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Abstract. A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field 
operator 𝜑(𝑥, 𝑡) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued function. 
We prove using this novel approach that the quantum field theory with Hamiltonian 𝑃(𝜑)! exists and that the 
corresponding 𝐶∗- algebra of bounded observables satisfies all the Haag-Kastler axioms except Lorentz covariance. We 
prove that the 𝜆(𝜑!)! quantum field theory model is Lorentz covariant. 

INTRODUCTION 

Extending the real numbers ℝ to include infinite and infinitesimal quantities originally enabled Laugwitz [1] to 
view the delta distribution 𝛿(𝑥) as a nonstandard point function. Independently Robinson [2] demonstrated that 
distributions could be viewed as generalized polynomials. Luxemburg [3] and Sloan [4] presented an alternate re-
presentative of distributions as internal functions within the context of canonical Robinson's theory of nonstandard 
analysis. For further information on nonstandard real analysis, we refer to [5, 6]. 

Abbreviation 1.1.1In this paper we adopt the following notations. For a standard set 𝐸 we often write 𝐸!". For a 
set 𝐸!" let 𝐸!"	

$  be a set 𝐸!" = { 𝑥	∗ |𝑥 ∈ 𝐸!"}	
$ . We identify 𝑧 with 𝑧	$  i.e., 𝑧 ≡ 𝑧	$  for all	𝑧 ∈ ℂ. Hence, 𝐸𝐬𝐭 = 𝐸!"	

$  if 
𝐸 ⊆ ℂ, e.g., ℂ	$ = ℂ, ℝ	$ = ℝ, 𝑃	$ = 𝑃, 𝐿(↑	$ = 𝐿(↑ ,	etc. Let	 ℝ	∗ ≈	, ℝ	∗ ≈(	, ℝ	∗ ,-.	, ℝ	∗ /, and ℕ	∗ / denote the sets of 
infinitesimal hyper-real numbers, positive infinitesimal hyper-real numbers, finite hyper-real numbers, infinite 
hyper-real numbers and infinite hyper natural numbers, respectively. Note that ℝ	∗ ,-.	 = ℝ	∗ \ ℝ	∗ /	,  ℂ =	

∗ ℝ	∗ + i ℝ	∗ , 
ℂ	∗ ,-.	 = ℝ	∗ ,-.	 + i ℝ	∗ ,-.	.  

Definition 1.1Let {𝑋, 𝑂} be a standard topological space and let 𝑋	∗  be the nonstandard extension of	𝑋. Let 𝑂0 
de-note the set of open neighbourhoods of point 𝑥 ∈ 𝑋. The monad 𝑚𝑜𝑛1(𝑥) of 𝑥 is the subset of  𝑋	∗  defined by 
𝑚𝑜𝑛1(𝑥) =∩ {	 𝑂	∗ |𝑂 ⊂ 𝑂0}.The set of near standard points of 𝑋	∗  is the subset of  𝑋	∗  defined by 𝑛𝑠𝑡	( 𝑋	∗ ) =∪
{𝑚𝑜𝑛1(𝑥)|𝑥 ∈ 𝑋}. It is shown that {𝑋, 𝑂} is Hausdorff space if and only if 𝑥 ≠ 	𝑦 implies 𝑚𝑜𝑛1(𝑥) ∩ 𝑚𝑜𝑛1(𝑦) =
∅. Thus for any Hausdorff space{𝑋, 𝑂}, we can define the equivalence relation ≈1 on 𝑛𝑠𝑡	( 𝑋	∗ ) so that 𝑥 ≈1 𝑦 if and 
only if 𝑥 ∈ 𝑚𝑜𝑛1(𝑧) and 𝑦 ∈ 𝑚𝑜𝑛1(𝑧) for some 𝑧 ∈ 𝑋. 

Definition 1.2 The standard Schwartz space of rapidly decreasing test functions on ℝ2, 𝑛 ∈ ℕ is the standard 
function space is defined by   𝑆(ℝ2, ℂ) = H𝑓 ∈ 𝐶/(ℝ2, ℂ)|∀𝛼, 𝛽 ∈ ℕ2N‖𝑓‖3,4 < ∞RS, where 

‖𝑓‖3,4 = sup0∈ℝ! W𝑥3 X𝐷4𝑓(𝑥)ZW. 
Remark 1.1 If 𝑓 is a rapidly decreasing function, then for all 𝛼 ∈ ℕ2	the integral of [𝑥3𝐷4𝑓(𝑥)[ exists 

\ [𝑥3𝐷4𝑓(𝑥)[𝑑2𝑥 < ∞
	

ℝ!
 

Definition 1.3 The internal Schwartz space of rapidly decreasing test functions on ℝ2, 𝑛 ∈ ℕ	∗	
∗  is the function 

space defined by  𝑆	∗ ( ℝ	∗ 2, ℂ	∗ ) = H 𝑓	∗ ∈ 𝐶 /	∗	
∗ ( ℝ	∗ 2, ℂ	∗ )|∀𝛼, 𝛽 ∈ ℕ	∗ 2N ‖ 𝑓	∗ ‖3,4	

∗ < ∞	∗ RS, where 



‖ 𝑓	∗ ‖3,4	
∗ = sup ^𝑥3 X𝐷4𝑓(𝑥)Z |𝑥 ∈ ℝ		 2_

	

∗
. 

Remark 1.2 If 𝑓 is a rapidly decreasing function, 𝑓 ∈ 𝑆(ℝ2, ℂ), then for all 𝛼, 𝛽 ∈ ℕ	∗ 2 the internal integral of 
[ 𝑥	∗ 3𝐷4 𝑓	∗ (𝑥)[ exists 

\ [ 𝑥	∗ 3𝐷4 𝑓	∗ (𝑥)[
	

ℝ	∗ !
	

∗
𝑑2𝑥 < ∞	∗ . 

Here	𝐷4 𝑓	∗ (𝑥) = X𝐷4 𝑓		 (𝑥)Z
	

∗
. 

Definition 1.4 The Schwartz space of essentially rapidly decreasing test functions on ℝ2, 𝑛 ∈ ℕ	∗	
∗  is the function 

space defined by 
𝑆,-.	
∗ ( ℝ	∗ 2, ℂ	∗ ) = 

^ 𝑓	∗ ∈ 𝐶 /	∗	
∗ ( ℝ	∗ 2, ℂ	∗ )|∀(𝛼, 𝛽)(𝛼, 𝛽 ∈ ℕ	∗ 2)∃𝑐34b𝑐34 ∈ ℝ	∗ ,-.	c∀𝑥(𝑥 ∈ ℝ	∗ 2) dW𝑥3 X 𝐷	∗ 4 𝑓	∗ (𝑥)ZW < 𝑐34e_ 

Remark 1.3 If 𝑓	∗ ∈ 𝑆,-.	
∗ ( ℝ	∗ 2, ℂ	∗ ), then for all 𝛼 ∈ ℕ	∗ 2 the internal integral of [ 𝑥	∗ 3𝐷4 𝑓	∗ (𝑥)[ exists and finitely 

bounded above 
∫ [ 𝑥	∗ 3𝐷4 𝑓	∗ (𝑥)[
	
ℝ	∗ !

	

∗ 𝑑2𝑥 < 𝑑34 , 𝑑34 ∈ ℝ	∗ ,-.	. 

Abbreviation 1.2 The standard Schwartz space of rapidly decreasing test functions on ℝ2 we will be denote by 
𝑆(ℝ2). Let 𝑆( ℝ2

	
∗ )	

∗ ,	𝑛 ∈ ℕ	∗  denote the space of ℂ-	
∗ valued rapidly decreasing internal test functions on	 ℝ2

	
∗ , 𝑛 ∈ ℕ	∗  

and let	 𝑆,-.( ℝ2
	
∗ )	

∗ ,	𝑛 ∈ ℕ		
∗ denote the set of ℂ	∗ ,-.	-valued essentially rapidly decreasing test functions on ℝ2

	
∗ , 𝑛 ∈ ℕ	∗ . 

If ℎ(𝜔, 𝑥):ℝ × ℝ2 and 𝑓:ℝ2 → ℂ are Lebesgue measurable on  ℝ72 we shall write 〈 ℎ	∗ , 𝑓	∗ 〉 for internal Lebesgue 
integral	 ∫ ℎ	∗ 𝑓	∗ 𝑑2𝑥	

ℝ	∗ !
	

∗  with 𝑓 ∈ 𝑆,-.( ℝ2
	
∗ ).	

∗
	
∗  Certain internal functions ℎ	∗ (𝜔, 𝑥): ℝ	∗ × ℝ	∗ 2 → ℂ	∗  define classical 

distribution 𝜏(𝑓) by the rule [3, 4]: 
 𝜏(𝑓) = st(〈 ℎ	∗ , 𝑓	∗ 〉). (1) 

Here st(𝑎) is the standard part of 𝑎 and st(〈 ℎ	∗ , 𝑓	∗ 〉) exists [5]. 
Definition 1.5 We shall say that ℎ	∗ (𝜔, 𝑥) with 𝜔 = 𝜛 ∈ ℝ	∗ /  is an internal representative to distribution 𝜏(𝑓) 

and we will write symbolically  𝜏(𝑥8, … , 𝑥2) ≈ ℎ	∗ (𝜔, 𝑥8, … , 𝑥2) if the equation (1) holds. 
Definition 1.6 [6] We shall say that certain internal functions ℎ	∗ (𝜔, 𝑥): ℝ	∗ × ℝ	∗ 2 → ℂ	∗   is a finite tempered 

distribution if  𝑓	∗ ∈ 𝑆,-.( ℝ2
	
∗ )	

∗  implies | ℎ	∗ , 𝑓	∗ | ∈ ℝ	$ = ℝ. A functions ℎ	∗ (𝜔, 𝑥): ℝ	∗ × ℝ	∗ 2 → ℂ	∗   is called 
infinitesimal tempered distribution if  𝑓	∗ ∈ 𝑆,-.( ℝ2

	
∗ )	

∗  implies | ℎ	∗ , 𝑓	∗ | ∈ ℝ	∗ ≈	.The space of infinitesimal tempered 
distribution is denoted b𝑦	 𝑆≈( ℝ2

	
∗ )	

∗ . 
Definition 1.7 We shall say that certain internal functions ℎ	∗ (𝜔, 𝑥): ℝ	∗ × ℝ	∗ 72 → ℂ	∗   is a Lorentz ≈ -invariant 

tempered distribution if  𝑓	∗ ∈ 𝑆,-.( ℝ2
	
∗ )	

∗  and Λ ∈ 𝐿(↑	$ implies 〈 ℎ	∗ , 𝑓(Λ𝑥8, … , Λ𝑥2)	
∗ 〉 ≈ 〈 ℎ	∗ , 𝑓(𝑥8, … , 𝑥2)	

∗ 〉. 
Example 1.1 Let us consider Lorentz invariant distribution 

 𝐷(𝑥) = 8
(:;)$ ∫ 𝑒=𝒌𝒓 !-.@A

@
𝑑B𝑘 =	

ℝ$
8
:;
𝛿(𝑟: − 𝑡:)sign(𝑡). (2) 

Here   𝜔 = |𝒌| = |𝑘8: + 𝑘:: + 𝑘B: and  𝒓 = (𝑥8, 𝑥:, 𝑥B), 𝑟 = |𝑥8: + 𝑥:: + 𝑥B:. It easily verify that distribution 
𝐷(𝑥) has the following internal representative 
 𝐷(𝑥,ϖ) = 8

(:;)$ ∫ 𝑒=𝒌𝒓 !-.@A
@

𝑑B𝑘.	
|𝒌|DE	

∗
 (3) 

Here 𝜛 ∈ ℝ	∗ /. By integrating in (3) over angle variables we get 
 𝐷(𝑥,ϖ) = 8

F;%G ∫ H𝑒=@(GHA) + 𝑒H=@(GHA) − 𝑒=@(G(A) − 𝑒H=@(G(A)SE
I	

∗
𝑑𝜔. (4) 

From (4) by canonical calculation finally we get 
 𝐷(𝑥,ϖ) ≈ 8

7;%G
d!-.E(GHA)

GHA
− !-.E(G(A)

G(A
e ≈ J(GHA)HJ(G(A)

7;%G
= 8

:;
𝛿(𝑟: − 𝑡:)sign(𝑡). (5) 

Example 1.2 We consider now the following Lorentz invariant distribution: 
 𝐷8(𝑥) =

8
(:;)$ ∫ 𝑒=𝒌𝒓 KL!@A

@
𝑑B𝑘 =	

ℝ$
8
:;%

8
0%
. (6) 

It easily verify that distribution 𝐷(𝑥) has the following internal representative 
 𝐷8(𝑥,ϖ) =

8
(:;)$ ∫ 𝑒=𝒌𝒓 KL!@A

@
𝑑B𝑘.	

|𝒌|DE	

∗
 (7) 

Here 𝜛 ∈ ℝ	∗ /. By integrating in (7) over angle variables we get 
 𝐷8(𝑥,ϖ) ≈ − =

F;%G ∫ H𝑒=@(GHA) − 𝑒H=@(GHA) + 𝑒=@(G(A) − 𝑒H=@(G(A)SE
I	

∗
𝑑𝜔. (8) 

From (8) finally we get 



 𝐷8(𝑥,ϖ) ≈ − =
F;%G

d H:
=(GHA)

+ H:
=(G(A)

+ :KL!E(GHA)
=(GHA)

+ : KL!E(G(A)
=(G(A)

e ≈ 8
:;%

8
0%
. (9) 

Example 3.We consider now the following Lorentz invariant distribution     

 ΔM(𝑥) 	=
8

:(:;)$ ∫ 𝑒=(𝒌𝒓HN(𝒌)|A|)	
ℝ$

O$P
N(𝒌)

= − Q
F;

R&
(%)SH=QT|0%|U

QT|0%|
 . (10) 

Here	−𝑥: < 0,	𝜀(𝒌) = ||𝒌:| + 𝑚:  and 𝐻8
(:) is a Hankel function of the second kind. It easily verify that 

distribution ΔM(𝑥) has the following internal representative 
 ΔM(𝑥,𝜛) =

8
:(:;)$ ∫ 𝑒=(𝒌𝒓HN(𝒌)|A|)	

|𝒌|DE	

∗ O$P
N(𝒌)

 (11) 

From (10)-(11) it follows  Δ	∗ M(𝑥) = ΔM(𝑥,𝜛) + Δ�M(𝑥) where     
 Δ�M(𝑥) =

8
:(:;)$ ∫ 𝑒=(𝒌𝒓HN(𝒌)|A|)	

|𝒌|VE	

∗ O$P
N(𝒌)

 . (12) 

Note that for all Λ ∈ 𝐿(↑	$ ,   Δ�M(Λ𝑥) ∈ 𝑆≈( ℝ2
	
∗ )	

∗  and therefore for all Λ ∈ 𝐿(↑ ,	
$  ΔM(Λ𝑥,𝜛) ≈ ΔM(𝑥,𝜛), i.e., 

ΔM(𝑥,𝜛)        is a Lorentz ≈ -invariant tempered distribution, see definition 4. Thus we can set 𝑡 = 0 in (11). By 
integrating in (11) over angle variables and using substitution of variables |𝒌| = 𝑚 sinh(𝑢) we get   
 ΔM(𝑥,𝜛) ≈

Q
F;%=G ∫ expb𝑖𝑚𝑟sinh(𝑢)c𝑑𝑢.W.E

HW.E	

∗
 (13) 

Note that 
 𝐻8

(:)(𝑥) =	
∗ ;

= ∫ expb𝑖𝑚𝑟sinh(𝑢)c𝑑𝑢/	∗

H /	∗
=ΔM(𝑥,𝜛) + 𝚵(𝑥,𝜛), (14) 

 Ξ(𝑥,𝜛) = ;
= ∫ expb𝑖𝑚𝑟sinh(𝑢)c𝑑𝑢 + ∫ expb𝑖𝑚𝑟sinh(𝑢)c𝑑𝑢ℝ	∗

W.E
HW.E
H ℝ	∗

. (15) 

From (13)-(15) finally we obtain  ΔM(𝑥,𝜛) ≈ 𝐻8
(:)(𝑥) , since 𝚵(𝑥,𝜛) ∈ 𝑆≈( ℝ2

	
∗ )	

∗ . 
Example 1.4 Let us consider Lorentz invariant distribution 

 Δ(𝑥 − 𝑦) = ∫{exp[−𝑖𝑝(𝑥 − 𝑦)] − exp[𝑖𝑝(𝑥 − 𝑦)]} 𝛿(𝑝: −𝑚:)𝜗(𝑝I)𝑑7𝑝. (16) 
From (16) one obtains	Δ(𝑥 − 𝑦) = Ξ8(𝑥 − 𝑦) − Ξ:(𝑥 − 𝑦), where 

 Ξ8(𝑥 − 𝑦) = ∫Hexp{[𝑖𝒑(𝒙 − 𝒚)] − 𝑖𝜔(𝒑)(𝑥I − 𝑦I)}S O$X
T𝒑𝟐(Q%, (17) 

 Ξ:(𝑥 − 𝑦) = ∫Hexp{[−𝑖𝒑(𝒙 − 𝒚)] + 𝑖𝜔(𝒑)(𝑥I − 𝑦I)}S O$X
T𝒑𝟐(Q% , (18) 

𝜔(𝒑) = |𝒑𝟐 +𝑚:. It easily verify that distribution (17) and (18) has the following internal representatives 
 Ξ8(𝑥 − 𝑦,𝜛) = ∫ Hexp{[𝑖𝒑(𝒙 − 𝒚)] − 𝑖𝜔(𝒑)(𝑥I − 𝑦I)}S	

|𝒌|DE	

∗ O$X
T𝒑𝟐(Q%. (19) 

 Ξ:(𝑥 − 𝑦,𝜛) = ∫ H−expN[𝑖𝒑(𝒙 − 𝒚)] + 𝑖𝜔(𝒑)(𝑥I − 𝑦I)RS	
|𝒌|DE	

∗ O$X
T𝒑𝟐(Q% . (20) 

Note that   Δ(𝑥 − 𝑦)	
∗ = [Ξ8(𝑥 − 𝑦,𝜛) + Ξ:(𝑥 − 𝑦,𝜛)] + NΞ�8(𝑥 − 𝑦,𝜛) + Ξ�:(𝑥 − 𝑦,𝜛)R, where 

 Ξ�8(𝑥 − 𝑦,𝜛) = ∫ Hexp{[𝑖𝒑(𝒙 − 𝒚)] − 𝑖𝜔(𝒑)(𝑥I − 𝑦I)}S	
|𝒌|VE	

∗ O$X
T𝒑𝟐(Q%, (21) 

 Ξ�:(𝑥 − 𝑦,𝜛) = ∫ H−expN[𝑖𝒑(𝒙 − 𝒚)] + 𝑖𝜔(𝒑)(𝑥I − 𝑦I)RS	
|𝒌|VE	

∗ O$X
T𝒑𝟐(Q% . (22) 

Note that for all Λ ∈ 𝐿(↑	$ ,  Ξ�8(Λ(𝑥 − 𝑦),𝜛) + Ξ�8(Λ(𝑥 − 𝑦),𝜛) ∈ 𝑆≈( ℝ2
	
∗ )	

∗  and therefore for all Λ ∈
𝐿(↑ ,	

$ ΔbΛ(𝑥 − 𝑦)c	
∗ ≈ Δ(Λ(𝑥 − 𝑦),𝜛) = Ξ8(Λ(𝑥 − 𝑦),𝜛) + Ξ:(Λ(𝑥 − 𝑦),𝜛), i.e., Δ(𝑥 − 𝑦,𝜛) is a Lorentz 

≈-invariant tempered distribution, see definition 4. From (20) by replacement 𝒑 → −𝒑 we obtain 
 Ξ8(𝑥 − 𝑦,𝜛) = − ∫ Hexp{[𝑖𝒑(𝒙 − 𝒚)] + 𝑖𝜔(𝒑)(𝑥I − 𝑦I)}S	

|𝒌|DE	

∗ O$X
T𝒑𝟐(Q% . (23) 

From (19) and (23) we get 
 Δ(𝑥 − 𝑦,𝜛) = Ξ8(𝑥 − 𝑦,𝜛) + Ξ:(𝑥 − 𝑦,𝜛) = ∫ sin[𝜔(𝒑)(𝑥I − 𝑦I)]exp[𝑖𝒑(𝒙 − 𝒚)]	

|𝒌|DE	

∗ O$X
T𝒑𝟐(Q%. (24) 

Thus for any points 𝑥 and 𝑦 separated by space-like interval from (24) we obtain that 
 Δ(𝑥 − 𝑦,𝜛) ≈ 0, (25) 

since Δ(𝑥 − 𝑦,𝜛) is a Lorentz ≈-invariant tempered distribution. From (25) for any points 𝑥 and 𝑦 separated by 
spacelike interval we obtain that: stbΔ(𝑥 − 𝑦,𝜛)c ≡ 0. 

Definition 1.8 [7] Let for each	𝑚 > 0: 𝐻Q = {𝑝 ∈ ℝ7|𝑝 ∙ 𝑝� = 𝑚:, 𝑚 >, 𝑝I > 0}, where	𝑝� =
(𝑝I, −𝑝8, −𝑝:, −𝑝B). Here the sets	𝐻Q which are standard mass hyperboloids, are invariant under 𝐿(↑	$ . Let 𝑗Q  be 
the homeomorphism of  𝐻Q onto ℝB given by		𝑗Q: (𝑝I, 𝑝8, 𝑝:, 𝑝B) → (𝑝8, 𝑝:, 𝑝B) = 𝒑.  Define a measure ΩQ(𝐸) 
on	𝐻Q	by 



ΩQ(𝐸) = ∫ O$𝒑
T|𝒑|%(Q%

	
[*(\)

 . 

The measure	ΩQ(𝐸) is	 𝐿(↑	$ -invariant [7]. 
Theorem 1.1 [7] Let 𝜇	is a polynomially bounded measure with support in	𝑉�(. If 𝜇	 is 𝐿(↑	$ = 𝐿(↑ - invariant, there 

exists a polynomially bounded measure 𝜌	 on [0,∞	)  and a constant 𝑐 so that for any 𝑓 ∈ 𝑆(ℝ	
7

	
	 ) 

 ∫ 𝑓	
ℝ		 	+

𝑑	𝜇	 = 𝑐𝑓(0) + ∫ 𝑑	𝜌	(𝑚)�∫
]ST|𝒑|%(Q%,X&,X%,X$UO$𝒑

T|𝒑|%(Q%
	
ℝ		 	$

� ./		

I  (26) 

Theorem 1.2 Let 𝜇	is a polynomially bounded 𝐿(↑ - invariant measure with support in	𝑉�(. Let ℱ(𝑓) be a linear   
∗-continuous functional	ℱ: 𝑆,-.	

∗ 	
	
	( ℝ	

7
	
∗ ) → ℝ,-.

	
	
∗  defined by ∫ 𝑓	∗

	
ℝ	∗ 	+	

∗ 𝑑	𝜇	and there exists a polynomially bounded 

measure 𝜌	 on [0,∞	) such that ∫ 𝑑	 𝜌		
∗ (𝑚) ∈ ℝ,-.

	
	
∗/	∗

I  and a constant	𝑐 ∈ ℝ,-.
	

	
∗ . Then for any 𝑓 ∈ 𝑆 		

∗
,-.
	 ( ℝ	

7
	
∗ ) and for 

any 𝜘 ∈ ℝ/
	

	
∗  the following property holds 

 ℱ( 𝑓	∗ ) ≈ 𝑐 𝑓	∗ (0) + ∫ 𝑑	 𝜌		
∗ (𝑚)� ∫

]	∗ ST|𝒑|%(Q%,X&,X%,X$UO#$𝒑

T|𝒑|%(Q%
	
|X|D^

	

∗

�/	∗

I
	

∗

 (27) 

Definition 1.9 Let 𝜒(𝜘, 𝒑) be a function such that:  𝜒(𝜘, 𝒑) ≡ 1 if |𝒑| ≤ 𝜘, 𝜒(𝜘, 𝒑) ≡ 0 if |𝒑| > 𝜘, 𝜘 ∈
ℝ/
	

	
∗ .Define internal measure ΩQ,^	  on 𝐻	∗ Q

	  by 

 ΩQ,^	 (𝐸) = ∫ _(^,𝒑)O$𝒑
T|𝒑|%(Q%

	
R	∗ *
	

	

∗
. (28) 

Theorem 1.3 [7] Let 𝑊:(𝑥8, 𝑥:) be the two-point function of a field theory satisfying the Wightman axioms and 
the additional condition that (𝜓I, 𝜑(𝑓)𝜓I) = 0 for all 𝑓 ∈ 𝑆(ℝ7). Then there exists a polynomially bounded 
positive measure 𝜌(𝑚) on ⟦0,∞) so that for all for all 𝑓 ∈ 𝑆(ℝ7) 
 𝑊:(𝑓) = b𝜓I, 𝜑b𝑓̅c𝜑(𝑓)𝜓Ic = ∫𝑓̅(𝑥8)𝑓(𝑥:)𝑊:(𝑥8 − 𝑥:)𝑑7𝑥𝑑7𝑦 = ∫ X∫ 𝑓ª𝑑ΩQ

	
R*

Z/
I 𝑑𝜌(𝑚). (29) 

Theorem 1.4 Let 𝑊:(𝑥8, 𝑥:) be the two-point function of a field theory mentioned in Theorem 1.3. Then for all 
𝑓 ∈ 𝑆,-.( ℝ	

7
	
∗ ) and for any 𝜘 ∈ ℝ/

	
	
∗  the following property holds 

 𝑊	∗ :(𝑓) ≈ ∫ X ∫ 𝑓ª𝑑ΩQ,^
	
R*	∗	

∗
Z/	∗

I	

∗
𝑑 𝜌	∗ (𝑚). (30) 

Definition 1.10 (1) Let 𝐿(𝐻) be algebra of the all densely defined linear operators in standard Hilbert space  𝐻. 
Operator-valued distribution on ℝ		 2, that is a map  𝜑: 𝑆( ℝ		 2) → 𝐿(𝐻) such that there exists a dense subspace 𝐷 ⊂
𝐻	 satisfying: 

1. for each 𝑓 ∈ 𝑆(ℝ		 2)  the domain of  𝜑 contains 𝐷, 
2. the induced map:  𝑆 → 	𝐸𝑛𝑑(𝐷),  𝑓 → 	𝜑	(𝑓)	, is linear, 
3. for each ℎ8 ∈ 𝐷 and ℎ: ∈ 𝐻 the assignment  𝑓 → 〈ℎ:, 𝜑(𝑓)ℎ8〉 is a tempered distribution. 

(2) Certain operator-valued internal function 𝜑	( 𝑓	∗ , 𝜛): 𝑆	∗ b ℝ	∗	
	 2c → 𝐿	∗ ( 𝐻	∗ ) is an internal representative for standard 

operator valued distribution 𝜑	(𝑓) if for each near standard vectors  ℎ«8 ∈ 𝐷	∗  and ℎ«: ∈ 𝐻	∗  the equality holds 
 〈ℎ:, 𝜑(𝑓)ℎ8〉 = stb 〈ℎ«:, 𝜑( 𝑓	∗ , 𝜛)ℎ«8〉	

∗ c, (31) 
where ℎ8 ≈ ℎ«8 and ℎ: ≈ ℎ«:. 
Definition 1.11 [8] Let 𝐻 be a Hilbert space and denote by 𝐻2 the 𝑛-fold tensor product 𝐻2 = 𝐻⨂	𝐻⨂ ⋅⋅⋅ ⨂𝐻. 

Set 𝐻I 	= 	ℂ	and define ℱ(𝐻) = 𝐻2.  ℱ(𝐻)	is called the Fock space over Hilbert space	𝐻. Notice ℱ(𝐻) will be 
separable if 𝐻 is. We set now	𝐻	 = 	𝐿₂(ℝ³) then an element 𝜓 ∈ 	ℱ(𝐻) is a sequence of ℂ		 	

	-valued functions 𝜓 =
{𝜓I, 𝜓8(𝑥8), 𝜓:(𝑥8, 𝑥:), 𝜓:(𝑥8, 𝑥:, 𝑥B), … , 𝜓2(𝑥8, … , 𝑥2)}, 𝑛 ∈ ℕ		  and such that the following condition holds 

	|𝜓I|: +∑ (∫|𝜓2(𝑥8, … , 𝑥2)|:𝑑B2𝑥) < ∞		2∈ ℕ		 . 
Definition 1.12 [7] Let us define now external operator 𝑎(𝑝) on ℱa with domain 𝐷b by 

 (𝑎(𝑝)𝜓)(2) = √𝑛 + 1 𝜓(2(8)(𝑝, 𝑘8, … 𝑘2). (32) 
The formal adjoint of the operator 𝑎(𝑝) reads   

 (𝑎c(𝑝)𝜓)(2) = 8
√2
∑ 𝛿(B)(𝑝 − 𝑘e)𝜓(2H8)(𝑘8, … , 𝑘eH8, 𝑘e(8, … , 𝑘2)2
ef8  (33) 

Definition 1.13 [7] Let 𝜓,-. be a vector 𝜓,-. = H𝜓(2)S
2f8
/

 for which 𝜓(2) 	= 0 for all except finitely many 𝑛 is 
called a finite particle vector. We will denote the set of finite particle vectors by	𝐹I. The vector  ΩI = 〈1,0,0, … 〉  is 
called the vacuum. 

