z such that [u(p)| < C(Ext- Dlal<k,|Bl<k caﬁ) € "R g

Definition 2.46 A generalized function u € S* (*R¥") is defined as a #-continuous linear functional on vector
space S*(*R¥#"), symbolically it written as u: @ — (u, ¢). Thus space S¥ (*R¥™) of generalized functions is the
space dual to S*(*R#™).



Definition 2.47 A generalized function u € S #’(*Rﬁ%n) is defined as a strongly #-continuous linear functional
on vector space S¥(*RE%,), symbolically it written as u:¢ — (u,¢). Thus space S*(*RE%,

functions is the space dual to S #(*]R{ffflin).

of generalized

Definition 2.48 Convergence of a hyper infinite sequence {un}:ﬁl of generalized functions in S* (*R#™) is
defined as weak #-convergence of the hyper infinite sequence of functionals in S* (*R¥#™) that is: u,, =4 0, as n -
*00, in S* (*R¥™) means that (u,, @) =4 0, asn - *oo, for all ¢ € S¥(*R#™).

Definition 2.49 Convergence of a hyper infinite sequence {un}:::l of generalized functions in S #’(*Rf}lin) is
#n

C,fin) that iS: un _)# 0, asn— *OO‘ in S#’(*R#n ) means

defined as weak #-convergence of functionals in S*'(*R o fin

that (u,, @) >4 0,asn - “oo, for all ¢ € S¥(*REE,).

Definition 2.50 1) Let u € S¥ ("R#™) and let x = Ay + b be a linear transformation of *R*" onto *R*". The

generalized function u(4y + b ) € S* ("R#") is defined by

(wy +b),¢) = (u —‘”[Al;z(tzl"’)]) (65)

Formula (1) enables one to define generalized functions that are translation invariant, spherically symmetric,
centrally symmetric, homogeneous, periodic, Lorentz invariant, etc.
2) Let the function a(x) € C*1(*R¥) have only simple zeros x;, € *R¥ k € *N, the function §(a(x)) is defined

by
5(a(®) = Ext-%,2, g;f, (j:))| . (66)
3) Letu € S¥ (*R¥™), the generalized (weak) #-derivative 8#%u of u of order « is defined as
(0%, @) = (=D (w, 0% ). (67)
4) Letu € S* (*R#") and g(x) € C*"®(*R#™), The product gu = ug is defined by
, . (gu0) = (ug9). (68)
5) Letu; € S* (*R¥™) and u, € S* (*R¥™) then their direct product is defined by the formula
(U1 X Uz, ) = (W (D)W (), 9)), (x,y) € S* CRE™ x "RE™). (69)
6) The Fourier transform F[u] of a generalized function u € S # (*R¥™) is defined by the formula
(Flul, ) = (u, Flo)), (70)
Flo] = Ext- [.pum ¢ (x)(Ext-exp[i(§, x)])d*"x. (71)

Since the operation @(x) = F[¢](£) is an isomorphism of S*(*R#") onto S¥(*R¥™), the operation u — F[u] is
an isomorphism of S* (*R¥") onto S* (*R¥™) and the inverse of F[u]is given by: F~1[u] = (21) "F[u(—&)].
The following formulas hold for u € S* (*R¥): (a) 8% Fu] = F[(ix)%u], (b) F[ 8**u] = (i&)*F[u],(c) if the
generalized function u; € S* (*R#™) has #-com-pact support, then F[uy * u,] = Flu, | F[u,].
7) If the generalized function u is periodic with n-period T = (T}, ..., T,), then u € § #’(*an), and it can be
expanded in a hyper infinite trigonometric series

ulx) = Ext‘Zu:T:o cx (W) (Ext-expli(kw, x)]), lo, )| < A + [k)™ . (72)
. _ . #! rempin _ 2_7r 2_7r _ (2mkq 2mky
The series (1) #-converges to u(x) in S* (*RZ™), here w = (T1 ) e Tn) and kw = (—T1 P )

A NON-ARCHIMEDEAN METRIC SPACES ENDOWED WITH *R# -VALUED
METRIC

Definition 3.1 A non-Archimedean metric space is an ordered pair (M, d*) where M a set and d* is a #-metric
on M i.e., *R¥, - valued function d*: M X M — *R¥, such that for any triplet x, y, z € M, the following holds:

Ld¥*(x,y) =0=x =y.2.d%(x,y) = d*(y,x). 3. d¥(x,2) < d*(x,y) + d*(y, 2).

Definition 3.2 A hyper infinite sequence {xn};oil of points in M is called #-Cauchy in (M, d*) if for every
hyperreal € € *R¥, there exists some N € *N such that d*(x,, x,,) < €ifn,m > N.

Definition 3.3 A point x of the non-Archimedean metric space (M,d") is the #-limit of the hyper infinite

sequence {xn};ozl if for all € € *R¥,, there exists some N € *N such that d*(x,,,x) < ifn > N.



Definition 3.4 A non-Archimedean metric space is #-complete if any of the following equivalent conditions are
satisfied:

1.Every hyper infinite #-Cauchy sequence {xn};oil of points in M has a #-limit that is also in M.

2.Every hyper infinite #-Cauchy sequence in M, #-converges in M that is, to some point of M.

For any non-Archimedean metric space (M, d*) one can construct a #-complete non-Archimedean metric space
(M', d*) which is also denoted as (#-M, d*) and which contains M a #-dense subspace.

It has the following universal property: if K is any #-complete non-Archimedean metric space and f: M — K is
any uniformly #-continuous function from M to K, then there exists a unique uniformly #-continuous function
f':M' - K that extends f.The space #-M is determined up to #-isometry by this property (among all #-complete
metric spaces #- isometrically containing non-Archimedean metric space (#-M, d*), and is called the #-completion
of (M, d*).

The #-completion of M can be constructed as a set of equivalence classes of Cauchy hyper infinite sequences in
M. For any two hyper infinite Cauchy sequences {xn};oil and {yn};oil in M, we may define their distance as d*' =
#- n&g}# d*(x,,y,). This #-limit exists because the hyperreal numbers *R¥ are #-complete. This is only a pseudo

metric, not yet a metric, since two different hyper infinite Cauchy sequences may have the distance 0. But having
distance 0 is an equivalence relation on the set of all hyper infinite Cauchy sequences, and the set of equivalence
classes is a metric space, the #-completion of M. The original space is embedded in this space via the identification
of an element x of M’ with the equivalence class of hyper infinite sequences in M #-converging to x i.e., the
equivalence class containing a hyper infinite sequence with constant value x. This defines a #-isometry onto a #-
dense subspace, as required.

Example 3.1 Both "R and *C are internal metric spaces when endowed with the distance function d(x,y) =
lx — yl.

Definition 3.5 About any point x € M we define the #-open ball of radius r € “R¥, about x as the set B, (x) =
{y € M|d*(x,y) < r}. These #-open balls form the base for a topology on M.

Definition 3.6 A non-Archimedean metric space (M, d*) is called hyper finitely bounded if there exists some
r € *R gins such that d*(x,y) < rforallx,y € M.

Definition 3.7 A non-Archimedean metric space (M,d") is called finitely bounded if there exists some r €
*Reoo4 such that d*(x,y) <rforallx,y € M.

Definition 3.8 A non-Archimedean metric space (M, d*) is called hyper finitely bounded if there exists some
T € *R; 004 such that d*(x,y) < r forall x,y € M.

Definition 3.9 Let (M, d*) be a non-Archimedean metric space. A set A € X is called finitely bounded if there
exists some 7 € "R, g, such that A c B,.(a), a€ X.

Definition 3.10 A non-Archimedean metric space (M, d*) is called #-compact if every hyper infinite sequence

{xn};ozl in M has a hyper infinite subsequence that #-converges to a point in M. This sort of compactness is
known as hyper sequential compactness and, in a non-Archimedean metric spaces is equivalent to the topological
notions of hyper countable #-compactness.

Definition 3.11 A topological space X is called hyper countably #-compact if it satisfies any of the following
equivalent conditions: (a) every hyper countable open cover U of X (i.e., card(U) = card(*N)) has a finite or
hyperfinite sub-cover.

For a function f:M; —» M, with a non-Archimedean metric spaces (M;,d¥) and (M,,d}) the following
definitions of uniform #-continuity and (ordinary) #-continuity hold.

Definition 3.12 A function f is called uniformly #-continuous if for every € € *R¥_, there exists § € *R,.,
such that for every x,y € M, with df (x,y) < & we get di(f(x), f(y)) < &.

Definition 3.13 A function f is called #-continuous at x € M, if for every € € *R¥__ there exists § € *R¥_,
such that for every y € M, with df (x,y) < & we get d} (f(x), f(y)) < &.

LEBESGUE #-INTEGRATION OF *R¥ -VALUED FUNCTIONS

Let Cf(*R#™) be the space of all *R¥-valued #-compactly supported #-continuous functions of *R#™. Define a
#-norm on C{ by the Riemann #-integral [12]:

Iflls = Ext- [1f Cold*"x, (73)



Note that the Riemann #-integral exists for any #-continuous function f: *R#* — *R¥ | see [12]. Then C{ (*R#™)
is a #-normed vector space and thus in particular, it is a non-Archimedean metric space. All non-Archimedean
metric space, have a non-Archimedean #-completion (#-M,d"). Let L¥ be this #-completion. This space L% is
isomorphic to the space of Lebesgue #-integrable functions modulo the subspace of functions with #-integral zero.
Furthermore, the Riemann integral (1) is a uniformly #-continuous linear functional with respect to the #-norm on
C§ ("RE™) which is #-dense in L}. Hence the Riemann #- integral Ext- [ f(x)d*"x has a unique extension to all
of L¥. This integral is precisely the Lebesgue #-integral.

Definition 4.1 Suppose that 1 < p < *oo, and [a, b] is an interval in *R¥. We denote by L}([a, b]) the set of

the all functions f:[a, b] = *R¥ such that Ext- f:l f)[Pd*x < *co. We define the L}, -#-norm of f by

b 1/p
Ifllep = (Ext- [ o) IPa"x) . (74)
More generally, if E is a subset of *R¥", which could be equal to *R¥™ itself, then Lf, (E) is the set of Lebesgue
#-measurable functions f : E —> *R¥ whose p-th power is Lebesgue #-integrable, with the #-norm

Ifllep = (Bxt- [,1f o) lPa#n)”. (75)

Definition 4.2 A set X c *R¥#" is #-measurable if there exists Ext- [ 1y d*"x, where 1 is the indicator function.

Definition 4.3 A *R¥ -valued function f on *R¥" is a #-measurable if a set {x|f(x) > t} is a #-measurable set
for all t € *R#™,

Remark 4.1 To assign a value to the Lebesgue #-integral of the indicator function 1y of a #-measurable set X
consistent with the given #-measure p*, the only reasonable choice is to set: Ext- [ 1,d u* = u*(X).

Definition 4.4 A hyperfinite linear combination of indicator functions f = Ext-}}_,ay 1y, where the
coefficients a;, € *R¥ and X,, are disjoint #-measurable sets, is called a #-measurable simple function.

Definition 4,5 When the coefficients @, are positive, we set Ext- [ fd u* = Ext- X}_; a; u* (X, ). For a non-

negative #-measurable function f, let {f, (x)};oilbe a hyper infinite sequence of the simple functions f;,(x) whose

values is zin whenever zin <flx) < % for k a non-negative hyperinteger less than 4™. Then we set
Ext- [ fdu* = #- nlirpw(Ext-ffnd u®).

Definition 4.6 If f is a #-measurable function of the set E to the reals including +c0¥, then we can write f =
ftr—f", where: 1) f*(x) = f(x) if f(x) >0 and f*(x) =0 if f(x) <0; 2)f(x) = f(x) if f(x) <0 and
f~(x) = 0if f(x) = 0. Note that both f* and f~ are non-negative #-measurable functions and |f| = f* + f~.

Definition 4.7 We say that the Lebesgue #-integral of the #-measurable function f exists, or is defined if at least
one of Ext- [ f*d u* and Ext- [ f~d p* is finite or hyperfinite. In this case we define

Ext- [ fdu* = (Ext- [ f*du®) + (Ext- [ f~d u*).

Theorem 4.1 Assuming that f is #-measurable and non-negative, the function f(x) = {x € E|f(x) > t} is

monotonically non-increasing. The Lebesgue #-integral may then be defined as the improper Riemann #-integral of

f(x): Ext- J; fau* = Ext- fowf(x)d#x.

Definition 4.8 Let X be any set. We denote by 2% the set of all subsets of X.A family F c 2% is called a
#-0-algebra on X (or o*-algebra on X) if: 1) @ € F. 2) A family F is closed under complements, i.e. A € F implies
X\A € F. 3) A family F is closed under hyper infinite unions, i.e. if {4, },c+y is a hyper infinite sequence in
F then U, esy 4, € F.

Theorem 4.2 If F is a #-0-algebra on X then: (1) F is closed under hyper infinite intersections, i.e., if {4, }ne*y
is a hyper infinite sequence in F then N,cyA4, €EF. (2) X € F.3) F is closed under hyperfinite unions and
hyperfinite intersections.(4) F is closed under set differences. (5) F is closed under symmetric differences.

Theorem 4.3 If {4,},¢, is a collection of o¥-algebras on a set X, then N e; 4, , is also an o¥-algebras on a
set X.

Theorem 4.4 If K c L then 6#(K) c o*(L).

Definition 4.9 (Borel o#-algebra) Given a topological space X, the Borel a#-algebra is the o#-algebra generated
by the #-open sets. It is denoted by B¥ (X). We call sets in B¥(X) a Borel set. Specifically in the case X = *R¥" we
have that B¥ ("R#™) = {U|U is #-open set}. Note that the Borel o*-algebra also contains all #-closed sets and is the
smallest o#-algebra with this property.

Definition 4.10 (#- Measures) A pair (X,F) where F is an o*-algebra on X is call a #- measurable space.
Elements of F are called a #-measurable sets. Given a #-measurable space (X, F), a function u¥*: F - [0, *o0] is



called a #-mea-sure on (X, F) if: 1) u*(@) = 0.2) For all hyper infinite sequences {4, },e*y Of pairwise disjoint
sets in F

u* (UnZiAn) = Ext-3,2, 1 (4,). (76)
A NON-ARCHIMEDEAN BANACH SPACES ENDOWED WITH *Rf -VALUED NORM

A non-Archimedean normed space with *R¥ -valued norm (#-norm) is a pair (X, ||||s) consisting of a vector
space X over a non-Archimedean scalar field *R¥ or complex field *C# = *R¥ +i*R¥ together with a norm
Ill«: X > *R¥.  Like any norms, this norm induces a translation invariant distance function, called the norm
induced non-Archimedean *R¥ -valued metric d* (x,y) for all vectors x,y € X, defined by d*(x,y) = |lx — y|l« =
lly — x|l4. Thus d*(x, y) makes X into a non-Archimedean metric space (X, d¥).

Definition 5.1 A hyper infinite sequence {xn}:ﬁl in X is called d* - Cauchy or Cauchy in (X,d*) or |||l -
Cauchy if for every hyperreal & € *R¥, there exists some N € *N such that d*(x,,, V) = llx, — Yulls < € if
n,m>N.

Definition 5.2 The metric d” is called a #-complete metric if the pair (X, d*) is a #-complete metric space,

which by definition means for every d*- Cauchy sequence {xn}:::1 in (X,d"), there exists some x € X such that
#- lim |[[x,, — x|y = 0.
n—-"oo

Semigroups on Non-Archimedean Banach Spaces and Their Generators

Definition 5.3 A family of bounded operators {T'(t)|0 < t < *o} on external hyper infinite dimensional non-
Archimedean Banach space X endowed with *R# -valued #-norm ||-|| is called a strongly #-continuous semigroup
if: (a) T(0) =1, (b) T(s)T(t) =T(s+t) for all s,t € “R%,, (c) For each ¢ € X,t = T(t) is #-continuous map-
ping.

Definition 5.4 A family {T(t)|0 < t < *oo} of bounded or hyper bounded operators on external hyper infinite
dimensional Banach space X is called a contraction semigroup if it is a strongly #-continuous semigroup and
moreover ||T(t)||x < 1 forallt € [0, *c0).

Theorem 5.1 Let T(t) is a strongly #-continuous semigroup on a non-Archimedean Banach space X,
let

Ap = - lim A,¢
-0

where 4, = r‘l(l - T(r)) and let D(4) = {qolEl (#- lim0 Ar(p)}, then the operator A is #-closed and #-densely
Tou

defined. Operator A is called the infinitesimal generator of the semigroup T (t).