Definition 1.14 We let now 𝐷 b	∗ 		
∗ = H 𝜓	∗ | 𝜓	∗ ∈ 𝐹I	∗ , 𝜓(2)	

∗ ∈ 𝑆	∗ 	( ℝ	∗ B2), 𝑛 ∈ ℕ	∗ S and for each 𝑝 ∈ ℝ	∗ B2  we define 
an internal operator 𝑎(𝑝)	

∗  on ℱ	∗ a with domain 𝐷 b	∗ 		
∗  by 



 ( 𝑎(𝑝)𝜓	
∗ )(2) = √𝑛 + 1 𝜓(2(8)	

∗ (𝑝, 𝑘8, … 𝑘2). (34) 
The formal ∗-adjoint of the operator 𝑎	∗ 	 reads   

 ( 𝑎	∗ c(𝑝)𝜓)(2) = 8
√2
∑ 𝛿(B)	

∗ (𝑝 − 𝑘e) 𝜓(2H8)
	
∗ (𝑘8, … , 𝑘eH8, 𝑘e(8, … , 𝑘2).2

ef8  (35) 
We express the free internal scalar field and the time zero fields with hyperfinite momentum cut-off  𝜘 ∈ ℝ	∗ / in 

terms of 𝑎	∗ c(𝑝) and 𝑎(𝑝)	
∗ 	as quadratic forms on	 𝐷 b	∗ 		

∗  by 
Φ	∗ Q,^
	 (𝑥, 𝑡) = 

 (2𝜋)HB/: ∫ Hbexp(𝜇(𝑝)𝑡 − 𝑖𝑝𝑥)c 𝑎	∗ c(𝑝) + bexp(𝜇(𝑝)𝑡 + 𝑖𝑝𝑥)c 𝑎		
∗ (𝑝)S	

|X|D^	

∗ O$X
T:h(X)

 , (36) 

 φ	∗ Q,^
	 (𝑥, 𝑡) = (2𝜋)HB/: ∫ Hbexp(−𝑖𝑝𝑥)c 𝑎	∗ c(𝑝) + bexp(𝑖𝑝𝑥)c 𝑎		

∗ (𝑝)S	
|X|D^	

∗ O$X
T:h(X)

 , (37) 

 π	∗ Q,^
	 (𝑥, 𝑡) = (2𝜋)HB/: ∫ Hbexp(−𝑖𝑝𝑥)c 𝑎	∗ c(𝑝) + bexp(𝑖𝑝𝑥)c 𝑎		

∗ 	(𝑝)S	
|X|D^	

∗ O$X
Th(X)/:

 . (38) 
Theorem 1.5 LetΦ		 Q

	 (𝑥, 𝑡) and φ		 Q
	 (𝑥, 𝑡), π		 Q

	 (𝑥, 𝑡)	be the free standard scalar field and the time zero fields 
respectively. Then for any 𝜘 ∈ ℝ	∗ / the operator valued internal functions (35)-(37) gives internal representatives 
for standard operator valued distributions Φ		 Q

	 (𝑥, 𝑡) and φ		 Q
	 (𝑥, 𝑡), π		 Q

	 (𝑥, 𝑡) respectively. 
Definition 1.15 Let {𝑋, ‖∙‖}  be a standard Banach space. For 𝑥 ∈ 𝑋	∗  and 𝜀 > 0, 𝜀 ≈ 0	we define the open ≈-ball 

about 𝑥 of radius 𝜀 to be the set	𝐵N(𝑥) = {𝑦 ∈ 𝑋	∗ | ‖𝑥 − 𝑦‖	
∗ < 𝜀}. 

Definition 1.16 Let {{𝑋, ‖∙‖}	be a standard Banach space, 𝑌 ⊂ 𝑋, thus 𝑌	∗ ⊂ 𝑋	∗  and let 𝑥 ∈ 𝑋	∗ .Then 𝑥 is an ∗-
accumu-lotion point of 𝑌	∗  if for any	𝜀 ∈ ℝ	∗ ≈( there is a hyper infinite sequence {𝑥2}2f8

/	∗ in 𝑌	∗  such that  {𝑥2}2f8
/	∗ ∩

(𝐵N(𝑥)\{𝑥} ≠ ∅). 
Definition 1.17 Let {{𝑋, ‖∙‖}	be a standard Banach space, let 𝑌	∗ ⊆ 𝑋	∗ , 𝑌	∗  is ∗ -closed if any ∗-accumulation point 

of 𝑌	∗  is an element of 𝑌	∗ . 
Definition 1.18 Let {{𝑋, ‖∙‖}	be a standard Banach space. We shall say that internal hyper infinite sequence 

{𝑥2}2f8
/	∗ in 𝑋	∗   is ∗ -converges to 𝑥 ∈ 𝑋	∗  as 𝑛 → ∞	∗  if for any 𝜀 ∈ ℝ	∗ ≈(	there is 𝑁 ∈ ℕ	∗  such that for any 𝑛 >

𝑁: ‖𝑥 − 𝑦‖	
∗ < 𝜀. 
Definition 1.19 Let {{𝑋, ‖∙‖i}, {{𝑌, ‖∙‖j} be a standard Banach spaces. A linear internal operator 𝐴:𝐷(𝐴) ⊆

𝑋	∗ → 𝑌	∗     is ∗ -closed if for every internal hyper infinite sequence {𝑥2}2f8	
/	∗ in 𝐷(𝐴) ∗ -converging to 𝑥 ∈ 𝑋	∗  such 

that 𝐴𝑥2 → 𝑦 ∈ 𝑌	∗  as 𝑛 → ∞	∗  one has 𝑥 ∈ 𝐷(𝐴) and 𝐴𝑥 = 𝑦. Equivalently , 𝐴 is ∗-closed if its graph is ∗ -closed in 
the direct sum 𝑋	∗ ⊕ 𝑌	∗ . 

Definition 1.20 Let 𝐻 be a standard external Hilbert space. The graph of the internal linear transformation 
𝑇: 𝐻	∗ → 𝐻	∗  is the set of pairs	{〈𝜑, 𝑇𝜑〉|𝜑 ∈ 𝐷(𝑇)}. The graph of 𝑇, denoted by	Γ(Т), is thus a subset of 𝐻	∗ × 𝐻	∗  
which is internal Hilbert space with inner product	(〈𝜑8, 𝜓8〉, 〈𝜑:, 𝜓:〉) = (𝜑8, 𝜑:) + (𝜓8, 𝜓:).The operator 𝑇	is 
called a ∗-closed operator if  Γ(Т) is a ∗ -closed subset of Cartesian product	 𝐻		∗ × 𝐻	∗ . 

Definition 1.21 Let 𝐻 be a standard Hilbert space. Let 𝑇8 and 𝑇 be internal operators on internal Hilbert 
space	 𝐻	∗ . Note that if	Γ(𝑇₁) ⊃ Γ(𝑇), then 𝑇8 is said to be an extension of 𝑇 and we write	𝑇8 ⊃ 𝑇. Equivalently, 𝑇8 ⊃
𝑇 if and only if 𝐷(𝑇8) ⊃ 𝐷(𝑇) and 𝑇8𝜑	 = 𝑇𝜑 for all 𝜑 ∈ 𝐷(𝑇). 

Definition 1.22 Any internal operator 𝑇 on 𝐻	∗  is ∗-closable if it has a ∗-closed extension. Every ∗-closable 
internal operator 𝑇 has a smallest ∗-closed extension, called its ∗-closure, which we denote by ∗-𝑇�. 

Definition 1.23 Let 𝐻 be a standard Hilbert space. Let 𝑇 be a ∗-densely defined internal linear operator on 
internal Hilbert space	 𝐻	∗ . Let 𝐷(𝑇∗) be the set of 𝜑 ∈ 𝐻	∗  for which there is a vector 𝜉 ∈ 𝐻	∗  with (𝑇𝜓, 𝜑) = (𝜑, 𝜉) 
for all 𝜓 ∈ 𝐷(𝑇), then for each 𝜑 ∈ 𝐷(𝑇∗),  we define 𝑇∗𝜑 = 𝜉. 𝑇∗ is called the ∗-adjoint of	𝑇. Note that 𝑆 ⊂ 𝑇 
implies 𝑇∗ ⊂ 𝑆∗. 

Definition 1.24 Let 𝐻 is a standard Hilbert space. A ∗-densely defined internal linear operator 𝑇 on internal 
Hilbert space 𝐻	∗  is called symmetric (or Hermitian) if	𝑇 ⊂ 𝑇∗. Equivalently, T is symmetric if and only if 
	(𝑇𝜑, 𝜓) = (𝜑, 𝑇𝜓) for all 𝜑,𝜓 ∈ 𝐷(𝑇). 

Definition 1.25 Let 𝐻 be a standard Hilbert space. A symmetric internal linear operator 𝑇 on internal Hilbert 
space 𝐻	∗  is called essentially self- ∗-adjoint if its ∗-closure ∗-𝑇�  is self- ∗-adjoint. If 𝑇 is ∗-closed, a subset 𝐷 ⊂ 𝐷(𝑇) 
is called a ∗-core for 𝑇 if   ∗- b𝑇 ↾ 𝐷�������c 	= 𝑇. If 𝑇 is essentially self- ∗-adjoint, then it has one and only one self 
-∗-adjoint extension. 

Theorem 1.6 Let 𝑛8, 𝑛: ∈ ℕ		  and suppose that 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c ∈ 𝐿:	∗ b ℝ	∗ B(2&(2%)c where 
𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c is a ℂ	∗ 	-valued internal function on	 ℝ	∗ B(2&(2%). Then there is a unique operator 𝑇k on 
ℱ	∗ ( 𝐿	∗ ₂( ℝ³	

∗ )) so that 𝐷 b	∗ 	 ⊂ 𝐷(𝑇k)	
∗  is a ∗ - core for 𝑇k and 



(1) as ℂ	∗ -valued quadratic forms on 𝐷	∗ b	∗ 	 × 𝐷	∗ b	∗ 	 

𝑇k = \ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c
	

ℝ	∗ $(!&.!%)	

∗
ÄÅ 𝑎	∗ c(𝑘=)

2&

=f8
Æ ÄÅ 𝑎(𝑝=)	

∗
2%

=f8
Æ 𝑑2&𝑘𝑑2%𝑝 

(2) As ℂ	∗ -valued quadratic forms on 𝐷 b	∗ 	 × 𝐷 b	∗ 	 

𝑇k∗ = \ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c
	

ℝ	∗ $(!&.!%)	

∗
ÄÅ 𝑎	∗ c(𝑘=)

2&

=f8
Æ ÄÅ 𝑎(𝑝=)	

∗
2%

=f8
Æ 𝑑2&𝑘𝑑2%𝑝 

(3) On vectors in 𝐹I	∗  the operators  𝑇k and  𝑇k∗  are given by the explicit formulas   
b𝑇k( 𝜓	∗ )c

(eH2%(2&) = 

 𝐾(𝑙, 𝑛8, 𝑛:) 𝐒	∗ Ê ∫ … ∫ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c 𝜓
(e)

	
∗ b𝑝8, … , 𝑝2% , 𝑘8, … 𝑘2&c𝑑

B2%	
lX!%lDE

𝑝
	

∗	
|X&|DE	

∗
Ë, (39) 

b𝑇k∗ ( 𝜓	∗ )c2 = 0 if 𝑛 < 𝑛8 − 𝑛:, 
 b𝑇k∗ ( 𝜓	∗ )c

(eH2&(2%) = 

𝐾(𝑙, 𝑛:, 𝑛8) 𝐒	∗ Ê ∫ … ∫ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c 𝜓
(e)

	
∗ b𝑝8, … , 𝑝2% , 𝑘8, … 𝑘2&c𝑑

B2&	
lX!%lDE

𝑘
	

∗	
|X&|DE	

∗
Ë (40) 

b𝑇k∗ ( 𝜓	∗ )c2 = 0, if	𝑛 < 𝑛: − 𝑛8. 

Here 𝐒 is the symmetrization operator defined in [8] and	𝐾(𝑙, 𝑛:, 𝑛8) = de!(e(2&H2%)!(eH2%)%
e
8/:

, 𝑛8, 𝑛: ∈ ℕ		 , 𝑙 ∈ ℕ	∗	
	 . 

Proof. For vectors 𝜓	∗ ∈ 𝐷 b	∗ 	 we define 𝑇k( 𝜓	∗ ) by the formula (39). By the Schwarz inequality and the fact that 
𝐒	∗  is a projection we get 

 Ä Ìb𝑇k( 𝜓	∗ )c
(eH2%(2&)Ì

	

∗
Æ
	

	

	 :
≤ 𝐾(𝑙, 𝑛8, 𝑛:) Íb 𝜓(e)	

∗ cÍ
	
∗ :

‖𝑊‖:	
∗ . (41) 

Let us now define the operator 𝑇k∗ ( 𝜓	∗ ) on 𝐷 b	∗ 	 by the formula (39), then for all 𝜑		∗ , 𝜓 ∈	
∗ 𝐷 b	∗ 	, then one obtains 

directly	 ( 𝜑		∗ , 𝑇k 𝜓	∗ ) =	
∗ (𝑇k∗ 𝜑		∗ , 𝜓	∗ )	

∗ . Thus, 𝑇k is ∗ -closable and 𝑇k∗  is the restriction of the ∗ -adjoint of  𝑇k on 
𝐷 b	∗ 	 . We will use 𝑇k to denote ∗ -𝑇�k and 𝑇k∗  to denote the ∗ -adjoint of	𝑇k. By the definition of  𝑇k, 𝐷 b	∗ 	is a ∗ -core 
and further, since 	𝑇k is bounded on the 𝑙-particle vectors in 𝐷 b	∗ 	we get	 𝐹I	∗ ⊂ 𝐷(𝑇k). Since the right-hand side of 
(39) is also bounded on the 𝑙-particle vectors, equation (38) represents 𝑇k on all 𝑙-particle vectors. The proof of the 
statement (2) about 𝑇k∗  is the same. 

Definition 1.26 [7] Define standard 𝑄 -space by	𝑄 =×Pf8/ ℝ. Let 𝜎 be the 𝜎-algebra generated by infinite 
products of measurable sets in ℝ and set 𝜇 = ⨂Pf8

/ 𝜇P with	𝑑𝜇P = 𝜋H8/:exp(−𝑥P:/2). Denote the points of 𝑄 by 
𝑞 = 〈𝑞8, 𝑞:, … 〉. Then 〈𝑄, 𝜇〉 is a measure space and the set of the all functions of the form	𝑃2(𝑞) = 𝑃(𝑞8, 𝑞:, … , 𝑞2), 
where 𝑃2(𝑞) is a polynomial and 𝑛 ∈ ℕ is arbitrary, is dense in 𝐿:(𝑄, 𝑑𝜇). Remind that there exists a unitary map 
𝑆:ℱa(𝐻) → 𝐿:(𝑄, 𝑑𝜇) of Fock space ℱa(𝐻) onto 𝐿:(𝑄, 𝑑𝜇) so that S𝜑(𝑓P)SH8 = 𝑞P and SΩI = 1. Here {𝑓P}Pf8/  is 
an orthonormal basis for 𝐻. Then by transfer one obtains internal measure space 〈𝑄, 𝜇〉	

∗ = 〈 𝑄	∗ , 𝜇	∗ 〉 and internal 
unitary map S	∗ : ℱa(𝐻) → 𝐿:	∗ ( 𝑄	∗ , 𝑑 𝜇	∗ ) so that S	∗ 𝜑(𝑓G) S	∗ H8 = 𝑞G , 𝑟 ∈ ℕ	∗   and S	∗ ΩI = 1. Here {𝑓G}Gf8

/	∗  is an 
orthonormal basis for 𝐻	∗ . 

Theorem 1.7 Let 𝜑^	
∗ (𝑥, 𝑡)  be internal free scalar boson field of mass 𝑚 at time 𝑡	 = 	0 with hyperfinite 

momentum cutoff ϰ in four-dimensional space-time. Let 𝑔(𝑥) be a real-valued internal function 
in 𝐿:( ℝ	∗ B) ∩ 𝐿8( ℝ	∗ B)	

∗
	
∗ . Then the operator 

 𝐻n,^	
∗ (𝑔) = 𝜆(𝜘) ∫ 𝑔(𝑥)	

ℝ	∗ $
	

∗ : 𝜑		
∗

^
7(𝑥): 𝑑B𝑥 (42) 

is a well-defined internal symmetric operator on 𝐷 b	∗ /01	
∗ . Here : 𝜑		

∗
^
7(𝑥) ≔ 𝜑		

∗
^
7(𝑥) + 𝑑:(𝜘) X 𝜑		

∗
^
:(𝑥)Z + 𝑑8(𝜘). 

where the coefficients 𝑑:(𝜘) and 𝑑8(𝜘) are independent of	𝑥. Let S denote the unitary map of ℱa(𝐻) onto 𝐿:(𝑄, 𝑑𝜇) 
considered in [7]. Then 𝑉 = S 𝐻n,^	

∗ (𝑔)	
∗ S	∗ H8 is multiplication by internal function 𝑉n,^(𝑞) which satisfies: 

(a) 𝑉n,^(𝑞) ∈ 𝐿X( 𝑄	∗ , 𝑑 𝜇	∗ )	
∗  for all	𝑝 ∈ ℕ	∗ , (b) exp X−𝑡𝑉n,^(𝑞)Z ∈ 𝐿8( 𝑄	∗ , 𝑑 𝜇	∗ )	

∗  for all 𝑡 ∈ [0, ∞	∗ ). 
Proof: Note that for each 𝑥 ∈ ℝ	∗ B, the operator S	∗ ( 𝜑^(𝑥)	

∗ ) S	∗ H8 is just the operator on internal measurable space 
𝐿:( Q, 𝑑 𝜇	∗	

∗ )	
∗  on which this operator acts by multiplying by the function   ∑ 𝑐P(𝑥, 𝜘)𝑞P

/	∗
Pf8 , where	𝑐P(𝑥, 𝜘) =

(2𝜋)B/: Ä𝑓P , b𝜇(𝑝)c
8/:exp(𝑖𝑝𝑥)Æ. Furthermore,	∑ |𝑐P(𝑥, 𝜘)|:

/	∗
Pf8 = (2𝜋)B/: Í𝜇(𝑝)8/:Í

	
∗

:

:
 so S	∗ X 𝜑		

∗
^
7(𝑥)Z S	∗ H8and 

S	∗ X 𝜑		
∗

^
:(𝑥)Z S	∗ H8	are in 𝐿:( Q, 𝑑 𝜇	∗	

∗ )		
∗ and the corresponding 𝐿:( Q, 𝑑 𝜇	∗	

∗ )-	
∗ norms are uniformly bounded in	𝑥. 



Therefore, since 𝑔 ∈ 𝐿8( ℝ	∗ B)	
∗  the operator S	∗ X 𝐻	∗ n,^(𝑔)Z S	∗ H8 is just the operator on internal measurable space 

𝐿:( Ω, 𝑑 𝜇	∗	
∗ )	

∗  on which this operator acts by multiplying by the 𝐿:( Q, 𝑑 𝜇	∗	
∗ )-	

∗ function which we denote by 𝑉 ,o(𝑞). 
Let us consider now the expression for 𝐻n,^	

∗ (𝑔) Ω	∗ , obviously this is a vector (0,0,0,0, 𝜓7, 0, … ) with 

 𝜓7(𝑝8, 𝑝:, 𝑝B, 𝑝7) = ∫
o(^)p(0)∏ [_(^,X2)]	

+
23& tuvSH=0 ∑ X2

23+
23& UO$0

(:;)$/%∏ [:h(X2)]&/%+
23&

	
ℝ	∗ $

	

∗

. (43) 

Here 𝜒(𝜘, 𝑝) ≡ 1 if |𝑝| ≤ 𝜘, 𝜒(𝜘, 𝑝) ≡ 0 if	|𝑝| > 𝜘, 𝜘 ∈ ℝ	∗ /. We choose now the parameter 𝜆 = 𝜆(𝜘) ≈ 0 such 
that	 ‖𝜓7‖	

∗
:
: ∈ ℝ and therefore we obtain	 Í	 𝐻	∗ n,^,o(^)(𝑔)ΩIÍ	

∗

:

:
∈ ℝ, since 	 Í	 𝐻	∗ n,^,o(^)(𝑔)𝛺IÍ	

∗

:

:
= ‖𝜓7‖	

∗
:
:. But, 

since S	∗ 	
∗ΩI = 1, we get the equalities 

 	 Í	 𝐻	∗ n,^,o(^)(𝑔)𝛺IÍ	
∗

:

	
= Í S			∗ 𝐻n,^,o(^)(𝑔) S	∗ 	

H8Í
x%( y,O h	∗	∗ )	∗
	 = Í𝑉n,^,o(^)(𝑞)Í	

∗

x%( y,O h	∗	
∗ )	

∗

	
. (44) 

From (43) we get that Í𝑉n,^,o(^)(𝑞)Í	
∗

x%( y,O h	∗	
∗ )	

∗

	
∈ ℝ and it is easily verify, that each polynomial 𝑃(𝑞8, 𝑞:, … , 𝑞2), 

is 𝑛 ∈ ℕ	∗ 	in the domain of the operator 	𝑉n,^,o(^)(𝑞) and	 S			∗ 𝐻n,^,o(^)	
∗ (𝑔) S	H8	

∗ ≡ 𝑉n,^,o(^)(𝑞) on that domain. Since 
ΩI	
∗  is in the domain of	 𝐻X

	
∗

n,^,o(^)(𝑔), 𝑝 ∈ ℕ	∗ , 1 is in the domain of the operator 𝑉Xn,^,o(^)(𝑞) for all 𝑝 ∈ ℕ	∗ . Thus, 
for all 𝑝 ∈ ℕ	∗   𝑉n,^,o(^)(𝑞) ∈ 𝐿:X( 𝑄, 𝑑 𝜇	∗	

∗ )	
∗ , since	 𝜇	∗ 	( 𝑄	∗ 	) is finite, we conclude that 𝑉n,^,o(^)(𝑞) ∈ 𝐿X( 𝑄, 𝑑 𝜇	∗	

∗ )	
∗  for 

all 𝑝 ∈ ℕ	∗ . 
(b) Remind Wick's theorem asserts that  :	 𝜑	∗ Q,^

[ (𝑥) ≔ ∑ (−1)=[[/:]
=fI

[!
([H:=)!=!

𝑐^= 𝜑	∗ Q,^
([H:=)(𝑥) with 𝑐^	 =

Í 𝜑	∗ Q,^
	 (𝑥) ΩI	

∗ Í
	
∗

:

:
. For 𝑗 = 4 we get −𝑂(𝑐^:) ≤: 	 𝜑	∗ Q,^

7 (𝑥):	and therefore    −X ∫ 𝑔(𝑥)	
ℝ	∗ 	$	

∗ 𝑑B𝑥Z𝑂(𝑐^:) ≤

𝐻	∗ n,^,o(^)(𝑔). Finally we obtain ∫ exp X−𝑡b: 	 𝜑	∗ Q,^
7 (𝑥): cZ		

y	∗ 	
	

∗
𝑑	 𝜇	∗ 	 ≤ expb𝑂(𝑐^:)c	and this inequality 

finalized the proof. 
Theorem 1.8 [7] Let 〈𝑀, 𝜇〉	be a 𝜎-measure standard space with 𝜇(𝑀) = 1and let 𝐻I be the generator of a 

hyper- contractive semigroup on 𝐿:(𝑀, 𝑑𝜇). Let 𝑉 be a ℝ-valued measurable function on 〈𝑀, 𝜇〉 such that 𝑉 ∈
𝐿X(𝑀, 𝑑𝜇) for all 𝑝 ∈ ⟦1,∞)	 and exp(−𝑡𝑉) ∈ 𝐿8(𝑀, 𝑑𝜇) for all 𝑡 > 0. Then 𝐻I + 𝑉 is essentially self-adjoint on  
𝐶/(𝐻I	) ∩ 𝐷(𝑉) and is bounded below. Here  𝐶/(𝐻I	) = ⋂ 𝐷b𝐻I

XcX∈ℕ . 
Theorem 1.9 Let 〈𝑀, 𝜇〉	be a 𝜎-measure space with 𝜇(𝑀) = 1and let 𝐻I be the generator of a hypercontractive 

semi-group on 𝐿:(𝑀, 𝑑𝜇). Let𝑉 be a ℝ	∗ -valued internal measurable function on 〈 𝑀	∗ , 𝜇	∗ 〉 such that 𝑉 ∈ 𝐿	∗ X( 𝑀	∗ , 𝑑 𝜇	∗ ) 
for all 𝑝 ∈ [1, ∞	∗ ) and exp	

∗ (−𝑡𝑉) ∈ 𝐿	∗ 8( 𝑀	∗ , 𝑑 𝜇	∗ ) for all 𝑡 > 0.  Assume that a set 𝐶 /	∗ ( 𝐻	∗ I	) ∩ 𝐷(𝑉) is internal. 
Then operator 𝐻	∗ I + 𝑉 is essentially self-∗ -adjoint internal operator on  𝐶 /	∗ ( 𝐻	∗ I	) ∩ 𝐷(𝑉) and it is hyper finitely 
bounded below. Here  𝐶 /	∗ ( 𝐻	∗ I	) = ⋂ 𝐷b 𝐻	∗ I

XcX∈ ℕ	∗ . 
Proof. It follows immediately by transfer from theorem 8. 
Remark 1.4 Let 𝑉n,^,o be operator on internal measurable space 𝐿:( Ω, 𝑑 𝜇	∗	

∗ )	
∗  on which this operator acts by 

multiplying by the 𝐿:( Q, 𝑑 𝜇	∗	
∗ )-	

∗ function𝑉n,^,o , see proof to Theorem 1.7. Note that for this operator a set 
𝐶 /	∗ ( 𝐻	∗ I	) ∩ 𝐷b𝑉n,^,oc is not internal and therefore Theorem9 no longer holds. But without this theorem we cannot 
conclude that operator 𝐻	∗ I + 𝑉n,^,o is essentially self-∗ -adjoint internal operator on  𝐶 /	∗ ( 𝐻	∗ I	) ∩ 𝐷b𝑉n,^,oc. Thus 
Robinson’s transfer is of no help in the case corresponding to operator 𝑉n,^,o  considered above. In order to resolve 
this issue, we will use non conservative extension of the model theoretical nonstandard analysis, see [9-13]. 

NON CONSERVATIVE EXTENSION OF THE MODEL THEORETICAL 
NONSTANDARD ANALYSIS 

Remind that Robinson nonstandard analysis (RNA) many developed using set theoretical objects called super-
structures [2-6, 14]. A superstructure V(S) over a set S is defined in the following way: VI(S) = S, V2(8(S) =
V2(S) ∪ PbV2(S)c, V(S) = ⋃ V2(8(S)2∈ℕ . Making S = ℝ will suffice for virtually any construction necessary in 
analysis. Bounded formulas are formulas where all quantifiers occur in the form:  ∀𝑥	(𝑥 ∈ 𝑦 → ⋯	),	∃𝑥	(𝑥 ∈ 𝑦 →
⋯	). A nonstandard embedding is a mapping  ∗∶ V(𝑋) → V(𝑌) from a superstructure  V(𝑋)  called the standard 
universe, into another superstructure V(𝑌) called nonstandard universe, satisfying the following postulates: 

1. 𝑌 = 𝑋	∗   



2. Transfer Principle For every bounded formula Φ(𝑥8, … , 𝑥2)  and elements 𝑎8, … , 𝑎2 ∈ 𝑉(𝑋) the property 
Φ(𝑎8, … , 𝑎2)	 is true for  𝑎8, … , 𝑎2  in the standard universe if and only if it is true for 𝑎8	, … ,	

∗ 𝑎2	
∗  in the 

nonstandard universe	𝑉(𝑋)╞	Φ(𝑥8, … , 𝑥2) ↔ 𝑉(𝑌)╞Φ( 𝑎8	, … ,	
∗ 𝑎2	

∗ ). 
3. Non-triviality For every infinite set  𝐴  in the standard universe, the set  { 𝑎|𝑎 ∈ 𝐴	

∗ }  is a proper subset of 𝐴	∗ . 
Definition 2.1 A set 𝑥 is internal if and only if 𝑥 is an element of  𝐴	∗  for some	𝐴 ∈ V(ℝ). Let  𝑋  be a set and 

𝐴 = {𝐴=}=∈n a family of subsets of  𝑋 .Then the collection  𝐴 has the infinite intersection property, if any infinite sub 
collection 𝐽 ⊂ 𝐼 has non-empty intersection. Nonstandard universe is  𝜎 -saturated if whenever {𝐴=}=∈n  is a 
collection of internal sets with the infinite intersection property and the cardinality of  𝐼 is less than or equal to 𝜎. 

Remark 2.1 For each standard universe  𝑈 = 𝑉(𝑋) there exists canonical language 𝐿z and for each nonstandard 
universe 𝑊 = 𝑉(𝑌)  there exists corresponding canonical nonstandard language  𝐿 = 𝐿k	

∗  [5, 14] 
4.The restricted rules of conclusion If Let 𝐴 and 𝐵 well formed, closed formulas so that 𝐴, 𝐵 ∈ 𝐿	∗ .	If 𝑊 ⊨ 𝐴, 

then ¬𝐴 ⊬{|} 𝐵. Thus, if a statement 𝐴 holds in nonstandard universe, we cannot obtain from formula  ¬𝐴 
any formula 𝐵 whatsoever. 

Definition 2.2 [9-13] A set 𝑆 ⊂ ℕ	∗  is a hyper inductive if the following statement holds in	𝑉(𝑌): 
ç (𝛼 ∈ 𝑆 → 𝛼( ∈ 𝑆).

3∈ ℕ	∗
 

Here 𝛼( = 𝛼 + 1.Obviously a set ℕ	∗  is a hyper inductive. 
5. Axiom of hyper infinite induction 

∀𝑆(𝑆 ⊂ ℕ	∗ )H∀𝛽(𝛽 ⊂ ℕ	∗ )N⋀ (𝛼 ∈ 𝑆 → 𝛼( ∈ 𝑆)8D3~4 R → 𝑆 = ℕ	∗ S. 
Example 2.1 Remind the proof of the following statement: structure (ℕ,<,=) is a well-ordered set. 
Proof. Let 𝑋 be a nonempty subset of  ℕ. Suppose X does not have a <-least element. Then consider the set ℕ\𝑋.  
Case1. ℕ\𝑋 = ∅. Then 𝑋 = ℕ and so 0 is a < -least element but this is a contradiction. 
Case2. ℕ\𝑋 ≠ ∅.  Then 1 ∈ ℕ\𝑋 otherwise 1 is a < -least element but this is a contradiction. Assume now that 

there exists some 𝑛 ∈ ℕ\𝑋 such that 𝑛 ≠ 1, but since we have supposed that 𝑋 does not have a < -least element, 
thus 𝑛 + 1 ∉ 𝑋.	Thus we see that for all 𝑛 the statement 𝑛 ∈ ℕ\𝑋 implies that 𝑛 + 1 ∈ ℕ\𝑋. We can conclude by 
axiom of induction that 𝑛 ∈ ℕ\𝑋 for all 𝑛 ∈ ℕ. Thus ℕ\𝑋 = 	ℕ implies 𝑋 = ∅.	This is a contradiction to 𝑋 being a 
non-empty subset of ℕ. Remind that structure ( ℕ	∗ , <, =) is not a well-ordered set [5, 6, 14]. We set now 𝑋8 = ℕ	∗ \ℕ 
and thus ℕ\𝑋8	

∗ = ℕ. In contrast with a set 𝑋 mentioned above the assumption 𝑛 ∈ ℕ\𝑋8	
∗  implies that 𝑛 + 1 ∈

ℕ\𝑋8	
∗   if and only if 𝑛 is finite, since for any infinite 𝑛 ∈ ℕ\	

∗ ℕ the assumption 𝑛 ∈ ℕ\𝑋8	
∗   contradicts with a true 

statement 𝑉(𝑌) ⊧ 𝑛 ∉ ℕ\𝑋8	
∗ =ℕ and therefore in accordance with postulate 4 we cannot obtain from 𝑛 ∈ ℕ\𝑋8	

∗  any 
closed formula 𝐵 whatsoever. 

Theorem 2.1 [13] (Generalized Recursion Theorem) Let 𝑆 be a set, 𝑐 ∈ 𝑆 and 𝑔: 𝑆 × ℕ	∗ → 𝑆 is any function 
with dom(𝑔) = 𝑆 × ℕ	∗  and range(𝑔) ⊆ 𝑆, then there exists a function ℱ: ℕ → 𝑆	

∗  such that: 1) dom(ℱ) = ℕ	∗  and 
range(ℱ) ⊆ 𝑆; 2) ℱ(1) = 𝑐; 3) for all 𝑥 ∈ ℕ	∗ , ℱ(𝑛 + 1) = 𝑔(ℱ(𝑛), 𝑛). 

Definition 2.3 [11-13] (1) Suppose that 𝑆 is a standard set on which a binary operations (∙ + ∙) and (∙×∙)	is 
defined and under which 𝑆 is closed. Let {𝑥P}P∈ ℕ	∗  be any hyper infinite sequence of terms of	 𝑆	∗ . For every hyper 
natural 𝑛 ∈ ℕ	∗  we denote by 𝐸𝑥𝑡- ∑ 𝑥P2

Pf8  the element of 𝑆	∗  uniquely determined by the following canonical 
conditions:  (a) 𝐸𝑥𝑡-∑ 𝑥P8

Pf8 = 𝑥8;  (b) 𝐸𝑥𝑡-∑ 𝑥P2(8
Pf8 = 𝐸𝑥𝑡-∑ 𝑥P2

Pf8 + 𝑥2(8 for all 𝑛 ∈ ℕ.	
∗  

(2) For every hyper natural 𝑛 ∈ ℕ/	
∗  we denote by 𝐸𝑥𝑡-∏ 𝑥P2

Pf8  the element of 𝑆	∗  uniquely determined by the 
following canonical conditions: (a) 𝐸𝑥𝑡-∏ 𝑥P8

Pf8 = 𝑥8;  (b) 𝐸𝑥𝑡-∏ 𝑥P2(8
Pf8 = (𝐸𝑥𝑡-∏ 𝑥P2

Pf8 ) × 𝑥2(8 for all 
𝑛 ∈ ℕ.	

∗  
Theorem 2.2. [13] (1) suppose that 𝑆 is a standard set on which a binary operation (∙ + ∙) is defined and under 

which 𝑆 is closed and that (∙ + ∙) is associative on S. Let {𝑥P}P∈ ℕ	∗  be any hyper infinite sequence of terms of	 𝑆	∗ . 
Then for any 𝑛,𝑚 ∈ ℕ	∗  we have: 𝐸𝑥𝑡- ∑ 𝑥P2(Q

Pf8 = 𝐸𝑥𝑡-∑ 𝑥P2
Pf8 + 𝐸𝑥𝑡-∑ 𝑥PQ

Pf8 ; 
(2) suppose that 𝑆 is a standard set on which a binary operation (∙×∙) is defined and under which 𝑆 is closed and 

that (∙×∙) is associative on S. Let {𝑥P}P∈ ℕ	∗  be any hyper infinite sequence of terms of	 𝑆	∗ . Then for any 
𝑛,𝑚 ∈ ℕ	∗  we have: 𝐸𝑥𝑡-∏ 𝑥P2(Q

Pf8 = (𝐸𝑥𝑡-∏ 𝑥P2
Pf8 ) × (𝐸𝑥𝑡-∏ 𝑥PQ

Pf8 ); (3) for any 𝑧 ∈ 𝑆	∗  and for any 𝑛 ∈
ℕ/	
∗  we have: 

𝑧 × (𝐸𝑥𝑡- ∑ 𝑥P2
Pf8 ) = 𝐸𝑥𝑡- ∑ 𝑧 × 𝑥P2

Pf8 .  



External non-Archimedean Field ℝ𝒄
#

	
∗

	by Cauchy Completion of the Internal Non -
Archimedean Field ℝ.			

∗  

Definition 2.4 A hyper infinite sequence of hyperreal numbers from ℝ	∗  is a function 𝑎: ℕ → ℝ	∗	
∗   from the 

hyper- natural numbers ℕ	∗  into the hyperreal numbers	 ℝ	∗ .We usually denote such a function by  𝑛 ↦ 𝑎2 , so the 
terms in the sequence are written as  {𝑎8, 𝑎:, … , 𝑎2, … }.To refer to the whole hyper infinite sequence, we will write 
{𝑎2}2f8

/	∗  or {𝑎2}2∈ ℕ	∗ . 
Abbreviation 2.1 For a standard set 𝐸 we often write 𝐸!", let 𝐸!" = { 𝑥	∗ |𝑥 ∈ 𝐸!"}	

$ .We identify 𝑧 with 𝑧	$  i.e., 𝑧 ≡
𝑧	$  for all	𝑧 ∈ ℂ. Hence, 𝐸!" = 𝐸!"	

$  if 𝐸 ⊆ ℂ, e.g., ℂ	$ = ℂ, ℝ	$ = ℝ, etc.Let ℝM
#,	

∗  ℝM,≈
#

	
∗

	, ℝM,≈(
#

	
∗

	, ℝM,,-.
#

	
∗

	
, ℝM,/

#
	
∗

	, ℕ	
∗

/ 
de-note the sets of Cauchy hyper-real numbers, Cauchy infinitesimal hyper-real numbers, Cauchy positive 
infinitesimal hyperreal numbers, Cauchy finite hyper-real numbers, Cauchy infinite hyper-real numbers and infinite 
hypernatural numbers, respectively. Note that ℝM,,-.

#
	
∗ = ℝM

#
	
∗ \ ℝM,/

#
	
∗ .	 

Definition 2.5 Let {𝑎2}2f8
/	∗   be a hyper infinite ℝ	∗ -	valued sequence mentioned above. We shall say that  

{𝑎2}2f8
/	∗    #-tends to 0 if, given any 𝜀 ∈ ℝ	∗ ≈(	, there is a hyper natural number 𝑁 ∈ ℕ	∗  such that for all  𝑛 > 𝑁, 

|𝑎2| ≤ 𝜀. We denote this symbolically by 𝑎2 →# 0. 
Definition 2.6 Let {𝑎2}2f8

/	∗   be a hyper infinite ℝ	∗ -valued sequence mentioned above. We shall say that  {𝑎2}2f8
/	∗   

#-tends to 𝑞 ∈ ℝ	∗  if, given any 𝜀 ∈ ℝ	∗ ≈(	, there is a hyper natural number 𝑁 ∈ ℕ	∗  such that for all	𝑛 > 𝑁,         
|𝑎2 − 𝑞| ≤ 𝜀 and we denote this symbolically by 𝑎2 →# 𝑞 or by  #- lim

2→ /	∗
𝑎2 = 𝑞. 

Definition 2.7 Let {𝑎2}2f8
/	∗   be a hyper infinite ℝ	∗ -valued sequence mentioned above. We shall say that sequence  

{𝑎2}2f8
/	∗  is bounded if there is a hyperreal 𝑀 ∈ ℝ	∗  such that for any  𝑛 ∈ ℕ,	

∗  |𝑎2| ≤ 𝑀. 
Definition 2.8 Let {𝑎2}2f8

/	∗   be a hyper infinite ℝ	∗ -valued sequence mentioned above. We shall say that  {𝑎2}2f8
/	∗   

is a Cauchy hyper infinite ℝ	∗ -valued sequence if , given any 𝜀 ∈ ℝ	∗ ≈(	, there is a hyper natural number 𝑁(𝜀) ∈ ℕ	∗  
such that for any 𝑚,𝑛 > 𝑁, |𝑎2 − 𝑎Q| < 𝜀. 

Theorem 2.3 If {𝑎2}2f8
/	∗  is a #-convergent hyper infinite ℝ	∗ -valued sequence, i.e., that is, 𝑎2 →# 𝑞	for some 

hyper-real number  𝑞, 𝑞 ∈ ℝ	∗  then  {𝑎2}2f8
/	∗  is a Cauchy hyper infinite ℝ	∗ -valued sequence. 

Theorem 2.4 If {𝑎2}2f8
/	∗  is a Cauchy hyper infinite ℝ	∗ -valued sequence, then it is finitely bounded or hyper 

finitely bounded; that is, there is some finite or hyperfinite 𝑀 ∈ ℝ	∗ (	such that |𝑎2| ≤ 𝑀	for all 𝑛 ∈ ℕ.	
∗  

Definition 2.8 Let 𝑆 be a set, with an equivalence relation  (⋅ ~ ⋅) on pairs of elements. For𝑠	 ∈ 𝑆, denote by 
𝑐𝑙[𝑠] the set of all elements in 𝑆 that are related to	𝑠. Then for any 𝑠, 𝑡 ∈ 𝑆, either 𝑐𝑙[𝑠] = 𝑐𝑙[𝑡]  or 𝑐𝑙[𝑠] and 𝑐𝑙[𝑡] are 
dis-joint. 

Remark 2.2 The hyperreal numbers ℝ	∗ 𝐜
# will be constructed as equivalence classes of Cauchy hyper infinite ℝ	∗ - 

valued sequences. Let ℱ{ ℝ	∗ } denote the set of all Cauchy hyper infinite ℝ	∗ -valued sequences of hyperreal numbers. 
We define the equivalence relation on a set	ℱ{ ℝ	∗ }. 

Definition 2.9 Let {𝑎2}2f8
/	∗  and {𝑏2}2f8

/	∗  be in ℱ{ ℝ	∗ }. Say they are #-equivalent if  𝑎2 − 𝑏2 →# 0 i.e., if and only 
if the hyper infinite ℝ	∗ -valued sequence {𝑎2 − 𝑏2}2f8

/	∗  #-tends to 0. 
Theorem 2.5 [13] Definition above yields an equivalence relation on a set	ℱ{ ℝ	∗ }. 
Definition 2.10 The external hyperreal numbers ℝ	∗ K

# are the equivalence classes 𝑐𝑙[{𝑎2}] of Cauchy hyper 
infinite ℝ	∗ -valued sequences of hyperreal numbers, as per definition above. That is, each such equivalence class is 
an external hyperreal number. 

Definition 2.11 Given any hyperreal number	𝑞 ∈ ℝ	∗ , define a hyperreal number 𝑞#to be the equivalence class of 
the hyper infinite ℝ	∗ -valued sequence {𝑎2 = 𝑞}2f8

/	∗ consisting entirely of	𝑞 ∈ ℝ	∗ . So we view ℝ	∗  as being inside ℝ	∗ 𝐜
# 

by thinking of each hyperreal number 𝑞 ∈ ℝ	∗  as its associated equivalence class	𝑞#. It is standard to abuse this 
notation, and simply refer to the equivalence class as q as well. 

Definition 2.12 Let	𝑠, 𝑡 ∈ ℝ	∗ M
#, so there are Cauchy hyper infinite ℝ	∗ -valued sequences	{𝑎2}2f8

/	∗ ,	{𝑏2}2f8
/	∗  of 

hyper-real numbers with 𝑠 = 𝑐𝑙[{𝑎2}] and	𝑡 = 	𝑐𝑙[{𝑏2}]. 
(a) Define 𝑠 + 𝑡 to be the equivalence class of the hyper infinite sequence	{𝑎2 + 𝑏2}2f8

/	∗ . 
(b) Define 𝑠 × 𝑡 to be the equivalence class of the hyper infinite sequence	{𝑎2 + 𝑏2}2f8

/	∗ . 
Theorem 2.6 [13] The operations +,× in definition above by the requirements (a) and (b) are well-defined. 



Theorem 2.7 Given any hyperreal number	𝑠 ∈ ℝ	∗ M
#,	𝑠 ≠ 0 there is a hyperreal number 𝑡 ∈ ℝ	∗ M

#	such that 𝑠 × 𝑡 =
1. 

Theorem 2.8 If 	{𝑎2}2f8
/	∗  is a Cauchy hyper infinite sequence which does not #-tend to	0, then there is some 𝑁 ∈

ℕ	∗  such that, for all 𝑛 > 𝑁, 𝑎2 	≠ 0. 
Definition 2.13 Let	𝑠 ∈ ℝ	∗ M

#. Say that 𝑠 is positive if 𝑠 ≠ 0, and if 𝑠 = 	𝑐𝑙[{𝑎2}] for some Cauchy hyper infinite 
sequence of hyperreal numbers such that for some 𝑁 ∈ ℕ, 𝑎2 > 0	

∗  for all 𝑛 > 𝑁. Then for a given two hyperreal 
numbers 𝑠, 𝑡, say that 𝑠 > 𝑡 if 𝑠 − 𝑡 is positive. 

Theorem 2.9 Let 𝑠, 𝑡 ∈ ℝ	∗ M
# be hyperreal numbers such that 𝑠 > 𝑡, and let  𝑟 ∈ ℝ	∗ M

#, then 𝑠 + 𝑟 > 𝑡 + 𝑟. 
Theorem 2.10 Let 𝑠, 𝑡 ∈ ℝ	∗ M

# be hyperreal numbers such that 𝑠, 𝑡 > 0. Then there is 𝑚 ∈ ℕ	∗  such that 𝑚× 𝑠 >
𝑡.  

Theorem 2.11 Given any hyperreal number	𝑟 ∈ ℝ	∗ M
#, and any hyperreal number	𝜀 > 0, 𝜀 ≈ 0, there is a 

hyperreal number 𝑞 ∈ ℝ	∗ M
# such that |𝑟 − 𝑞| < 𝜀. 

Definition 2.14 Let 𝑆 ⊊ ℝ	∗ M
# be a nonempty set of hyperreal numbers. A hyperreal number 𝑥 ∈ ℝ	∗ M

# is called an 
upper bound for 𝑆 if 𝑥 ≥ 𝑠 for all 𝑠 ∈ 𝑆. A hyperreal number 𝑥 is the least upper bound (or supremum: sup𝑆) for 𝑆 if 
𝑥 is an upper bound for 𝑆 and 𝑥 ≤ 𝑦 for every upper bound 𝑦 of 𝑆. 

Remark 2.3 The order ≤ given by definition above obviously is ≤-incomplete. 
Definition 2.15 Let 𝑆 ⊊ ℝ	∗ M

# be a nonempty set of hyperreal numbers. We will say that: 
(1) 𝑆 is ≤ -admissible above if the following conditions are satisfied: 
(a) 𝑆 is finitely bounded or hyper finitely bounded above; 
(b) let 𝐴(𝑆) be a set such that ∀𝑥[𝑥 ∈ 𝐴(𝑆) ⇔ 𝑥 ≥ 𝑆] then for any 𝜀 > 0, 𝜀 ≈ 0 there are 𝛼 ∈ 𝑆	and 𝛽 ∈ 𝐴(𝑆) 

such that 𝛽 − 𝛼 ≤ 𝜀 ≈ 0.	 
(2) 𝑆 is ≤ -admissible belov if the following conditions are satisfied: 
(a) 𝑆 is finitely bounded or hyper finitely bounded below; 
(b) let 𝐿(𝑆) be a set such that ∀𝑥[𝑥 ∈ 𝐿(𝑆) ⇔ 𝑥 ≤ 𝑆] then for any 𝜀 > 0, 𝜀 ≈ 0 there are 𝛼 ∈ 𝑆	and 𝛽 ∈ 𝐿(𝑆) 

such that 𝛼 − 𝛽 ≤ 𝜀 ≈ 0. 
Theorem 2.12 [13] (a) Any ≤-admissible above subset 𝑆 ⊂ ℝ	∗ M

# has the least upper bound property. 
(b) Any ≤-admissible above subset 𝑆 ⊂ ℝ	∗ M

# has the greatest lower bound property. 
Theorem 2.13 [13] (Generalized Nested Intervals Theorem) Let {𝐼2}2f8

/	∗ = 	{[𝑎2, 𝑏2]}2f8
/	∗ , [𝑎2, 𝑏2] ⊂ ℝ	∗ M

# be a 
hyper infinite sequence of #-closed intervals satisfying each of the following conditions: 

(a) 𝐼8 ⊇ 𝐼: ⊇ 𝐼B ⊇ ⋯ ⊇ 𝐼2 ⊇ ⋯       
(b) 𝑏2 − 𝑎2 →# 0 as	𝑛 → ∞	∗ , Then ⋂ 𝐼2

/	∗
2f8 consists of exactly one hyperreal number 𝑥 ∈ ℝ	∗ M

#.  
Theorem 2.14 [13] (Generalized Squeeze Theorem) Let 	{𝑎2}2f8

/	∗ , 	{𝑐2}2f8
/	∗ 	be two hyper infinite sequences 

#-converging to 𝐿, and 	{𝑏2}2f8
/	∗  a hyper infinite sequence. If ∀𝑛 > 𝐾,𝐾 ∈ ℕ		

∗ we have	𝑎2 ≤ 𝑏2 ≤ 𝑐2, then 𝑏2 also 
#-converges to 𝐿. 

Theorem 2.15 [13] If #-lim
2→ /	∗ ,

|	𝑎2| = 0,	then	#-lim
2→ /	∗ 	

, 𝑎2 = 0. 

Theorem 2.16 [13] (Generalized Bolzano -Weierstrass Theorem) Any finitely or hyper finitely bounded hyper 
infinite ℝ	∗ M

# -valued sequence has #-convergent hyper infinite subsequence. 
Definition 2.16 Let 	{𝑎2}2f8

/	∗  be ℝ	∗ M
#-valued sequence. Say that a sequence 	{𝑎2}2f8

/	∗ 	#-tends to 0 if, given any 
𝜀 > 0, 𝜀 ≈ 0, there is a hyper natural number 𝑁 ∈ ℕ	∗ /, 𝑁 = 𝑁(𝜀) such that, for all 𝑛 > 𝑁, |𝑎2| ≤ 𝜀. 

Definition 2.17 Let 	{𝑎2}2f8
/	∗  be ℝ	∗ M

#-valued hyper infinite sequence. We call 	{𝑎2}2f8
/	∗  a Cauchy hyper infinite 

sequence if given any hyperreal number	𝜀 ∈ ℝM,≈(
#

	
∗ , there is a hypernatural number 𝑁 = 𝑁(𝜀) such that for any 

𝑚,𝑛 > 𝑁, |𝑎2 − 𝑎Q| < 𝜀. 
Theorem 2.17 If {𝑎2}2f8

/	∗ is a #-convergent hyper infinite sequence i.e., 𝑎2 →# 𝑏 for some hyperreal number	𝑏 ∈
ℝ	∗ M
#, then {𝑎2}2f8

/	∗  is a Cauchy hyper infinite sequence. 
Theorem 2.18 If  {𝑎2}2f8

/	∗  is a Cauchy hyper infinite sequence, then it is bounded; that is, there is some 𝑀 ∈
ℝ	∗ M
#	 such that |𝑎2| ≤ 𝑀 for all	𝑛 ∈ ℕ	∗ . 
Theorem 2.19 [13] Any Cauchy hyper infinite sequence {𝑎2}2f8

/	∗  has a #-limit in	 ℝ	∗ M
#; that is, there exists 𝑏 ∈

ℝ	∗ M
# such that 𝑎2 →# 𝑏. 
Remark 2.4 Note that there exists canonical natural embedding  ℝ	∗ ↪ ℝ	∗ M

#. 



Remark 2.5 A nonempty set S of Cauchy hyperreal numbers ℝ	∗ K
# is unbounded above if it has no hyperfinite 

upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient to adjoin to Cauchy 
hyperreal number system ℝ	∗ K

# two points, +∞# = ( +∞	
∗ )#    (which we also write more simply as ∞# ) and −∞#, 

and to define the order relationships between them and any Cauchy hyperreal number 𝑥 ∈ ℝ	∗ M
# by −∞# < 𝑥 < ∞#. 

Definition 2.18 We will call −∞# and ∞# are points at hyper infinity. If 𝑆 ⊂ ℝ	∗ M
# is a nonempty set of Cauchy 

hyperreals, we write sup(𝑆) = ∞#	to indicate that 𝑆 is unbounded above, and inf(𝑆) = −∞# to indicate that 𝑆 is un-
bounded below. 

Definition 2.19 That is (𝜀, 𝛿) definition of the #-limit of a function 𝑓:𝐷 → ℝ	∗ M
# is as follows: let 𝑓(𝑥) is a 

ℝ	∗ M
#-	valued function defined on a subset 𝐷 ⊂ ℝ	∗ M

# of the Cauchy hyperreal numbers. Let 𝑐 be a #-limit point of 𝐷 
and let 𝐿 ∈ ℝ	∗ M

# be Cauchy hyperreal number. We say that  #- lim
0→#M

𝑓(𝑥) = 𝐿     if for every 𝜀 ≈ 0, 𝜀 > 0 there exists 

a 𝛿 ≈ 0, 𝛿 > 0 such that, for all	𝑥 ∈ 𝐷, if 0 < |𝑥 − 𝑐| < 𝛿, then |𝑓(𝑥) − 𝐿| < 𝜀. 
Definition 2.20 [12] The function 𝑓:	 ℝ	∗ M

# → ℝ	∗ M
#	is a #-continuous (or micro continuous) at some point 𝑐 of its 

domain if the #-limit of	𝑓(𝑥), as 𝑥 #-approaches 𝑐 through the domain of 𝑓,	exists and is equal to 
𝑓(𝑐): #- lim

0→#M
𝑓(𝑥) = 𝑓(𝑐). 

Theorem 2.20 [13] Let {𝑎2}2f8
/	∗  and 	{𝑏2}2f8

/	∗  be ℝ	∗ M
#-	valued hyper infinite sequences. Then the following 

equalities hold for any 𝑛, 𝑘, 𝑙, 𝑗,𝑚 ∈ ℕ	∗ 	: 
 𝑏 × (𝐸𝑥𝑡-∑ 𝑎=2

=f8 ) = 𝐸𝑥𝑡-∑ 𝑏 × 𝑎=2
=f8   (45) 

 𝐸𝑥𝑡- ∑ 𝑎=2
=f8 ± 𝐸𝑥𝑡- ∑ 𝑏= =2

=f8 𝐸𝑥𝑡- ∑ (𝑎= ± 𝑏=)2
=f8  (46) 

 𝐸𝑥𝑡-∑ X𝐸𝑥𝑡-∑ 𝑎=[
e&
[fe5 ZP&

=fP5 = 𝐸𝑥𝑡-∑ X𝐸𝑥𝑡- ∑ 𝑎=[
P&
=fP5 Ze&

[fe5  (47) 
 (𝐸𝑥𝑡- ∑ 𝑎=2

=f8 ) × b𝐸𝑥𝑡-∑ 𝑏[2
[f8 c = 𝐸𝑥𝑡-∑ b𝐸𝑥𝑡- ∑ 𝑎= × 𝑏[2

[f8 c2
=f8  (48) 

 (𝐸𝑥𝑡-∏ 𝑎=2
=f8 ) × (𝐸𝑥𝑡-∏ 𝑏=2

=f8 ) = 𝐸𝑥𝑡-∏ 𝑎=2
=f8 × 𝑏= (49) 

 (𝐸𝑥𝑡-∏ 𝑎=2
=f8 )Q = 	𝐸𝑥𝑡-∏ 𝑎=Q.	2

=f8  (50) 
Theorem 2.21 [13] Let {𝑎2}=f82  and 	{𝑏2}=f82  be ℝ	∗ M

#-	valued monotonically non-decreasing hyperfinite 
sequences. Suppose that 𝑎= ≤ 𝑏= , 1 ≤ 𝑖 ≤ 𝑛, then the following equalities hold for any 𝑛 ∈ ℕ	∗ 	:   
 𝐸𝑥𝑡-∏ 𝑎=2

=f8 ≤ 𝐸𝑥𝑡-∏ 𝑏=2
=f8 . (51) 

Theorem 2.22 [13] Let {𝑎2}=f82  and 	{𝑏2}=f82  be ℝ	∗ M
#-	valued hyperfinite sequences. Then the following 

inequalities hold for any 𝑛 ∈ ℕ	∗ 	:  
 (𝐸𝑥𝑡-∏ 𝑎=2

=f8 × 𝑏=): ≤ (𝐸𝑥𝑡-∏ 𝑎=:2
=f8 ) × (𝐸𝑥𝑡-∏ 𝑏=:2

=f8 ). (52) 
Definition 2.21 [12] Assume that {𝑎2}2f8

/	∗  is a	 ℝ	∗ M
#-	valued hyper infinite sequence, the symbol 𝐸𝑥𝑡-∑ 𝑎2

/	∗
2f8  is a 

hyper infinite series, and 𝑎2	is the n-th term of the hyper infinite series. 
Definition 2.22 [12] We shall say that a series 𝐸𝑥𝑡-∑ 𝑎2

/	∗
2f8  #-converges to the sum	𝐴 ∈ ℝ	∗ M

#, and write 
𝐸𝑥𝑡-∑ 𝑎2

/	∗
2f8 = 𝐴 if the hyper infinite sequence 	{𝐴2}2f8

/	∗  defined by 𝐴Q = 𝐸𝑥𝑡-∑ 𝑎2Q
2f8  #-converges to the sum	𝐴. 

The hyperfinite sum 𝐴Q is the 𝑛-th partial sum of 𝐸𝑥𝑡-∑ 𝑎2
/	∗
2f8 . If #-lim𝐴Q

Q→ /	∗ ,
= ∞# or	−∞#, we shall say that 

𝐸𝑥𝑡-∑ 𝑎2
/	∗
2f8 #-diverges to ∞# or to	−∞#. 

Theorem 2.23 [12] The hyper infinite sum	𝐸𝑥𝑡-∑ 𝑎2
/	∗
2f8   of a	#-convergent hyper infinite series is unique. 

Hyper Infinite Sequences and Series of ℝ	∗ 𝒄
#- Valued Functions 

Definition 2.23 [12] If 𝑓8, 𝑓:, … , 𝑓P , 𝑓P(8, … , 𝑓2, … 𝑛 ∈ ℕ	∗ 	 are ℝ	∗ M
#- valued functions on a subset 𝐷 ⊂ ℝ	∗ M

# we say 
that {𝑓2}2f8

/	∗ 	is a hyper infinite sequence of  ℝ	∗ M
#- valued functions on 𝐷. 