Definition 5.5 We will also say that A generates the semigroup T(t) and write T(t) = Ext-exp(—tA).

Theorem 5.2 (Generalized Hille -Yosida theorem) A necessary and sufficient condition that #-closed linear
operator A on a non-Archimedean Banach space X generate a contraction semigroup is that: (a) (—*o0,0) c p(4),
) A+ A, <A tforallA> 0.

Definition 5.6 Let X be a non-Archimedean Banach space, ¢ € X.An element | € X* that satisfies |||, = ||@]|«
,and [(¢) = |l@ll5 is called a normalized tangent functional to ¢. By the generalized Hahn-Banach theorem, each
@ € X has at least one normalized tangent functional.

Definition 5.7 A #-densely defined operator A on a non-Archimedean Banach space X is called accretive if for
each ¢ € D(A), Re(l(A(p)) > 0 for some normalized tangent functional to ¢. Operator A is called maximal
accretive if A4 is accretive and A has no proper accretive extension.

Remark 5.1 We remark that any accretive operator is #-closable. The #-closure of an accretive operator is again
accretive, so every accretive operator has a smallest #-closed accretive extension.

Theorem 5.3 A #-closed operator A on a non-Archimedean Banach space X is the generator of a contraction
semigroup if and only if 4 is accretive and Ran(4, + A) = X for some 44 > 0.

Theorem 5.4 Let A be a #-closed operator on a non-Archimedean Banach space X. Then, if both 4 and it adjoint
A" are accretive, A generates a contraction semigroup.

Theorem 5.5 Let A be the generator of a contraction semigroup on a non-Archimedean Banach space X. Let D
be a #-dense set, D € D(A), so that Ext- exp(—tA): D — D. Then D is a #-core for 4, i.c.#-A 1 D = A.



Hypercontractive Semigroups

In the previous section we discussed L% -contractive semigroups. In this section we give a self #- adjointness
theorem for the operators of the form A + V, where V is a multiplication operator and A generates a L} -contractive
semigroup that satisfies a strong additional property.

Definition 5.8 Let (M.u*) be a #-measure space with u#(M) = 1 and suppose that Ais a positive self-adjoint
operator on L% (M, d*u*). We say that Ext-exp(—tA) is a hyper contractive semigroup if: (a) Ext-exp(—tA) is
L% -contractive; (b) for some b > 2 and some constant Cy,, there is a T > 0 so that [|[Ext-exp(—tA)]@ll4 < ll@ll42
forall ¢ € L3(M,d*u®).

Remark 5.2 Note that the condition (a) implies that Ext-exp(—tA) is a strongly #-continuous contraction semi-
group for all p < *oo. Holder's inequality shows that ||| < |||l4, if p = q. Thus the L%, -spaces are a nested family
of spaces which get smaller as p gets larger; this suggests that (b) is a very strong condition. The following
proposition shows that constant b plays no special role.

Theorem 5.6 Let Ext-exp(—tA) be a hypercontractive semigroup on L% (M, d*u*). Then for all p, q € (1, *)
there is a constant C,, ; and a t, ; > 0 so that if > t, ; , then [|[Ext-exp(—tA)@ll4p < C,4ll@ll4q, forall @ € Lfl.

Theorem 5.7 Let (M,u*)be a o*-measure space with pu*(M) = land let H, be the generator of a
hypercontractive semi-group on L,(M, d*u*). Let V be a *R¥ -valued measurable function on (M, u*) such that V €
Ly(M,d*p*) for all p € [1, ) and Ext-exp(—tV) € L{(M,d*u*) for all t > 0. Then H, +V is essentially
self#-adjoint on C ®(H, ) N D(V) and is bounded below. Here € °(H,) = Npen D(Hg).

A NON-ARCHIMEDEAN HILBERT SPACES ENDOWED WITH *C? -VALUED INNER
PRODUCT

Definition 6.1 Let H be external hyper infinite dimensional vector space over complex field *C¥ = *R# + i*R#.
An inner product on H is a*C¥-valued function, {-,'}: H X H > *C¥, such that (1) {(ax + by, z) = {ax, z) + (by, z),
) (x,y) = (y,x). 3) llx|I? = (x, x) = 0 with equality (x,x) = 0 if and only if x = 0.

Theorem 6.1 (Generalized Schwarz Inequality) Let {H, (-,")}be an inner product space, then for all x,y € H:
[{x, ¥} < llx|l|ly|l and equality holds if and only if x and y are linearly dependent.

Theorem 6.2 Let {H, (-)}be an inner product space, and ||x||s = /{x,x) . Then ||||s is a *R¥ -valued #-norm
on a space H. Moreover (x, x) is #-continuous on Cartesian product H X H, where H is viewed as the #-normed
space {H, [|[l 4}.

Definition 6.2 A non-Archimedean Hilbert space is a #-complete inner product space.

Example 6.1 The standard inner product on *C#™,n € *N,, is given by external hyperfinite sum

(%, ) =Ext-Ey %, V;. (77

Here x = {x;}",,y = {y;}, , withx;,y; € *C},1 < i < n,see[13].

Example 6.2 The sequence space I3 consists of all hyper infinite sequences z = {Zi}::’l of complex numbers in
*C# such that the hyper infinite series Ext-Y.I,|z;|? #-converges. The inner product on I§ is defined by

(z,w) =Ext—Z::)1 Z, w;. (78)

Here z = {Zi}::’l, w = {Wi}:fl and the latter hyper infinite series #-converging as a consequence of the
generalized Schwarz inequality and the #-convergence of the previous hyper infinite series.

Example 6.3 Let C#[a, b] be the space of the *C#- valued #-continuous functions defined on the interval [a, b]
“R¥, see [13]. We define an inner product on the space C*[a, b] by the formula

b —
(f.9) = Ext- [ f(x)g(x) d*x. (79)
This space is not #-complete, so it is not a non-Archimedean Hilbert space. The #-complettion of C*[a, b] with
respect to the #-norm

1/2
Iflly = (Exe- fPIFGOR d*x) (80)
is denoted by Lj[a, b].
Example 6.4 Let C*®)[a, b]be the space of the *C¥#- valued functions with k € *N #-continuous #-derivatives
on [a, b] c *R¥, see [13].We define an inner product on the space C*®[a, b] by the formula



(f,9) = Ext-Tl (Ext- [ FFO@)G* D (x) d*x). (81)

Here f#*® and g*® denotes the i-th #-derivatives of f and g respectively.The corresponding #-norm is
P g

1/2
Iflly = (Ext-Si, (Ext- [217#0 G dvx)) " (82)

This space is not #-complete, so it is not a non-Archimedean Hilbert space. The non-Archimedean Hilbert space
obtained by #-complettion of C*9[a, b] with respect to the #-norm (1) is non-Archimedean Sobolev space, denoted
by H**[a, b].

Definition 6.3 The graph of the linear transformation T: H — H is the set of pairs {{(¢, T$)|(¢ € D(T))}. The
graph of the operator T, denoted by I'(T), is thus a subset of H X H which is a non-Archimedean Hilbert space with
the following inner product ({¢b;, 1), (¢, ;). Operator T is called a #-closed operator if T'(T) is a #-closed subset
of HX H.

Definition 6.4 Let T, and T be operators on H. If I'(T1) D [(T), then T; is said to be an extension of T and we
write Ty D T. Equivalently, T; © T if and only if D(T1) © D(T) and T, ¢p = T¢ forall ¢ € D(T).

Definition 6.5 An operator T is #-closable if it has a #-closed extension. Every #-closable operator has a
smallest #-closed extension, called its #-closure, which we denote by #-T.

Theorem 6.3 If T is #-closable, then T'(#-T) = #-T'(T).

Definition 6.6 Let D(T™) be the set of ¢ € H for which there is an ¢ € H with (Ty, ) = (3, &) for all Y €
D(T).For each ¢ € D(T*), we define T*¢ = &.The operator T™ is called the #-adjoint of T. Note that ¢ € D(T*) if
and only if |(TY, @)| < C||y||4 for all ip € D(T). Note that S < T implies T* C S.

Remark 6.1 Note that for ¢ to be uniquely determined by the condition (T, @) = (i, &) one need the fact that
D(T) is #-dense in H. If the domain D(T*) is #-dense in H, then we can define T = (T™)".

Theorem 6.4 Let T be a #-densely defined operator on a non-Archimedean Hilbert space H. Then: (a) T™ is
#-closed. (b) The operator T is #-closabie if and only if D(T*) is -dense in which case T =T"". (¢) If T is
#-closable, then (#-T)* = T*.

Definition 6.7 Let T be a #-closed operator on a non-Archimedean Hilbert space H. A complex number A € *C#
is in the resolvent set p(T), if Al — T is a bijection of D(T) onto H with a finitely or hyper finitely bounded
inverse. If complex number A € p(T), R; = (Al — T)™1 is called the resolvent of T at A.

Definition 6.8 A #-densely defined operator T on a non-Archimedean Hilbert space is called symmetric or
Hermitian if T < T, that is, D(T) € D(T*) and T = T*¢ for all ¢ € D(T) and equivalently, T is symmetric if and
only if (Te,yY) = (¢, TY) for all ,y € D(T).

Definition 6.9 A #-densely defined operator T is called self-#-adjoint if T = T™, that is, if and only if T is
symmetric and D(T) = D(T™).

Remark 6.2 A symmetric operator T is always #-closable, since D(T) #-dense in H. If T is symmetric, T* is a
#-closed extension of T so the smallest #-closed extension T** of T must be contained in T*. Thus for symmetric
operators, we have T ¢ T** < T*, for #-closed symmetric operators we have T = T**  T* and, for self-#-adjoint
operators we have T = T** = T*. Thus a #-closed symmetric operator T is self-#-adjoint if and only if T* is sym-
metric.

Definition 6.10 A symmetric operator T is called essentially self-#-adjoint if its #-closure #-T is self-#-adjoint.
If T is #-closed, a subset D © D(T) is called a core for T if #-T I D =T.

Remark 6.3 If T is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension.

Definition 6.11 Let A be an operator on a non-Archimedean Hilbert space H¥ The set C °(4) = ﬂ;ozl D(A™) is
called the C"®-vectors for A. A vector ¢ € C *(A) is called an #-analytic vector for A if Ext-Z*w A lye™

n=0  p
some t > 0. If A is self-#-adjoint, then C ®(A) will be #-dense in D(A).

Theorem 6.5 (Generalized Nelson's analytic vector theorem) Let A be a symmetric operator on a non-
Archimedean Hilbert space H. If D(A) contains a #-total set of #-analytic vectors, then A is essentially self-
#-adjoint.

Definition 6.12 Operator A is relatively bounded with respect to operator T if D(T) < D(A) and

lAully < allully + blITully, u € D(T).

Theorem 6.6 Let T be self-#-adjoint. If A is symmetric and T-bounded with T-bound smaller than 1, then T +
A is also self-#-adjoint. In particular T + A is self-#-adjoint if A is bounded and symmetric with D(T) € D(A).

Theorem 6.7 Let A be essentially self -#-adjoint on the domain D(A) and let B be a symmetric operator on
D(A). If there exists a constant a € “R¥ such that for all 1) € D(A) and for all # € *R¥ such that 0 < < 1 and the

< *oo for




inequality holds ||BY |4+ < all(A + BB)Y||4, then A + B is essentiallv self -#-adjoint on D (A) and its #-closure has
domain D (#-4).

Theorem 6.8 Let A and B be the same as in Theorem 6.7. Then A and A + B have the same #-cores. If A is
bounded from below, then A + B is bounded from below.

GENERALIZED TROTTER PRODUCT FORMULA

Theorem 7.1 Let A and B be self-adjoint operators on non-Archimedean Hilbert space H*. Suppose that the
opera-tor A + B is self-#-adjoint on D = D(A) N D(B), then the following equality holds
. itA itB\\1" .
S-#- nll)rpoo [(Ext-exp (T)) (Ext-exp (T))] = Ext-exp[it(4 + B)]. (83)
Theorem 7.2 Let A and B be self-adjoint operators on non-Archimedean Hilbert space H*. Suppose that the
opera-tor A + B is essentially self-#-adjoint on D = D(A) N D(B), then the following equality holds
. . n
S-#- nl_i)rpw [(Ext-exp (%)) (Ext-exp (%))] = Ext-exp[it(A + B)]. (84)
Theorem 7.3 Let A and B be the generators of contraction semigroups on non-Archimedean Banach
space B¥ Suppose that the #-closure of (4 + B) I D(A) N D(B) generates a contraction semigroup on B*. Then the
following equality holds
. tA tB\\1" -—
s-#- lim [(Ext-exp (— :)) (Ext-exp (— ))] = Ext-exp[—t(#-A + B)]. (85)

FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE

Definition 8.1 Let H* be a complex hyper infinite-dimensional non-Archimedean Hilbert space over field *C#
and denote by H*™ the n-fold tensor product: H*™ = Ext-Q7_, H*, n € *N. Set H#*® = *C# and define F(H*) =
Ext-@pey(H*™). F(H") is called the Fock space over non-Archimedean Hilbert space H*. Set H* = L} (*R#?),
then an element 1 € F(H*) is a hyper infinite sequence of *C#-valued functions ¥ = {¥g, P, (x1), ¥, (%1, x3),
W, (%1, %5, %3), ooy W (y, ..., %)}, 1 € *N and such that

IWlls = lhol? + Ext- Ypen(Ext- [ty (1, ..., ) [2d*"x) < *oo,

Actually, it is not F (H*) itself, but two of its subspaces which are used in quantum field theory. These two hyper
infinite-dimensional subspaces are constructed as follows: Let P, be the permutation group on n € *N elements and
let {gok};flbe a basis for a space H*. For each o € P, we define an operator (which we also denote by o) on basis
elements of H*™ by G(Ext-®?=1(pki) = Ext-®?=1<pkd(i). The operator extends by linearity to a bounded operator

(of #-norm one) on H* and we can define S¥ = (l) (Ext— Yoep, O'). It is easily to show by definitions that

n!
$#2 =8* and S#* =S¥ so S is an orthogonal projection. The range of S is called the n-fold symmetric tensor

product of H¥. We now define F* (H* ) = Ext-@,,c-S#H*™ . Non-Archimedean Hilbert space F(H*) is called
the symmetric Fock space over non-Archimedean Hilbert space H* or the Boson Fock space over non-Archimedean
Hilbert space H*.

SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE

Let H* be a complex non-Archimedean Hilbert space over field *C# and let F(H*) = Ext-@,-(H*™),
where H#¥™ = Ext-®7_, H* be the Fock space over H*and let F,(H*) be the Boson subspace of F(H*). Let f €
H* be fixed. For vectors in H*™ of the form = Ext-®! ,1;,n € *N we define a map b~ (f): H*™ — g#(~1 by
b~ (n = (f, Y1) (Ext-®7,;) and b~ (f) extends by linearity to finite and hyperfinite linear combinations of such
7, the extension is well defined, and ||b= ()|l < lIfl«llnlls. Thus b™(f) extends to a bounded map (of #-norm
Iflls) of H*® into H*™=D_ Since this holds for each n € *N (except for n = 0 in which case we define
b= (f): H*© - {0}), b~(f) is a bounded operator of #-norm ||f||4 from F(H*) to F(H*). It is easy to check that
operator b*(f) = (b‘(f))*takes each subspace H*™into H*+Dwith the action b*(f)n = fQExt-Q™ ;; on
product vectors. Note that the map f — b*(f) is linear and the map f — b~ (f) is antilinear. Let S,, be the



symmetrization operators introduced in previous section and then the operator §* = Ext-@,,c+\S? is the projection
onto the symmetric Fock space F,(H*) = Ext-@®,c-y5*H*™, we will write $#H*™ = H*™and call H*™the n-
particle subspace of F,(H*). Note that operator b~ (f) takes space F,(H*) into itself, but the operator b*(f) does
not. A vector P = {t,b(")}::l with ™ = 0 for all except finite or hyperfinite set of number n is called a finite or
hyperfinite particle vector correspondingly. We will denote the set of hyperfinite particle vectors by F,. The vector
Qo =(1,0,0, ...} is called the vacuum vector. Let A be any self-adjoint operator on H* with domain of essential self-
#-adjointness D = D(A4). Let D, = {l,b € Fyly™ € Ext-Q™,D,n € *N} and define operator dT'#(A) on D, N Hf(n)
by dT*(A)=AQRI QI+ IRAR QI+ + QI QI A. Note that dT#(A)is essentially self-#-adjoint on
D, . Operator dT'#(A) is called the second quantization of the operator A. For example, let A = I, then its second
quantization N* = dT'*(I) is essentially self-#-adjoint on F, and for ) € H™ N* = mp. N* is called the number
operator. If U is a unitary operator on space H¥, we define dI'#(U) to be the unitary operator on F,(H*) which
equals Ext-®—,U when restricted to Hf ™for n > 0, and which equals the identity on Hf © 1f Ext-exp(itA) is a
#-continuous unitary group on H*, then F#(E xt-exp (itA)) is the group generated by dI'#(A), i.e., that expressed by
the formula T'*(Ext-exp(itA)) = Ext-exp(itdT*(A4)).
Definition 9.1 We define the annihilation operator a~(f) on F;(H*) with domain F, by the formula
a(f) =N+ 1b~(f). (86)
Operator a~(f) is called an annihilation operator because it takes each (n + 1)-particle subspace into the n-
particle subspace. For each 1 and 17 in F, (\/N + 10~ ()Y, n) = (l,l), S*bT (VN + 1), then we get
(@ () 1 Fy=S*p*(FIWNF1. (87)
The operator (a‘(f))* is called a creation operator. Both a™(f) and (a‘ Qc))* #-closable; we denote their

#-closures by a~(f) and (a_ Qc))* also. The equation (1) implies that the Segal field operator ®#(f) on F, defined

by ®f(f) = % [a‘ N+ (a‘ (f))*] is symmetric and essentially self-#-adjoint. The mapping from H* to the self-

#-adjoint operators on F,(H") given by f — ®¥(f) is called the Segal quantization over H*. Note that the Segal
quantization is a real linear map.
Theorem 9.1 Let H* be hyper infinite dimensional Hilbert space over complex field *C* = *R¥ + i*R¥ and
®#(f) the corresponding Segal quantization. Then:
(a) (self-#-adjointness) for each f € H* the operator ®¥(f) is essentially self-#-adjoint on F ,, the hyperfinite
particle vectors;
(b) (cyclicity of the vacuum) the vector £, is in the domain of all hyperfinite products Ext- [[I-, ®Z(f;,),n € *N
and the set {Ext- [TL, ®%(f) |f; € H¥,n € "N} is #-total in F;(H*);
(c) (commutation relations) for each y € Fy and f, g € H*: [®¥(f)PE(g) — E(g)PE(HY = ilm(f, g) ,#;
(c") (generalized commutation relations) assuming that (f, g),# =~ 0 and i € F is a near standard vector we
get [0(F)PE(g) — P5(9)PE (] ~ 0 and therefore st([DF ()DL (g) — PE(g)PL(N]Y) = 0;
(d) let W(f) denotes the external unitary operator Ext-exp (iCD;f(f )) then W +g) =
[Ext-exp (—%Im(f,g)H#)] W({HW(g);
(e) (#-continuity) if { fn}:f:l is hyper infinite sequence such as #- lim f, = f in H* then:
n—-"oo
1) #- lim W(f,)y exists for all € F,(H*) and #- lim W(f)y = W ()
n-*oo n—-oo
2) #- lim ®f(f,)y exists forall € Fy and #- lim O (f,)y = @)y
n-*oo n—--oo
(e) For every unitary operator U on H*,T*(U): D(#-®%(f)) » D(#-®#(Uf)) and for all 3 € D(#-d¥(US)),
T* () (#-PE(H))MH* L (U)y = #-PEUf)Y forall 3 € Fy and f € H*.
Remark 9.1 Henceforth we use ®¥(f) to denote the #-closure #-®f(f) of ®f(f).
Definition 9.2 For each m>0meR letH!, ={p € R¥*p-p=m?p, >0}, where p=
(»°, —p', —p?,—p?), the sets H},, are called mass hyperboloids, are invariant under canonical Lorentz group®L,.

Let j,, be the #-homeomorphism of H} onto *R¥3 given by j,,: (P, P1, P2 P3) = {(P1, P2 P3) = p. Define a
#-measure O on H} for any #-measurable set E C H} by




#3

ap
O (88).
Theorem 9.2 Let u* be a polynomially bounded #-measure with support

O (E) = Ext- [,

in
7,
Ifu* is °LY, = L, - invariant, there exists a polynomially bounded #-measure p* on [0,00*) and a constant ¢ so that

for any f € S*(*R#*)
‘o F(VIPIZ+mZp1,p2ps)a*3p
Ext- f*u&ﬁ“f d*u* = cf(0) + Ext- [~ d*p*(m) (Ext- f*mg T )

Definition 9.3 Let F(f) be a linear #-continuous functional F: S f, 'R#*) - *R¥. Functional F is L|,- ~ -
invariant if for any A € L', the following property holds F (f (AX)) ~ F(f) forall f € S {i, CR#).
Theorem 9.3 Let u* be a polynomially bounded L, - invariant #-measure with support in #-V,. Let F(f) be a

linear #-continuous functional F: S f, CR#*) —» *R¥; ~ defined by Ext- Jogea fd*u*  and there exists a

(89)

polynomially bounded #-measure p# on [0,00%) such that fo*w d*p*(m) € "Rl g, and a constant ¢ € "R, so that
(1) holds. Then for any f € § i, (*R¥#*) and for any » € *R¥ , the following property holds
*oo F(VIPIZ+mZp1,paps)at3p
~ 3 #o# .
F(f) = cf(0) + Ext- [, d*p*(m) (Ext Iplsx T )
Definition 9.4 Let y(s,p) be a function such that: y(x,p) =1 if |p| < », x(3,p) = 0 if |p| > ». Define a
#-measure (0, ,, on Hf by

(90)

_ xGep)d®3p
an’%(E) = Ext- fjm(E) W (91)

We use the Segal quantization to define the free Hermitian scalar field of massm. We take H* =
LY(HE, d* Q). For each f € SE, ('R¥*) we define Ef € H* by Ef = 2n(Ext-f) I H, where the Fourier
transform is defined in terms of the Lorentz invariant inner productp - %: Ext-f = #(Ext- f*R§4 Ext-exp [i(p -
f)]d“x). If ®f,()is the Segal quantization over Li( H¥,d*Qf ), we define for each *R¥- valued f €
SECRE): @f L (f) = ®¢, (Ef) and for each *Cf- valued f € S*(*R¥#*) we define ®f ,(f) = ®f ,(Ref) +
i®f , (Imf).

Definition 9.5 The mapping f — ®% , (f) is called the free non-Archimedean Hermitian scalar field of mass m.

Definition 9.6 On Lg( H}, d#an'H) we define the following unitary representation of the restricted Poincare
group LY: (U, (a, NY)(p) = (Ext-exp[i(p - @)])y (A 1p) where we are using A to denote both an element of the
abstract restricted Lorentz group and the corresponding element in the standard representation on “R*.

Remark 9.2 Note that by Theorem 9.1(e) for all 1 € F, and f € L§( Hf, d*Qf, ) we get

I* (U (a, 0) (#-@F,,. (D)0 (U (@, D) Y = T*(Up(a, 1) (#-@F (EN))T*H (U (a, D))ip =
#-0F (Up, (a, NEf Yp.
A change of variables for all f € Sf (*R#*) gives that
Un(a, NEf = EU,,(a,A)f.

Therefore for all ¥ € Dsf#m C F, such that |||y € "REg, and for "R, -valued function f such that f €

SE, CR#*) we obtain that
T (U (@, 1)) (#-@f e (F)) T# (U (@, M) = #-0f (U (0, ).

Definition 9.7 The #-conjugation on a non-Archimedean Hilbert space H* is an antilinear #-isometry C* so that
the following equality holds C*? = I.

Definition 9.8 Let H* be a non-Archimedean Hilbert space over field *C¥, ®#(-)the associated Segal
quantization. Let H [}y = {f|C*f = f}. For each f € Hi# we define @*(f) = ®E(f) and ©#(f) = PL(if), the
map f — @*(f) is called the canonical free field over the doublet (H¥, C*} and the map f — 7#(f) is called the
canonical conjugate momentum.

Theorem 9.4 Let H* be a non-Archimedean Hilbert space over field *C# with #-conjugation C*. Letp*(*) and
7* () be the corresponding canonical fields. Then: (a) For each f € H ﬁ#, @*(f) is essentially self-#-adjoint on F,,.
(b) {qo#(f NfeH i#} is a commuting family of self-#-adjoint operators. (c) £, is a #-cyclic vector for the family



{o*(HIf e H f;#}. @If {fn}::l is hyper infinite sequence such as #- lim f, = f in H %, then #- lim @*(f,)y
exists for all ¥ € Fy and #- lim @*(f)Y = @* (). () #- lim (Ext-explip*(f,)]Y) = Ext-exp[ip*(f)]y for
all Y € F,(H"). (f) Properties (a)-(¢) hold with ¢@*(f) replaced by #(f). () If f,g € H ﬁ# , then [@* (Fe*(9) —
o*(@e* (N = i(f, 9) for all Y € Fo(HY) and (Ext-explip* (f)]) (Ext-exp[in* (f)]) =
(Ext-expli(f, 9)]) (Ext-explin* (f)]) (Ext-exp[ip* ()]).

Definition 9.9 We write now f € Li( H¥,d*Q% ) as f(p, p) and define the #-conjugation C* by
C* () (o, P) = f(Po, —P) - Note that C* is well-defined on f € Li( Hf,d*Qk ) since (py, —p) € Hf, if and only

if (po, p) € Hp.
Definition 9.10 We denote the canonical fields corresponding to C* by ¢* (*) and ©* (*) and define ¢}, ,, (f) =

o* (Ef) and mf, (f) = o (uP)ES), u(p) = /p> + m? for “R¥- valued f € LE(*R%*), extending to all of
LY ("R#*) by linearity. We let now Dgs = {Yly € Fo,p™ € SE, CR¥™)} and for each p € "R we define the
operator a(p) on F, (Lﬁ (*]R*f)) with domain Dgs by (a(@)yP)™ =vVn+ 1 @+ (p,ky, ...k,) and therefore the

formal #-adjoint of the operator a(p) reads (a’(p)y)™ = % L8P — k)Y D (kg o kg, Ky, e, K.
Note that the formulas
a(g) = Ext- [,y a(p)g(—p)d*p, 92)
at(g) = Ext- [’ (0)g(@)d*p (93)
hold for all g € Sf, ("R¥#3) if the equalities (92)-(93) are understood in the sense of quadratic forms. That is,
(92) means that for ¥, 9, € Dgs - Wy, a(@y,) = Ext- f*R?3(lp1,a(p)¢2)g(—p)d#3p and similarly (93) means
that for ¢, 9, € Dgs - Wy, a(g)y,) = Ext- f*ux§3(¢1' at(p)y,)g(p)d**p. The particles number operator reads

No, = Ext- | a*(®)a®) d*p. (94)
The generator of time translations in the free scalar field theory of mass m is given by
Ho, = Ext- [ u(@)a’ (p)a(p) d*p. (95)
We express the free scalar field and the time zero fields in terms of af(p) and a(p) as quadratic forms on
Dt X Dgx by
fin fin
DY (1, 1) =
_ , . a#*
(2m)~32Ext- [, {(Ext-exp(u(p)t — ipx))a’ (p) + (Ext-exp(u(p)t + ipx))a (p)}ﬁ(;, (96)
DG () =
-3/2 _ _ . + _ . d#3p
(2m)3/2Ext flpls”{(Ext exp( lpx))a (p) + (Ext exp(lpx))a (p)}m, G
T m e (X) =
-3/2 _ ~ . + _ . d#3p
(2m)~3/“Ext flpls;t{(Ext exp( lpx))a (p) + (Ext exp(lpx))a (p)}m. (98)

Abbreviation 9.1 We shall write for the sake of brevity through this paper ®f ,.(x, t), ®§ ,(x) and m ,,(x)
instead CDg_m_M (x, 1), CDgym,H (x) and ng_m,,, (x) correspondingly.
Theorem 9.5 Let n;,n, € N and suppose that W(ky,...k,,, Py, .., Pn,) € LY (*R§3(n1+n2)) where

#3(n1+ny)

W(kl,...knl,pl,...,pnz) is a *(C’éﬁn -valued function on "R, . Then there is a unique operator Ty, on

F, (L*z‘l (*]R*f)) sothat Dgs  C D(Ty,) is a #- core for Ty, .
1) As *C#-valued quadratic forms on Dgs X D
T = At oy W (s o) (T2 01 ) (T2, )5k,

2) As *C#-valued quadratic forms on Dgs X D

Ty = Ext- [ sinyony W(Ksy o engs D1, o Prg) (T2 0t (k) (T2, a(py, €))d*m kd*map,
3) If m; and m, are nonnegative integers so that m; + m, = n; + n,, then
(1 + N*)T™/2Ty, (14 N*)T2/2 < C(my, mp) [IW | 5.
4) On vectors in F, the operators Ty, and Ty, are given by the explicit formulas




l-n, +n1

(Tw(¥))
.Ext- f|pn2|s” W(kl, vk D1 ...,pnz) ¢(l)(p1, e Dy Ky oo knl)d#3n2 p],
(TW(zp))n =0ifn<n; —n,,
(TW(I,U))I n1+n2 _

Ext-f Ext-f W (ky, ookny, 1 oo Py ) WP (D1 o) Py Kpy oo by )A* ™M ke
Iplsx e

K(l,n;,n,)S [Ext-fl

pilsx

K(l,n,,n,)S

(TV*V( 1/}))n = 0 ifand only if n < n, —n,. Here S is the symmetrization operator.

Q*-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES

In this section the construction of a non-Archimedean Q¥-space and L% (Q*, d* u*) , another representation of the
Fock space structures are presented. In analogy with the one degree of freedom case where F#(*R¥ ) is isomorphic
to L5(CR# d*x) in such a way that ®¥(1) becomes multiplication byx, we will construct a o*-measure
space (Q*, u*), with u*(Q*) = 1, and a unitary map S*: F¥(H* ) - L4(Q*, d*u") so that for each f € HE, S* ¢} (f)
S#=1 acts on L% (Q*, d*u*) by multiplication by a u*-measurable function. We can then show that in the case of the
free scalar field of mass m in 4-dimensional space-time M}, V = S#Hff,,(g)S’&‘_1 is just multiplication by a function

V(q) which is in LE(Q*, d*u*) for eachp € *N. Let {gn}*oi be an orthonormal basis for H* so that each g € H¥
q n=1

and let {g,}¥_,,N € *N be a finite or hyperfinite subcollection of the set { fn}:f:l .Let Py be a set of the all external
finite and hyperﬁnite polynomials ~ Ext-P[uy,...,uy] and Fjf be the #-closure of the set
{Ext Pl (gl) o 0E(g)]IP € Py} in FF(H*) and deﬁne a set F)' = F¥ N F,. From Theorem 55 it follows that
0 (g,) and 2 (gy), forall 1 < k, 1 < N are essentially self-#-adjoint on Fy' and that
(Ext-explite}; (g:)]) (Ext-explitn}(g,)]) =
(Ext-exp|—isté,, |) (Ext-explitm}(g,)]) (Ext-exp[itpf (gi)]) -
Therefore we have a representation of the generalized Weyl relations in which the vector , satisfies the

equality ([¢f(gi)]? + [1£(9)]? — 1)Qy = 0 and is cyclic for the operators {0k (g} Therefore there is a
#
unitary map S*¥®): Ff — L8 (*R*M) such that: 1) S#(N)(pff(gk)(s#(”)) = x, 2) S#(N)n,’f(gk)(S#(N)) =14

i d#xk

2
and 3) S*WQ, = 7~N/* |Ext-exp (—Ext-YN_, Z£)|. 1t is convenient to use the non-Archimedean Hilbert space
0 p k=17

2 2
Ly <*R§N,n—N/4 (Ext—exp (—Ext- Zﬁzlxz—k))> d*Nx instead of LE(*R#N) so we let d*ufi= Ext-exp (— xz—"") d*x,

2
and define the operator (Tf)(x) = /4 (Ext-exp (Ext- k=1 %k))a Then T is a unitary map of Li(*R#M) onto

LA("REN, Ext- TTN- 1d# #) and if we let  ST™ = 7M™ we get: 1) STV Ff - LRV, Ext-TIY-, d*uf), 2)
-1
St (g (™) = 2, 3) SV (g (1) = -

identically one. Note that each #- measure uj has mass one, which implies that

f (N)QO =1, where 1 is the function

(Qq, (Ext-TT¥=1 Pe(@£(91)))Q0) = *R#N(Ext [TR=1 Pe(x) (Ext-TTi=, d*uff) = (99)
= Ext-[Ii= f*RgN P (xi) d*pff = Ext-TIR-, *RgN(QO'Pk(¢J§(gk)QO))~
Here P,, ..., Py are external finite and hyperﬁnite polynomials. Now we can to construct directly the o*-measure

space (Q*, u*). We define a space Q* =X i , “RE. Take the o*-algebra generated by hyper infinite products of

#-measurable sets in *R¥ and set u* =R,7 o1 M. We denote the points of Q# symbolically by g = (g4, g5, -..), then
(Q*, u*) is a o*- measure space and the set of functions of the form P(qy, g5, ... ), where P is a polynomial and n €
*N is arbitrary, is #-dense in L%(Q*,d*u*). Let P be a polynomial in N € *N variables P(x;,x,, ..., Xy) =

Ext-Y,. 1y cll’____le,l(l1 x,l(’l‘c and define S*: P ((pf:(gkl), . (pﬁ(gkN)) Qo = P(Gr,» Gryr +» Giy )- Then we get
(0£(g), - 05 (gin)) Q0 = E’“’Z, i (20, 05(90) ™™ e 0 (1) Q) =
m



N
2
Ext- E clc'mf gt x Lx gVt (Ext-| | d#,u,ﬁ.) = Ext-f |P(xieys Xiys o Xy )| ¥ i®.
ILm *Rg 1 i=1 t Q#

By the equation (99) and the fact that each measure ,uﬁi has mass one. Since (), is cyclic for polynomials in the
fields, S*extends to a unitary map of F;* (H* ) onto L4 (Q*#, d* u™).