Definition 2.24 [12] Suppose that {𝑓2}2f8
/	∗ 	is a hyper infinite sequence of ℝ	∗ M

#- valued functions on 𝐷 ⊂ ℝ	∗ M
# and 

the hyper infinite sequence of values {𝑓2(𝑥)}2f8
/	∗  #-converges for each 𝑥 in some subset 𝑆 of	𝐷. Then we say that 

{𝑓2(𝑥)}2f8
/	∗  #-converges pointwise on 𝑆 to the #-limit function	𝑓, defined by	𝑓(𝑥) = lim

2→ /	∗
𝑓2(𝑥). 

Definition 2.25 [12] If {𝑓2(𝑥)}2f8
/	∗ 	is a hyper infinite sequence of ℝ	∗ M

#- valued functions on	𝐷 ⊂ ℝ	∗ M
#, then 

 𝐸𝑥𝑡-∑ 𝑓2(𝑥)
/	∗
2f8  (53) 

is a hyper infinite series of functions on 𝐷. The partial sums of (1), are defined by 𝐹2(𝑥) = 𝐸𝑥𝑡-∑ 𝑓2(𝑥)2
Pf8 . If 

hyper infinite sequence 



{𝐹2(𝑥)}2f8
/	∗ -

converges pointwise to the #-limit function	𝐹(𝑥) on a subset	𝑆 ⊂ 𝐷, we say that 
{𝐹2(𝑥)}2f8

/	∗ -
converges pointwise to the sum 𝐹(𝑥) on	𝑆, and write 𝐹(𝑥) = 𝐸𝑥𝑡-∑ 𝑓2(𝑥)

/	∗
2f8 . 

Definition 2.26  [12] A hyper infinite series of the form	𝐸𝑥𝑡- ∑ (𝑥 − 𝑥I)2
/	∗
2f8 ,	𝑛 ∈ ℕ	∗ 	 is called a hyper infinite 

power series in 𝑥 − 𝑥I. 

The #-Derivatives and Riemann #-Integral of	 ℝ	∗ 𝒄
#-Valued Functions 𝒇:𝑫 → ℝ	∗ 𝒄

#𝒏 

Definition 2.27 [12] A function 𝑓:𝐷 → ℝ	∗ 𝒄
#  #-differentiable at an #-interior point 𝑥 ∈ 𝐷 of its domain 𝐷 ⊂ ℝ	∗ 𝒄

# 
if the difference quotient 𝑓(𝑥) − 𝑓(𝑥I) 𝑥 − 𝑥I⁄  has a 
#-limit:

	 - lim
0→#05

(𝑓(𝑥) − 𝑓(𝑥I) 𝑥 − 𝑥I⁄ ). 
In this case the #-limit is called the #-derivative of 𝑓 at interior point	𝑥I, and is denoted by 𝑓#6(𝑥I) or by 
𝑑#𝑓 	(𝑥I) 𝑑#𝑥.⁄  

Definition 2.28 If 𝑓 is defined on an #-open set	𝑆 ⊂ ℝ	∗ 𝒄
#, we say that f is #-differentiable on 𝑆 if 𝑓 is 

#-differentiable at every point of	𝑆. If 𝑓 is #-differentiable on	𝑆, then 𝑓#6(𝑥) is a function on 𝑆.We say that 𝑓 is 
#-continuously #-differentiable on 𝑆 if 𝑓#6(𝑥)	is #-continuous on 𝑆. 

Definition 2.29 If 𝑓 is #-differentiable on a #-neighbourhood of		𝑥I, it is reasonable to ask if 𝑓#�(𝑥) is 
#-differentiable at	𝑥I. If so, we denote the #-derivative of	𝑓#�(𝑥) at 𝑥I by 𝑓#��(𝑥I) or by 𝑓#(:)(𝑥I) and this is the 
second #-derivative of	𝑓 at 𝑥I. Continuing inductively by hyper infinite induction, if 𝑓#(2H8)(𝑥) is defined on a 
#-neighbourhood of		𝑥I, then the 𝑛-th #-derivative of	𝑓 at 𝑥I denoted by 𝑓#(2)(𝑥I) or by	𝑑#(2)𝑓 	(𝑥I) 𝑑#𝑥2⁄ , where 
𝑛 ∈ ℕ.	

∗  
Theorem 2.24 [12] If 𝑓 is #-differentiable at 𝑥I then 𝑓 is #-continuous at 𝑥I. 
Theorem 2.25 [12] If	𝑓 and 𝑔 are #-differentiable at	𝑥I, then so are 𝑓 ± 𝑔 and 𝑓 × 𝑔 with: 
(a) (𝑓 ± 𝑔	)#�(𝑥I) = 𝑓#�(𝑥I) ± 𝑔#�(𝑥I), (b) (𝑓 × 𝑔	)#�(𝑥I) = 𝑓#�(𝑥I)𝑔(𝑥I) + 𝑔#�(𝑥I)𝑓(𝑥I). 
(c) The quotient 𝑓 𝑔⁄  is #-differentiable at	𝑥I if 𝑔(𝑥I) ≠ 0 with (𝑓 𝑔⁄ )#� = ]#6(05)p(05)Hp#6(05)](05)

p(05)%
. 

(d) If 𝑛 ∈ ℕ	∗  and 𝑓= , 1 ≤ 𝑖 ≤ 𝑛 are #-differentiable at	𝑥I, then so are 𝐸𝑥𝑡- ∑ 𝑓=2
=f8  with: 

(𝐸𝑥𝑡-∑ 𝑓=2
=f8 )#�(𝑥I) = 𝐸𝑥𝑡-∑ 𝑓=

#�2
=f8 (𝑥I). 

(e) If 𝑛 ∈ ℕ	∗  and  𝑓#(2)(𝑥I), 𝑔#(2)(𝑥I)  exist, then so does (𝑓 × 𝑔	)#(2)(𝑥I) and 

(𝑓 × 𝑔	)#(2)(𝑥I) = 𝐸𝑥𝑡-ÿ X
𝑛
𝑖Z 𝑓	

#(=)2

=fI
(𝑥I)𝑔	#(2H=)(𝑥I) 

Theorem 2.26 [12] (The Chain Rule) Suppose that 𝑔 is #-differentiable at 𝑥I and 𝑓 is #-differentiable at 𝑔(𝑥I). 
Then the composite function ℎ = 𝑓 ∘ 𝑔 defined by ℎ(𝑥) = 𝑓(𝑔(𝑥)) is #-differentiable at  𝑥I with	ℎ#�(𝑥I) =
𝑓#�b𝑔(𝑥I)c𝑔#�(𝑥I). 

Theorem 2.27 [12] (Generalized Taylor's Theorem) Suppose that 𝑓#(2)(𝑥	), 𝑛 ∈ ℕ	∗  exists on an #-open interval 
𝐼	about 𝑥I, and let 𝑥 ∈ 𝐼. Let 𝑃2(𝑥, 𝑥I) be the 𝑛-th Taylor hyper polynomial of 𝑓 about 𝑥I, 𝑃2(𝑥, 𝑥I) =
𝐸𝑥𝑡-∑ ]#(7)(05)(0H05)7

G!
2
GfI    Then the remainder 𝑅(𝑥, 𝑥I) = 𝑓(𝑥) − 𝑃2(𝑥, 𝑥I) can be written as 

 𝑅(𝑥, 𝑥I) =
]#(!.&)(M)(0H05)!

(2(8)!
. (54) 

Here	𝑐 depends upon 𝑥 and is between 𝑥 and	𝑥I. 
Definition 2.30 [12] Let	[𝑎, 𝑏] ⊂ ℝ	∗ 𝒄

#. A hyperfinite partition of  [𝑎, 𝑏] is a hyperfinite set of subintervals 
[𝑥I, 𝑥8],…,[𝑥2H8, 𝑥2], with	𝑛 ∈ ℕ	∗ /, where 𝑎 = 𝑥I < 𝑥8… < 𝑥2 = 𝑏. A set of these points 𝑥I, 𝑥8, … , 𝑥2 defines a 
hyperfinite partition 𝑃 of [𝑎, 𝑏], which we denote by	𝑃 = {𝑥=}=fI2 .	The points 𝑥I, 𝑥8, … , 𝑥2 are the partition points of 
𝑃.The largest of the lengths of the subintervals	[𝑥=H8, 𝑥=], 0 ≤ 𝑖 ≤ 𝑛 is the norm of 𝑃 = {𝑥=}=fI2  denoted by	‖𝑃‖; 
thus, ‖𝑃‖ = max

8D=D2	
(𝑥= − 𝑥=H8). 

Definition 2.31 Let 𝑃 and 𝑃� are hyperfinite partitions of [𝑎, 𝑏], then 𝑃� is a refinement of 𝑃 if every partition 
point of 𝑃 is also a partition point of	𝑃�; that is, if 𝑃� is obtained by inserting additional points between those of 𝑃.          



Definition 2.32 Let 𝑓 be	 ℝ	∗ 𝒄
#- valued function	𝑓:	[𝑎, 𝑏] → ℝ	∗ 𝒄

#, then we say that external hyperfinite sum 𝜎\0A 
defined by 
 𝜎\0A = 𝐸𝑥𝑡-∑ 𝑓(𝑐=)2

=f8 (𝑥= − 𝑥=H8), 𝑥=H8 ≤ 𝑐= ≤ 𝑥=, (55) 
is a Riemann external hyperfinite sum of	𝑓 over the hyperfinite partition  𝑃 = {𝑥=}=fI2 . 
Definition 2.33 [12] Let 𝑓 be	 ℝ	∗ 𝒄

#- valued function	𝑓:	[𝑎, 𝑏] → ℝ	∗ 𝒄
#, then we say that 𝑓 is Riemann #-integrable 

on [𝑎, 𝑏] if there is a number 𝐿 ∈ ℝ	∗ 𝒄
# with the following property: for every 𝜀 ≈ 0, 𝜀 > 0, there is a 𝛿 ≈ 0, 𝛿 > 0 

such that |𝐿 − 𝜎\0A| < 𝛿 if 𝜎\0A is any Riemann external hyperfinite sum of	𝑓 over a partition 𝑃 of [𝑎, 𝑏] such that 
‖𝑃‖ < 𝛿. In this case, we say that 𝐿 is the Riemann #-integral of 𝑓 over [𝑎, 𝑏], and we shall write 
 𝐿 = 𝐸𝑥𝑡- ∫ 𝑓(𝑥)𝑑#𝑥�

� . (56) 
Thus the Riemann #-integral of ℝ	∗ 𝒄

#- valued function  𝑓:	[𝑎, 𝑏] → ℝ	∗ 𝒄
# over [𝑎, 𝑏] is defined as #-limit of the 

external hyperfinite sums (55) with respect to partitions of the interval [𝑎, 𝑏]: 
 𝐸𝑥𝑡- ∫ 𝑓(𝑥)𝑑#𝑥�

� = #-lim
2→ /	∗

b𝐸𝑥𝑡-∑ 𝑓(𝑐=)2
=f8 (𝑥= − 𝑥=H8)c. (57) 

Definition 2.34 A coordinate rectangle 𝑅 in	 ℝ	∗ 𝒄
#𝒏,	𝑛 ∈ ℕ	∗ 	 is the external finite or hyperfinite Cartesian product 

of 𝑛 #-closed intervals; that is, 𝑅 = 𝐸𝑥𝑡- ×=f82 [𝑎= , 𝑏=]. The content of 𝑅 is	𝑉(𝑅) = 𝐸𝑥𝑡-∏ (𝑏= − 𝑎=)2
=f8 . The 

hyperreal numbers	𝑏= − 𝑎=, 1 ≤ 𝑖 ≤ 𝑛 are the edge lengths of	𝑅. If they are equal, then 𝑅 is finite or hyperfinite 
coordinate cube. If 𝑎e = 𝑏e	for some	𝑟, then 𝑉(𝑅) = 0 and we say that 𝑅 is degenerate; otherwise, 𝑅 is 
nondegenerate. 

Definition 2.35 If 𝑅 = 𝐸𝑥𝑡-×=f82 [𝑎= , 𝑏=] and 𝑃G = 𝑎GI < 𝑎G8 <∙∙∙< 𝑎GQ7 is an external hyperfinite partition of 
[𝑎G , 𝑏G], 1 ≤ 𝑟 ≤ 𝑛, then the set of all rectangles in ℝ	∗ 𝒄

#𝒏	that can be written as	𝐸𝑥𝑡- ×=f82 N𝑎=,[28& , 𝑎=,[2R, 1 ≤ 𝑗G ≤ 𝑚G , 
1 ≤ 𝑟 ≤ 𝑛 is a partition of 𝑅. We denote this partition by 𝑃 = 𝐸𝑥𝑡- ×Gf82 𝑃G and define its norm to be the maximum 
of the norms of 𝑃= , 1 ≤ 𝑖 ≤ 𝑛; thus, ‖𝑃‖ = max

=
{𝑃=|1 ≤ 𝑖 ≤ 𝑛}. 

Definition 2.36 If  𝑃 = 𝐸𝑥𝑡- ×=f82 𝑃= and 𝑃� = 𝐸𝑥𝑡- ×=f82 𝑃=�	 are partitions of the same rectangle, then 𝑃� is a 
refinement of 𝑃 if 𝑃=�	is a refinement of 𝑃= , 1 ≤ 𝑖 ≤ 𝑛 as defined above. 

Definition 2.37 Suppose that 𝑓 is a ℝ	∗ 𝒄
#- valued function defined on a rectangle 𝑅 in	 ℝ	∗ 𝒄

#𝒏,	𝑛 ∈ ℕ	∗ ,	 𝑃 =
{𝑃=}=f8P is a partition of 𝑅, and 𝑥= is an arbitrary point in 𝑅=,	1 ≤ 𝑗 ≤ 𝑘. Then a Riemann external hyperfinite sum 
𝜎\0A of	𝑓 over the partition  𝑃 is defined by 
 𝜎\0A = 𝐸𝑥𝑡-∑ 𝑓(𝑥=)P

=f8 𝑉(𝑅=) (58) 
Definition 2.38 Let	𝑓 be a ℝ	∗ 𝒄

#- valued function defined on a rectangle 𝑅 in	 ℝ	∗ 𝒄
#𝒏,	𝑛 ∈ ℕ	∗ . We say that 𝑓 is 

Riemann #-integrable on 𝑅 if there is a number L with the following property: for every 𝜀 ≈ 0, 𝜀 > 0, there is a 𝛿 ≈
0, 𝛿 > 0 such that |𝐿 − 𝜎\0A| < 𝛿 if 𝜎\0A is any Riemann external hyperfinite sum of	𝑓 over a partition 𝑃 of 𝑅 such 
that ‖𝑃‖ < 𝛿. In this case, we say that 𝐿 is the Riemann #-integral of 𝑓 over 𝑅, and write 
 𝐿 = 𝐸𝑥𝑡- ∫ 𝑓(𝑥)𝑑#2𝑥	

{ . (59) 
Thus the Riemann #-integral of ℝ	∗ 𝒄

#- valued function  𝑓 defined on a rectangle 𝑅 in	 ℝ	∗ 𝒄
#𝒏 is defined as #-limit of 

the external hyperfinite sums (58) with respect to partitions of the rectangle 𝑅: 
 𝐸𝑥𝑡- ∫ 𝑓(𝑥)𝑑#2𝑥 =	

{ #-lim
2→ /	∗

X𝐸𝑥𝑡- ∑ 𝑓(𝑥=)P
=f8 𝑉(𝑅=)Z. (60) 

The ℝ	∗ 𝒄
#-Valued #-Exponential Function 𝑬𝒙𝒕-𝐞𝐱𝐩(𝒙) and ℝ	∗ 𝒄

#-Valued Trigonometric 
Functions 𝑬𝒙𝒕-𝐬𝐢𝐧(𝒙), 𝑬𝒙𝒕-𝐜𝐨𝐬(𝒙) 

We define the #-exponential function 𝐸𝑥𝑡-exp(𝑥) as the solution of the #-differential equation 
 𝑓#�(𝑥	) = 𝑓(𝑥), 𝑓(0) = 1. (61) 

We solve it by setting  𝑓(𝑥) = 𝐸𝑥𝑡-∑ 𝑥2/	∗
2fI , 𝑓#�(𝑥	) = 𝐸𝑥𝑡-∑ 𝑛𝑥2/	∗

2fI . Therefore 
 𝐸𝑥𝑡-exp(𝑥) = 𝐸𝑥𝑡-∑ 0!

2!
/	∗
2fI . (62) 

From (1) we get b𝐸𝑥𝑡-exp(𝑥)cb𝐸𝑥𝑡-exp(𝑦)c = 𝐸𝑥𝑡-exp(𝑥 + 𝑦) for any 𝑥, 𝑦 ∈ ℝ	∗ 𝒄
#. 

We define the #- trigonometric functions 𝐸𝑥𝑡- sin 𝑥	and 𝐸𝑥𝑡- cos 𝑥 by 
 𝐸𝑥𝑡- sin 𝑥	 = 𝐸𝑥𝑡-∑ (−1)2 0%!.&

(:2(8)!
/	∗
2fI , 𝐸𝑥𝑡- cos 𝑥	 = 𝐸𝑥𝑡- ∑ (−1)2 0%!

(:2)!
/	∗
2fI  . (63) 

It can be shown that the series (1) #-converges for all 𝑥 ∈ ℝ	∗ 𝒄
#  #-differentiating yields 

 (𝐸𝑥𝑡- sin 𝑥	)#� = 𝐸𝑥𝑡- cos 𝑥, (𝐸𝑥𝑡- cos 𝑥	)#� = −(𝐸𝑥𝑡- sin 𝑥	). (64) 



ℝ	∗ 𝐜
# -Valued Schwartz Distributions 

Definition 2.39 [12] Let 𝑈 be an #- open subset of ℝ	∗ 𝒄
#𝒏 and	𝑓: 𝑈 → ℝ	∗ 𝒄

#.  The partial derivative of 𝑓 at the point 
𝑥 = (𝑥8, 𝑥:, … , 𝑥= , … , 𝑥2) with respect to the 𝑖-th variable 𝑥= is defined as 

�#]
�#02

= 	#- lim
�→#I

](0&,0%,…,02(�,…,0!)H](0&,0%,…,02,…,0!)
�

. 

Definition 2.38 A multi-index of size 𝑛 ∈ ℕ	∗ 	 is an element in ℕ	∗ 2, the length of a multi-index 𝛼 =
(𝛼8, … , 𝛼2) 	∈ ℕ	∗ 2 is defined as Ext-∑ 𝛼=2

=f8  and denoted by |𝛼|.    We introduce the following notations for a given 

multi-index 𝛼 = (𝛼8, … , 𝛼2) 	∈ ℕ	∗ 2:  𝑥3 = 𝐸𝑥𝑡-∏ 𝑥=
32
	
;	2

=f8 𝜕#3 = 𝐸𝑥𝑡-∏ �#92

�#02
92
	

	
2
=f8 or symbolically 𝜕#3 =

𝐸𝑥𝑡- �#9

�#0&
9&…�#0!

9!.. 

Definition 2.40 The Schwartz space of rapidly decreasing ℂM#	
∗ - valued test functions on ℝM

#2	, 𝑛 ∈ ℕ	∗	
∗  is the 

function space defined by 
S#( ℝM

#2
	
∗ , ℂM#	

∗ ) = H𝑓 ∈ 𝐶 /	∗ ( ℝM
#2

	
∗ , ℂM#	

∗ )|∀(𝛼, 𝛽)(𝛼, 𝛽 ∈ ℕ	∗ 2)∀𝑥(𝑥 ∈ ℝM
#2

	
∗ )N[𝑥3 𝐷		 #4 𝑓		 (𝑥)[ < ∞#RS. 

Remark 2.6 Note that if 𝑓 ∈ 𝑆#( ℝM
#2

	
∗ , ℂM#	

∗ ) the integral of 𝑥3[ 𝐷		 #4 𝑓		 (𝑥)[ exists 

𝐸𝑥𝑡-\ [ 𝑥3𝐷	
	 #4 𝑓		 (𝑥)[𝑑#2

	

ℝ:#!	∗
< ∞#. 

Definition 2.41 The Schwartz space of essentially rapidly decreasing ℂM#	
∗ - valued test functions on ℝM

#2	, 𝑛 ∈ ℕ	∗	
∗  

is the function space defined by 
S#( ℝM

#2
	
∗ , ℂM#	

∗ ) = H𝑓 ∈ 𝐶 /	∗ ( ℝM
#2

	
∗ , ℂM#	

∗ )|∀𝛼(𝛼 ∈ ℕ		 2)∀𝛽(𝛽 ∈ ℕ	∗ 2)∀𝑥(𝑥 ∈ ℝM
#2

	
∗ )N[𝑥3 𝐷		 #4 𝑓		 (𝑥)[ < ∞	RS. 

Remark 2.7 Note that if 𝑓 ∈ 𝑆#( ℝM
#2

	
∗ , ℂM#	

∗ ) the integral of 𝑥3[ 𝐷		 #4 𝑓		 (𝑥)[, 𝛼 ∈ ℕ		 2, 𝛽 ∈ ℕ	∗ 2 exists and 

𝐸𝑥𝑡-\ [ 𝑥3𝐷	
	 #4 𝑓		 (𝑥)[𝑑#2

	

ℝ:#!	∗
< ∞	. 

Definition 2.42 The Schwartz space of rapidly decreasing ℂM#	
∗ - valued test functions on ℝM,,-.

#2 	, 𝑛 ∈ ℕ	∗	
∗  is the 

function space defined by 
S%#b ℝM,,-.

#2
	
∗ , ℂM#	

∗ c = H𝑓 ∈ 𝐶 /	∗ b ℝM,,-.
#2

	
∗ , ℂM#	

∗ c|∀(𝛼, 𝛽)(𝛼, 𝛽 ∈ ℕ	∗ 2)∀𝑥b𝑥 ∈ ℝM,,-.
#2

	
∗ cN[𝑥3 𝐷		 #4 𝑓		 (𝑥)[ < ∞#RS. 

Remark 2.8 Note that if 𝑓 ∈ 	 S%#b ℝM,,-.
#2

	
∗ , ℂM#	

∗ c the integral of 𝑥3[ 𝐷		 #4 𝑓		 (𝑥)[, 𝛼 ∈ ℕ	∗ 2, 𝛽 ∈ ℕ	∗ 2 exists and   

𝐸𝑥𝑡-\ [ 𝑥3𝐷	
	 #4 𝑓		 (𝑥)[𝑑#2

	

ℝ:,/01
#!

	∗
< ∞#	. 

Definition 28.43 The Schwartz space of essentially rapidly decreasing ℂM#	
∗ - valued test functions on 

ℝM,,-.
#2 	, 𝑛 ∈ ℕ	∗	

∗  is the function space defined by 
S%,-.#

	b ℝM,,-.
#2

	
∗ , ℂM#	

∗ c = 
^𝑓 ∈ 𝐶 /	∗ b ℝM,,-.

#2
	
∗ , ℂM#	

∗ c|∀(𝛼, 𝛽)(𝛼 ∈ ℕ		 2, 𝛽 ∈ ℕ		 2)∃𝑐34b𝑐34 ∈ ℝM,,-.
#

	
∗ c∀𝑥b𝑥 ∈ ℝM,,-.

#2
	
∗ c dW𝑥3 X 𝐷		 #4 𝑓		 (𝑥)ZW < 𝑐34e_. 

Remark 2.9 Note that if 𝑓 ∈ 𝑆,-.# ( ℝM
#2

	
∗ , ℂM#	

∗ ) the integral of [ 𝐷		09 #4 𝑓		 (𝑥)[ exists and finitely bounded above 
𝐸𝑥𝑡- ∫ [ 𝑥3𝐷	

	 #4 𝑓		 (𝑥)[𝑑#2
	
ℝ:,/01
#!

	∗
< 𝑑34 , 𝑑34 ∈ ℝM,,-.

#
	
∗ . 

Abbreviation 2.2 1) The Schwartz space of rapidly decreasing test functions on ℝM
#2	

	
∗  we will be denoting by 

S#( ℝM
#2

	
∗ ) and let S,-.# ( ℝM

#2	
	
∗ )	

	 	denote the set of ℂM#	
∗ -valued essentially rapidly decreasing test functions on	 ℝM

#2	
	
∗ .    

2) The Schwartz space of rapidly decreasing ℂM#	
∗ - valued test functions on ℝM,,-.

#2 	
	
∗  we will be denoting by 

S%#b ℝM,,-.
#2 	

	
∗ c and let S%,-.# b ℝM,,-.

#2 	
	
∗ c	

	 	denote the set of ℂM#	
∗ -valued essentially rapidly decreasing test functions on 

	 ℝM,,-.
#2 	

	
∗ . 

Definition 2.44 A linear functional 𝑢: 𝑆#( ℝM
#2

	
∗ ) → ℂM#	

∗  is a #-continuous if there exist 𝐶, 𝑘 ∈ ℕ	∗  and constants 
𝑐34 such that |𝑢(𝜑)| ≤ 𝐶b𝐸𝑥𝑡-∑ 𝑐34	

|3|DP,|4|DP c. Here  ∀𝑥(𝑥 ∈ ℝM
#2

	
∗ ) dW𝑥3 X 𝐷		 #4 𝜑		 (𝑥)ZW < 𝑐34e. 

Definition 2.45 A linear functional 𝑢: 𝑆#b ℝM,,-.
#2

	
∗ c → ℂM#	

∗  is a strongly #-continuous if there exist 𝐶, 𝑘 ∈ ℕ	∗  and 
constants 𝑐34 such that	|𝑢(𝜑)| ≤ 𝐶b𝐸𝑥𝑡- ∑ 𝑐34	

|3|DP,|4|DP c ∈ ℝM,,-.
#

	
∗ . 

Definition 2.46 A generalized function 𝑢 ∈ 𝑆#�( ℝM
#2

	
∗ ) is defined as a #-continuous linear functional on vector 

space 𝑆#( ℝM
#2

	
∗ ), symbolically it written as 𝑢:𝜑 → (𝑢, 𝜑). Thus space 𝑆#�( ℝM

#2
	
∗ ) of generalized functions is the 

space dual to 𝑆#( ℝM
#2

	
∗ ). 



Definition 2.47 A generalized function 𝑢 ∈ 𝑆#�b ℝM,,-.
#2

	
∗ c is defined as a strongly #-continuous linear functional 

on vector space 𝑆#b ℝM,,-.
#2

	
∗ c, symbolically it written as 𝑢:𝜑 → (𝑢, 𝜑). Thus space 𝑆#�b ℝM,,-.

#2
	
∗ c of generalized 

functions is the space dual to 𝑆#b ℝM,,-.
#2

	
∗ c. 

Definition 2.48 Convergence of a hyper infinite sequence {𝑢2}2f8
/	∗  of generalized functions in 𝑆#�( ℝM

#2
	
∗ ) is 

defined as weak #-convergence of the hyper infinite sequence of functionals in 𝑆#�( ℝM
#2

	
∗ ) that is:	𝑢2 →# 0, as 𝑛 →

∞	∗ , in 𝑆#�( ℝM
#2

	
∗ ) means that (𝑢2, 𝜑) →# 0,  as 𝑛 → ∞	∗ , for all 𝜑 ∈ 𝑆#( ℝM

#2
	
∗ ). 

Definition 2.49 Convergence of a hyper infinite sequence {𝑢2}2f8
/	∗  of generalized functions in 𝑆#�b ℝM,,-.

#2
	
∗ c is 

defined as weak #-convergence of functionals in 𝑆#�b ℝM,,-.
#2

	
∗ c that is:	𝑢2 →# 0, as 𝑛 → ∞	∗ , in 𝑆#�b ℝM,,-.

#2
	
∗ c means 

that (𝑢2, 𝜑) →# 0, as 𝑛 → ∞	∗ , for all 𝜑 ∈ 𝑆#b ℝM,,-.
#2

	
∗ c.  