Theorem 10.1 [15] Let (pﬁlyn(x), S *]R{f_wbe the free scalar field of mass m (in 4-dimensional space-time) at
time zero. Let g€ L{CRE)NLICRE) and define H,, 100 (9) = 10) (Ext- f*Rﬁg(x): Pt (x): d#3x),
where A(x) € "R¥ . Let S* denote the unitary map S*: F#(H* ) — L5(Q*, d*u*) constructed above. Then V =
S*H,,,1(g)S*'is multiplication by a function V,,;(q) which satisfies: (a) V,,1(q) € L (Q*, d*u*) for all p € *N.
(b) Ext-exp (—tV,M(q)) € L#(Q*, d*u*) for all t € [0, *o).

Proof. (a) Note that ¢ ,(x) is a well-defined operator-valued function of x € *R¥3. We define now

: @it (x): by moving all the a'’s to the left in the formal expression for @it (x). By Theorem 59 : @f (x): is
also a well-defined operator for each x € *]R#3. Notice that for each x € *]R{#3 operator (pmn(x) takes F, into
itself. Thus for each x € *R%? operator : @, (x): reads : @it (x) = @it (x) + d, () @iz, (x) + dy () where the
coefficients d, (») and d, () are hyperﬁmte constant independent of x. For each x € *R#3, S#(pm_,, (x)(g)S* 1is the
operator on #-measurable space L%(Q*,d*u*) which acts by multiplying by the function
Ext-3,2, ¢, (x, )y where ¢, (x,2) = (2m)~%/2(g,, (Ext-exp(ipx))x G, p)u(p)™"/2) and (e, p) = 1 if [p| <
un, x(»,p) = 0 if |p| > x. Note that

Ext- 5,2 ]e (017 = 2m) 2|y Ge, )u(@) I, (100)
so the functions S*@fit (x)(g)S*~! and S*@fi2, (x)(g)S* ! are in LE(Q¥, d*u*) and the LE(Q¥, d*u*) norms
are uniformly bounded in x. Therefore, since g € L{(*R¥®), S*H,, 10, (g)S* operates on L5(Q*, d*u*) by
multiplication by some L%(Q*,d*u*)-function which we denote by V;, 100(q). Consider now the expression
for H; ,, 10 (9) Q. This is a vector (0,0,0,0,1%,0, ...) with
1609 xGep)(Extexp(~ix BZ1pi) Ja®x A6 TTEy xGepp)(Ext-6(EiZ3 pi
Y@ papsipa) = Ext-fgys (271)3/(2 n;;l[z;E(pmi/z e @7 nz‘:l([zmmgll/z ) (1o1)

Here |p;| < #,1 < i < 4. We choose now the parameter A = A() ~ 0 such that |[p#*||, € R and therefore we

obtain | H,'H'A(”)(g)ﬂ()”;z € R, since || Hy,c200(9) Q0 ||j‘e2 = || *4||2,. But, since $*Q, = 1, we get the equalities

1 200 (9)R0ll,., = 118 Hie 260 (S* 1 g1 4ty = MWViieaoo (@l s o1 o vy (102)
From (101)-(102) we get that ||V,'H_,1(H)(q)||L#(Q# a*ut) € R. It is easily verify that each polynomial
2 ,

P(q1,q3, -, qy),n € *N is in the domain of the operator V;,, 1, (q) and S*H; ,, 1,0 (9)S* ™ =V}, 200(q) on that
domain. Since €, is in the domain of H?;,, ;,,(g),p € *N, 1 is in the domain of the operator V7, 3., (q) for all
p € *N. Thus, for all p € "N V;,,160(q) € L5, (Q*, d*u*), since u*(Q*) is finite, we conclude that V,,,,l(,{)(q) €

LY (Q*, d*u*) . for all pe€-*N. (b) Remind Wick's theorem asserts that (pmu(x)
> 572 D' —— H(pf:l(f{ 20(x) with ¢, = ||<pm,4(x)ﬂo|| . For j = 4 we get —0(c2) <: pjit,(x): and therefore

G- 21)'1
- (Ext- f*R§3 gx) d#3x) 0(c2) < Hy, 200(g) .Finally we obtain Ext- fQ# Ext-exp( t(: pftt () )) d*u#
Ext-exp(O(c,%)) and this inequality finalized the proof.

IA

GENERALIZED HAAG KASTLER AXIOMS

Definition 11.1 [15] A non- Archimedean Banach algebra A, is a complex #-algebra over field *C# (or *(CC fin =
‘Ris, +1"REg, ) which is a non-Archimedean Banach space under a *R¥ -valued -norm which is sub
multiplicative, i.e., ||xy|ls < ||x||4]lyl||sfor all x,y € A4. An involution on a non- Archimedean Banach algebra A,
is a conjugate-linear isometric antiautomorphism of order two denoted by x — x*, i.e.,(x + y)* = x* + y*, and for
all x,y € Ay: (xy)" =y*x*, (Ax)" =2Ax,(x*)* =x, ||x*|ls =x, 1€ *C¥. A Banach #- algebra is a non-
Archimedean Banach algebra with an involution.

Definition 11.2 An Cj-algebra is a Banach #-algebra A, satisfying the Cy-axiom: for all x € Ay, ||x*x||4 =
llxII%.



Definition 11.3 1) A linear operator a: Hy — Hy on a non-Archimedean Hilbert space Hy is said to be bounded
if there is a number K € *R# with ||aé|ly < K||&||4 for all £ € Hy. 2) A linear operator a: H; — Hy a non-
Archimedean Hilbert space Hy is said to be finitely bounded if there is a number K € *]Rf‘ﬁn with ||aé]ls < K||€]«
for all ¢ € Hy. The infimum of all such K if exists, is called the #-norm of a, written ||a|| .

Abbreviation 11.1 The set of all finitely bounded operators a: H, — Hy we will be denoting by B* (H,).

Abbreviation 11.2 The set of all finitely bounded operators a: Hy — Hy we will be denoting by By (Hy).

Remark 11.1 Note that By (Hy) is a Cj-algebra over field *C} .

Definition 11.4 If S € B¥(H,) (or By (Hs) ) then the commutant S’ of S is S’ = {x € B*(H,)|Va €
S(xa = ax)}.

Remark 11.2 The algebra B*(H,) of bounded linear operators on a non-Archimedean Hilbert space Hy is a
Cj-algebra with involution T —» T*, T € B*(H,). Clearly, any #-closed #-selfadjoint subalgebra of B* (H,) is also a
Ci-algebra.

Remark 11.3 We will be especially concerned with #-separable Hilbert Spaces where there is an orthonormal
basis, i.e. a hyper infinite sequence ,{fi}::ol of unit vectors with (£;,&; ) = 0 for i # j and such that 0 is the only
element of Hy orthogonal to all the &;.

Definition 11.5 1) The topology on B*(H,) (or By (Hu) of pointwise #-convergence on H, is called the strong
operator topology. A basis of neighbourhoods of a € B*(H,) (or a € By (Hy) is formed by the following way

N, &3y, 8) = Bl — &l < & Vi(l < i <)),
2) The weak operator topology is formed by the basic neighbourhoods
N(a,{§}iz1, ni}iz, &) = (b((b — )&, m;) < & Vi(l <i<n)}

Theorem 11.1 If M = M* is subalgebra of B*(H,) (or By (Hy) with 1 € M, then the following statements are
equivalent: 1) M = M" ; 2) M is strongly #-closed; 3) M is weakly #-closed.

Definition 11.6 A subalgebra of B*(H,) (or By (H,) satisfying the conditions of Theorem 61is called a von
Neumann #-algebra.

Theorem 11.2 [15] (Generalized Gelfand-Naimark theorem) Let A be a Cj;-algebra with unit. Then there exist a
non-Archimedean Hilbert space Hy and an #-isometric homomorphism U of 4 into B(Hy) such that Ux* = Ux™,
X€EA.

Abbreviation 11.3 We denote by MY = {*"R¥4, (-,-)}, the vector space *R¥* with the Minkowski product:
(X, Y) = Xo0Yo — XiYi» i=123.

Statement of the Axioms [15]. Let M} be Minkowski space over field *R¥ of four space-time dimensions.

1. Algebras of Local Observables. To each finitely bounded #-open set O © M} we assign a unital Cj, -algebra

0 - B4(0)
2. Isotony. If 0, C O, , then B(0,) is the unital Cj -subalgebra of the unital C}-algebra B(0,) :
By(0,) < By(0,).
This axiom allow us to form the algebra of all local observables
Byioc = Uganf By (0).

The algebra By, is a well-defined C; -algebra because given any 0;,0, € M¥, both B,(0,) and B,(0,) are

subalgebras of the Cj, -algebraB, (0, U 0,). From there one can take the #-norm completion to obtain

B# = #'B#loc >
called the algebra of quasi-local observables. This gives a Cj -algebra in which all the local observable Cj -algebras
are embedded.

3. Poincare ~ -Covariance. For each Poincare transformation g € °P/ , there is a Cj- isomorphism ag: By —

By such that
ag(B#(O)) ~ B#(Q(O));
for all bounded #-open O c M. For fixed g € By , the map g — g4 (A) is required to be #-continuous.
3'. For each Poincare transformation g € °P] , there is a Cj- isomorphism @y By — By such that

st (ag (B#(O))) =st (B#(g(O))),
for all bounded #-open O M. For fixed g € By , the map g — a,(A) is required to be #-continuous.

4. ~-Causality. If 0, and O, are spacelike separated, then all elements of B, (0;) =~ -commute with all elements
ofa  ( -algebraB,(0,)
[B,(0,),B4(0,)] ~ 0.



4'. If 0, and O, are space-like separated, then the standard part of the all elements of C; -algebra By (0,)

commute with the standard part of the all elements of Cj; -algebra B, (0,)
st(By(0,),B4(0,)) = 0.

Definition 11.7 If 0 ¢ M}, we say x belongs to the future causal shadow of O if every past directed time-like or
light-like trajectory beginning at x intersects with 0. Essentially, O separates the past light cone of x.Likewise, we
say x belongs to the past causal shadow of O if every future-directed timelike or lightlike trajectory beginning at x
inter-sects with 0. The causal completion or causal envelope O of O is the union of its future and past directed
causal shadows. This definition of the causal completion O can be reformulated in terms of “causal complements,”
which are computationally easier to deal with. f0 © M, we define the causal complement O’ of O to be the set of
all points with are spacelike to all points in 0. Then 0” = O is the causal completion of 0. One expects the
observables localized to O to be completely determined by the observables localized to O, carrying the same
information.

5. Time Evolution.

B,(0 ) = B4(0).

6. Vacuum state and positive spectrum. There exists a faithful irreducible representation 1, : By — B(Hy)
with a unique (up to a factor) vector & € Hy such that Q is cyclic and Poincaré invariant, and such that
unitary representation of translations, given by

U@x)m (AQ = m(a,(A)Q,
where A € B, and a, () is the Cj-isomorphism from Axiom 3 associated with translation by x € M}, has
Hermitian generators P*, u = 1,2,3 whose joint spectrum lies in the forward light cone. The last phrase is the most
physically important here; it simply states that we have energy-momentum operators whose spectrum satisfies EZ —
P2 > 0, i.e, or in other words, that the energy £ > 0 and nothing can move faster than the speed of light. The vector
Q is the vacuum state This axiom does not appear to be purely algebraic; we have had to introduce an non-
Archimedean Hilbert space Hy, . In fact, we can rewrite the axiom in a completely algebraic but less transparent way
as follows. We postulate that there exists an vacuum state w, on the Cj -algebra (i.e., a normalized, positive,
bounded linear functional) such that the following holds w,(Q*Q) = 0 for all Q € B, of the form
Q(f, A) = Ext-[ f(0)a,(A) d**x

where A € By and f(x) is a #-smooth function whose Fourier transform has bounded support disjoint from the
forward light-cone centered at the origin in M.

Remind that in a quantum system with a Hamiltonian H, the Heisenberg picture dynamics is given by the
canonical formula

A(t) = {Ext-exp[itH]}A(0){Ext-exp[—itH]}.

Then A(t) is the observable at time t corresponding to the time zero observable A(0). In our model we have
hyper finitely locally correct Hamiltonians H(g) but no hyper infinitely global Hamiltonian, and we construct the
Heisenberg picture dynamics nonetheless. We do this by restricting the observables to lie in the local algebras
B (0) and by using the finite propagation speed implicit in axiom 3.

Definition 11.8 Let F? be the space of symmetric Lj(*R¥#3") functions defined on *R¥3" F¥ = *C# and
let F# = Ext-@;ozoiﬁf, Q,=1€*C* c F* Let S, be the projection of Li(*R¥3") onto Ffand let D, be the
#-dense domain in F# spanned algebraically by Q, and vectors of the form S, (Ext- [1%., fi (k,)) where f; €
Sy CRE,*RE3),n € *°N.

Definition 11.9 We set now

Hoy = Ext- [ ~: (w2(x) + V¥ @2 (%) + m?@2(x)): d*x. (103)
Theorem 11.3 As the bilinear form on the domain Dy X Dy
Hy, = Ext- flleHu(k) at(k)a(k)d*’k. (104)

Theorem 11.4 (1) The operator Hy, = H,,, leaves each subdomain Dy NF, invariant. (2) The operator Hy = H,,
is essentially self-#-adjoint as an operator on the domain Dy.
Definition 11.10 We set now

@5 o(x, t) = Ext-exp(itH,) @i (x) Ext-exp(—itH,) (105)
h o (x, t) = Ext-exp(itHy)m} (x) Ext-exp(—itH,) (106)
§0fz,o(f’ t) = Ext- f*n&’ﬁ ‘Pﬁ,o (x, ) f(x)d*3x (107)

il o(f, t) = Ext- f*Rgg, o (x, t) f(x)d*3x. (108)



Here ¢ (x) and 7% (x) is glven by formulas (97) and (98) respectively.
Remark 11.4 Note that ¢} o(x, t) and 7}, o (x, t) are bilinear forms defined on Dy X Dy.
Theorem 11.5 As bilinear forms on Dy X Dy.

#
@} o(x, t) = Ext- f*R§3 Ay(x —y, O) Th(x)d*3y + Ext- f*R§3 a—A,:,e(x y,t) pi(x)d*y (109)

a#
mho(x,t) = Ext- f*Rﬁ3 =y, 0) i (x)d*3y + Ext- f*u&“ o A#(x —y, )i (x)d*y (110)
Remark 11.5 Here A, (x — y, t) is the solution of the generalized Klein-Gordon equation
2
9 A#(x £) =22 A (e t) — a# 9% Ny (%, t) + mEA(x,£) = 0 (111)

3#2

with Cauchy data Ay (x,0) = O A#(x 0) =5(x).

Remark 11.6 Note the dlstrlbutlon Ay (x, t) has support in the double light-cone |x| < |t].

Theorem 11.6 Let f;, f, € S*(*RE3, "R¥3). The operator ¢}, o(f,t) + 7} o(f, t) is essentially self-#-adjoint on
the domain Dy.

Definition 11.11 We introduce now the class S(S*(*R¥#3)) of bilinear forms on Dy X D, expressible as a
linear combination of the forms

V=3, (’;) Ext- [, ysn v(Kk) @' (ky) = at (k) a(kyy ) - alk,)d*mk (112)
with symmetric kernels v(k) € S*(*R¥#3) having real Fourier transforms.

Theorem 11.7 Let V € J(S*(*R¥3)). Then Vis essentially self-#-adjoint on Dy.

Theorem 11.8 Let O be a bounded #-open region of vector space*R#3 and let M,(0) be the von Neumann
algebra generated by the field operators Ext-exp[ig# (f)] with f € S*(*R¥#3, *R¥#3) and suppf < 0. Let g(x) =0
on *R#3\0. Then Ext-exp[itH,(g)] € My(0) for all t € *R¥.

Definition 11.12 Let O be a bounded #-open region of space and let B;(0) be the von Neumann algebra
generated by the operators Ext-exp[i(@#(f)) + mi(f,))] with f, f, € S¥("R¥3, *R#?) and suppf;, suppf, < O. Let
0, be the set of points with distance less than [t| to O for any instant of the time t.

Theorem 11.9 Ext-exp(itH,)B,(0)Ext-exp(—itH,) € B4(0,).

Theorem 11.10 If O, and 0, are disjoint bounded open regions of vector space*R¥#3 then the standard part of
the operators in By (0;) commute with the standard part of the operators in operators in By (0,).

Theorem 11.11 Let g € LE((*R#?)), and let g = 0 on open region O, then Ext-exp[itH,(g)] € B4(0)' for all
t € "R¥.

Theorem 11.12 [15] (Free field ~-Causality) Let f;, f, € S £, C'R#*, *R#*) with suppf, < 0,, suppf, < 0,. We
setnow @ o(f;) = Ext- f*u@g‘t @k o (x, t) f; (x,)d**x and o , (f,) = Ext- f*m‘} @k o (x,0) fo (x, t)d**x. If region
0, and region O, are space-like separated, then [qof,yo (D), ¢k o (fz)]l,b =~ 0 for all near standard vector Y € Hy.

Proof. The commutator [@f o (f)), ¢f o(f,)] reads

[(Pft,o(ﬁ)' @fz,o(fz)] = Ext- f*Rﬁm d*3x,d" t, Ext- f*Rﬁ‘t dBx,d* e, A%, (= x5, 6 — ) 101, t) (g, 1),
AR (x; — x5t — ty) = E1(x) — Xp, by — ty; %) — E, (% — X5, ty — ty; %), where

By = 2oy = ) = Bt [, fexpllip(ry — %)) — @) (6 — )}

6#2

Z,(x; — xp,t; — ty; %) = Ext- flp|<74

. . d#3p
{—exp[[ipCx; — x)] + iw(P)(t; — tz)]}ﬁ~
Here x € "R¥ ,, , w(p) = /p? + m?. Define E;(x; — x,, t; — t5;%) and E;(x; — X3, t; — ty; %) by

0 d
B () — Xp, ty — ty; ) = Ext- fl | {exp{[ip(x1 — )] — iw(P)(t1 — )3} N +pm2'
pl>n /

E,(x; — x,,t; — ty; %) = Ext- flp|>u

{—exp[lip(, — x)] + @)t — )]} Tl
Jpt+m?

Note that: (a) Z;(x; — X, t; —ty; %) =0 and E,(x; — xp,t; — tp;%) = 0, (b) E;(x; — Xy, t; — ty; %) and
E,(xy — x4,t; — ty; %) are Lorentz =-invariant tempered distribution (see definition 4), since the distributions
10 —xy,t; — t,) and E,(x; — x,, t; — t,) defined by

Bi(xy — 29,8 —ty;30) + ?'1(3‘1 — X, t; — ty; ) = Ext- f {exp[[ip(xl —x)] —iwP)(t; — tz)]}\/%




- = . . da#3p
Eo(xy —xp,ty —ty; ) + E5(xg — Xy, t — ty; ) = Ext- f {exp[[—1p(x1 —x)] +iw(p)(t; — tz)]}ﬁ
are Lorentz invariant by Theorem 56. From expression of the distribution Z,(x; — x,,t; — ty; %) by

replacement p — —p we obtain
3
Eo(xy — Xy, — ty; 1) = —Ext- f|p|>u{exp[[ip(x1 —x)] +iw(p)(t, — tz)]}%—

And therefore finally we get

3
A% (x; = x5t — t,) = Ext- f|p|s;: sinfw(p)(t; — ty)]exp[ip(x; — x,)] %-

Thus for any points (x;, t;) and (x,, t,) separated by space-like interval we obtain that A% (x; — x,,t; — t,) = 0,
since A% (x; — x,,t; — t;) is a Lorentz ~-invariant tempered distribution.

Theorem 11.13 (Time zero free field =~ -locality) Let f,f, € S i, ("R¥3,*R#3) with suppf, € 0;, and
suppf, € 0, are disjoint bounded open regions of vector space*R¥3, then [} o (f1, 0), 0% o (f5,0)] = 0.

Proof. It follows immediately from Theorem 11.12.

Theorem 11.14 Let O be a bounded #-open region of vector space*R#3, lett € *R¥ , let g be a nonnegative
function in L ("R#3) n LE(*R¥3) and let g be identically equal to one on O,.For A € B,(0), then

0:(A) = {Ext-exp[itH (g)|}A{Ext-exp[—itH(g)]}

is independent of g and ¢, (4) € B4(0,).

Proof. Let 0 (A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]} and o/(A) = {Ext-exp[itH,|}A{Ext-exp[—itH,]}.
Notice that generalized Trotter's product formula is valid for the unitary group Ext-exp[it(Ho + H; (g))] Thus we
get the following product formula for the associated automorphism group:

0,(4) = #lim| (65n0t/n) " (A)]- (113)

Each automorphism o maps each B, (0,) into itself and is independent of g on B,(0,) for |s| « |t|. To see
this, let y(0,) be the characteristic function of a set O,. We assert that

at’/n(C) = {Ext-exp[i(t/n)H,()((OS))]}C{Ext-exp[—i(t/n)H,()((OS))]} (114)
for any C € B4(0;) and that o (C) € B4(0,). In other words the interaction automorphism has propagation
speed zero and is independent of g on B4 (0,) for |s| < |t|. The theorem follows from (113), (114) and Theorem
11.9. To prove (113), we rewrite H;(g) = H,()((Os)) + H,(g[1 — x(0,)]) as a sum of commuting self-#-adjoint
operators. By Theorem 11.15 Ext-exp[itH, ()((OS))] € B4(0;) and so the right side of (8.3) belongs to B, (0s). By
Theorem 70,
Ext-explitH,(g[1 — x(0,)]D] € By(0y)’
and (114) follows.

Definition 11.13 Let B be a bounded #-open region of spacetime M} and for any timet, let B(t) =

{x| x,t € B} be the time t time slice of B. We define B, (B) to be the von Neumann algebra generated by

U, 0, (B#(B(t))). (115)

Theorem 11.16 The generalized Haag-Kastler axioms (1)-(5) are valid for all these local algebras By (B).

Proof (Except Lorentz rotations) The axioms (1) and (2) are obvious, while (4) follows easily from the finite
propagation speed, Theorem 11.10, together with the time zero =-locality, Theorem 11.12. Because the time zero
fields coincide with the time zero free fields, and because the time zero fields generate By by Theorem 11.12 and the
definition of the local algebras, the free field result carries over to our scalar model with interaction H; # 0. In the
Poincaré covariance axiom (3), the time translation is given by g;. Let B + t be the time translate of the space time
region B € M. Then (B + t)(s) = B(s — t) and so

0c|Us 05 (Bs(B()))| = Us 0sse (Bo(B(5))) = Uy 0 (Bo(B(s = 1)) = Uy 0se (Bo(Bs + 1)) (116)
Thus at(‘B#(B)) = By(B +t) and axiom (3) is verified for time translations. Since the local algebras are
#-norm dense in By and since automorphisms of Cj-algebras preserve the #-norm, o, extends to an automorphism

of algebra By.
Definition 11.14 To define the space translation automorphism o, we set now
P# = Ext- f”p”«;{ p*at(p)a(p) d**p,u = 1,2,3; 0,(A) = {Ext-exp[—ixP]}A{Ext-exp[ixP]}. (117)
Then we get {Ext-exp[—ixP]}¢p,, (x){Ext-exp[ixP]} = @,,(x +y), {Ext-exp[—ixP]}m, (x){Ext-exp[ixP]} =
P(x +y).

The following theorem completes the proof of Theorem 11.16 except for Lorentz rotations.



Theorem 11.17 The automorphism O'x(B# (B)) = By(B + x), st(o,) extends up to C;-automorphism of By, and
(x,t) - st(o,)st(o,) = = st(a,)st(o,) defines a 4-parameter abelian automorphism group of By.

Theorem 11.18 Let O be a bounded #-open region of space and let B,(0) be the von Neumann algebra
generated by the operators Ext-exp[i((p,{(fl) + n,{(fz))] where f;,f, € EE ("R¥) and suppf; c B, suppf, C B.
Then

Ext-exp(itH,)By(0)Ext-exp(—itH,) € B4(0,).

Remark 11.7 We reformulate the theorem by saying that H,, has propagation speed at most one.

In order to obtain automorphisms for the full Lorentz group and to complete the proof of Theorem 11.16, there
are four separate steps.

1. The first step is to construct a self-#-adjoint locally correct generator for Lorentz rotations. This generator

then defines a locally correct unitary group and automorphism group.

2. The second step is to prove this statement for the fields, by showing that the field ¢, (x, t), considered as a
non-standard operator valued function on a suitable domain, and is transformed locally correctly by our
unitary group.

3. The third step is to show that the local algebras By (B) are also transformed correctly.

4. The fourth final step is to reconstruct the Lorentz group automorphisms from the locally correct pieces given
by the first three steps. This final step is not difficult as in in the case of the two dimensional spacetime d =
2, see [16-18].

Let Hy,,(x) denote the integrand in (103), where

Hy, = Ext-[ Hy, (x)d*3x = Ext- [ %: (m2(x) + V¥p2(x) + m2p2(x)): d"x . (118)
The formal generator of classical Lorentz rotations is
MY = MOX + MPK = Ext- [ x¥H,, (x)d*3*x + Ext- [ x*: P (¢,,(x)): d"3x, k = 1,2,3. (119)
The local Lorentzian rotations are
M2 (9{?, g3) = eHou + Hooe(917) + Hin(, 95°) Ho(917) = Ext- [ Hy, (00" (®)d®x.  (120)

We require that 0 < ¢ and that: gik) (x4, %5, x3), ggk) (x1,%5,%x3), k = 1,2,3 be nonnegative C;oo functions. In the
second step we require more, for example that & + gik)(xl, Xy, X3) = X;, and ggk)(xl, Xy, X3) = X, k =1,2,3 in
some local space region. This region is contained in the Cartesian product [g,*0) X [€,*0) X [g,*0). By using
decomposing H, ,, ( gik)) into a sum of a diagonal and an off-diagonal term we obtain H, ,, ( gik)) =

Ext- [v¥) (k1) a*(lk)a()d®kd®™ L+ Ext- [v{) (kD [a*(F)a* (D) + a(-k)a(-D]d**kd*1 =

0D,%

= 1, (9{”) + HE(g{¥),
where

v 8 (k1) = ¢ x(k, L) (uOp® + (k, 1) + m2)[uu®] 285 (—ky + L, —ky + b, —ks + 1),
v (1) = ¢k, 1, 0) (—p(OpD) — (k, 1) + m2) [uuD] 29 (—ky — L, —ky — b, —ks — 1),

and where k = (ky, ky, k3), L= (L, 15, 15),{k, 1)y =X, ki l;, x(k,1,x) =1 if |k| < and [l| < x, otherwise
x(k, 1, x) =0.

Theorem 11.19 (a) v(()’;'))’” € L5("R#3). (b) Function vgf;){ is the kernel of a nonnegative operator and
eu(k)6(k—1) + ﬁvg;){ is the kernel of a positive self-#-adjoint operator, for § > 0, these operators are real in
configuration space.

Proof. The statement (a) is obvious. The statement (b) is proved by using a finite sequence of Kato
perturbations. Letvlgk) =cu(R)6(k—D+p vg‘;{ and let Vg and V), denote the operators with kernels vl(;k) and U(D’fzf
correspondingly. The operator Vj, is a sum of three terms of the form A*M,, A in configuration space, where M, is
multiplication by g; = 0. Thus 0 < V. Moreover for y sufficiently small, but chosen independently of 5, we

obtain yV, < %Vo < %(VO + pVy) = %VB and therefore Vg, = Vg +yVp is a Kato perturbation, in the sense of

bilinear forms. Consequently if the operator Vj is self-#-adjoint, so is Vg, and D(Vﬁlﬁ,) = D(V;,l/ 2). Thus

canonical finite induction starting from V, = Vg shows that Vj is self-adjoint, for all § = 0.
Theorem 11.20 The operator HY (gik)) is nonnegative and eH, + SHY (gik)) is self-#-adjoint, for all § > 0.



The main purpose of the third step is to give a covariant definition of the local algebras By(B).Le f € £}, (B)
be the *R#3-valued function with support in B. Let {a;}/~;,n € *N be finite hyperreal numbers and consider the
expressions

©i(f) = Ext-[ @ii(x,t) f(x, t)d"xd*t (121)
Pi(f,t) = Ext-[ @} (x,t) f(x, £)d*3x (122)

R(f) = Ext-Yi,; a;0%(f, 1) (123)
i (f,t) = Ext-[ m}(x, t) f(x, t)d*3x. (124)

For g =1 on a sufficiently large set (the domain of dependence of the region B), the time integration in (1)
#-converges strongly, and all four operators above are symmetric and defined on D(H ( g)).

Theorem 11.21 The operators (1)-(4) are essentially self-#-adjoint on any #-core for H(g)/2.

Theorem 11.22 The algebra By (B) is the von Neumann algebra generated by finitely bounded functions of
operators of the form (121).

Proof. Note that if a hyper infinite sequence {A,} of self-#-adjoins operators #-converges strongly to a self
#-adjoint #-limit A on a core for A then the unitary operators Ext-exp(itA,,) #-converge strongly to Ext-exp(itA).
Using this fact, one can easily show that the operators (1) and (4) generate the same von Neumann algebra, By, (B)
and that By, (B) D By(B). To show that By, (B) < By(B), recall that a self- #-adjoint operator A commutes with a
finitely bounded operator C provided CD € D(A) and CA = AC on D, for some core D of A. Equivalently is the
condition that the operator C commutes with all finitely bounded functions of A. Also equivalent is the relation
CA = AC on D(A). We choose D = D(H(g)). If the operator C commutes with all operators of the form (122), it
also commutes on D(H(g)) with all operators of the form (123). Hence we get B4(B)' € By,(B)' and so By, (B) =
By1(B)" © By(B)" = By(B)".