Definition 2.50 1) Let 𝑢 ∈ 𝑆#6( ℝM
#2

	
∗ ) and let 𝑥 = 𝐴𝑦 + 𝑏 be a linear transformation of  ℝM

#2
	
∗  onto	 ℝM

#2
	
∗ . The 

generalized function 𝑢(𝐴𝑦 + 𝑏	) ∈ 𝑆#6( ℝM
#2

	
∗ )  is defined by 

 (𝑢(𝐴𝑦 + 𝑏	), 𝜑) = X𝑢, ���
8&(0H�)�
|�t"�|

Z. (65) 
Formula (1) enables one to define generalized functions that are translation invariant, spherically symmetric, 

centrally symmetric, homogeneous, periodic, Lorentz invariant, etc. 
2) Let the function 𝛼(𝑥) ∈ 𝐶#8( ℝM

#
	
∗ ) have only simple zeros	𝑥P ∈ ℝM

#
	
∗ ,𝑘 ∈ ℕ	∗ , the function 𝛿b𝛼(𝑥)c is defined 

by 
 𝛿b𝛼(𝑥)c = 𝐸𝑥𝑡- ∑ J(0H	0;)

l3#6(	0;)l
/	∗
Pf8  . (66) 

3) Let 𝑢 ∈ 𝑆#6( ℝM
#2

	
∗ ), the generalized (weak) #-derivative 𝜕#3𝑢 of 𝑢 of order 𝛼 is defined as 

 (𝜕#3𝑢, 𝜑) = (−1)|3|(𝑢,𝜕#3𝜑). (67) 
4) Let 𝑢 ∈ 𝑆#6( ℝM

#2
	
∗ ) and 𝑔(𝑥) ∈ 𝐶# /	∗ ( ℝM

#2
	
∗ ), The product 𝑔𝑢 = 𝑢𝑔 is defined by  

 (𝑔𝑢, 𝜑) = (𝑢, 𝑔𝜑). (68) 
5) Let 𝑢8 ∈ 𝑆#

6( ℝM
#2

	
∗ ) and 𝑢: ∈ 𝑆#

6( ℝM
#Q

	
∗ ) then their direct product is defined by the formula 

 (𝑢8 × 𝑢:, 𝜑) = b𝑢8(𝑥)(𝑢:(𝑦), 𝜑)c,  𝜑(𝑥, 𝑦) ∈ 𝑆#
	( ℝM

#2 ×	
∗ ℝM

#Q
	
∗ ). (69) 

6)  The Fourier transform ℱ[𝑢] of a generalized function 𝑢 ∈ 𝑆#6( ℝM
#2

	
∗ ) is defined by the formula 

 (ℱ[𝑢], 𝜑) = (𝑢, ℱ[𝜑]), (70) 
 ℱ[𝜑] = 𝐸𝑥𝑡- ∫ 𝜑(𝑥)(𝐸𝑥𝑡-exp[𝑖(𝜉, 𝑥)])𝑑#2𝑥	

ℝ:#!	∗
. (71) 

Since the operation 𝜑(𝑥) → ℱ[𝜑](𝜉) is an isomorphism of S#( ℝM
#2

	
∗ ) onto	S#( ℝM

#2
	
∗ ), the operation 𝑢 → ℱ[𝑢] is 

an isomorphism of  𝑆#6( ℝM
#2

	
∗ ) onto	𝑆#6( ℝM

#2
	
∗ ) and the inverse of 	ℱ[𝑢]	is given by: ℱH8[𝑢] = (2𝜋)H2ℱ[𝑢(−𝜉)]. 

The following formulas hold for 𝑢 ∈ 𝑆#6( ℝM
#2

	
∗ ): (a)	𝜕#3	ℱ[𝑢] = ℱ[(𝑖𝑥)3𝑢], (b) ℱ[	𝜕#3𝑢] = (𝑖𝜉)3ℱ[𝑢],(c) if  the 

generalized function 𝑢8 ∈ 𝑆#
6( ℝM

#2
	
∗ ) has #-com-pact support, then ℱ[𝑢8 ∗ 𝑢:] = ℱ[𝑢8]ℱ[𝑢:]. 

7) If the generalized function 𝑢 is periodic with 𝑛-period 𝑇 = (𝑇8, … , 𝑇2), then 𝑢 ∈ 𝑆#6( ℝM
#2

	
∗ ), and it can be 

expanded in a hyper infinite  trigonometric series 
 𝑢(𝑥) = 𝐸𝑥𝑡- ∑ 𝑐P(𝑢)(𝐸𝑥𝑡-exp[𝑖(𝑘𝜔, 𝑥)]),

/	∗
|P|fI |𝑐P(𝑢)| ≤ 𝐴(1 + |𝑘|)Q . (72) 

The series (1) #-converges to 𝑢(𝑥) in	𝑆#6( ℝM
#2

	
∗ ), here	𝜔 = X:;

�&
, … , :;

�!
Z	and	𝑘𝜔 = X:;P&

�&
, … , :;P!

�!
Z. 

A NON-ARCHIMEDEAN METRIC SPACES ENDOWED WITH ℝ	∗ 𝐜
# -VALUED 

METRIC 

Definition 3.1 A non-Archimedean metric space is an ordered pair (𝑀, 𝑑#) where 𝑀 a set and 𝑑# is a #-metric 
on 𝑀 i.e., ℝ	∗ 𝐜(

# - valued function 𝑑#:𝑀 ×𝑀 → ℝ	∗ 𝐜(
# such that for any triplet	𝑥, 𝑦, 𝑧 ∈ 𝑀, the following holds: 

1. 𝑑#(𝑥, 𝑦) = 0⟹ 𝑥 = 𝑦. 2. 𝑑#(𝑥, 𝑦) = 𝑑#(𝑦, 𝑥). 3.	𝑑#(𝑥, 𝑧) ≤ 𝑑#(𝑥, 𝑦) + 𝑑#(𝑦, 𝑧). 
Definition 3.2 A hyper infinite sequence {𝑥2}2f8

/	∗  of points in 𝑀 is called #-Cauchy in (𝑀, 𝑑#) if for every 
hyperreal 𝜀 ∈ ℝ	∗ 𝒄(

#  there exists some  𝑁 ∈ ℕ	∗  such that 𝑑#(𝑥2, 𝑥Q) < 𝜀 if 𝑛,𝑚 > 𝑁. 
Definition 3.3 A point 𝑥 of the non-Archimedean metric space (𝑀, 𝑑#) is the #-limit of the hyper infinite 

sequence {𝑥2}2f8
/	∗  if for all 𝜀 ∈ ℝ	∗ 𝒄(

# , there exists some 𝑁 ∈ ℕ	∗  such that 𝑑#(𝑥2, 𝑥) < 𝜀 if 𝑛 > 𝑁. 



Definition 3.4 A non-Archimedean metric space is #-complete if any of the following equivalent conditions are 
satisfied: 

1.Every hyper infinite #-Cauchy sequence {𝑥2}2f8
/	∗  of points in 𝑀 has a #-limit that is also in 𝑀. 

2.Every hyper infinite #-Cauchy sequence in 𝑀,#-converges in 𝑀 that is, to some point of 𝑀. 
For any non-Archimedean metric space (𝑀, 𝑑#) one can construct a #-complete non-Archimedean metric space 

(𝑀�, 𝑑#) which is also denoted as (#-𝑀' , 𝑑#) and which contains 𝑀 a #-dense subspace. 
It has the following universal property: if 𝐾 is any #-complete non-Archimedean metric space and 𝑓:𝑀 → 𝐾 is 

any uniformly #-continuous function from 𝑀 to 𝐾, then there exists a unique uniformly #-continuous function 
𝑓�:𝑀� → 𝐾 that extends	𝑓.The space #-𝑀' is determined up to #-isometry by this property (among all #-complete 
metric spaces #-	isometrically containing non-Archimedean metric space (#-𝑀' , 𝑑#), and is called the #-completion 
of	(𝑀, 𝑑#). 

The #-completion of 𝑀 can be constructed as a set of equivalence classes of Cauchy hyper infinite sequences in 
𝑀. For any two hyper infinite Cauchy sequences {𝑥2}2f8

/	∗   and {𝑦2}2f8
/	∗  in	𝑀, we may define their distance as 𝑑#� =

#- lim
𝒏→/#

𝑑#(𝑥2, 𝑦2). This #-limit exists because the hyperreal numbers ℝ	∗ 𝐜
# are #-complete. This is only a pseudo 

metric, not yet a metric, since two different hyper infinite Cauchy sequences may have the distance	0. But having 
distance 0 is an equivalence relation on the set of all hyper infinite Cauchy sequences, and the set of equivalence 
classes is a metric space, the #-completion of M. The original space is embedded in this space via the identification 
of an element 𝑥 of 𝑀�  with the equivalence class of hyper infinite sequences in 𝑀  #-converging to 𝑥 i.e., the 
equivalence class containing a hyper infinite sequence with constant value	𝑥. This defines a #-isometry onto a #-
dense subspace, as required. 

Example 3.1 Both ℝ	∗  and ℂ	∗  are internal metric spaces when endowed with the distance function 𝑑(𝑥, 𝑦) =
|𝑥 − 𝑦|. 

Definition 3.5 About any point 𝑥 ∈ 𝑀 we define the #-open ball of radius 𝑟 ∈ ℝM(
#

	
∗

	  about 𝑥 as the set	𝐵G(𝑥) =
{𝑦 ∈ 𝑀|𝑑#(𝑥, 𝑦) < 𝑟}. These #-open balls form the base for a topology on 𝑀. 

Definition 3.6 A non-Archimedean metric space (𝑀, 𝑑#) is called hyper finitely bounded if there exists some 
𝑟 ∈ ℝ	∗ M,,-.(	such that 𝑑#(𝑥, 𝑦) < 𝑟 for all 𝑥, 𝑦 ∈ 𝑀. 

Definition 3.7 A non-Archimedean metric space (𝑀, 𝑑#) is called finitely bounded if there exists some 𝑟 ∈
ℝ	∗ M,/(	 such that 𝑑#(𝑥, 𝑦) < 𝑟 for all 𝑥, 𝑦 ∈ 𝑀. 

Definition 3.8 A non-Archimedean metric space (𝑀, 𝑑#) is called hyper finitely bounded if there exists some 
𝑟 ∈ ℝ	∗ M,/(	such that 𝑑#(𝑥, 𝑦) < 𝑟 for all 𝑥, 𝑦 ∈ 𝑀. 

Definition 3.9 Let (𝑀, 𝑑#)  be a non-Archimedean metric space. A set 𝐴	 ⊂ 	𝑋 is called finitely bounded if there 
exists some 𝑟 ∈ ℝ	∗ M,,-.(	such that	𝐴 ⊂ 𝐵G(𝑎), a∈ 𝑋. 

Definition 3.10 A non-Archimedean metric space (𝑀, 𝑑#) is called #-compact if every hyper infinite sequence 
	{𝑥2}2f8

/	∗    in 𝑀 has a hyper infinite subsequence that #-converges to a point in 𝑀.		This sort of compactness is 
known as hyper sequential compactness and, in a non-Archimedean metric spaces is equivalent to the topological 
notions of hyper countable #-compactness. 

Definition 3.11 A topological space 𝑋 is called hyper countably #-compact if it satisfies any of the following 
equivalent conditions: (a) every hyper countable open cover 𝑈 of 𝑋 (i.e.,	𝑐𝑎𝑟𝑑(𝑈) = 𝑐𝑎𝑟𝑑( ℕ	∗ )) has a finite or 
hyperfinite sub-cover. 

For a function 𝑓:𝑀8 → 𝑀: with a non-Archimedean metric spaces (𝑀8, 𝑑8#) and (𝑀:, 𝑑:#) the following 
definitions of uniform #-continuity and (ordinary) #-continuity hold. 

Definition 3.12 A function 𝑓	is called uniformly #-continuous if for every 𝜀 ∈ ℝM≈(
#

	
∗ there exists 𝛿 ∈ ℝ	∗ M≈(	 

such that for every 𝑥, 𝑦 ∈ 𝑀8 with 𝑑8#(𝑥, 𝑦) < 𝛿 we get 𝑑:#b𝑓(𝑥), 𝑓(𝑦)c < 𝜀. 
Definition 3.13 A function 𝑓	is called #-continuous at  𝑥 ∈ 𝑀8 if for every 𝜀 ∈ ℝM≈(

#
	
∗ there exists 𝛿 ∈ ℝM≈(

#
	
∗  

such that for every 𝑦 ∈ 𝑀8 with 𝑑8#(𝑥, 𝑦) < 𝛿 we get 𝑑:#b𝑓(𝑥), 𝑓(𝑦)c < 𝜀. 

LEBESGUE #-INTEGRATION OF ℝ	∗ 𝐜
# -VALUED FUNCTIONS 

Let 𝐶I#( ℝ	∗ M
#2)	be the space of all ℝ	∗ M

#-valued #-compactly supported #-continuous functions of ℝ	∗ M
#2. Define a 

#-norm on 𝐶I#	 by the Riemann #-integral [12]: 
 ‖𝑓‖# = 𝐸𝑥𝑡- ∫|𝑓(𝑥)|𝑑#2𝑥, (73) 



Note that the Riemann #-integral exists for any #-continuous function	𝑓: ℝ	∗ M
#2 → ℝ	∗ M

# , see [12]. Then 𝐶I#( ℝ	∗ M
#2) 

is a #-normed vector space and thus in particular, it is a non-Archimedean metric space. All non-Archimedean 
metric space, have a non-Archimedean #-completion	(#-𝑀' , 𝑑#). Let 𝐿8# be this #-completion. This space 𝐿8# is 
isomorphic to the space of Lebesgue #-integrable functions modulo the subspace of functions with #-integral zero. 
Furthermore, the Riemann integral (1) is a uniformly #-continuous linear functional with respect to the #-norm on 
𝐶I#( ℝ	∗ M

#2) which is #-dense in	𝐿8#. Hence the Riemann	#- integral 𝐸𝑥𝑡- ∫ 𝑓(𝑥)𝑑#2𝑥  has a unique extension to all 
of	𝐿8#. This integral is precisely the Lebesgue #-integral. 

Definition 4.1 Suppose that	1	 ≤ 	𝑝 < ∞	∗ , and [𝑎, 𝑏] is an interval in ℝ	∗ M
#. We denote by 	𝐿X#([𝑎, 𝑏]) the set of 

the all functions  𝑓: [𝑎, 𝑏] → ℝ	∗ M
# such that	𝐸𝑥𝑡- ∫ |𝑓(𝑥)|X𝑑#𝑥�

� < ∞	∗ .  We define the 	𝐿X#  -#-norm of 𝑓	by 

 ‖𝑓‖#X = X𝐸𝑥𝑡- ∫ |𝑓(𝑥)|X𝑑#𝑥�
� Z

8/X
. (74) 

More generally, if 𝐸 is a subset of ℝ		∗ M
#2, which could be equal to ℝ	∗ M

#2 itself, then 	𝐿X# (𝐸) is the set of Lebesgue 
#-measurable functions 𝑓 ∶ 	𝐸 → ℝ	∗ M

#    whose 𝑝-th power is Lebesgue #-integrable, with the #-norm 
 ‖𝑓‖#X = b𝐸𝑥𝑡- ∫ |𝑓(𝑥)|X𝑑#2𝑥	

\ c8/X. (75) 
Definition 4.2 A set 𝑋 ⊂ ℝ	∗ M

#2 is #-measurable if there exists	𝐸𝑥𝑡- ∫ 1i 𝑑#2𝑥, where 1i is the indicator function. 
Definition 4.3 A ℝ	∗ M

# -valued function 𝑓 on ℝ	∗ M
#2 is a #-measurable if a set {𝑥|𝑓(𝑥) > 𝑡} is a #-measurable set 

for all 𝑡 ∈ ℝ	∗ M
#2. 

Remark 4.1 To assign a value to the Lebesgue #-integral of the indicator function 1i of a #-measurable set 𝑋 
consistent with the given #-measure	𝜇#, the only reasonable choice is to set: 𝐸𝑥𝑡- ∫ 1i𝑑 𝜇# = 𝜇#(𝑋). 

Definition 4.4 A hyperfinite linear combination of indicator functions 𝑓 = 𝐸𝑥𝑡-∑ 𝛼P2
Pf8 1i; where the 

coefficients 𝛼P ∈ ℝ	∗ M
#   and 𝑋P are disjoint #-measurable sets, is called a #-measurable simple function. 

Definition 4,5 When the coefficients 𝛼P are positive, we set 𝐸𝑥𝑡- ∫𝑓𝑑 𝜇# = 𝐸𝑥𝑡- ∑ 𝛼P2
Pf8 𝜇#(𝑋P	). For a non-

negative #-measurable function	𝑓, let {𝑓2(𝑥)}2f8
/	∗ be a hyper infinite sequence of the simple functions 𝑓2(𝑥) whose 

values is P
:!
	 whenever  P

:!
≤ 𝑓(𝑥) < P(8

:!
 for 𝑘 a non-negative hyperinteger less than 42. Then we set 

𝐸𝑥𝑡- ∫ 𝑓𝑑 𝜇# = #- lim
2→ /	∗

(𝐸𝑥𝑡- ∫ 𝑓2𝑑 𝜇#). 

Definition 4.6 If 𝑓 is a #-measurable function of the set E to the reals including	±∞#, then we can write	𝑓 =
𝑓( − 𝑓H, where: 1) 𝑓((𝑥) = 𝑓(𝑥) if 𝑓(𝑥) > 0 and 𝑓((𝑥) = 0 if 𝑓(𝑥) ≤ 0; 2)	𝑓H(𝑥) = 𝑓(𝑥) if 𝑓(𝑥) < 0 and 
𝑓H(𝑥) = 0 if 𝑓(𝑥) ≥ 0. Note that both 𝑓( and 𝑓H are non-negative #-measurable functions and |𝑓| = 𝑓( + 𝑓H. 

Definition 4.7 We say that the Lebesgue #-integral of the #-measurable function 𝑓 exists, or is defined if at least 
one of 𝐸𝑥𝑡- ∫ 𝑓(𝑑 𝜇# and 𝐸𝑥𝑡- ∫ 𝑓H𝑑 𝜇# is finite or hyperfinite. In this case we define 

𝐸𝑥𝑡- ∫𝑓𝑑 𝜇# = (𝐸𝑥𝑡- ∫ 𝑓(𝑑 𝜇#) + (𝐸𝑥𝑡- ∫𝑓H𝑑 𝜇#). 
Theorem 4.1 Assuming that 𝑓 is #-measurable and non-negative, the function 𝑓((𝑥) = {𝑥 ∈ 𝐸|𝑓(𝑥) > 𝑡} is 

monotonically non-increasing. The Lebesgue #-integral may then be defined as the improper Riemann #-integral of 
𝑓((𝑥): 𝐸𝑥𝑡- ∫ 𝑓𝑑	

\ 𝜇# = 𝐸𝑥𝑡- ∫ 𝑓((𝑥)𝑑#𝑥./	∗

I  
Definition 4.8 Let 𝑋 be any set. We denote by 2i the set of all subsets of 𝑋.A family ℱ ⊂ 2i is called a 

#-𝜎-algebra on 𝑋 (or 𝜎#-algebra on	𝑋) if: 1)	∅ ∈ ℱ. 2) A family ℱ is closed under complements, i.e. 𝐴 ∈ ℱ implies 
𝑋\𝐴 ∈ 	ℱ.     3) A family ℱ is closed under hyper infinite unions, i.e. if {𝐴2}2∈ ℕ	∗  is a hyper infinite sequence in 
ℱ	then ⋃ 𝐴2 ∈ ℱ.	

2∈ ℕ	∗  
Theorem 4.2 If ℱ is a #-𝜎-algebra on 𝑋 then: (1) ℱ is closed under hyper infinite intersections, i.e., if {𝐴2}2∈ ℕ	∗  

is a hyper infinite sequence in ℱ	then ⋂ 𝐴2 ∈ ℱ.2∈ ℕ	∗  (2) 𝑋 ∈ ℱ.3) ℱ is closed under hyperfinite unions and 
hyperfinite intersections.(4) ℱ is closed under set differences. (5)	ℱ	is closed under symmetric differences. 

Theorem 4.3 If {𝐴3}3∈n is a collection of 𝜎#-algebras on a set	𝑋, then⋂ 𝐴33∈n  , is also an 	𝜎#-algebras on a 
set	𝑋. 

Theorem 4.4 If 𝐾 ⊂ 𝐿 then 𝜎#(𝐾) ⊂ 𝜎#(𝐿). 
Definition 4.9 (Borel 𝜎#-algebra) Given a topological space 𝑋, the Borel	𝜎#-algebra is the 𝜎#-algebra generated 

by the #-open sets. It is denoted by ℬ#(𝑋). We call sets in ℬ#(𝑋) a Borel set. Specifically in the case 𝑋 = ℝ	∗ M
#2 we 

have that ℬ#( ℝ	∗ M
#2) = {𝑈|𝑈	𝑖𝑠	#-open	set}. Note that the Borel	𝜎#-algebra also contains all #-closed sets and is the 

smallest 𝜎#-algebra with this property. 
Definition 4.10 (#- Measures) A pair (𝑋, ℱ) where ℱ is an	𝜎#-algebra on 𝑋 is call a #- measurable space. 

Elements of ℱ are called a #-measurable sets. Given a #-measurable space	(𝑋, ℱ), a function	𝜇#:	ℱ → [0, ∞	∗ ] is 



called a #-mea-sure on (𝑋, ℱ) if: 1) 	𝜇#(∅) = 0.	2) For all hyper infinite sequences {𝐴2}2∈ ℕ	∗   of pairwise disjoint 
sets in ℱ 
 	𝜇# X⋃ 𝐴2

/	∗
2f8 Z = 𝐸𝑥𝑡-∑ 	𝜇#(𝐴2).

/	∗
2f8  (76) 

A NON-ARCHIMEDEAN BANACH SPACES ENDOWED WITH ℝ	∗ 𝐜
# -VALUED NORM 

A non-Archimedean normed space with ℝ	∗ K
# -valued norm (#-norm) is a pair (𝑋, ‖∙‖#) consisting of a vector 

space 𝑋 over a non-Archimedean scalar field  ℝ	∗ K
#  or complex  field  ℂ	∗ K

# = ℝ	∗ M
# + i ℝ	∗ M

#  together with a norm  
‖∙‖#: 𝑋 → ℝ	∗ M

#.   Like any norms, this norm induces a translation invariant distance function, called the norm 
induced non-Archimedean ℝ	∗ K

# -valued metric 𝑑#(𝑥, 𝑦) for all vectors 𝑥, 𝑦 ∈ 𝑋, defined by 𝑑#(𝑥, 𝑦) = ‖𝑥 − 𝑦‖# =
‖𝑦 − 𝑥‖#. Thus 𝑑#(𝑥, 𝑦) makes 𝑋 into a non-Archimedean metric space (𝑋, 𝑑#). 

Definition 5.1 A hyper infinite sequence  {𝑥2}2f8
/	∗  in 𝑋 is called 𝑑# - Cauchy or Cauchy in (𝑋, 𝑑#) or  ‖∙‖# -

Cauchy if for every hyperreal  𝜀 ∈ ℝ	∗ M(
#   there exists some  𝑁 ∈ ℕ	∗  such that 𝑑#(𝑥2, 𝑦Q) = ‖𝑥2 − 𝑦2‖# < 𝜀 if  

𝑛,𝑚 > 𝑁. 
Definition 5.2 The metric 𝑑# is called a #-complete metric if the pair  (𝑋, 𝑑#) is a #-complete metric space, 

which by definition means for every 𝑑#- Cauchy sequence {𝑥2}2f8
/	∗  in (𝑋, 𝑑#), there exists some 𝑥 ∈ 𝑋 such that 

#- lim
2→ /	∗

‖𝑥2 − 𝑥‖# = 0. 

Semigroups on Non-Archimedean Banach Spaces and Their Generators 

Definition 5.3 A family of bounded operators {𝑇(𝑡)|0 < 𝑡 < ∞	∗ } on external hyper infinite dimensional non- 
Archimedean Banach space 𝑋 endowed with ℝ	∗ K

# -valued #-norm	‖∙‖# is called a strongly #-continuous semigroup 
if: (a) 𝑇(0) = 𝐼, (b) 𝑇(𝑠)𝑇(𝑡) = 𝑇(𝑠 + 𝑡) for all 𝑠, 𝑡 ∈ ℝ	∗ M,(

# , (c) For each 𝜙 ∈ 𝑋, 𝑡 ↦ 𝑇(𝑡) is #-continuous map-
ping. 

Definition 5.4 A family {𝑇(𝑡)|0 < 𝑡 < ∞	∗ } of bounded or hyper bounded operators on external hyper infinite 
dimensional Banach space 𝑋 is called a contraction semigroup if it is a strongly #-continuous semigroup and 
moreover ‖𝑇(𝑡)‖# < 1 for all	𝑡 ∈ [0, ∞	∗ ). 

Theorem 5.1 Let 𝑇(𝑡) is a strongly #-continuous semigroup on a non-Archimedean Banach space 𝑋, 
let

	𝐴𝜑 = - lim
G→#I

𝐴G𝜑 

where 𝐴G = 𝑟H8b𝐼 − 𝑇(𝑟)c and let 𝐷(𝐴) = +𝜑|∃ Ä#- lim
G→#I

𝐴G𝜑Æ,,	then the operator 𝐴 is #-closed and #-densely 

defined. Operator 𝐴 is called the infinitesimal generator of the semigroup	𝑇(𝑡). 
Definition 5.5 We will also say that 𝐴 generates the semigroup 𝑇(𝑡) and write 𝑇(𝑡) = 𝐸𝑥𝑡-exp(−𝑡𝐴). 
Theorem 5.2 (Generalized Hille -Yosida theorem) A necessary and sufficient condition that #-closed linear 

operator 𝐴 on a non-Archimedean Banach space 𝑋 generate a contraction semigroup is that: (a) (− ∞, 0	
∗ ) ⊂ 𝜌(𝐴), 

(b)  ‖(𝜆 + 𝐴)H8‖# ≤ 𝜆H8 for all 𝜆 > 0. 
Definition 5.6 Let 𝑋 be a non-Archimedean Banach space, 𝜑 ∈ 𝑋.An element 𝑙 ∈ 𝑋∗ that satisfies	‖𝑙‖# = ‖𝜑‖# 

, and 𝑙(𝜑) = ‖𝜑‖#:  is called a normalized tangent functional to	𝜑. By the generalized Hahn-Banach theorem, each 
𝜑 ∈ 𝑋 has at least one normalized tangent functional. 

Definition 5.7 A #-densely defined operator 𝐴 on a non-Archimedean Banach space 𝑋 is called accretive if for 
each	𝜑 ∈ 𝐷(𝐴), Reb𝑙(𝐴𝜑)c ≥ 0 for some normalized tangent functional to	𝜑. Operator 𝐴 is called maximal 
accretive if 𝐴 is accretive and 𝐴 has no proper accretive extension. 

Remark 5.1 We remark that any accretive operator is #-closable. The #-closure of an accretive operator is again 
accretive, so every accretive operator has a smallest #-closed accretive extension. 

Theorem 5.3 A #-closed operator 𝐴 on a non-Archimedean Banach space 𝑋 is the generator of a contraction 
semigroup if and only if 𝐴 is accretive and Ran(𝜆I + 𝐴) = 𝑋 for some 𝜆I > 0. 

Theorem 5.4 Let 𝐴 be a #-closed operator on a non-Archimedean Banach space	𝑋. Then, if both 𝐴 and it adjoint 
𝐴∗ are accretive, 𝐴 generates a contraction semigroup. 

Theorem 5.5 Let A be the generator of a contraction semigroup on a non-Archimedean Banach space 𝑋. Let 𝐷 
be a #-dense set, 𝐷 ⊂ 𝐷(𝐴), so that 𝐸𝑥𝑡- exp(−𝑡𝐴) :	𝐷 → 𝐷. Then 𝐷 is a #-core for 𝐴, i.e.,#-𝐴 ↾ 𝐷������� = 𝐴. 



Hypercontractive Semigroups 

In the previous section we discussed 𝐿#
X-contractive semigroups. In this section we give a self #-	adjointness 

theorem for the operators of the form 𝐴 + 𝑉, where 𝑉 is a multiplication operator and 𝐴 generates a	𝐿#
X-contractive 

semigroup that satisfies a strong additional property. 
Definition 5.8 Let 〈𝑀. 𝜇#〉 be a #-measure space with 𝜇#(𝑀) = 1 and suppose that 𝐴is a positive self-adjoint 

operator on	𝐿#: (𝑀, 𝑑#𝜇#). We say that 𝐸𝑥𝑡-exp(−𝑡𝐴) is a hyper contractive semigroup if: (a) 𝐸𝑥𝑡-exp(−𝑡𝐴) is          
𝐿#
X-contractive; (b) for some 𝑏 > 2 and some constant	𝐶�, there is a 𝑇 > 0 so that ‖[𝐸𝑥𝑡-exp(−𝑡𝐴)]𝜑‖#� ≤ ‖𝜑‖#: 

for all 𝜑 ∈ 	𝐿#:(𝑀, 𝑑#𝜇#). 
Remark 5.2 Note that the condition (a) implies that 𝐸𝑥𝑡-exp(−𝑡𝐴) is a strongly #-continuous contraction semi-

group for all	𝑝 < ∞	∗ . Holder's inequality shows that ‖∙‖#� ≤ ‖∙‖#X if	𝑝 ≥ 𝑞. Thus the 𝐿#
X-spaces are a nested family 

of spaces which get smaller as 𝑝 gets larger; this suggests that (b) is a very strong condition. The following 
proposition shows that constant 𝑏 plays no special role. 

Theorem 5.6 Let 𝐸𝑥𝑡-exp(−𝑡𝐴) be a hypercontractive semigroup on	𝐿#: (𝑀, 𝑑#𝜇#). Then for all 𝑝, 𝑞 ∈ (1, ∞	∗ ) 
there is a constant 𝐶X,� and a 𝑡X,� > 0 so that if	> 𝑡X,� , then	‖𝐸𝑥𝑡-exp(−𝑡𝐴)𝜑‖#X < 𝐶X,�‖𝜑‖#�, for all	𝜑 ∈ 	𝐿�# . 