Remark 11.8 The Poincare group °P] is the semidirect product of the space-time translations group R with
the Lorentz group 0(1,3) such that {a; + A,}{a, + A,} = {a; + A a,, A, A,}. Here a € RY3 and A(B): (x;,t) —
(xl- X cosh(f) + t X sinh(B), x; X sinh(B) + t X cosh([)’)),i = 1,2,3. We prove that there exists a representation
a(a,A) of the Poincare group °P] by * - automorphisms of By, such that ¢(a, A)(B#(O)) = B, ({a, A}0) for all
bounded open sets O and all {a, A} € °P]. The Lorentz group composition law gives a(a,A) = a(a,)c(0, A).
Obviously the existence of the automorphism representation a(a, A) follows directly from the construction of the
pure Lorentz transformation ¢(0,A4) = g(A). One obtains g(A) by constructing locally correct infinitesimal
generators. Formally, the operators,

MRk = Mg, + MPy = Ext- [, s %{ T, (x)2: +: (V(pﬂ(x))zz +m?: ¢H(x)2:}xkd#3x + H,,,(x*g) (125)

k = 1,2,3 s infinitesimal generators of Lorentz transformations in a region O if the cutoff function g equals one

on a sufficiently large interval. We consider now the regions 0; contained in the sets {x € *R¥3| x;,x,, x5 > |t| +

1}. Thus for such regions 0; we may replace (1) by M = Ext- [, 4 H(x) x*g(x)d**x, with a nonnegative
functions x*g(x), k = 1,2,3. Here H(x) is the formally positive energy density:

H(x) = %{ T, ()% +: (V0 (0)) "1 #1210, ()% | + Hy e () = o () + Hi ().
Therefore M°% is formally positive. In fact it is technically convenient to use different spatial cutoffs in the free
and the interaction part of M°%, k = 1,2,3. Final formulas for M2¥ reads
MR* = M*(g§ , g*) = aHo, + Ho, (X" g§) + Hy, (x*g). (126)
Here 0 < a and 0 < x*g&(x),0 < x*g (x),k = 1,2,3 and in order that (126) be formally correct, we assume
that: « + x*gk = x*¥ = x¥g on [1,R]® = [1,R] X [1,R] X [1,R] with R sufficiently large. For technical reasons
we assume that: a + x*g&(x) = x*,k = 1,2,3 onsupp(g). By above restrictions on g¢& and g* we have that
supp(g&), supp(g) c {x|a < x*,k = 1,2,3} and we show that the operator M2¥ is essentially self- #-adjoint and it
generates Lorentz rotations in an algebra By (0;)

Ext-exp(iBM2¥)B, (0, Ext-exp(—iBM) < By({a, A()}0,) (127)
provided that 0, and {a, A(B)}0, are contained in the region
{x e *R¥B, te "R |t|+1<x, <R-—|t|,k =123}, (128)

where M is formally correct. These results permit us to define the Lorentz rotation automorphism o(A4) on an
arbitrary local algebra B,(0). Using a space time translation o(a), a € *R#* we can translate O into a region O +
a=0; c{x € "R¥,t € *“R¥ x; > |t| + 1} and for R € *R¥ large enough, 0, and {a, A(B)}0; are contained in the
region (1) we define O'(O, A(ﬁ)) = G(A([J’)) by



a(A(B)) 1 B4(0) = a({=A(B)a, 1) ({0, A(BINa({a, I}) I B4(0).
Theorem 11.23 Let M°%(g,, 9), k = 1,2,3 be given by (126), with a, go(x), g(x) restricted as mentioned
above. Then M%%(g,, g) is essentially self #-adjoint on C *(H N H,).
Theorem 11.24 Let 0, and {0, A(8)}0; be contained in the set (1). Then the following identity holds between
self- #-adjoint operators:

Ext-exp(iBM° )} (f)Ext-exp(iBM°) ~ @} (£({0,A(B)}0)) = [.ye 0 (F{0,AB}(x, 1)) ) d*xd?t. (129)

Here provided supp(f) < 0,.
The proof of the Theorem 11.24 is reduced to the verification of the following equations

a* a* )
(o + tﬁ} PE(x,t) = [iMO%, o (x, )] k = 1,2,3. (130)
Here (130) that is equation for bilinear forms on an appropriate domain. Since M°¥ is self #-adjoint, we can
integrate (130), thus we compute formally for H = Hy,, + H;,,(g),
[iM%, @#(x,t)] = [iM°%, Ext- exp(itH)<pff(x t)Ext-exp(—itH)] =
Ext-exp(itH)[iM°%(—t), ¥ (x, 0)]Ext-exp(—itH). (131)
Here M (—t) = Ext-exp(—itH)M°*Ext- exp(LtH ). Formally one obtains that

*o0 n

MO (—t) = Ext-z ( n)

n=0
Note that if M°* and H were the correct global Lorentzian generators and Hamiltonian they would satisfy
[iH, M°*] = ad (iH)(M°*) = P¥, [iH, [iH, M°¥]] = 0, M°*(—t) = M% — Pkt (132)
Here P¥, k = 1,2,3 are the generators of space translations. Thus from (131) we get
[ iM%, o} (x, 0)] = [iMg*] = xm}(x, 0), [iP¥, ¢} (x, 0)] = —=V* () (x, 0).
Formally we have (130).However the difficulty with this formal argument is that H and M°* do not obey (132)
exactly, since they are correct only in 0,. We have instead (132) the equations
[iH,M°] = P, [iH, [iH, M°¥]] = R°¢, k = 1,2,3. (133)
Here Pf, acts like the momentum operators only in the region 0, i.e.
[Plse 03 Ce, )] = [PX, 05 (x, D], (%, ) € Oy
Hence [iH,Pf.| =R,k =1,2,3 is not identically zero, but commutes with B,4(0;). Formally, further
commutators of Ri°¢,k = 1,2,3 with H are localized outside region 0;, and (130) follows formally even for our
approximate, but locally correct H and M%. In order to convert this formal argument into a rigorous mathematical
result, we apply now generalized Taylor series expansion [12] for the quantities
E(—t) ={(Q, [ iM% (—t), pf(x,0)]Q), k = 1,2,3. (134)
Here Q € € *(H) and thus we obtain
Ep(=t) = E(0) -t
From (133) we obtain

w20 (_
d5+t(2§) = (Ext-exp(iEH)Q, [iR}¢, 0¥ (x, &) | Ext-exp(iEH)Q).

Note that (x, t) € 04, so that with & € [—t, t], (x, &) € O, and therefore

[RE?C, 5 (x, f)] =0. (135)
After integration over x € *R*3 with a function f € S (*R¥3) we obtain the operator identity:
g c fin

Ext- fmﬂ[ toc, pft (x, )| f (x)d®x = 0,k = 1,2,3. (136)
Therefore dEk(f) =0if |é] < |t] and
E(—0) = E(0) — ¢t 2

ad™(iH)(M°%), k = 1,2,3.

a*E(0) | t% P Ex(©)

i, T3z Where & € [t t].

(‘Q‘ {[ lMOki Dy (X 0)] - t[Plocl D (X 0)]}9‘)
(Q {xﬂ#(x 0) + tV* (@) (x, 0)} Q).
Thus we get
[iM%%(—t), pf(x,0)] = xmtf(x, 0) + tV¥ i (x, 0) (137)
Inserting the relation (137) in (131) finally we obtain (130).This completes the proof of Lorentz covariance.
Definition 11.14 For the local free field energy we set To(g) = Ty (g) + T¢(g), where

A (k) (k) +{kq,kp)+m?
To(9) = ciExt- fi, _ d* kyExt- [, d* koGt — k3, kf — k3, k§ — k3) {“ L ’&#(Zkl)#(lkzj = }x (138)

ky|<x



af(k1)a(k2);

A —plke) p(keg) +{ky kp)+m?
R N e R S e ERED

T§(9) = coExt- [, |, A kiExt- [,

x {a(ky)a®(~k;) + a(__lﬁ)a(kz)}-
Here ky = (ki, ki, ki), k, = (k3, k3, k3), (ky, k) = Bisi ki ki, §(p) = Ext- [pus(Ext-[i(p, x)]) g (x) d**x.
Similarly, for the local momentum we set P' (g) = P(g) + P*(g),i = 1,2,3 where

P(g) = ¢, Ext- flk < d*3 k,Ext- flk < AP k,g(k} — k3, k2 — k3, k3 — k3) x (140)
(k1+k1+k1)#(k2)+(k2+k2+k%)#(k1) +
TGl a’(kya(ks,),
P%(g) = c,Ext- flk <ot d*3 k,Ext- flk < dB ky,g(k} — k3, k2 — k3, k3 — k3) x (141)

ki+kZ+k3)uller)— (k3 +k3+1k3)ulky)
{( = 1)\7#(11);(4;{:) H }{—a*(kl)a*(—kz) +a(=k)a(k;)}

Definition 11.15 Let B, (f) be the local operator, defined for f € Sf ("R#3) by
Bo(f) = Hoy, (f) = m? [ puat 9% (0): f (X)d™x (142)

Theorem 11.25 Let the operators M%%, k = 1,2,3 are given by M%¢ = aH, + To(xkg((,k)) + T,(xkgik)), H=2
H,, + where Hy £ H,, and T} £ H,,,. Then the following statements hold.

(1) For k = 1,2,3, D((M®)?) < D(H ), D(H?) < D(M°¥).

1 1

() Fork = 1,2,3, D(M®) c D ((H + b)E), D(H)c D ((MOk + b)E).

Theorem 11.26 Let the operators M%%, k = 1,2,3 are given by M% = aH, + To(xkggk)) + T,(xkgik)), where
Hy £ Hy,, and T; £ H,,,. Then the following statements hold.

(1) For I = 2,3,4, M: D(H') - D(H'"?).

(2) As operator equalities on D(H?) for k = 1,2,3,

[iH, M%) = (M) (143)

d#xk

(3) As operator equalities on D(H*), for k = 1,2,3,
a (k) ®)
[iH, [iH, M°%]] = ( iz %) T (T i) (144)

=1 d#x
(4) For | = 2,3,4, H: D((M°)!) > D((M°)!-2).
The equalities (143) hold on the domain D ((M°*)3), and on the domain D ((M°%)*), for k = 1,2,3,

[iMO%, [iM°*, H]| = T, (( "))) >+T, ((d#i (x kglk)))) ((a+xkg )d# 2( kgok))) (145)

Theorem 11.27 As bilinear forms on D (H,) X D(H,) for f, g € SE (*R#3)

[iTo(f), To(g)] = P (f (zizmse)- (zﬁzi;%)). (146)
[iTo (), P(9)] = P (f (z%zij#—i)) T (g (z%zij#i;)). (147)

The equalities (146)-(147) alsoholdif f =1org = 1.In particular from (147) we get
[iHo (), P(9)] = P (T3 52) (148)

Proof. The operators T, P, P are #-closable (symmetric), defined on D(H,) and bounded as operators relative to
H, + I. Therefore (146)-(147) are defined as bilinear forms on D(H,) X D(H,) and it suffices to establish equality
on a core for Hy, e.g. on D* ={ip € F#|yYp™ e Sf ("R¥™), ™ = 0 for all sufficiently large m}. By direct
calculations on D¥ X D# one obtains the equalities (146)-(147). For example

; 1 — ; #3 . #3401 _ _ 1) () +(k,p)+m?
[iHy, T3 (g9)] = ¢ Ext flkllsu d*3 k Ext f|k2|574 dBpglk, — v, ky — 2, ks — p3) {—m } x  (149)
[Ho, at(K)a(p)] =

~ ulk)pu(p)+{k,p)
ic, Ext- flk ™ d*3 k Ext- fk e d® pgk, — py ks — 2,ks — p3) (u(k) — u(p)){%} at(k)a(p)

#3 #3 .. (i=3 A (k1t+kp+k3)pu(p)+(p1+pa+p3z)ulk)
d™ k Ext- flk |<nd pl( i=1(k; _Pi))g(k1 —puky —2,k; —p3){ B \/#(k)#(lp) — }

=c, Ext- flk e



= pw ((Zii?%))

By a similar calculation on D¥ X D* one obtains

. . = dg = d'f
1) (1) (2) (2) _ 1
[LTO ()T (.9)] + [lTo )T, (g)] =PW (f (Zi=1 d#xi) -9 (Zi=1 d#Xi))

Theorem 11.28 As bilinear forms on D(H,,,N,,) X D(H,,.N,,)

[T, (1), Ty (F)] = —4AExt- [.ggs £ () h(3): @ COOME Go): d, (150)
[T (), POAY] = T, (B3 Y1), (151)

Proof. The operators T, T}, P are #-closable, defined on D(HO,,,NH), and are bounded as operators relative to
(HO,,,NM + I). Note that the right hand side of (150) is a bilinear form on D(HO,HNK) X D(HO_MN,,), and that
(Ho N, + 1)_1 [Ext- f*R§3 £ () h(x): 3% ()1} (20): d“x] (Ho N, + I)_1 is a bounded operator. Hence each term
in (150)-(151) is a bilinear form on D(H,,N,,) X D(H,,N,). It suffices to establish equality on D* x D*, as in the
proof of the Theorem 84, since D* is a #-core for Hy,,N,,. Note that on the domain D* x D*, the equalities (150)-

(151) are seen to hold by direct computation in momentum space similarly to proof of the Theorem 11.27.
Remark 11.9 We assume now the relations:

2
0 < @ %9 (01, %5, %3) = [A% (e, 25, %)k = 1,2,3;1 = 0,1, h) € SE,(CRE?). (152)
On a neighbourhood of a polyhedron [a, b]® c *R#, we assume for k = 1,2,3
a+ xkg(()k) (1, X2, X3) = X3 = %391 (%1, X3, X3). (153)
For all x,, € *R¥3,k = 1,2,3, we assume
X1 g1 (X1, X2, X3) = (05 + xkgék) (1, %3, x3)) 91 (x1, X3, X3). (154)

The conditions (154) are satisfied if & + x;, g(()k) (x4, %5, x3) = x; is valid on the support of g, for k = 1,2,3. The
condition (154) makes the required commutators densely defined operators, rather than bilinear forms.
Definition 11.16 Let Ry, ) be a set
Rizp) = {01, %, %3,t) € "REla + [t] <x <b—|t|forallk = 1,2,3}. (155)
Remark 11.10 Note that the operators M°%, k = 1,2,3 are formally a Lorentz generators for the space-time
region ER‘[*a'b], also note that (152) implies that interval I = [a, b] lies in the positive half line. Of course, we can also

consider the operators M%% = —aH, + To(xk gg")) + T,(xk gi")) with gi(k) (x) = gi(k)(—x) and therefore the
operators M, k = 1,2,3 are locally correct generators for ﬁfa_b] = ERE’_ a—b]*

Definition 11.17 We also write R} instead R, ,; for I = [a,b] and we write I> for I* = [a —s,b + s]°. The

conditions (152)-(1544) are satisfied since we can choose gi(k)

so that for some €,0 < ¢ < a/3,
suppg, c I3 ; suppg I3, k=123 (156)
and a + x,9%° (x,, %5, %3) = xp, X € I3, . Hence the conditions (154) hold. We can also letg; = 1,x; € I%; so the
conditions (153) hold on I 3. The Hamiltonian
H = Hy,, + T;(91) (157)
is correct in the region R}. We shall work as above with this particular choice of the Hamiltonian.
Theorem 11.29 For the operators M°* in Theorem 11.25 and H in (157) the following hold:
(1) D(M°*)2) c D(H ), D(H?) € D(M®%), k = 1,2,3
1 1
) D(M%) € D ((H + b)E),D(H) cD ((MOk + b)E) k=123
where b is an constant sufficiently large so that the operators H + b and M° + b are positive.
Theorem 11.30 Ander the conditions (152) and (154) the equalities (143)-(145) hold as bilinear forms on
D(H?) x D(H?) and on D((M°%)?) x D((M°%)?).
Proof. As bilinear forms on D(H?) x D(H?) or D((M°%)2) x D((M°*)?) for k = 1,2,3 the following equalities
hold  [iH, M°%] = [iHo, Ty (x,g{)] + {[iHO, T, (xe91)] + [iT; (1), aHo] + [iT;(g1), To(xx gg"))]}. In order to

compute these commutators we apply Theorem 11.27 and Theorem 11.28.



(x9$

[iH.M°k]=P("d#—))+4AExt Jonge{ 260100 = €91 () = %, (09 (0} 0 GO (x): d¥ox =

()

’

d#xk
This equality holds by the conditions (154). Hence the equality (143) holds on D(H?) x D(H?) and on the
domain D((M°%)?) x D((M°%)?).
Theorem 11.31 If n>2, D(H™) is a #-core for M and D ((M°*)™) is a #-core for H.
Theorem 11.32 Let f € S§ (“R¥®) and suppf c R[,,;, then the operator ¢*(f) is defined on D((M°)?),

o*(f): (M°%)2) - D(M®%), k = 1,2,3 and, as the operator equalities on D(M®%),k =1,2,3
(iM%, 0} (] =~ (t 2=+ 2, L), (158)
Remark 11.11 Note that for f real, the operator @} (f) is essentlally self #-adjoint on D(H™) for any n > 1/2
and
1
@} (F): D((H + b)) - D ((H +b)"2). (159)
Proof The terms in (158) are operators on D(H®) since ¢ (f)D(H3) c D(H?) € D(M®%),k = 1,2,3 and
M°*D(H?) c D(H) < D(¢# (f)) by (157) and Theorem 11.26. Note that by Theorem 11.40 (158) holds on the
domain D(H5). Assuming this, we now can to prove the theorem. Let 1 € D((M®*)?),k = 1,2,3. By Theorem
11.29, D((M°*)?) < D(H ) and by (159) we get y € D(o} (f)). Let us prove now that
@5 ()Y € D(M), k = 1,2,3. (160)

1
Note that M%) € D(M°) < D ((H + b)E) c D(¢# (f)) by Theorem 11.29 and (159), also for k = 1,2,3

a* ot
zpeD((p;; ( a#f +x, a**f))

Therefore by the assumption mentioned above that (158) holds on domain D (H%), we get for all k = 1,2,3 and
for all y € D(H®) that

(MO, o} (M) = G, (DMOP) +i 00 (622 + 0 ZE) . (161)

So @} (f)y € D((M°* t D(H®))") for k = 1,2,3. By Theorem 11.31, D(HS) is a #-core for the M, k =1,2,3
and therefore we get inclusion (160). By using (160) we can rewrite (161) in the following equivalent form

0 M, 0} (A1) = i} (625 + 0 ZE) . (162)

Since D(H®) is #-dense, we get[M%, o (Y = ip} (ta—f + x4 %) Y, proving (158) on the stated domain

¥ xy,
D(M), k = 1,2,3.

Remark 11.12 Let us consider the self #-adjoint operators M%%(t) = Ext-exp(—itH)M*Ext-exp(itH),k =
1,2,3. Since the operator Ext-exp(itH) leaves D(H™) invariant, we have by Theorem 11.29 and Theorem 11.26 that
D(H?) c D(M°*(¢)), k = 1,2,3. And for | = 2, 3,4 we have that

MOk (£): D(HY) — D(H"2),k = 1,2,3. (163)

Let f € Sf, C"R¥*) with suppf c Rf for I = [a, b]. By (159) and (160) we can to conclude that o*(f)D(H?) c
D(H?) c D(M°*(¢t)),k = 1,2,3 and M°*(¢)D(H?) < D(H) < D(g}i(f)) or more generally, we can replace the
operator @ (f) by Ext-exp(itH)¢! (f)Ext-exp(—itH). Thus for ¢ € D(H?) and f € Sf (*R¥*) with suppf c
R}, we can to define the functions

Fie(8) = (@, [iM°*(t), o (1) = (P(t), [iM°F, Ext-exp(itH) gy (f)Ext-exp(—itH)](t)), (164)
Y(t) = Ext-exp(itH)y. (165)

Let] =[a,b], Is = [a — &,b + §] and let R, be the causal shadow of Ag= I5 X I5 X I5. Let R? be aset
wt =%,y {0l <ie} = {olltl <2z a+Isl+ el < b— sl - lel}. (166)

Note that the points of R¥ have small times, and R? translated by times less than |s| lies in R.
Theorem 11.33 Let ¥ € D(H®), then F(t),k = 1,2,3 in (161) is twice #-continuously differentiable. If
d* 2 () _

atez T =0

function f has #-compact support in R, then for [t| < |s|,



Proof First we prove the differentiability of F, (t),k = 1,2,3. Let A, be the difference quotient for the
n-derivative of Ext-exp(itH) att = 0. For instance, A, () = ¢ *(Ext-exp(icH) — I ). Note that for a given vector
Y € D(H™),and m + j < n, as € -4 0, we get [|[H™{4;(e) — (iH)f}¢||# = ||{a;¢&) - (iH)f}Hm¢||# —,4 0. Hence,
for i € D(H™), the operator valued functions M°*(Ext-exp(itH)) is n — 2 times #-differentiable, since for j <
n—2 we get |[M°%(Ext-exp(itH)){A;(e) — (iH)f}l,b”# < ||{a;(&) — GHY }(H + b)21p||# -4 0. All these
functions F, (t) has the following form

F,(t) = i{M % (Ext-exp(itH) )Y, Ext-exp(itH) o} (f)y) — i(Ext-exp(itH) @} (), M (Ext-exp(itH) ).

For a given vector ¥ € D(H®), ¢f (f)y € D(H*) and F,(t) is three times #-continuously #-differentiable.

Note that
#
LI — MOk Hy(r), Ext-exp(itH) gl () — (MOp(e), H(Ext-exp(itH) ) — (167)
(Ext-exp(itH) gy (f), HM°* (1)) + (Ext-exp(itH) @} (f )i, MO Hp(1)).
By rearranging the terms in (167) and using the domain relations of Theorem 11.26.1) we obtain by (143) that
d*F ()

O (o, [H, MO (O]} (W) — (0l (I [H, MO D)) = (168)
(k)
( s )> (Ext-exp(itH) )oj (F)w) +

( kgok))

—i{y, (Ext-exp(—itH) )P

i{@# (FHY, (Ext-exp(—itH) )P (Ext-exp(itH) )y).

(k)

By #-differentiating (168) and writing P,, for the operator P (M) we obtain

d*2F(t)
da*t2

= —(y, (Ext-exp(—itH) )[H, P, ](Ext-exp(itH) ) + (169)
(@i (), (Ext-exp(—itH) )[H, P ](Ext-exp(itH) )) =

Xkdo

(o), [ (d#ztg# 2(k>)) -T (d#(gl)), (Ext-exp(itH) )@} (f)(Ext-exp(—itH) )y |).

d#xk
Note that the all terms in (169) are well defined. For instance, HP, (Ext-exp(itH) )@# () is well defined
since, for a given vector ¢ € D(H®), (Ext-exp(itH) )of (f)y € D(H*), and by Theorem 11.26 for all k = 1,2,3
we obtain
P (Ext-exp(itH) )} (f )7y = [iH, M°*](Ext-exp(itH) Yo} (f ).
Note that HM°*(D(H*)) € D(H) and M°*H(D(H*)) c D(H), so HP.(Ext-exp(itH))p# () is well

defined. Now, assuming that suppf c R, [t| < [s| we can to show that a! Fk(t) =0,k = 1,2,3, this proof is
based on the locality of the operators Sy, k = 1,2,3
(1)
d Xkd - a#
Sk = P ( i= 1%) =T (Z;id#_it)- (170)
. . a*?(x.5°) d'g, .
The operators S, are symmetric on D(H,N) and by (153) for k = 1,2,3 and i = 1,2,3 —hz = 0= d#—; n

a neighbourhood of A= [a, b]3. We prove that S,, k = 1,2,3 commutes with the von Neumann algebra W(I) =

{Ext-exp(ip# (hy) + im} (hy))|h; = Ry, € SE,("R¥3), supph; € R, generated by the spectral projections of the

time zero fields Ext- f*Rgg, @ (x) hy(x)d*3x and Ext- f*mg mh(x) hy(x)d*3x, h; = h, € St ("R¥3), supph; c R,.
Theorem 11.34 On the domain D (H?) for k = 1,2,3 the equalities hold

[S, W(D]D(H?) = 0. (171)
Proof Let D* be the domain of well-behaved vectors.
D* ={y € F¥|Y™ € SE (CR¥3™), ™ = 0 for all sufficiently large m}. (172)
For x,, x» € D*, direct momentum space computation gives for all n € *N
n n
(Sex1s (QD;#; (hy) + 7}, (hz)) X2) = ((‘Pﬁ (hy) + 1} (hz)) X1 SiX2) (173)

1
By easy computation we get the inequality ||(go,‘}t (hy) + 7} (hz))n X || < c,cz(n!)z for constants ¢; and c,
depending on vector y € D¥. Therefore y € D* are entire vectors for the operator (¢ (h,) + 7 (h,)), and the
sum



oo (i} ()+imf ()" .
Uy = Ext- an()w;( = Ext-expli(of (hy) + ¥ (hy)]x (174)

#-converges strongly. Now, we multiply (173) by i"(n!)~! and by summation over n using the #-convergence of
the hyper infinite series (174) we get for all k = 1,2,3 that (S, x1, Ux2) = (U*x1, Skx2) = (X1, USix>) for x; € D¥,
i = 1,2. Note that this equality extends to y; € D(H,, N),i = 1,2 since D¥ is a core for operators Hy, N and S, and
1S xlle < pll(Ho,N + Dyl|ls where u is finite constant. Therefore for y € D(Hy, N), we have proved that Uy €
D(Sy) and SyUy = USyx, k = 1,2,3. For the next step we now prove that y € D(H,, N) = Uy € D(H,, N), so that
S Ux = USix, k = 1,2,3, since the operators S, are symmetric on D (H,, N). We define on D(H,,,N) a #-norm by
llxlls = I(Hp,N + Dxll4; Note that the corresponding scalar product makes D (H,, N) a non-Archimedean Hubert
space, say Hy,. For the next step we now prove that the operator B = ¢ (h,) + ¥ (h,) generates a one parameter
group U(a) = Ext-exp(iaB) = Ext-exp[ia(B = @f (h) +nk (hz))] on Hy; and therefore we need to prove that
the operator
B = (Hy,N + NB(Hy, N + D71 (175)
is a generator to one parameter group on a corresponding Fock space. Since B is essentially self #-adjoint on D¥,
and on this domain we have that
B =B + [Hy,N,B](Hy,N + 1)~ = B + [N, BlHy, (Hy,N + )~* + N[H,,,, B](Hp,,N + )1 = B + A.

Hear A is bounded operator. Note that B I D* is a bounded perturbation of an essentially self #-adjoint operator.
Hence it #- closure #- (@ [‘D#) generates a one parameter group on Fock space F#, and operator B ' (H,, N +
I)D* has a #- closure in Hy, that generates a one parameter group on Hy;. Since the topology of Hy, is stronger than
that of F*, the #-closure of B I (H,,,N + I)D* in Hy, is a restriction of #- B in F# and the one parameter group in
Hy, is a restriction of the one parameter group generated by #- B in F*. This proves that

U: D(HoyN) = D (Ho,N)

Therefore we have proved that S, Uy = US,x, k = 1,2,3. Now by passing to strong limits of linear combinations
of such operators U we obtain (165) on restricting to the domain D(H?) € D(H,,N). This makes precise the
statement that operators Sy, k = 1,2,3 are localized outside A= [a, b]3.

Remark 11.13 Note that for each t;, |t;| < |s;|, the spectral projections of Ext- f*R§3 Q) f(x, t)d*3x

belong to W (#-int(A_|s|)), where #-int(A_j5|) is the #-interior of A_jg= {x|(x,t;) € R} = {(x1, %2, x3)|a +
|s|] < x, < b —|s|}. Note that suppf < R¥, hence the spectral projections of

Ext-exp[iH(t + t;)] (Ext- f*R§3 eF () f (x, tl)d#3x) Ext-exp[—iH(t + t;)] (176)
belong to W(#-int(A|t|_|S|)). For |t| < |s|, #-int(Aj,_js)) € A; so the spectral projections of (170) belong to
W (A). Now we use the locality property of the operators Sy, k = 1,2,3. Note that for vector y € D(H?),)p € D(H?)
we have thaty € D (Ext- Jogps 95, O)f (x, tl)d#3x), and for @f(f) = Ext- [ps 9% (6, Df (x, )P x d*t, by
(159) it follows

Ext-exp[itH @k (f)Ext-exp[itH|y € D(H?). (177)
Therefore by (171) and the localization of (176) for all k = 1,2,3 we get
(Sex, Ext-exp[iH (t + t,)] (Ext- Jogrs 0% COf (x, fl)d#3x) Ext-exp[—iH(t + t)]y) = (178)

(Ext-exp[iH(t + t;)] (Ext— Jogrs 0% COf (x, tl)d#3x) Ext-exp[—iH (t + t)]x, Sci).

Note that for |t| < |s| and f € Sf, (*R¥4) with suppf c R* we can integrate the equality (178) over t; to
obtain

(Six, Ext-exp[iH (t)] ) (f)Ext-exp[—iH () 1)) = (Ext-exp[iH (t)]@} (f)Ext-exp[—iH ()], Sb) = (179)

(X, SiExt-exp[iH ()] 5 (f ) Ext-exp[—iH (©)]).

Here the last equality in (179) follows by (177) and the fact that S), is a symmetric operator on D(H,, N) D
D(H?). From (179) we obtain that S, € D(((Ext-exp[iH (¢)]pf(f)Ext-exp[—iH()]) D(HZ))*) and therefore
that S, € D(Ext-exp[iH (t)]@# (f)Ext-exp[—iH(t)]), since D(H?) is a #-core for ¢ (f). Finally from (179) we
get for |t] < |s| and f € SE, (*R¥*) with suppf c R¥ for all k = 1,2,3 that

SpExt-exp[iH (t)] o (f)Ext-exp[—iH (t) |y = Ext-exp[iH (t)]@f (f)Ext-exp[—iH (t)]S . (180)

#2
We apply the relation (180) to (169). In that case ¥ (t) € D(H®) < D(H?), so dﬁ;ﬁﬂ =0, for [t] < |s].



Theorem 11.35 [15] Let f € Sf, (*R¥%) and suppf c R¥, then on domain D (H®) the operator equalities hold
forall k = 1,2,3

#0900
[iM(s), 2 (f) ] = iM%, 955 (f) ] —S[P (M)Mﬁ(f)]- (181)

d#xk
The next step in the proof of Theorem 11.32 is to pass to the sharp time #-limit of Theorem 11.35, thus we need

to choose a hyper infinite sequence of functions f, € S§ (*R#*),n € *N which pick out a time zero contribution in
the #-limit. Let us define now

A (f, 1) = Ext- [.pus 0 (O f (x, ) d*3x, (182)
B, (f,t) = Ext- [.pus s (X) f (x, )d**x. (183)
Where ¢} (x) and 7% (x) the canonical time-zero fields. for real f € SE (*R#*), with #-compact support, 4,,(f,t)
and B, (f, t) are essentially self-#-adjoint on D ((H + b)i). Let f € C, (RY) and let £, (x,t) € SE ("R¥*),n € *N

be a hyper infinite sequence of functions of the following form f,(x,t) = f,(x,s)8,(t) with support in R¢ and

#-converging in the weak sense to f,(x,s)8 (t) as n - *oo. For the vector 3 € D(H>), the vectors M°*(s)y, k =

k
e

1,2,3, and the vectors M Okl,b, P ( T )) 1 the same as in the proof of Theorem 11.35. Note that the bilinear form
k

@l (x,t) for (x,t) € R} determines a bounded operator

1 1
G(x,t) = (H+Db)z fi(x, t)(H +b)=. (184)
Note that the operator valued function G (x, t) is #-continuous in variable (x, t).
Theorem 11.36 Let f € Sf, (*R¥%) and suppf c R}. Then, in the sense of bilinear forms on D(H?®), for all k =
1,2,3

[iMO(s), A, (f, )] = [iM**, A, (f, )] = s[iPy, Ay (f, 5)] (185)
Here P, = P (M).

d#xk
Theorem 11.37 [15] Let f € C ;w( R1). As an equality of bilinear forms on D(H ) X D(H )
#
[i P, A, (f,5)] = A (ﬂ s). (186)

d#xk'
And where P, is defined in Theorem 11.36.
Theorem 11.38 As the equalities of bilinear forms on D(H?) X D(H?) forall k = 1,2,3

[iM%%, A, (f, )] = [iH, A, (i f, 9)] = B, (xi f, 5). (187)
Theorem 11.39 [15] Let |f 4, be the #-norm |f1y, = ¢ (Ext- [y {IFC, O)llez + i 0£F G 0, } d*¢).
Let |f|4, is finite. Then on the domain D ((H + b)%), ), the field @ (f) satisfies the following equation

@ () = —f07 f) = mi(f) = [i, 9 ()] (188)

Proof Note that the first equality in (188) is the definition of a distribution #-derivative. The out the difference

quotient A, f(x,t) to #-derivative 9] f reads A, f(x,t) = w, note that #-liron Af(x,t) = 0f f(x,t).
E4

Note that for any vector ¥ such that ) € D ((H + b)%) by canonical consideration we get
#liml| o (9F v — o (Aef (e, O)wl, = 0.
We have fory € D ((H + b)%) that
@ (Def (x,0))y = 71 (I — Ext-exp[icH]) {Ext- f*lR’c” o, t —e)f(x, t)d#3x1/)d#t}+

e ! {Ext-f A, (f, t)(Ext-exp[icH] — I)z,bd#t}.
*R§3

Here the last term #-converges as € >4 0 and it #-limit is: i (Ext- g A (£, t)Hz,bd#t). Since @ (A f (x,0) )

#-converges as € >4 0, the remaining term in expression for ¢} (AS f(x, t))l[} #-converges also to a #-limit ¢;. For
x € D(H) we obtain that

(6 W2) = #elim (eI — Ext-explieH]) {Ext- [.pps 0} (x,t — ©)f G, 0P apd?t ) = (iHx, 9} (W),



Since H = H*, it follows that @f(f)y € D(H) and 1, = iHp#(f)y and therefore: —qf (9} )y =
[iH, @i (). From the above equation we obtain

<¢,<pf:(aff)w>=Extf (HY(®), Extf 0 (x, 0)f (x, A xp(2) ) d*t —
*lR #3

R
Ext-f (Ext-f o (x, 0)f (x, t)d*xp(t), HP(t)) d*t.
*Rﬁ *Rg3

Here y(t) = Ext-exp[itH]y. Note that(t) € D(Ho,) N D(Hyy), and |[Hp, ((®) — ()|, < al|(H +
b)(y(o) — 1/)(5))”# -4 0, as |t — s| =4 0. Therefore we may substitute H, + H;, for H and consider each term
separately. Note that the operators H;,, and Ext- f*Rﬂ @i(x,0)f(x,t)d*3x commute and therefore H,, contribute
zero to equality above. The following identity by canonical computation holds for any 3 € D(H,,,), in particular for
Y(t) = Ext-exp[itH]y € D(H,,,)

(Hosth, Ext-[. o 9} (e, 0)f (o, 0¥ xtp ) — (Exct- [, 0806, 0)f Cx, 0)A*xa) , Ho, ) =
W, —iExt-f #3ﬂﬁ(x, 0)f (x, t)d*3xy ).