Theorem 5.7 Let 〈𝑀, 𝜇#〉	be a 𝜎#-measure space with 𝜇#(𝑀) = 1and let 𝐻I be the generator of a 
hypercontractive semi-group on 𝐿:(𝑀, 𝑑#𝜇#). Let 𝑉 be a ℝ	∗ M

#	-valued measurable function on 〈𝑀, 𝜇#〉 such that 𝑉 ∈
𝐿X# (𝑀, 𝑑#𝜇#) for all  𝑝 ∈ ⟦1, ∞	∗ )	and	𝐸𝑥𝑡-exp(−𝑡𝑉) ∈ 𝐿8#(𝑀, 𝑑#𝜇#) for all 𝑡 > 0. Then 𝐻I + 𝑉 is essentially 
self#-adjoint on  𝐶 /	∗ (𝐻I	) ∩ 𝐷(𝑉) and is bounded below. Here  𝐶 /	∗ (𝐻I	) = ⋂ 𝐷b𝐻I

XcX∈ ℕ	∗ . 

A NON-ARCHIMEDEAN HILBERT SPACES ENDOWED WITH ℂ	∗ 𝐜
# -VALUED INNER 

PRODUCT 

Definition 6.1 Let 𝐻 be external hyper infinite dimensional vector space over complex field	 ℂ	∗ 𝐜
# = ℝ	∗ 𝒄

# + i ℝ	∗ 𝒄
#. 

An inner product on 𝐻 is a ℂ	∗ 𝐜
#-valued function, 〈∙,∙〉: 𝐻 × 𝐻 → ℂ	∗ 𝒄

#, such that (1) 〈𝑎𝑥 + 𝑏𝑦, 𝑧〉 = 〈𝑎𝑥, 𝑧〉 + 〈𝑏𝑦, 𝑧〉, 
(2) 〈𝑥, 𝑦〉������� = 〈𝑦, 𝑥〉. (3) ‖𝑥‖: ≡ 〈𝑥, 𝑥〉 ≥ 0 with equality 〈𝑥, 𝑥〉 = 0 if and only if 𝑥 = 0. 

Theorem 6.1 (Generalized Schwarz Inequality) Let {𝐻, 〈∙,∙〉}be an inner product space, then for all 𝑥, 𝑦 ∈ 𝐻: 
|〈𝑥, 𝑦〉| ≤ ‖𝑥‖‖𝑦‖ and equality holds if and only if 𝑥 and 𝑦 are linearly dependent. 

Theorem 6.2 Let {𝐻, 〈∙,∙〉}be an inner product space, and  ‖𝑥‖# = |〈𝑥, 𝑥〉 . Then ‖∙‖# is a ℝ	∗ K
# -valued #-norm 

on a space	𝐻. Moreover 〈𝑥, 𝑥〉 is #-continuous on Cartesian product	𝐻 × 𝐻, where 𝐻 is viewed as the #-normed 
space {𝐻, ‖∙‖#}. 

Definition 6.2 A non-Archimedean Hilbert space is a #-complete inner product space. 
Example 6.1 The standard inner product on ℂ	∗ 𝒄

#𝒏, 𝑛 ∈ ℕ	∗ / is given by external hyperfinite sum 
 〈𝑥, 𝑦〉	=Ext-∑ 𝑥�'2

=f8 𝑦= . (77) 
Here  𝑥 = {𝑥=}=f82 , 𝑦 = {𝑦=}=f82  , with	𝑥= , 𝑦= ∈ ℂ	∗ M

#, 1 ≤ 𝑖 ≤ 𝑛 , see [13]. 
Example 6.2 The sequence space 𝑙:# consists of all hyper infinite sequences 𝑧 = {𝑧=}=f8

/	∗  of complex numbers in 
ℂ	∗ M
# such that the hyper infinite series Ext-∑ |𝑧=|:2

=f8  #-converges. The inner product on 𝑙:#  is defined by  
 〈𝑧,𝑤〉 =Ext-∑ 𝑧�'

/	∗
=f8 𝑤= . (78) 

Here 𝑧 = {𝑧=}=f8
/	∗ , 𝑤 = {𝑤=}=f8

/	∗  and the latter hyper infinite series #-converging as a consequence of the 
generalized Schwarz inequality and the #-convergence of the previous hyper infinite series. 

Example 6.3 Let 𝐶	#[𝑎, 𝑏]	be the space of the ℂ	∗ 𝒄
#- valued #-continuous functions defined on the interval	[𝑎, 𝑏] ⊂

ℝ	∗ M
#, see [13]. We define an inner product on the space 𝐶	#[𝑎, 𝑏] by the formula 

 〈𝑓, 𝑔〉 = 𝐸𝑥𝑡- ∫ 𝑓(𝑥)������𝑔(𝑥)�
� 𝑑#𝑥. (79) 

This space is not #-complete, so it is not a non-Archimedean Hilbert space. The #-complettion of 𝐶	#[𝑎, 𝑏] with 
respect to the #-norm 

 ‖𝑓‖# =	X𝐸𝑥𝑡- ∫ |𝑓(𝑥)|:�
� 𝑑#𝑥Z

8/:
, (80) 

is denoted by 𝐿:#[𝑎, 𝑏].	 
Example 6.4 Let 𝐶	#(P)[𝑎, 𝑏]be the space of the ℂ	∗ 𝒄

#- valued functions with 𝑘 ∈ ℕ	∗  #-continuous #-derivatives 
on [𝑎, 𝑏] ⊂ ℝ	∗ M

#, see [13].We define an inner product on the space 𝐶	#(P)[𝑎, 𝑏]	by the formula 



 〈𝑓, 𝑔〉 = 𝐸𝑥𝑡- ∑ X𝐸𝑥𝑡- ∫ 𝑓#(�)(𝑥)����������𝑔#(=)(𝑥)�
� 𝑑#𝑥Z

	

	
P
=fI . (81) 

Here 𝑓#(=) and  𝑔#(=) denotes the 𝑖-th #-derivatives of 𝑓 and 𝑔 respectively.The corresponding #-norm is 

 ‖𝑓‖# =	X𝐸𝑥𝑡-∑ X𝐸𝑥𝑡- ∫ [𝑓#(=)(𝑥)[:�
� 𝑑#𝑥ZP

=f8 Z
8/:
. (82) 

This space is not #-complete, so it is not a non-Archimedean Hilbert space. The non-Archimedean Hilbert space 
obtained by	#-complettion of 𝐶	#(P)[𝑎, 𝑏] with respect to the #-norm (1) is non-Archimedean Sobolev space, denoted 
by  𝐻#P[𝑎, 𝑏].	 

Definition 6.3 The graph of the linear transformation 𝑇:𝐻 → 𝐻 is the set of pairs {〈𝜙, 𝑇𝜙〉|(𝜙 ∈ 𝐷(𝑇))}.	The 
graph of the operator 𝑇, denoted by	Γ(Т), is thus a subset of 𝐻 ×𝐻 which is a non-Archimedean Hilbert space with 
the following inner product	(〈𝜙8, 𝜓8〉, 〈𝜙:, 𝜓:〉). Operator  𝑇 is called a #-closed operator if Γ(Т) is a #-closed subset 
of 𝐻 ×𝐻. 

Definition 6.4 Let 	𝑇₁ and 𝑇 be operators on H. If	Γ(𝑇₁) ⊃ 	Γ(Т), then 𝑇8 is said to be an extension of  𝑇 and we 
write	𝑇8 ⊃ 𝑇. Equivalently, 𝑇8 ⊃ 𝑇 if and only if 𝐷(𝑇₁) ⊃ 𝐷(𝑇)	and 𝑇8𝜙	 = 𝑇𝜙 for all 𝜙 ∈ 𝐷(𝑇). 

Definition 6.5 An operator 𝑇 is #-closable if it has a #-closed extension. Every #-closable operator has a 
smallest #-closed extension, called its #-closure, which we denote by #-T. 

Theorem 6.3 If 𝑇 is #-closable, then Γ(#-𝑇�) = #-Γ(𝑇)������. 
Definition 6.6 Let 𝐷(𝑇∗) be the set of 𝜑 ∈ 𝐻 for which there is an 𝜉 ∈ 𝐻 with (𝑇𝜓, 𝜑) = (𝜓, 𝜉) for all 𝜓 ∈

𝐷(𝑇). For each 𝜑 ∈ 𝐷(𝑇∗), we define 𝑇∗𝜑 = 𝜉.The operator 𝑇∗ is called the #-adjoint of  𝑇. Note that 𝜑 ∈ 𝐷(𝑇∗) if 
and only if |(𝑇𝜓, 𝜑)| ≤ 𝐶‖𝜓‖#	for all 𝜓 ∈ 𝐷(𝑇). Note that 𝑆 ⊂ 𝑇 implies 𝑇∗ ⊂ 𝑆. 

Remark 6.1 Note that for 𝜉 to be uniquely determined by the condition (𝑇𝜓, 𝜑) = (𝜓, 𝜉) one need the fact that 
𝐷(𝑇) is #-dense in 𝐻. If the domain 𝐷(𝑇∗) is #-dense in 𝐻, then we can define  𝑇∗∗ = (𝑇∗)∗. 

Theorem 6.4 Let 𝑇 be a #-densely defined operator on a non-Archimedean Hilbert space 𝐻. Then: (a) 𝑇∗ is 
#-closed. (b) The operator 𝑇	is #-closabie if and only if 𝐷(𝑇∗) is -dense in which case 𝑇 = 𝑇∗∗. (c) If T is 
#-closable, then (#-𝑇�)∗ = 𝑇∗. 

Definition 6.7 Let 𝑇 be a #-closed operator on a non-Archimedean Hilbert space 𝐻. A complex number	𝜆 ∈ ℂ	∗ 𝒄
# 

is in the resolvent set 𝜌(𝑇), if 𝜆𝐼 − 𝑇 is a bijection of  𝐷(𝑇)  onto 𝐻 with a finitely or hyper finitely bounded 
inverse. If complex number	𝜆 ∈ 𝜌(𝑇), 𝑅o = (𝜆𝐼 − 𝑇)H8 is called the resolvent of 𝑇 at 𝜆. 

Definition 6.8 A #-densely defined operator 𝑇 on a non-Archimedean Hilbert space is called symmetric or 
Hermitian if	𝑇 ⊂ 𝑇∗, that is, 𝐷(𝑇) ⊂ 𝐷(𝑇∗) and 𝑇𝜑 = 𝑇∗𝜑 for all 𝜑 ∈ 𝐷(𝑇) and equivalently, 𝑇 is symmetric if and 
only if (𝑇𝜑,𝜓) = (𝜑, 𝑇𝜓) for all	𝜑, 𝜓 ∈ 𝐷(𝑇). 

Definition 6.9 A #-densely defined operator  𝑇 is called self-#-adjoint if	𝑇 = 𝑇∗, that is, if and only if 𝑇 is 
symmetric and 𝐷(𝑇) = 𝐷(𝑇∗). 

Remark 6.2 A symmetric operator 𝑇 is always #-closable, since 𝐷(𝑇) #-dense in	𝐻. If 𝑇 is symmetric, 𝑇∗ is a 
#-closed extension of  𝑇 so the smallest #-closed extension 𝑇∗∗ of 𝑇 must be contained in	𝑇∗. Thus for symmetric 
operators, we have 𝑇 ⊂ 𝑇∗∗ ⊂ 𝑇∗, for #-closed symmetric operators we have 𝑇 = 𝑇∗∗ ⊂ 𝑇∗ and, for self-#-adjoint 
operators we have 𝑇 = 𝑇∗∗ = 𝑇∗. Thus a #-closed symmetric operator 𝑇 is self-#-adjoint if and only if 𝑇∗ is sym-
metric. 

Definition 6.10 A symmetric operator 𝑇 is called essentially self-#-adjoint if its #-closure #-𝑇� is self-#-adjoint. 
If 𝑇 is #-closed, a subset 𝐷 ⊂ 𝐷(𝑇) is called a core for 𝑇 if  #- 𝑇 ↾ 𝐷������� 	= 𝑇. 

Remark 6.3 If 𝑇 is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension. 
Definition 6.11 Let 𝐴 be an operator on a non-Archimedean Hilbert space 𝐻#.The set 𝐶 /	∗ (𝐴) = ⋂ 𝐷(𝐴2)/	∗

2f8  is 
called the 𝐶 /	∗ -vectors for 𝐴. A vector 𝜑 ∈ 𝐶 /	∗ (𝐴) is called an #-analytic vector for 𝐴 if  Ext-∑ ‖�!‖#A!

2!
/	∗
2fI < ∞	∗  for 

some 𝑡 > 0. If 𝐴 is self-#-adjoint, then 𝐶 /	∗ (𝐴) will be #-dense in 𝐷(𝐴). 
Theorem 6.5 (Generalized Nelson's analytic vector theorem) Let 𝐴 be a symmetric operator on a non-

Archimedean Hilbert space H. If 𝐷(𝐴) contains a #-total set of #-analytic vectors, then 𝐴 is essentially self-
#-adjoint. 

Definition 6.12 Operator 𝐴 is relatively bounded with respect to operator 𝑇 if 𝐷(𝑇) ⊂ 𝐷(𝐴) and 
‖𝐴𝑢‖# ≤ 𝑎‖𝑢‖# + 	𝑏‖𝑇𝑢‖#, 𝑢 ∈ 𝐷(𝑇). 

Theorem 6.6 Let 𝑇 be self-#-adjoint. If 𝐴 is symmetric and 𝑇-bounded with 𝑇-bound smaller than 1, then 𝑇	 +
	𝐴 is also self-#-adjoint. In particular 𝑇 + 𝐴 is self-#-adjoint if 𝐴 is bounded and symmetric with 𝐷(𝑇) ⊂ 𝐷(𝐴).		 

Theorem 6.7 Let 𝐴 be essentially self -#-adjoint on the domain  𝐷(𝐴) and let 𝐵 be a symmetric operator on 
𝐷(𝐴). If there exists a constant 𝑎 ∈ ℝ	∗ M

# such that for all 𝜓 ∈ 𝐷(𝐴) and for all 𝛽 ∈ ℝ	∗ M
# such that 0 ≤ 𝛽 ≤ 1 and the 



inequality holds ‖𝐵𝜓‖# ≤ 𝑎‖(𝐴 + 𝛽𝐵)𝜓‖#, then 𝐴	 + 	𝐵 is essentίallv self -#-adjoint on 𝐷(𝐴) and its #-closure has 
domain 𝑫(#-𝑨'). 

Theorem 6.8 Let 𝐴 and 𝐵 be the same as in Theorem 6.7. Then 𝐴 and 𝐴	 + 	𝐵 have the same #-cores. If 𝐴 is 
bounded from below, then 𝐴 + 𝐵 is bounded from below. 

GENERALIZED TROTTER PRODUCT FORMULA 

Theorem 7.1 Let 𝐴 and 𝐵 be self-adjoint operators on non-Archimedean Hilbert space	𝐻#. Suppose that the 
opera-tor 𝐴 + 𝐵 is self-#-adjoint on 𝐷 = 𝐷(𝐴) ∩ 𝐷(𝐵), then the following equality holds 

 s-#- lim
2→ /	∗

dÄ𝐸𝑥𝑡-exp X=A�
2
ZÆ Ä𝐸𝑥𝑡-exp X=A�

2
ZÆe

2
= 𝐸𝑥𝑡-exp[𝑖𝑡(𝐴 + 𝐵)]. (83) 

Theorem 7.2 Let 𝐴 and 𝐵 be self-adjoint operators on non-Archimedean Hilbert space	𝐻#. Suppose that the 
opera-tor 𝐴 + 𝐵 is essentially self-#-adjoint on 𝐷 = 𝐷(𝐴) ∩ 𝐷(𝐵), then the following equality holds  

 s-#- lim
2→ /	∗

dÄ𝐸𝑥𝑡-exp X=A�
2
ZÆ Ä𝐸𝑥𝑡-exp X=A�

2
ZÆe

2
= 𝐸𝑥𝑡-exp[𝑖𝑡(𝐴 + 𝐵)]. (84) 

Theorem 7.3 Let 𝐴 and 𝐵 be the generators of contraction semigroups on non-Archimedean Banach 
space	𝐵#.Suppose that the #-closure of (𝐴 + 𝐵) ↾ 𝐷(𝐴) ∩ 𝐷(𝐵) generates a contraction semigroup on 	𝐵#. Then the 
following equality holds 

 s-#- lim
2→ /	∗

dÄ𝐸𝑥𝑡-exp X− A�
2
ZÆ Ä𝐸𝑥𝑡-exp X− A�

2
ZÆe

2
= 𝐸𝑥𝑡-exp[−𝑡(#-𝐴 + 𝐵��������)]. (85) 

FOCK SPACE OVER NONARCHIMEDEAN HILBERT SPACE 

Definition 8.1 Let  𝐻# be a complex hyper infinite-dimensional non-Archimedean Hilbert space over field ℂ	∗ M
# 

and denote by 𝐻#(2) the 𝑛-fold tensor product: 𝐻#(2) = 𝐸𝑥𝑡-⨂Pf8
2 𝐻#,	𝑛 ∈ ℕ	∗ . Set 𝐻#(I) = ℂ	∗ 𝒄

# and define ℱ(𝐻#) =
𝐸𝑥𝑡-⨁2∈ ℕ	∗ b𝐻

#(2)c. ℱ(𝐻#)	is called the Fock space over non-Archimedean Hilbert space 𝐻#. Set 𝐻# = 𝐿:#( ℝ	∗ M
#B), 

then an element 𝜓 ∈ ℱ(𝐻#) is a hyper infinite sequence of ℂ	∗ M
#-valued functions 𝜓 = {𝜓I, 𝜓8(𝑥8), 𝜓:(𝑥8, 𝑥:),   

	𝜓:(𝑥8, 𝑥:, 𝑥B), … , 𝜓2(𝑥8, … , 𝑥2)}, 𝑛 ∈ ℕ	∗  and such that 
‖𝜓‖# =	 |𝜓I|: + 𝐸𝑥𝑡-∑ (𝐸𝑥𝑡- ∫|𝜓2(𝑥8, … , 𝑥2)|:𝑑#B2𝑥) < ∞	∗2∈ ℕ	∗ . 

Actually, it is not ℱ(𝐻#) itself, but two of its subspaces which are used in quantum field theory. These two hyper 
infinite-dimensional subspaces are constructed as follows: Let 𝑃2 be the permutation group on 𝑛 ∈ ℕ	∗  elements and 
let {𝜑P}Pf8

/	∗ be a basis for a space	𝐻#. For each 𝜎 ∈ 𝑃2 we define an operator (which we also denote by	𝜎) on basis 
elements of 𝐻#(2) by	𝜎b𝐸𝑥𝑡-⨂=f8

2 𝜑P2c = 𝐸𝑥𝑡-⨂=f8
2 𝜑P<(2) . The operator extends by linearity to a bounded operator 

(of #-norm one) on 𝐻# and we can define 𝐒%2#	 =	X
8
2!
Z b𝐸𝑥𝑡- ∑ 𝜎$∈}! c. It is easily to show by definitions that  

𝐒%2#: = 𝐒%2#	 and   𝐒%2#∗ = 𝐒%2#	 so 𝐒%2# is an orthogonal projection. The range of 𝐒%2#	is called the 𝑛-fold symmetric tensor 
product of 𝐻#. We now define	ℱa#(𝐻#	) = 𝐸𝑥𝑡-⨁2∈ ℕ	∗ 𝐒%2

#𝐻#(2). Non-Archimedean Hilbert space 	ℱa#(𝐻#	) is called 
the symmetric Fock space оvеr non-Archimedean Hilbert space  𝐻# or the Boson Fock space over non-Archimedean 
Hilbert space	𝐻#. 

SEGAL QUANTIZATION OVER NONARCHIMEDEAN HILBERT SPACE 

Let  𝐻# be a complex non-Archimedean Hilbert space over field ℂ	∗ 𝒄
# and let	ℱ(𝐻#) = 𝐸𝑥𝑡-⨁2∈ ℕ	∗ b𝐻

#(2)c, 
where 𝐻#(2) = 𝐸𝑥𝑡-⨂Pf8

2 𝐻# be the Fock space over 𝐻#and let ℱa(𝐻#) be the Boson subspace of ℱ(𝐻#). Let 𝑓 ∈
𝐻# be fixed. For vectors in 𝐻#(2) of the form 𝜂 = 𝐸𝑥𝑡-⨂=f8

2 𝜓= , 𝑛 ∈ ℕ	∗  we define a map 𝑏H(𝑓): 𝐻#(2) → 𝐻#(2H8) by 
𝑏H(𝑓)𝜂 = (𝑓, 𝜓8)(𝐸𝑥𝑡-⨂=f:

2 𝜓=) and 𝑏H(𝑓) extends by linearity to finite and hyperfinite linear combinations of such 
𝜂, the extension is well defined, and ‖𝑏H(𝑓)𝜂‖# ≤ ‖𝑓‖#‖𝜂‖#. Thus 𝑏⁻(𝑓) extends to a bounded map (of #-norm 
‖𝑓‖#) of  𝐻#(2) into 𝐻#(2H8). Since this holds for each 𝑛 ∈ ℕ	∗  (except for 𝑛 = 0 in which case we define 
𝑏H(𝑓): 𝐻#(I) → {0}), 𝑏H(𝑓) is a bounded operator of #-norm ‖𝑓‖#	from ℱ(𝐻#) to ℱ(𝐻#). It is easy to check that 
operator 𝑏((𝑓) = b𝑏H(𝑓)c∗takes each subspace 𝐻#(2)into 𝐻#(2(8)with the action 𝑏((𝑓)𝜂 = 𝑓⨂𝐸𝑥𝑡-⨂=f8

2 𝜓= on 
product vectors. Note that the map 𝑓 → 𝑏((𝑓)  is linear and the map  𝑓 → 𝑏H(𝑓) is antilinear. Let 𝑆2 be the 



symmetrization operators introduced in previous section and then the operator 𝑺6	# = 𝐸𝑥𝑡-⨁2∈ ℕ	∗ 𝐒%2
# is the projection 

onto the symmetric Fock space ℱa(𝐻#) = 𝐸𝑥𝑡-⨁2∈ ℕ	∗ 𝑺62
#𝐻#(2),	we will write 𝐒%2#𝐻#(2) = 𝐻a

#(2)and call 𝐻a
#(2)the 𝑛- 

particle subspace of	ℱa(𝐻#). Note that operator 𝑏H(𝑓)	takes space ℱa(𝐻#) into itself, but the operator 𝑏((𝑓) does 
not. A vector 𝜓 = H𝜓(2)S

2f8
/	∗  with 𝜓(2) = 0  for all except finite or hyperfinite set of number 𝑛 is called a finite or 

hyperfinite particle vector correspondingly. We will denote the set of hyperfinite particle vectors by 𝐹I. The vector 
ΩI = 〈1,0,0, … 〉 is called the vacuum vector. Let 𝐴 be any self-adjoint operator on 𝐻# with domain of essential self-
#-adjointness 𝐷 = 𝐷(𝐴). Let 𝐷� = H𝜓 ∈ 𝐹I|𝜓(2) ∈ 𝐸𝑥𝑡-⨂=f8

2 𝐷, 𝑛 ∈ ℕ	∗ S	and define operator 𝑑Γ#(𝐴) on 𝐷� ∩ 𝐻a
#(2) 

by 𝑑Γ#(𝐴)=𝐴⊗ 𝐼 ⋅⋅⋅⊗ 𝐼 + 𝐼⊗ 𝐴⊗⋅⋅⋅⊗ 𝐼 +⋅⋅⋅ +⊗ 𝐼 ⋅⋅⋅⊗ 𝐼⊗ 𝐴. Note that 𝑑Γ#(𝐴)is essentially self-#-adjoint on 
𝐷� . Operator 𝑑Γ#(𝐴) is called the second quantization of the operator	𝐴. For example, let 𝐴 = 𝐼,	then its second 
quantization 𝑁# = 𝑑Γ#(𝐼) is essentially self-#-adjoint on 𝐹I and for 𝜓 ∈ 𝐻a

#(2), 𝑁#𝜓 = 𝑛𝜓. 𝑁# is called the number 
operator. If 𝑈 is a unitary operator on space	𝐻#, we define 𝑑Γ#(𝑈) to be the unitary operator on ℱa(𝐻#) which 
equals 𝐸𝑥𝑡-⨂=f8

2 𝑈 when restricted to 𝐻a
#(2)for 𝑛 > 0, and which equals the identity on	𝐻a

#(I). If 𝐸𝑥𝑡-exp(𝑖𝑡𝐴) is a 
#-continuous unitary group on	𝐻#, then Γ#b𝐸𝑥𝑡-exp(𝑖𝑡𝐴)c is the group generated by	𝑑Γ#(𝐴), i.e., that expressed by 
the formula		Γ#b𝐸𝑥𝑡-exp(𝑖𝑡𝐴)c = 𝐸𝑥𝑡-expb𝑖𝑡𝑑Γ#(𝐴)c. 

Definition 9.1 We define the annihilation operator 𝑎H(𝑓)	  on ℱa(𝐻#)	with domain 𝐹I by the formula 
 𝑎H(𝑓) = √𝑁 + 1𝑏H(𝑓). (86) 

Operator 𝑎H(𝑓) is called an annihilation operator because it takes each (𝑛 + 1)-particle subspace into the 𝑛-
particle subspace. For each 𝜓 and 𝜂 in 𝐹I, b√𝑁 + 1𝑏H(𝑓)𝜓, 𝜂c = b𝜓, 𝑆#𝑏((𝑓)√𝑁 + 1c, then we get 
 b𝑎H(𝑓)c∗ ↾ 𝐹I = 𝑆#𝑏((𝑓)√𝑁 + 1 . (87) 

The operator b𝑎H(𝑓)c∗	is called a creation operator. Both 𝑎H(𝑓) and b𝑎H(𝑓)c∗  #-closable; we denote their 
#-closures by  𝑎H(𝑓) and b𝑎H(𝑓)c∗ also. The equation (1) implies that the Segal field operator Φb

#(𝑓) on 𝐹I defined 
by Φb

#(𝑓) = 8
√:
N𝑎H(𝑓) + b𝑎H(𝑓)c∗R is symmetric and essentially self-#-adjoint. The mapping from 𝐻# to the self-

#-adjoint operators on ℱa(𝐻#) given by 𝑓 → Φb
#(𝑓)	is called the Segal quantization over 𝐻#. Note that the Segal 

quantization is a real linear map. 
Theorem 9.1 Let 𝐻# be hyper infinite dimensional Hilbert space over complex field ℂ	∗ M

# = ℝ	∗ M
# + i ℝ	∗ M

# and 
Φb
#(𝑓) the corresponding Segal quantization. Then: 

(a) (self-#-adjointness) for each 𝑓 ∈ 𝐻# the operator Φb
#(𝑓) is essentially self-#-adjoint on 𝐹	I, the hyperfinite 

particle vectors; 
(b) (cyclicity of the vacuum) the vector ΩI is in the domain of all hyperfinite products 𝐸𝑥𝑡-∏ Φb

#(𝑓=)2
=f8 , 𝑛 ∈ ℕ	∗  

and the set {𝐸𝑥𝑡-∏ Φb
#(𝑓=)2

=f8 |𝑓= ∈ 𝐻#, 𝑛 ∈ ℕ	∗ } is #-total in ℱa(𝐻#); 
(c) (commutation relations) for each 𝜓 ∈ 𝐹I and 𝑓, 𝑔 ∈ 𝐻#: [Φb

#(𝑓)Φb
#(𝑔) − Φb

#(𝑔)Φb
#(𝑓)]𝜓 = 𝑖Im(𝑓, 𝑔)R#𝜓;     

(𝑐�) (generalized commutation relations) assuming that (𝑓, 𝑔)R# ≈ 0 and 𝜓 ∈ 𝐹 is a near standard vector we 
get [Φb

#(𝑓)Φb
#(𝑔) − Φb

#(𝑔)Φb
#(𝑓)]𝜓 ≈ 0 and therefore st([Φb

#(𝑓)Φb
#(𝑔) − Φb

#(𝑔)Φb
#(𝑓)]𝜓) = 0; 

(d) let 𝑊(𝑓)  denotes the external unitary operator 𝐸𝑥𝑡-exp X𝑖Φb
#(𝑓)Z then             𝑊(𝑓 + 𝑔) =

d𝐸𝑥𝑡-exp X− =
:
Im(𝑓, 𝑔)R#Ze𝑊(𝑓)𝑊(𝑔); 

(e) (#-continuity) if {𝑓2}2f8
/	∗   is hyper infinite sequence such as #- lim

2→ /	∗
𝑓2 = 𝑓 in 𝐻# then: 

1)  #- lim
2→ /	∗

𝑊(𝑓2)𝜓 exists for all 𝜓 ∈ ℱa(𝐻#) and #- lim
2→ /	∗

𝑊(𝑓2)𝜓 = 𝑊(𝑓)𝜓  

2)  #- lim
2→ /	∗

Φb
#(𝑓2)𝜓  exists for all 𝜓 ∈ 𝐹I and #- lim

2→ /	∗
Φb
#(𝑓2)𝜓 = Φb

#(𝑓)𝜓 

(e) For every unitary operator 𝑈 on 𝐻#, Γ#(𝑈): 𝐷b#-Φb
#(𝑓)��������c → 𝐷b#-Φb

#(𝑈𝑓)����������c and for all 𝜓 ∈ 𝐷b#-Φb
#(𝑈𝑓)����������c,      

Γ#(𝑈)b#-Φb
#(𝑓)��������cΓ#H8(𝑈)𝜓 = #-Φb

#(𝑈𝑓)����������𝜓 for all  𝜓 ∈ 𝐹I and 𝑓 ∈ 𝐻#. 
Remark 9.1 Henceforth we use  Φb

#(𝑓) to denote the #-closure  #-Φb
#(𝑓)�������� of Φb

#(𝑓). 
Definition 9.2 For each 𝑚 > 0,𝑚 ∈ ℝ let	𝐻Q# = {𝑝 ∈ ℝ	∗ M

#7|𝑝 ∙ 𝑝� = 𝑚:, 𝑝I > 0}, where 𝑝� =
(𝑝I, −𝑝8, −𝑝:, −𝑝B), the sets	𝐻Q# , are called mass hyperboloids, are invariant under canonical Lorentz group 𝐿(↑	$ . 
Let 𝑗Q be the #-homeomorphism of  𝐻Q#  onto ℝ	∗ M

#B given by 𝑗Q: 〈𝑝I, 𝑝8, 𝑝:, 𝑝B〉 → 〈𝑝8, 𝑝:, 𝑝B〉 = 𝒑. Define a 
#-measure ΩQ#  on 	𝐻Q#  for any #-measurable set 𝐸	 ⊂ 	𝐻Q# by 



 ΩQ# (𝐸) = 𝐸𝑥𝑡- ∫ O#$𝒑
T|𝒑|%(Q%

	
[*(\)

 . (88). 

Theorem 9.2 Let 𝜇# be a polynomially bounded #-measure with support 
in

	 -𝑉�(
. If 𝜇# is 𝐿(↑	$ = 𝐿(↑ - invariant, there exists a polynomially bounded #-measure 𝜌# on [0,∞#)  and a constant 𝑐 so that 
for any 𝑓 ∈ 𝑆#( ℝM

#7
	
∗ ) 

 𝐸𝑥𝑡- ∫ 𝑓	
ℝ	∗ :
#+ 𝑑#𝜇# = 𝑐𝑓(0) + 𝐸𝑥𝑡- ∫ 𝑑#𝜌#(𝑚) �𝐸𝑥𝑡- ∫

]ST|𝒑|%(Q%,X&,X%,X$UO#$𝒑

T|𝒑|%(Q%
	
ℝ	∗ :
#$ � ./	∗

I  (89) 

Definition 9.3 Let 𝓕(𝑓) be a linear #-continuous functional	ℱ: 𝑆 	,-.# ( ℝM
#7

	
∗ ) → ℝM

#
	
∗ . Functional	ℱ is 𝐿(↑ - ≈ - 

invariant if for any Λ ∈ 𝐿(↑  the following property holds ℱb𝑓(Λx)c ≈ ℱ(𝑓) for all 𝑓 ∈ 𝑆 	,-.# ( ℝM
#7

	
∗ ). 

Theorem 9.3 Let 𝜇# be a polynomially bounded 𝐿(↑ - invariant #-measure with support in	#-𝑉�(. Let ℱ(𝑓) be a 
linear #-continuous functional	ℱ: 𝑆 	,-.# ( ℝM

#7
	
∗ ) → ℝM,,-.

#
	
∗  defined by 𝐸𝑥𝑡- ∫ 𝑓	

ℝ	∗ :
#+ 𝑑#𝜇#  and there exists a 

polynomially bounded #-measure 𝜌# on [0,∞#) such that ∫ 𝑑#𝜌#(𝑚) ∈ ℝM,,-.
#

	
∗/	∗

I  and a constant 𝑐 ∈ ℝM,,-.
#

	
∗  so that 

(1) holds. Then for any 𝑓 ∈ 𝑆 	,-.# ( ℝM
#7

	
∗ ) and for any 𝜘 ∈ ℝM,/

#
	
∗  the following property holds 

 ℱ(𝑓) ≈ 𝑐𝑓(0) + 𝐸𝑥𝑡- ∫ 𝑑#𝜌#(𝑚)�𝐸𝑥𝑡- ∫
]ST|𝒑|%(Q%,X&,X%,X$UO#$𝒑

T|𝒑|%(Q%
	
|X|D^ � ./	∗

I  (90) 

Definition 9.4 Let 𝜒(𝜘, 𝒑) be a function such that:  𝜒(𝜘, 𝒑) ≡ 1 if |𝒑| ≤ 𝜘, 𝜒(𝜘, 𝒑) ≡ 0 if |𝒑| > 𝜘. Define a 
#-measure ΩQ,^#  on 𝐻Q#  by 

 ΩQ,^# (𝐸) = 𝐸𝑥𝑡- ∫ _(^,𝒑)O#$𝒑
T|𝒑|%(Q%

	
[*(\)

. (91) 

We use the Segal quantization to define the free Hermitian scalar field of mass	𝑚. We take	𝐻	# =
𝐿:#b	𝐻Q# , 𝑑#ΩQ,^# c. For each 𝑓 ∈ 𝑆,-.#

	( ℝM
#7

	
∗ ) we define 𝐸𝑓 ∈ 	𝐻	# by 𝐸𝑓 = 2𝜋b𝐸𝑥𝑡-𝑓ªc ↾ 	𝐻Q#  where the Fourier 

transform is defined in terms of the Lorentz invariant inner product	𝑝 ∙ 	𝑥�: 𝐸𝑥𝑡-𝑓ª = 8
7;%

X𝐸𝑥𝑡- ∫ 𝐸𝑥𝑡-exp	
ℝ:#+	∗

[𝑖(𝑝 ∙

	𝑥�)]𝑑#7𝑥Z. If Φb,^
# (∙)	is the Segal quantization over	𝐿:#b	𝐻Q# , 𝑑#ΩQ,^# c, we define for each ℝM

#
	
∗ - valued 𝑓 ∈

𝑆#( ℝM
#7

	
∗ ):	ΦQ,^

# (𝑓) = Φb,^
# (𝐸𝑓)	and for each ℂM#	

∗ - valued 𝑓 ∈ 𝑆#( ℝM
#7

	
∗ ) we define ΦQ,^

# (𝑓) = ΦQ,^
# (Re𝑓) +

iΦQ,^
# (Im𝑓). 
Definition 9.5 The mapping 𝑓 → ΦQ,^

# (𝑓) is called the free non-Archimedean Hermitian scalar field of mass	𝑚.  
Definition 9.6 On  𝐿:#b	𝐻Q# , 𝑑#ΩQ,^# c we define the following unitary representation of the restricted Poincare 

group 𝐿(↑ :	
	  (𝑈Q(𝑎, Λ)𝜓)(𝑝) = (𝐸𝑥𝑡-exp[𝑖(𝑝 ∙ 	𝑎�)])𝜓(ΛH8𝑝) where we are using Λ to denote both an element of the 

abstract restricted Lorentz group and the corresponding element in the standard representation on ℝ7
	
$ . 

Remark 9.2 Note that by Theorem 9.1(e) for all  𝜓 ∈ 𝐹I and 𝑓 ∈ 𝐿:#b	𝐻Q# , 𝑑#ΩQ,^# c we get 
Γ#b𝑈Q(𝑎, Λ)cb#-ΦQ,^

# (𝑓)�����������cΓ#H8b𝑈Q(𝑎,𝛬)c𝜓 = Γ#b𝑈Q(𝑎, Λ)cb#-Φb
#(𝐸𝑓)����������cΓ#H8b𝑈Q(𝑎,𝛬)c𝜓 = 

#-Φb
#(𝑈Q(𝑎, Λ)𝐸𝑓)���������������������𝜓. 

A change of variables for all 𝑓 ∈ 𝑆,-.#
	( ℝM

#7
	
∗ ) gives that   
𝑈Q(𝑎, Λ)𝐸𝑓 ≈ 𝐸𝑈Q(𝑎, Λ)𝑓. 

Therefore for all  𝜓 ∈ 	𝐷b/01#
	 ⊂ 𝐹I such that ‖𝜓‖# ∈ ℝM,,-.

#
	
∗  and for  ℝM,,-.

#
	
∗ -valued function	𝑓 such that   𝑓 ∈

𝑆,-.#
	( ℝM

#7
	
∗ ) we obtain that 

Γ#b𝑈Q(𝑎, Λ)c X#-ΦQ,^
# (𝑓)Z Γ#H8b𝑈Q(𝑎, Λ)c𝜓 ≈ #-ΦQ,^

# (𝑈Q(𝑎, Λ)𝑓)𝜓. 
Definition 9.7 The #-conjugation on a non-Archimedean Hilbert space 𝐻	# is an antilinear #-isometry 𝐂# so that 

the following equality holds	𝐂#: = 𝐼. 
Definition 9.8 Let 𝐻	# be a non-Archimedean Hilbert space over field ℂ	∗ M

#, Φb
#(∙)	the associated Segal 

quantization. Let 	𝐻		𝐂#
# = {𝑓|𝐂#𝑓 = 𝑓}. For each 𝑓 ∈ 	𝐻		𝐂#

#  we define 𝜑#(𝑓) = Φb
#(𝑓) and 𝜋#(𝑓) = Φb

#(𝑖𝑓), the 
map 𝑓 → 𝜑#(𝑓) is called the canonical free field over the doublet 〈𝑯	

#,𝐂#〉 and the map 𝑓 → 𝜋#(𝑓) is called the 
canonical conjugate momentum. 

Theorem 9.4 Let 𝐻	# be a non-Archimedean Hilbert space over field ℂ	∗ M
# with #-conjugation 𝐂#. Let𝜑#(∙) and 

𝜋#(∙) be the corresponding canonical fields. Then: (a) For each 𝑓 ∈ 	𝐻		𝐂#
# , 𝜑#(𝑓) is essentially self-#-adjoint on 𝐹I. 

(b) H𝜑#(𝑓)|𝑓 ∈ 	𝐻		𝐂#
# S is a commuting family of self-#-adjoint operators. (c) ΩI is a #-cyclic vector for the family 



H𝜑#(𝑓)|𝑓 ∈ 	𝐻		𝐂#
# S. (d) If {𝑓2}2f8

/	∗   is hyper infinite sequence such as #- lim
2→ /	∗

𝑓2 = 𝑓 in 	𝐻		𝐂#
# , then #- lim

2→ /	∗
𝜑#(𝑓2)𝜓  

exists for all 𝜓 ∈ 𝐹I and #- lim
2→ /	∗

𝜑#(𝑓2)𝜓 = 𝜑#(𝑓)𝜓. (e) #- lim
2→ /	∗

(𝐸𝑥𝑡-exp[𝑖𝜑#(𝑓2)]𝜓) =𝐸𝑥𝑡-exp[𝑖𝜑#(𝑓)]𝜓 for 

all 𝜓 ∈ ℱa(𝐻#). (f) Properties (a)-(e) hold with 𝜑#(𝑓) replaced by 𝜋#(𝑓). (g) If 𝑓, 𝑔 ∈ 	𝐻		𝐂#
#  , then [𝜑#(𝑓)𝜑#(𝑔) −

𝜑#(𝑔)𝜑#(𝑓)]𝜓 = 𝑖(𝑓, 𝑔) for all 𝜓 ∈ ℱa(𝐻#) and (𝐸𝑥𝑡-exp[𝑖𝜑#(𝑓)])(𝐸𝑥𝑡-exp[𝑖𝜋#(𝑓)]) =
(𝐸𝑥𝑡-exp[𝑖(𝑓, 𝑔)])(𝐸𝑥𝑡-exp[𝑖𝜋#(𝑓)])(𝐸𝑥𝑡-exp[𝑖𝜑#(𝑓)]). 

Definition 9.9 We write now	𝑓 ∈ 	𝐿:#b	𝐻Q# , 𝑑#ΩQ,^# c as 𝑓(𝑝I, 𝒑) and define the #-conjugation 𝐂# by 
𝐂#(𝑓)(𝑝I, 𝒑) = 𝑓(𝑝I, −𝒑)�������������	. Note that 𝐂# is well-defined on 𝑓 ∈ 	𝐿:#b	𝐻Q# , 𝑑#ΩQ,^# c	since 〈𝑝I, −𝒑〉 ∈ 	𝐻Q#  if and only 
if 〈𝑝I, 𝒑〉 ∈ 	𝐻Q# . 

Definition 9.10 We denote the canonical fields corresponding to 𝐂#	by 𝜑	#
	(∙) and 𝜋	#

	(∙) and define 𝜑Q,^# 	(𝑓) =
𝜑	#

	(𝐸𝑓) and 𝜋Q,^# 	(𝑓) = 𝜋	#
	(𝜇(𝒑)𝐸𝑓), 𝜇(𝒑) = |𝒑: +𝑚:  for ℝM

#
	
∗ - valued	𝑓 ∈ 	𝐿:#( ℝM

#7
	
∗ ), extending to all of  

	𝐿:#( ℝM
#7

	
∗ ) by linearity. We let now 𝐷b/01#

	 = H𝜓|𝜓 ∈ 	𝐹I, 𝜓(2) ∈ S,-.#
	( ℝM

#B2
	
∗ )S and for each 𝑝 ∈ ℝM

#B
	
∗ 	we define the 

operator 𝑎(𝑝) on ℱa X𝐿:#( ℝM
#B

	
∗ )Z with domain 𝐷b/01#

	by (𝑎(𝑝)𝜓)(2) = √𝑛 + 1 𝜓(2(8)(𝑝, 𝑘8, … 𝑘2) and therefore the 

formal #-adjoint of the operator 𝑎(𝑝) reads (𝑎c(𝑝)𝜓)(2) = 8
√2
∑ 𝛿(B)(𝑝 − 𝑘e)𝜓(2H8)(𝑘8, … , 𝑘eH8, 𝑘e(8, … , 𝑘2)2
ef8 . 

Note that the formulas 
 𝑎(𝑔) = 𝐸𝑥𝑡- ∫ 𝑎(𝑝)𝑔(−𝑝)𝑑#B𝑝	

ℝ:#$	∗
, (92) 

 𝑎c(𝑔) = 𝐸𝑥𝑡- ∫ 𝑎c(𝑝)𝑔(𝑝)𝑑#B𝑝	
ℝ:#$	∗

 (93) 
hold for all 𝑔 ∈ 𝑆,-.#

	( ℝM
#B

	
∗ )  if the equalities (92)-(93) are understood in the sense of quadratic forms. That is, 

(92) means that for 𝜓8, 𝜓: ∈ 𝐷b/01#
	: (𝜓8, 𝑎(𝑔)𝜓:) = 𝐸𝑥𝑡- ∫ (𝜓8, 𝑎(𝑝)𝜓:)𝑔(−𝑝)𝑑#B𝑝

	
ℝ:#$	∗

 and similarly (93) means 
that for 𝜓8, 𝜓: ∈ 𝐷b/01#

	: (𝜓8, 𝑎(𝑔)𝜓:) = 𝐸𝑥𝑡- ∫ (𝜓8, 𝑎c(𝑝)𝜓:)𝑔(𝑝)𝑑#B𝑝
	
ℝ:#$	∗

.  The particles number operator reads 
 𝑁I,^	 = 𝐸𝑥𝑡- ∫ 𝑎c(𝑝)𝑎(𝑝)	

|X|D^ 𝑑#B𝑝. (94) 
The generator of time translations in the free scalar field theory of mass 𝑚 is given by 

 𝐻I,^ = 𝐸𝑥𝑡- ∫ 𝜇(𝑝)𝑎c(𝑝)𝑎(𝑝)	
|X|D^ 𝑑#B𝑝. (95) 

We express the free scalar field and the time zero fields in terms of 𝑎c(𝑝) and 𝑎(𝑝) as quadratic forms on 
		𝐷b/01#

	 × 𝐷b/01#
	 by 

ΦI,Q,^
# (𝑥, 𝑡) = 

 (2𝜋)HB/:𝐸𝑥𝑡- ∫ Hb𝐸𝑥𝑡-exp(𝜇(𝑝)𝑡 − 𝑖𝑝𝑥)c𝑎c(𝑝) + b𝐸𝑥𝑡-exp(𝜇(𝑝)𝑡 + 𝑖𝑝𝑥)c𝑎	(𝑝)S	
|X|D^

O#$X
T:h(X)

 , (96) 

ΦI,Q,^
# (𝑥) = 

 (2𝜋)HB/:𝐸𝑥𝑡- ∫ Hb𝐸𝑥𝑡-exp(−𝑖𝑝𝑥)c𝑎c(𝑝) + b𝐸𝑥𝑡-exp(𝑖𝑝𝑥)c𝑎	(𝑝)S	
|X|D^

O#$X
T:h(X)

 , (97) 

πI,Q,^# (𝑥) = 

 (2𝜋)HB/:𝐸𝑥𝑡- ∫ Hb𝐸𝑥𝑡-exp(−𝑖𝑝𝑥)c𝑎c(𝑝) + b𝐸𝑥𝑡-exp(𝑖𝑝𝑥)c𝑎	(𝑝)S	
|X|D^

O#$X
Th(X)/:

 . (98) 

Abbreviation 9.1 We shall write for the sake of brevity through this paper	ΦI,^
# (𝑥, 𝑡),	ΦI,^

# (𝑥) and πI,^# (𝑥) 
instead ΦI,Q,^

# (𝑥, 𝑡), ΦI,Q,^
# (𝑥) and πI,Q,^# (𝑥) correspondingly. 

Theorem 9.5 Let 𝑛8, 𝑛: ∈ ℕ		  and suppose that 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c ∈ 𝐿:
# X ℝM

#B(2&(2%)
	
∗ Z where 

𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c is a ℂK,,-.#
	
∗

	
-valued function on	 ℝM

#B(2&(2%)
	
∗ . Then there is a unique operator 𝑇k on 

ℱa X𝐿:#( ℝM
#B

	
∗ )Z so that 𝐷b/01#

	 ⊂ 𝐷(𝑇k)	
	  is a #- core for	𝑇k . 

1) As ℂM#	
∗ -valued quadratic forms on 𝐷b/01#

	 × 𝐷b/01#
	    

𝑇k = 𝐸𝑥𝑡- ∫ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c
	
ℝ	∗ $(!&.!%)	

	 b∏ 𝑎c(𝑘= , 𝜀)
2&
=f8 cb∏ 𝑎(𝑝= , 𝜀)

2%
=f8 c𝑑#B2&𝑘𝑑#B2%𝑝. 

2) As ℂM#	
∗ -valued quadratic forms on 𝐷b/01#

	 × 𝐷b/01#
	 

𝑇k∗ = 𝐸𝑥𝑡- ∫ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c
������������������������������	

ℝ	∗ $(!&.!%)	
	 b∏ 𝑎c(𝑘= , 𝜀)

2&
=f8 cb∏ 𝑎(𝑝= , 𝜀)

2%
=f8 c𝑑#B2&𝑘𝑑#B2%𝑝. 

3) If 𝑚8 and 𝑚: are nonnegative integers so that	𝑚8 +𝑚: = 𝑛8 + 𝑛:, then 
(1 + 𝑁#)HQ&/:𝑇k(1 + 𝑁#)HQ%/: ≤ 𝐶(	𝑚8, 𝑚:)‖𝑊‖x%# . 

4) On vectors in 𝐹I		  the operators  𝑇k and  𝑇k∗  are given by the explicit formulas 



b𝑇k( 𝜓		 )c
eH2%(2& = 

𝐾(𝑙, 𝑛8, 𝑛:)𝐒% d 𝐸𝑥𝑡- ∫ …𝐸𝑥𝑡- ∫ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c 𝜓
(e)

	
	 b𝑝8, … , 𝑝2% , 𝑘8, … 𝑘2&c𝑑

#B2%	
lX!%lD^

𝑝	
		

|X&|D^	
	 e,  

b𝑇k( 𝜓		 )c
2 = 0 if	𝑛 < 𝑛8 − 𝑛:, 

b𝑇k∗ ( 𝜓		 )c
eH2&(2% = 

𝐾(𝑙, 𝑛:, 𝑛8)𝐒% = 𝐸𝑥𝑡-\ … 𝐸𝑥𝑡-\ 𝑊b𝑘8, … 𝑘2& , 𝑝8, … , 𝑝2%c
������������������������������ 𝜓(e)

	
	 b𝑝8, … , 𝑝2% , 𝑘8, … 𝑘2&c𝑑

#B2&
	

lX!%lD^
𝑘	

	
	

|X&|D^
	
	 > 

b𝑇k∗ ( 𝜓		 )c
2 = 0	if and only if  𝑛 < 𝑛: − 𝑛8. Here 𝐒% is the symmetrization operator. 

Q#-SPACE REPRESENTATION OF THE FOCK SPACE STRUCTURES 

In this section the construction of a non-Archimedean 𝑄#-space and	𝐿:#(𝑄#, 𝑑#𝜇#) , another representation of the 
Fock space structures are presented. In analogy with the one degree of freedom case where ℱ#( ℝ	∗ M

#	)  is isomorphic 
to 𝐿:#( ℝ	∗ M

#, 𝑑#𝑥) in such a way that Φb
#(1) becomes multiplication by𝑥, we will construct a 𝜎#-measure 

space	〈𝑄#, 𝜇#〉, with	𝜇#(𝑄#) = 1, and a unitary map S#: ℱa#(𝐻#	) → 𝐿:#(𝑄#, 𝑑#𝜇#) so that for each	𝑓 ∈ 𝐻�#, S#𝜙^#(𝑓) 
S#H8 acts on 𝐿:#(𝑄#, 𝑑#𝜇#) by multiplication by a 𝜇#-measurable function. We can then show that in the case of the 
free scalar field of mass 𝑚 in 4-dimensional space-time	𝑀7

#, 𝑉 = S#𝐻n,^# (𝑔)S#H8 is just multiplication by a function 
𝑉(𝑞) which is in 𝐿:#(𝑄#, 𝑑#𝜇#) for each	𝑝 ∈ ℕ	∗ . Let {𝑔2}2f8

/	∗  be an orthonormal basis for 𝐻# so that each 𝑔 ∈ 𝐻�#  
and let  {𝑔2}2f8� , 𝑁 ∈ ℕ	∗  be a finite or hyperfinite subcollection of the set	{𝑓2}2f8

/	∗  .Let 𝑃� be a set of the all external 
finite and hyperfinite polynomials 𝐸𝑥𝑡-𝑃[𝑢8, . . . , 𝑢�] and ℱ�# be the #-closure of the set 
{𝐸𝑥𝑡-𝑃[𝜑^#(𝑔8), . . . , 𝜑^#(𝑔�)]|𝑃 ∈ 𝑃�} in ℱa#(𝐻#) and define a set	𝐹I� = ℱ�# ∩ 𝐹I. From Theorem 55 it follows that 
𝜑^#(𝑔P)	and	𝜋^#(𝑔P), for all 1 ≤ 𝑘, 𝑙 ≤ 𝑁 are essentially self-#-adjoint on 𝐹I� and that 

(𝐸𝑥𝑡-exp[𝑖𝑡𝜑^#(𝑔P)])(𝐸𝑥𝑡-exp[𝑖𝑡𝜋^#(𝑔e)]) = 
b𝐸𝑥𝑡-expN−𝑖𝑠𝑡𝛿Pe	

	Rc(𝐸𝑥𝑡-exp[𝑖𝑡𝜋^#(𝑔e)])(𝐸𝑥𝑡-exp[𝑖𝑡𝜑^#(𝑔P)]) . 
Therefore we have a representation of the generalized Weyl relations in which the vector  ΩI satisfies the 

equality ([𝜑^#(𝑔P)]: + [𝜋^#(𝑔e)]: − 1)ΩI = 0 and is cyclic for the operators {𝜑^#(𝑔P)}Pf8� . Therefore there is a 
unitary map  S#(�): ℱ�# → 𝐿:#( ℝ	∗ M

#�) such that: 1)  S#(�)𝜑^#(𝑔P)bS#(�)c
H8 = 𝑥P , 2) S#(�)𝜋^#(𝑔P)bS#(�)c

H8 = − 8
=

O#

O#0;
 

and 3) S#(�)ΩI = 𝜋H�/7 d𝐸𝑥𝑡-exp X−𝐸𝑥𝑡-∑ 0;
%

:
�
Pf8 Ze. It is convenient to use the non-Archimedean Hilbert space 

𝐿:# ? ℝ	∗ M
#�, 𝜋H�/7 �𝐸𝑥𝑡-exp X−𝐸𝑥𝑡- ∑ 0;

%

:
�
Pf8 Z�@𝑑#�𝑥 instead of 𝐿:#( ℝ	∗ M

#�) so we let 𝑑#𝜇P#=	𝐸𝑥𝑡-exp X− 0;
%

:
Z𝑑#𝑥P 

and define the operator	(𝑇𝑓)(𝑥) = 𝜋�/7 �𝐸𝑥𝑡-expX𝐸𝑥𝑡-∑ 0;
%

:
�
Pf8 Z�, Then 𝑇 is a unitary map of 𝐿:#( ℝ	∗ M

#�) onto 

𝐿:#b ℝ	∗ M
#�, 𝐸𝑥𝑡-∏ 𝑑#𝜇P#�

Pf8
	c and if we let   S8

#(�) = 𝑇S#(�) we get: 1) S8
#(�): ℱ�# → 𝐿:#b ℝ	∗ M

#�, 𝐸𝑥𝑡-∏ 	𝑑#𝜇P#�
Pf8

	c, 2) 

S8
#(�)𝜑^#(𝑔P)bS8

#(�)c
H8
= 𝑥P , 3) S8

#(�)𝜋^#(𝑔P)bS8
#(�)c

H8
= − 0;

=
+ 8

=
O#

O#0;
 and 4) S8

#(�)ΩI = 1, where 1 is the function 

identically one. Note that each #- measure 𝜇P# has mass one, which implies that 
 〈ΩI, b𝐸𝑥𝑡-∏ 𝑃Pb𝜑^#(𝑔P)c�

Pf8 cΩI〉 = ∫ (𝐸𝑥𝑡-∏ 𝑃P(𝑥P)�
Pf8 )	

ℝ	∗ :
#= b𝐸𝑥𝑡-∏ 𝑑#𝜇P#�

Pf8 c = (99) 
= 𝐸𝑥𝑡-∏ ∫ 𝑃P(𝑥P)

	
ℝ	∗ :
#=

�
Pf8 𝑑#𝜇P# = 𝐸𝑥𝑡-∏ ∫ 〈ΩI, 𝑃P(𝜑^#(𝑔P)ΩI)〉

	
ℝ	∗ :
#=

�
Pf8 . 

Here 𝑃8, .∙. . , 𝑃� are external finite and hyperfinite polynomials. Now we can to construct directly the 𝜎#-measure 
space	〈𝑄#, 𝜇#〉. We define a space	𝑄# =⤬Pf8

/	∗ ℝ	∗ M
#. Take the 𝜎#-algebra generated by hyper infinite products of 

#-measurable sets in ℝ	∗ M
# and set	𝜇# =⊗Pf8

/	∗ 𝜇P#. We denote the points of  𝑄# symbolically by	𝑞 = 〈𝑞8, 𝑞:, … 〉, then 
〈𝑄#, 𝜇#〉 is a 𝜎#- measure space and the set of functions of the form	𝑃(𝑞8, 𝑞:, … ), where 𝑃 is a polynomial and 𝑛 ∈
ℕ	∗  is arbitrary, is #-dense in 𝐿:#(𝑄#, 𝑑#𝜇#). Let 𝑃 be a polynomial in  𝑁 ∈ ℕ	∗  variables 𝑃(𝑥8, 𝑥:, … , 𝑥�) =
𝐸𝑥𝑡-∑ 𝑐e&,…,e=𝑥P&

e&
e&,…,e= ∙∙∙ 𝑥P=

e= 	and define 𝐒#:	𝑃 X𝜑^#b𝑔P&c, … , 𝜑^
#b𝑔P=cZΩI → 𝑃b𝑞P& , 𝑞P% , … , 𝑞P=c. Then we get 

X𝜑^#b𝑔P&c, … , 𝜑^
#b𝑔P=cZ ΩI = 𝐸𝑥𝑡-ÿ 𝑐𝒍𝑐𝒎̅ XΩI, 𝜑^#b𝑔P&c

e&(Q& , … , 𝜑^#b𝑔P=c
e=(Q=ΩIZ

	

𝒍,𝒎
= 



𝐸𝑥𝑡-ÿ 𝑐𝒍𝑐𝒎̅\ 𝑞P&
e&(Q&

	

ℝ	∗ :
#=

×…×
	

𝒍,𝒎
𝑞�
e=(Q= Ä𝐸𝑥𝑡-Å 𝑑#𝜇P2

#
�

=f8
Æ = 𝐸𝑥𝑡-\ [𝑃b𝑥P& , 𝑥P% , … , 𝑥P=c[

:	

y#
𝑑#𝜇#. 