R

Therefore finally we get )
i, 9 (0f I} = Ext- [.ps (b (£), —iExt- [Lpus i (x, 0)f (x, )Pt ) d¥t = (b, —imf ().
This equality finalized the proof. ’ ’
Theorem 11.40 As the operator equalities on D(H®) for all k = 1,2,3
(iM%, 0} ()] =~} (¢ 5L+ ZL), (189)

Proof We first prove (189) as equalities of bilinear forms on D(H%) x D(H®). Let ¥ is a near standard vector

and ) € D(H®). By Theorems 11.37-11.39, for all k = 1,2,3 we get

#
(W, iM%(5), A, (f, P) = W, B, (xie [, )P, ) — (@, A( f. )IP)-

Substituting Ext-exp(iHs) for i, we obtain that
(W, [iM°, Ext-exp(iHs)A,,(f, s)Ext-exp(—iHs)|y) = (190)

(Y, Ext-exp(iHs) {BH (xrf,s) — A (s d#iai' s)} Ext-exp(—iHs)Y).
From (188) we get
Ext- f*Rﬁl; Ext-exp(iHt) m#(x)Ext-exp(iHt)f (x, t)d*3xd*t = —¢f (%). (191)
Using (191) we integrate (190) over s to obtain for all k = 1,2,3 the equalities of bilinear forms
W, iM%, 0 (%) = — 0k (3L + 2, L) ). (192)

#

Since M @ (), @k (f)M%, and ¢} ( 27 —+ X ‘;#f) are operators on D(H®) for all k = 1,2,3, the operator

equalities (189) follows by polarization and the # -density of D(H?®). This final remark completes the proof of the
theorem and hence it completes the proof of Theorem 11.32.
Theorem 11.41 [15] Let R © *R¥ %, be an bounded region in "R}4, and let (B, x,t), k = 1,2,3 be a functions

such that F, (B, x,t),B € *]RC fin and CMED) are #- continuous in (3, x, t), where the partial #-derivative exists for

a*p
each point (x,t) € *]RC fin- Assume that for all f(x,t) € C Oo;n( R) the following equalities hold for all k = 1,2,3,
0" Fr(B.x,t)
Ext- LR#gg‘T’;"f (x, 0)d*xd"t = ~Ext- [0 Fo(B,x,0) [ B+ £2 ]d#Sxd# (193)
Then for all (8, x,t) such that A, z(x,t) ERfor0 < y < 1,k=123
Fe(Bx,6) = Fi (0,4,5(x,6)) + (8, x,£) = (194)

F,. (0, x; cosh § + tsinh 8, x; sinh § + t cosh ) + §(B, x, t).
Here §(f, x, t) is a nonzero function such that §(8, x,t) # 0 and §(B, x, t) is #- differentiable with zero partial
#-derivatives 8 (8, x,t) = 0,8% (B, x,t) = 0,6¢ (B, x,t) = 0.



Proof Obviously (194) is a solution to the equations (193). Thus we need prove uniqueness (194) for a given
function §(B, x, t) and for all k = 1,2,3 and it is sufficient to prove uniqueness for the case F; (0, x,t) = §(0, x, t).

# #
Let A, be the operator 4, = x;, % + tai—xk. Note that by (177), provided suppf (Ayﬁ/(x, t)) c R we get
o ,
57 (Ext- [gps Fe (B2, OF (Aypr (x,0)) dPxd"t ) = (195)
0*F (B, x, 1) ,
Ext- ﬁRgs {6#—[)”f (Ayﬁ,(x, t)) + F (B, %, ) A f (Ayﬁ,(x, t))} dBxdt = 0.

Let R=Ng<yc1lyp Rand f(x,t) €C ;‘}?in( R), then (195) holds for all B’ such that 0 < B’ < B. Note that

for all functions f(x,t) € C ;?in( R) the following equalities (196) hold for all k = 1,2,3,

Ext- f*u«“ F.(B,x,O)f (Ayﬁ,(x, t)) d®3xd*t = 0. (196)
Thus, in the sense of distributions we obtain that
F.(B,x,t) =0,(x,t) € R (197)

Since F,(B,x,t) is #-continuous, (197) holds in usual sense everywhere in%R. This establishes required
uniqueness, and completes the proof of the theorem.

Definition 11.18 (1) Let (H,, ||:]|+) be a linear normed space over field *C¥. An element x € H, is called finite
or norm finite if ||x||; € *R¥ g, and we let Fin(Hy) denote the set of the all finite elements of Hy; the element x €
H, is called infinitesimal if ||x||4 = 0 and we write x =y for ||x — y|ls = 0. (2)Let (Hg, (-)») be a non-
Archimedean Hilbert space over field *C¥ endowed with a canonical #-norm ||x||s = \/{x, x)4, then we apply the
same definition as in (1).

Definition 11.19 Let A be a linear operator A: Hy = Hy with domain D(A4). Let D, (A) € D(A) be a subdomain
such that for all ¥ € D(A): Y € Dg,(4A) & |lx||» € *]R{f_ﬁn and let Df (A) be a subdomain D, (A) © Dg,(A) such
that for all ¥ € D, (A): Y € D, (A) < ||Ax|ly € "R 4y

Definition 11.20 Let q(-,) be a bilinear form with domain D(q) X D(q) on Hy such that D(q) X D(q) &
Hy, xH, and D(q) XD(q) » *C¥. Let Dg,(q) X Dgn(q) € D(q) X D(q) be a subdomain such that for
all {1, %,} € Dpn(@) X Din(@) < (1, ¥2)ul € "Rign.  Let  DEi(q) X DEn(@) © Diin(q) X Din(q)  be  a
subdomain such that for all {1;, 1} € Dn(q) X Diin(@): {01, P2} € Dltn(@) X Ditn(9) < by, ) € “Chy

Theorem 11.42 [15] Assume that the operators M = MI* = MJ% + MYk, k = 1,2,3 satisfy conditions (152)-
(154) and where the operators M{%, are defined by (125). We set now §(B, x,t) ~ 0.

(1) If f € SE,CREY), suppf c #-int( R}), A= [a,b]® and suppfy(g) S #-int( R}) = g3, then for all k =

1,2,3 on domains Dy, (M%%)?)
Ext-exp(iM°* B)p} () Ext-exp(—iM*B) ~ o} (facp))- (198)

Here the = - equalities (198) hold as = -equalites for self #-adjoint operators.

(2) If (x, t) € R} and Ag(x,t) € R4, then forall k = 1,2,3

Ext-exp(iM°¢ )@ (x, t)Ext-exp(—iM°*B) ~ ¢} ( Ag(x, t)) (199)

Here the ~ - equalities (199) hold in the sense of “Rfg - valued bilinear forms on domains Df, (M%) x
D, (M%%) and on domains Df (M%) x D (MF).

Remark 11.15 Note that (1) for real-valued f € Sf (*R#*) is a self-#-adjoint operator ¢ (f), essentially
self -#-adjoint operator on a variety of appropriate domains. It is for this self #-adjoint operator that (198) is valid;
(2) on the subdomains D, ((M°*)?) = -equalites (198) entail for all k = 1,2,3 the equalities

st(Ext-exp(iM°*B) g}t (x, t) Ext-exp(—iM®B)) = st ((pff ( Ap(x, t))) ;

(3) on the subdomains D, ((M°*)?) the ~ -equalites (198) entail for all k = 1,2,3 the equalities

st(Ext-exp(iM°*B) ot (f)Ext-exp(—iM°*B)) = st ((p,ﬁ|l (fA(ﬁ))).

Proof Let iy € D(M®%) and let F, (B, x, t) be the function is defined by

F(B,x,t) = (Ext-exp(—iM°*B)y, o} (x, t) (Ext-exp(—iM°* B)ip)). (200)
Forall (B,x,t) € "R¥ g, x "RE%, and for f € SE ("R¥*), let F. (B, f) be the function is defined by

Fi (B, ) = (Ext-exp(—iM° B)p, o (f) (Ext-exp(—iM°* B)yp)) =



Ext- [ Fi(B, x, )f (x, t)d* xd"t. 201)

3 3
Note that @ (x, t) is a bilinear form defined on D ((H + b)E) X D ((H + b)E), #-continuous in (x,t) € *R¥%

¢ fin*
1
By Theorem 11.29 D(M°¢) c D ((H + b)f) and therefore F, (B, x,t) is well defined and #-continuous in (x,t).

Note that a function Fj, (B, x, t) is #-continuously #-differentiable in § € *Rzﬁn and for all k = 1,2,3
*Fr(Bxt) _

aig = —(Ext-exp(=iM**B)iM**, ¢y (f) (Ext-exp(—iM**B)i)) (202)

—(Ext-exp(—iM°*B), @i (f ) (Ext-exp(—iM°*B)iM°*yp)).
By the canonical argument, we have for all k = 1,2,3 that

ZIUBD - (Ext-exp(~iM ™ BY, [iM%, o} (F)](Ext-exp(~ iM% B)ip)) = (203)

a"p
Ext- f F.(B,x,t)f(x, t)d*3xd*t.
©3

By Theorem 11.40 under the condition suppf C #-int( R}) we have for all k = 1,2,3 that

0*F (B, 1) . o*f  a*f .
(;T = — (Ext-exp(—iM°* By, i (xk Gt 6#xk) Ext-exp(—iM°*B)y) =
a* a*
—Ext- f*mm Fe(B,x,t) (xk a_#]; +t ﬁ) f(x,t)d*3xd*t. (204)
Therefore by Theorem 11.40 under the condition
UOSysl Ayﬁ(xi t) € mi (205)
we have for all k = 1,2,3 that
Fo(B,x,t) = F, (o, Ap(x, t)) +68(8,x,t) (206)
That is, if (205) holds, then (206) also holds for all k = 1,2,3 and finally we get
Ext-exp(iM°* )k (x, t) Ext-exp(—iM°kB) = i ( Ag(x, t)) +6(8, x, t). (207)

Here the equations (207) hold in the sense of bilinear forms on D ((M%%)?) x D((M°*)?), i.e.
(1, Ext-exp(iM°B)gf (x, ) Ext-exp(—iM™BY,) = (W, 0} ( 4506,0)) o) + 6(B, %, )by, ). (208)
From (208) on the domain Df, ((M°%)?) x DE,((M°%)?) c D, ((M°%)2) X Dg,, (M°%)2) € D((M°*)?) x
D((M°*)2) we get the = -equality
(W, Ext-exp(iM*B)pf (x, O)Ext-exp(~iM Yz = Gy, o} (45 (0. 0)) ), (209)

since (11, 1,) is finite and therefore §(B, x, t){¥,¥,) = 0.
Note that in the #-limit A -, 0 by (125) we get

#- 1im0 MO% = MmOk, (210)
—#
Therefore in the #-limit 4 —4 0 from (208) and (210) we obtain that
Alirr%) (Y, Ext-exp(iM°¢ B) ¥ (x, t) Ext-exp(—iM°*B)p,) = 210D
4

(Y1, Ext-exp(iMR*B) g ,. (x, ) Ext-exp(—iM* f)y,) =
Lim (o, 0 (A (e 0) 2 + 608, 2, )1, ) = Wb, b (4500 0)) W)+ 8B, 2%, )by, ).
From (211) on the domain Df, ((M°%)?) x DE,((M°%)?) c D, ((M°%)?) X Dg,, (M®%)2) € D((M°*)?) x
D((M°*)?) we get the ~ -equality for free quantum field ¢f, (x, t)
(r, Ext-exp(iMPB)gh . (x, O)Ext-exp(~iMPBYPo) = (b, 0 ( 4506, 0)) ). (212)
Remark 11.16 Note that the = -equality required by (212) is necessary, see Remark 9.2.
The ~ -equality (209) extends by #-closure to Df, (M) x Df (M), since Df, (M) c D&, ((H + b)*/?) by
Theorem 11.29, and the estimate
|(y, Ext-exp(iM°*B) @ (x, t) Ext-exp(—iM°k )y )| =~ (213)
2
|, 0f (4500 0) W) < el + By 72y,
Here c is finite constant. Furthermore D((M°%)?) for any k = 1,2,3 is a #-core for H, by Theorem 11.31, and
1

therefore a #-core for (H + b)z. Thus (208) extends to D((M°*)?) x D((M°*)?) and on this domain we also have

#-continuity of the form in (x,t) € *]Rﬁ?in. Note that it is necessary to assume that Up<y<q 4A,5(x,t) € R:.



However for the regions Ry this statement follows from the condition (x,t) € Ry = Ag(x,t) € R}. This final
remark completes the proof of this theorem part (2). Now we go to prove the operator = -equality (198) for the case

f € SE (CR#), suppf U suppf 4, By Theorem 11.29, the operators ©E(f) and ¢f (fAB) are defined on domain
D((M°%)?), Integrating (207) against f (x, t), we get the equalities
Ext-exp(iM°* )@k (f)Ext-exp(—iM°*B) = ¢f (fAB) + Ext- fmg 5B, x, t)f (x, t)d*3xd*t. (214)

Obviously the equalities (213) hold on the domains D((M°*)?) with k = 1,2,3 correspondingly. For any vector
1 such that i € D((M°%)?) from (207) we obtain the equalities

O (f)Ext-exp(—iM°* B = Ext-exp(—iM°*B)p}: (fAﬁ)l,b + (Ext- fmg §(B,x, t)f (x, t)d#3xd#t) Y. (215)

1
Since ”qo,ﬁt (fAB)l,b” <q ”(H + b)Ezp” and D((M°%)?) for any k = 1,2,3 is a #-core for H, by Theorem
11.31, the equalities (215) extends by #-closure to D(H) and (215) holds for 1 € D(H). Since the domain D (H) is
a #-core for the operator ¢} (f A B)’ we conclude that (214) extends by #-closure to D ((pf{' (f 2 ﬁ)) and therefore the

equalities (215) hold for all k = 1,2,3 and for any v such that ¢ € D (goff ( fa B)) Thus we have proved that

Ext-exp(—iM°*B)D ((pﬁ (f/lﬁ)) c D(gi(N).

By similar consideration one obtains that

Ext-exp(=iM* D (¢4 (£2,)) = D(02(D).

This proves (214) as an equality between self- #-adjoint operators, completing the proof of the theorem.

CONCLUSION

A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field
operator @(x,t) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued
function. We prove using this novel approach that the quantum field theory with Hamiltonian P(¢), exists and that
the canonical C*- algebra of bounded observables corresponding to this model satisfies all the Haag-Kastler axioms
except Lorentz covariance. We prove that the A(¢*), quantum field theory model is Lorentz covariant. For each
Poincare transformation a, A and each bounded region O of Minkowski space we obtain a unitary operator U which
correctly transforms the field bilinear forms @(x,t) for (x,t) € 0. The von Neumann algebra €(0) of local
observables is obtained as standard part of external nonstandard algebra By (0).
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