By the equation (99) and the fact that each measure 𝜇P2
# 	has mass one. Since ΩI is cyclic for polynomials in the 

fields, 𝐒#extends to a unitary map of ℱa#(𝐻#	)	onto 𝐿:#(𝑄#, 𝑑#𝜇#). 
Theorem 10.1 [15] Let	𝜑Q,^# (𝑥),	𝜘 ∈ ℝM,/

#
	
∗ be the free scalar field of mass 𝑚 (in 4-dimensional space-time) at 

time zero. Let 𝑔 ∈ 𝐿8#( ℝ	∗ M
#B) ∩ 𝐿:#( ℝ	∗ M

#B) and define	𝐻n,^,o(^)(𝑔) = 𝜆(𝜘) X𝐸𝑥𝑡- ∫ 𝑔(𝑥)	
ℝ	∗ :
#$ : 	𝜑Q,^#7 (𝑥): 𝑑#B𝑥Z, 

where	𝜆(𝜘) ∈ ℝM,≈
#

	
∗ . Let 𝐒	# denote the unitary map  𝐒	#: ℱa#(𝐻#	) → 𝐿:#(𝑄#, 𝑑#𝜇#) constructed above. Then 𝑉 =

𝐒	#𝐻n,^,o(𝑔)𝐒	#H8is multiplication by a function 𝑉 ,o(𝑞) which satisfies: (a) 𝑉 ,o(𝑞) ∈ 𝐿X#(𝑄#, 𝑑#𝜇#)	for all 𝑝 ∈ ℕ	∗ . 
(b) 𝐸𝑥𝑡-exp X−𝑡𝑉 ,o(𝑞)Z ∈ 𝐿8#(𝑄#, 𝑑#𝜇#)	for all 𝑡 ∈ [0, ∞	∗ ). 

Proof. (a) Note that 	𝜑Q,^# (𝑥) is a well-defined operator-valued function of 𝑥 ∈ ℝ	∗ M
#B. We define now 

: 	𝜑Q,^#7 (𝑥):	by moving all the 𝑎		 c′s to the left in the formal expression for 	𝜑Q,^#7 (𝑥). By Theorem 59  : 	𝜑Q,^#7 (𝑥): is 
also a well-defined operator for each 𝑥 ∈ ℝ	∗ M

#B.  Notice that for each 𝑥 ∈ ℝ	∗ M
#B operator : 	𝜑Q,^#7 (𝑥): takes 𝐹I into 

itself. Thus for each	𝑥 ∈ ℝ	∗ M
#B operator : 	𝜑Q,^#7 (𝑥): reads : 	𝜑Q,^#7 (𝑥) ≔ 	𝜑Q,^#7 (𝑥) + 𝑑:(𝜘)	𝜑Q,^#: (𝑥) + 𝑑8(𝜘) where the 

coefficients 𝑑8(𝜘) and 𝑑:(𝜘) are hyperfinite constant independent of	𝑥. For each 𝑥 ∈ ℝ	∗ M
#B, 𝐒	#𝜑Q,^# (𝑥)(𝑔)𝐒	#H8is the 

operator on #-measurable space 𝐿:#(𝑄#, 𝑑#𝜇#) which acts by multiplying by the function 
𝐸𝑥𝑡-∑ 𝑐P(𝑥, 𝜘)𝑞P

/	∗
Pf8 	where 𝑐P(𝑥, 𝜘) =   (2𝜋)HB/:b𝑔P , b𝐸𝑥𝑡-exp(𝑖𝑝𝑥)c𝜒(𝜘, 𝑝)𝜇(𝑝)H8/:c and 𝜒(𝜘, 𝑝) ≡ 1 if |𝑝| ≤

𝜘, 𝜒(𝜘, 𝑝) ≡ 0 if |𝑝| > 𝜘. Note that 
 𝐸𝑥𝑡- ∑ |𝑐P(𝑥, 𝜘)|:

/	∗
Pf8 = (2𝜋)HB/:‖𝜒(𝜘, 𝑝)𝜇(𝑝)‖#:: , (100) 

so the functions 𝐒	#𝜑Q,^#7 (𝑥)(𝑔)𝐒	#H8 and 𝐒	#𝜑Q,^#: (𝑥)(𝑔)𝐒	#H8	are in 𝐿:#(𝑄#, 𝑑#𝜇#) and the 𝐿:#(𝑄#, 𝑑#𝜇#) norms 
are uniformly bounded in 𝑥. Therefore, since 𝑔 ∈ 𝐿8#( ℝ	∗ M

#B),	𝐒	#𝐻n,^,o(^)(𝑔)𝐒	#H8operates on 𝐿:#(𝑄#, 𝑑#𝜇#)	by 
multiplication by some 𝐿:#(𝑄#, 𝑑#𝜇#)-function which we denote by 𝑉n,^,o(^)(𝑞). Consider now the expression 
for	𝐻n,^,o(^)(𝑔)ΩI. This is a vector (0,0,0,0, 𝜓#7, 0, … ) with 

 𝜓#7(𝑝8, 𝑝:, 𝑝B, 𝑝7) = 𝐸𝑥𝑡- ∫
o(^)p(0)_(^,X)�\0A-tuvSH=0 ∑ X2

23+
23& U�O$0

(:;)$/%∏ [:h(X2)]&/%+
23&

	
ℝ	∗ :
#$	

	 	=	
o(^)∏ _(^,X2)

+
23& �\0A-p�S∑ X2

23+
23& U�

(:;)>/%∏ [:h(X2)]&/%+
23&

 (101) 

Here	|𝑝=| ≤ 𝜘, 1 ≤ 𝑖 ≤ 4. We choose now the parameter 𝜆 = 𝜆(𝜘) ≈ 0 such that ‖𝜓#7‖#:: ∈ ℝ and therefore we 
obtain	Í	𝐻n,^,o(^)(𝑔)ΩIÍ#:

: ∈ ℝ, since Í	𝐻n,^,o(^)(𝑔)ΩIÍ#:
: = ‖𝜓#7‖#:: . But, since 𝐒	#ΩI = 1, we get the equalities 

 	Í	𝐻n,^,o(^)(𝑔)ΩIÍ#:
	 = Í𝐒	#𝐻n,^,o(^)(𝑔)𝐒	#H8Íx%#�y#,O#h#�

	 = Í𝑉n,^,o(^)(𝑞)Íx%#�y#,O#h#�
	 . (102) 

From (101)-(102) we get that Í𝑉n,^,o(^)(𝑞)Íx%#�y#,O#h#�
	 ∈ ℝ. It is easily verify that each polynomial 

𝑃(𝑞8, 𝑞:, … , 𝑞2), 𝑛 ∈ ℕ	∗  is in the domain of the operator 𝑉n,^,o(^)(𝑞) and	𝐒	#𝐻n,^,o(^)(𝑔)𝐒	#H8 ≡ 𝑉n,^,o(^)(𝑞) on that 
domain. Since ΩI is in the domain of	𝐻X

n,^,o(^)(𝑔), 𝑝 ∈ ℕ	∗ , 1 is in the domain of the operator 𝑉Xn,^,o(^)(𝑞) for all 
𝑝 ∈ ℕ	∗ . Thus, for all 𝑝 ∈ ℕ	∗   𝑉n,^,o(^)(𝑞) ∈ 𝐿:X# (𝑄#, 𝑑#𝜇#), since	𝜇#(𝑄#) is finite, we conclude that 𝑉n,^,o(^)(𝑞) ∈
𝐿X# (𝑄#, 𝑑#𝜇#) for all 𝑝 ∈ ℕ	∗ .  (b) Remind Wick's theorem asserts that  :	𝜑Q,^

#[ (𝑥) ≔
∑ (−1)=[[/:]
=fI

[!
([H:=)!=!

𝑐^=𝜑Q,^
#([H:=)(𝑥) with 𝑐^	 = Í𝜑Q,^# (𝑥)ΩIÍ#:

: . For 𝑗 = 4 we get −𝑂(𝑐^:) ≤: 	𝜑Q,^#7 (𝑥):	and therefore    

−X𝐸𝑥𝑡- ∫ 𝑔(𝑥)	
ℝ	∗ :
#$ 𝑑#B𝑥Z𝑂(𝑐^:) ≤ 𝐻n,^,o(^)(𝑔).Finally we obtain 𝐸𝑥𝑡- ∫ 𝐸𝑥𝑡-exp X−𝑡b: 	𝜑Q,^#7 (𝑥): cZ	

y# 𝑑#𝜇# ≤
𝐸𝑥𝑡-expb𝑂(𝑐^:)c	and this inequality finalized the proof. 

GENERALIZED HAAG KASTLER AXIOMS 

Definition 11.1 [15] A non- Archimedean Banach algebra 𝐴# is a complex #-algebra over field ℂ	∗ M
# (or ℂ	∗ M,,-.

# =
ℝ	∗ 𝒄,,-.
# + i ℝ	∗ M,,-.

#  )  which is a non-Archimedean Banach space under a ℝ	∗ K
# -valued -norm which is sub 

multiplicative, i.e., ‖𝑥𝑦‖# 	≤ ‖𝑥‖#‖𝑦‖#for all 𝑥, 𝑦 ∈ 𝐴#. An involution on a non- Archimedean Banach algebra 𝐴#  
is a conjugate-linear isometric antiautomorphism of order two denoted by	𝑥 ↦ 𝑥∗, i.e.,(𝑥 + 𝑦)∗ = 𝑥∗ + 𝑦∗,	and for 
all 𝑥, 𝑦 ∈ 𝐴#: (𝑥𝑦)∗ = 𝑦∗𝑥∗, (𝜆𝑥)∗ = 𝜆̅𝑥,(𝑥∗)∗ = 𝑥, ‖𝑥∗‖# = 𝑥, 𝜆 ∈ ℂ	∗ M

#. A Banach #- algebra is a non- 
Archimedean Banach algebra with an involution. 

Definition 11.2 An ∁#∗ -algebra is a Banach #-algebra 𝐴# satisfying the ∁#∗ -axiom: for all	𝑥 ∈ 𝐴#, ‖𝑥∗𝑥‖# =
‖𝑥‖#:. 



Definition 11.3 1) A linear operator  𝑎:𝐻# → 𝐻# on a non-Archimedean Hilbert space 𝐻# is said to be bounded 
if there is a number 𝐾 ∈ ℝ	∗ M

# with ‖𝑎𝜉‖# ≤ 𝐾‖𝜉‖# for all 𝜉 ∈ 𝐻#. 2) A linear operator 𝑎:𝐻# → 𝐻# a non-
Archimedean Hilbert space 𝐻# is said to be finitely bounded if there is a number 𝐾 ∈ ℝ	∗ M,,-.

#  with ‖𝑎𝜉‖# ≤ 𝐾‖𝜉‖# 
for all 𝜉 ∈ 𝐻#. The infimum of all such 𝐾 if exists, is called the #-norm of 𝑎, written ‖𝑎‖#. 

Abbreviation 11.1 The set of all finitely bounded operators 𝑎:𝐻# → 𝐻# we will be denoting by	ℬ#(𝐻#). 
Abbreviation 11.2 The set of all finitely bounded operators 𝑎:𝐻# → 𝐻# we will be denoting by ℬ#	(𝐻#). 
Remark 11.1 Note that ℬ#	(𝐻#) is a	∁#∗ -algebra over field ℂ	∗ M,,-.

# . 
Definition 11.4 If 𝑆	 ⊆ ℬ#(𝐻#) (or	ℬ#	(𝐻#) ) then the commutant 𝑆� of 𝑆 is 𝑆� = {𝑥 ∈ ℬ#(𝐻#)|∀𝑎 ∈

𝑆(𝑥𝑎 = 𝑎𝑥	)}.  
Remark 11.2 The algebra ℬ#(𝐻#)	of bounded linear operators on a non-Archimedean Hilbert space 𝐻# is a 

∁#∗ -algebra with involution	𝑇 → 	𝑇∗, 𝑇 ∈ ℬ#(𝐻#). Clearly, any #-closed #-selfadjoint subalgebra of ℬ#(𝐻#) is also a 
∁#∗ -algebra. 

Remark 11.3 We will be especially concerned with #-separable Hilbert Spaces where there is an orthonormal 
basis, i.e. a hyper infinite sequence , {𝜉=}=f8

/	∗  of unit vectors with 〈𝜉= , 𝜉[ 	〉 = 0 for 𝑖 ≠ 𝑗 and such that 0 is the only 
element of 𝐻# orthogonal to all the 𝜉= . 

Definition 11.5 1) The topology on ℬ#(𝐻#) (or	ℬ#	(𝐻#) of pointwise #-convergence on 𝐻# is called the strong 
operator topology.  A basis of neighbourhoods of 𝑎 ∈ ℬ#(𝐻#)  (or	𝑎 ∈ ℬ#	(𝐻#) is formed by the following way 

𝑁(𝑎, {𝜉=}=f82 , 𝜀) = {𝑏|‖(𝑏 − 𝑎)𝜉=‖# < 𝜀, ∀𝑖(1 ≤ 𝑖 ≤ 𝑛)}. 
2) The weak operator topology is formed by the basic neighbourhoods    

𝑁(𝑎, {𝜉=}=f82 , {𝜂=}=f82 , 𝜀) = {𝑏|〈(𝑏 − 𝑎)𝜉= , 𝜂=〉 < 𝜀, ∀𝑖(1 ≤ 𝑖 ≤ 𝑛)}. 
Theorem 11.1 If 𝑀	 = 	𝑀∗ is subalgebra of  ℬ#(𝐻#) (or	ℬ#	(𝐻#) with	1	 ∈ 	𝑀, then the following statements are 

equivalent: 1)  𝑀 = 𝑀�� ; 2) 𝑀 is strongly #-closed; 3) 𝑀 is weakly #-closed. 
Definition 11.6 A subalgebra of ℬ#(𝐻#) (or	ℬ#	(𝐻#) satisfying the conditions of Theorem 61is called a von 

Neumann #-algebra. 
Theorem 11.2 [15] (Generalized Gelfand-Naimark theorem) Let	𝐴 be a ∁#∗ -algebra with unit. Then there exist a 

non-Archimedean Hilbert space 𝐻# and an #-isometric homomorphism 𝑈 of 𝐴 into 𝐵(𝐻#)	such that	𝑈𝑥∗ 	= 	𝑈𝑥∗, 
𝑥∈𝐴. 

Abbreviation 11.3 We denote by	𝑀7
# = { ℝ	∗ M

#7, (∙,∙)}, the vector space ℝ	∗ M
#7 with the Minkowski product: 

(𝑥, 𝑦) = 𝑥I𝑦I − 𝑥=𝑦= , 𝑖 = 1,2,3. 
Statement of the Axioms [15]. Let 𝑀7

#  be Minkowski space over field ℝ	∗ K
# of four space-time dimensions. 

1. Algebras of Local Observables. To each finitely bounded #-open set 𝑂 ⊂ 𝑀7
# we assign a unital ∁#∗ 	-algebra 

𝑂 → ℬ#(𝑂) 
2. Isotony. If  𝑂8 ⊂ 𝑂: , then ℬ(𝑂8) is the unital ∁#∗ 	-subalgebra of the unital ∁#∗ -algebra	ℬ(𝑂:)	: 

ℬ#(𝑂8) ⊂ ℬ#(𝑂:). 
This axiom allow us to form the algebra of all local observables 

ℬ#WLK = ⋃ ℬ#(𝑂)1⊂|+#
.  

The algebra ℬ#WLK	is a well-defined ∁#∗  -algebra because given any 𝑂8, 𝑂: ⊂ 𝑀7
#, both ℬ#(𝑂8) and ℬ#(𝑂:) are 

subalgebras of the ∁#∗  -algebraℬ#(𝑂8 ∪ 𝑂:).  From there one can take the #-norm completion to obtain 
ℬ# = #-ℬ#WLK������� , 

called the algebra of quasi-local observables. This gives a ∁#∗  -algebra in which all the local observable ∁#∗  -algebras 
are embedded. 

3. Poincare ≈	-Covariance. For each Poincare transformation	𝑔 ∈ 	 𝑃	$ (
↑ , there is a ∁#∗ - isomorphism 𝛼p ∶ 	ℬ# 	→

	ℬ# such that   
𝛼pbℬ#(𝑂)c ≈ ℬ#b𝑔(𝑂)c, 

for all bounded #-open 𝑂 ⊂ 𝑀7
#. For fixed	𝑔 ∈ ℬ# , the map 𝑔 → 𝛼p(𝐴) is required to be #-continuous. 

 3�. For each Poincare transformation	𝑔 ∈ 	 𝑃	$ (
↑ , there is a ∁#∗ - isomorphism 𝛼p ∶ 	ℬ# 	→ 	ℬ# such that   

st X𝛼pbℬ#(𝑂)cZ = st Xℬ#b𝑔(𝑂)cZ, 
for all bounded #-open 𝑂 ⊂ 𝑀7

#. For fixed	𝑔 ∈ ℬ# , the map 𝑔 → 𝛼p(𝐴) is required to be #-continuous. 
4. ≈-Causality. If 𝑂8 and 𝑂: are spacelike separated, then all elements of ℬ#(𝑂8) ≈ -commute with all elements 

of a       ∁#∗  -algebra	ℬ#(𝑂:)  
[ℬ#(𝑂8),ℬ#(𝑂:)] ≈ 0.  



4�. If 𝑂8 and 𝑂: are space-like separated, then the standard part of the all elements of ∁#∗  -algebra  ℬ#(𝑂8) 
commute with the standard part of the all elements of  ∁#∗  -algebra	ℬ#(𝑂:)  

stbℬ#(𝑂8),ℬ#(𝑂:)c = 0. 
Definition 11.7 If 𝑂 ⊂ 𝑀7

#, we say 𝑥 belongs to the future causal shadow of 𝑂 if every past directed time-like or 
light-like trajectory beginning at x intersects with 𝑂. Essentially, 𝑂 separates the past light cone of 𝑥.Likewise, we 
say 𝑥 belongs to the past causal shadow of 𝑂 if every future-directed timelike or lightlike trajectory beginning at 𝑥 
inter-sects with	𝑂. The causal completion or causal envelope 𝑂D of 𝑂 is the union of its future and past directed 
causal shadows. This definition of the causal completion 𝑂D   can be reformulated in terms of “causal complements,” 
which are computationally easier to deal with. If	𝑂	 ⊂ 	𝑀7

#, we define the causal complement 𝑂� of 𝑂 to be the set of 
all points with are spacelike to all points in 𝑂. Then 𝑂�� = 𝑂D is the causal completion of	𝑂. One expects the 
observables localized to 𝑂D to be completely determined by the observables localized to	𝑂, carrying the same 
information. 

5. Time Evolution.  
ℬ#b𝑂D 	c = ℬ#(𝑂).  

6. Vacuum state and positive spectrum. There exists a faithful irreducible representation 𝜋I ∶ 	ℬ# 	→ 𝐵(𝐻#)  
with a unique (up to a factor) vector Ω	 ∈ 	𝐻# such that Ω is cyclic and Poincaré invariant, and such that 
unitary representation of translations, given by 

𝑈(𝑥)𝜋I	(𝐴)Ω	 = 𝜋(𝛼0(𝐴))Ω, 
where	𝐴	 ∈ 	ℬ# and 𝛼0(∙) is the ∁#∗ -isomorphism from Axiom 3 associated with translation by 𝑥	 ∈ 	𝑀7

#, has 
Hermitian generators 𝑃h , 𝜇 = 1,2,3 whose joint spectrum lies in the forward light cone. The last phrase is the most 
physically important here; it simply states that we have energy-momentum operators whose spectrum satisfies 𝐸: −
𝐏: ≫ 0,	i.e, or in other words, that the energy E ≥ 0 and nothing can move faster than the speed of light. The vector 
Ω is the vacuum state This axiom does not appear to be purely algebraic; we have had to introduce an non-
Archimedean Hilbert space	𝐻# . In fact, we can rewrite the axiom in a completely algebraic but less transparent way 
as follows. We postulate that there exists an vacuum state 𝜔I on the ∁#∗  -algebra (i.e., a normalized, positive, 
bounded linear functional) such that the following holds  𝜔I(𝑄∗𝑄) = 0 for all 𝑄 ∈ ℬ# of the form 

𝑄(𝑓, 𝐴) = 𝐸𝑥𝑡-∫𝑓(𝑥)𝛼0(𝐴)𝑑#7𝑥 
where 𝐴	 ∈ ℬ#  and 𝑓(𝑥) is a #-smooth function whose Fourier transform has bounded support disjoint from the 
forward light-cone centered at the origin in 𝑀7

#. 
Remind that in a quantum system with a Hamiltonian	𝐻, the Heisenberg picture dynamics is given by the 

canonical formula  
𝐴(𝑡) = {𝐸𝑥𝑡-exp[𝑖𝑡𝐻]}𝐴(0){𝐸𝑥𝑡-exp[−𝑖𝑡𝐻]}. 

Then 𝐴(𝑡) is the observable at time 𝑡 corresponding to the time zero observable	𝐴(0). In our model we have 
hyper finitely locally correct Hamiltonians 𝐻(𝑔) but no hyper infinitely global Hamiltonian, and we construct the 
Heisenberg picture dynamics nonetheless. We do this by restricting the observables to lie in the local algebras 
ℬ#(𝑂) and by using the finite propagation speed implicit in axiom 3.  

Definition 11.8 Let ℱ2# be the space of symmetric 𝐿:#( ℝ	∗ M
#B2) functions defined on	 ℝ	∗ M

#B2, ℱI# = ℂ	∗ M
# and 

let	𝓕	
# = 𝐸𝑥𝑡-⨁2fI

/	∗ ℱ2#, ΩI = 1 ∈ ℂ	∗ M
# ⊂ ℱ	#. Let 𝑆2 be the projection of  𝐿:#( ℝ	∗ M

#B2) onto ℱ2#and let 𝐷# be the 
#-dense domain in ℱ	# spanned algebraically by ΩI and vectors of the form 𝑆2(𝐸𝑥𝑡-∏ 𝑓P(𝑘2)2

Pf8 ) where 𝑓P ∈
𝑆,-.#

	( ℝ	∗ M
#B, ℝ	∗ M

#B), 𝑛 ∈ ℕ	∗ . 
Definition 11.9  We set now 

 𝐻I,^ = 𝐸𝑥𝑡- ∫ 8
:
: b𝜋^:(𝒙) + ∇#𝜑^:(𝒙) +𝑚:𝜑^:(𝒙)c: 𝑑#B𝒙. (103) 

Theorem 11.3 As the bilinear form on the domain 𝐷# × 𝐷# 
 𝐻I,^ = 𝐸𝑥𝑡- ∫ 𝜇(𝑘)	

|𝒌|D^ 𝑎c(𝒌)𝑎(𝒌)𝑑#B𝒌. (104) 
Theorem 11.4 (1) The operator 𝐻I = 𝐻I,^ leaves each subdomain 𝐷#⋂ℱ2# invariant. (2) The operator 𝐻I = 𝐻I,^  

is essentially self-#-adjoint as an operator on the domain	𝐷#. 
Definition 11.10 We set now 

 𝜑^,I# (𝑥, 𝑡) = 𝐸𝑥𝑡-exp(𝑖𝑡𝐻I)𝜑^#(𝑥)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻I) (105) 
 𝜋^,I# (𝑥, 𝑡) = 𝐸𝑥𝑡-exp(𝑖𝑡𝐻I)𝜋^#(𝑥)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻I) (106) 
 𝜑^,I# (𝑓, 𝑡) = 𝐸𝑥𝑡- ∫ 𝜑^,I# (𝑥, 𝑡)	

ℝ	∗ :
#$ 𝑓(𝑥)𝑑#B𝑥 (107) 

 𝜋^,I# (𝑓, 𝑡) = 𝐸𝑥𝑡- ∫ 𝜋^,I# (𝑥, 𝑡)	
ℝ	∗ :
#$ 𝑓(𝑥)𝑑#B𝑥. (108) 



Here 𝜑^#(𝑥) and 𝜋^#(𝑥) is given by formulas (97) and (98) respectively. 
Remark 11.4 Note that 𝜑^,I# (𝑥, 𝑡) and 𝜋^,I# (𝑥, 𝑡) are bilinear forms defined on 𝐷# × 𝐷#. 
Theorem 11.5 As bilinear forms on 𝐷# × 𝐷#. 

 𝜑^,I# (𝑥, 𝑡) = 𝐸𝑥𝑡- ∫ ∆#(𝑥 − 𝑦, 𝑡)
	
ℝ	∗ 𝒄
#𝟑 𝜋^#(𝑥)𝑑#B𝑦 + 𝐸𝑥𝑡- ∫

𝝏#

�#A
∆#(𝑥 − 𝑦, 𝑡)

	
ℝ	∗ 𝒄
#𝟑 𝜑^#(𝑥)𝑑#B𝑦 (109) 

 𝜋^,I# (𝑥, 𝑡) = 𝐸𝑥𝑡- ∫ �#

�#A
∆#(𝑥 − 𝑦, 𝑡)

	
ℝ	∗ 𝒄
#𝟑 𝜋^#(𝑥)𝑑#B𝑦 + 𝐸𝑥𝑡- ∫

𝝏#%

�#A%
∆#(𝑥 − 𝑦, 𝑡)

	
ℝ	∗ 𝒄
#𝟑 𝜋^#(𝑥)𝑑#B𝑦 (110) 

Remark 11.5 Here ∆#(𝑥 − 𝑦, 𝑡)  is the solution of the generalized Klein-Gordon equation  
 𝝏#%

�#A%
∆#(𝑥, 𝑡) −

𝝏#%

�#0&%
∆#(𝑥, 𝑡) −

𝝏#%

�#0%%
∆#(𝑥, 𝑡) −

𝝏#%

�#0$%
∆#(𝑥, 𝑡) + 𝑚:∆#(𝑥, 𝑡) = 0 (111) 

with Cauchy data ∆#(𝑥, 0) = 0, 𝝏
#

�#A 	
∆#(𝑥, 0) = 𝛿(𝑥). 

Remark 11.6 Note the distribution ∆#(𝑥, 𝑡) has support in the double light-cone	|𝑥| ≤ |𝑡|. 
Theorem 11.6 Let	𝑓8, 𝑓: ∈	 𝑆#( ℝ	∗ M

#B, ℝ	∗ M
#B). The operator 𝜑^,I# (𝑓, 𝑡) + 𝜋^,I# (𝑓, 𝑡) is essentially self-#-adjoint on 

the domain 𝐷#. 
Definition 11.11 We introduce now the class ℑb𝑆#( ℝ	∗ M

#B)c  of bilinear forms on  𝐷# × 𝐷#  expressible as a 
linear combination of the forms 
 𝑉 = ∑ X2[Z 𝐸𝑥𝑡- ∫ 𝑣(𝑘)	

ℝ	∗ :
#$!

2
[fI 𝑎c(𝑘8) ∙∙∙ 𝑎cb𝑘[c𝑎b𝑘[(8c ∙∙∙ 𝑎(𝑘2)𝑑#B2𝑘 (112) 

with symmetric kernels 𝑣(𝑘) ∈ 𝑆#( ℝ	∗ M
#B)  having real Fourier transforms. 

Theorem 11.7 Let 𝑉 ∈ ℑb𝑆#( ℝ	∗ M
#B)c. Then 𝑉is essentially self-#-adjoint on 𝐷#. 

Theorem 11.8 Let 𝑂 be a bounded #-open region of vector space ℝ	∗ M
#B and let ℳ#(𝑂) be the von Neumann 

algebra generated by the field operators 𝐸𝑥𝑡-exp[𝑖𝜑^#(𝑓	)] with 𝑓 ∈ 𝑆#( ℝ	∗ M
#B, ℝ	∗ M

#B) and supp𝑓	 ⊂ 𝑂. Let 𝑔(𝑥) = 0 
on ℝ	∗ M

#B\𝛰. Then 𝐸𝑥𝑡-exp[𝑖𝑡𝐻n(𝑔)] ∈ℳ#(𝑂) for all 𝑡 ∈ ℝ	∗ M
#. 

Definition 11.12 Let 𝑂 be a bounded #-open region of space and let ℬ#(𝑂) be the von Neumann algebra 
generated by the operators 𝐸𝑥𝑡-expN𝑖b𝜑^#(𝑓8) + 𝜋^#(𝑓:)cR with 𝑓8, 𝑓: ∈ 𝑆#( ℝ	∗ M

#B, ℝ	∗ M
#B) and supp𝑓8, supp𝑓: ⊂ 𝑂. Let 

𝑂A be the set of points with distance less than |𝑡| to 𝑂 for any instant of the time	𝑡. 
Theorem 11.9 𝐸𝑥𝑡-exp(𝑖𝑡𝐻I)ℬ#(𝑂)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻I) ⊂ ℬ#(𝑂A). 
Theorem 11.10 If 𝑂8 and  𝑂: are disjoint bounded open regions of vector space ℝ	∗ M

#B then the standard part of 
the operators in ℬ#(𝑂8) commute with the standard part of the operators in operators in ℬ#(𝑂:). 

Theorem 11.11 Let	𝑔 ∈ 𝐿:#b( ℝ	∗ M
#B)c, and let 𝑔 = 0 on open region 𝑂, then	𝐸𝑥𝑡-exp[𝑖𝑡𝐻n(𝑔)] ∈ ℬ#(𝑂	)� for all 

	𝑡 ∈ ℝ	∗ M
#. 

Theorem 11.12 [15] (Free field ≈-Causality) Let 𝑓8, 𝑓: ∈ 𝑆 	,-.# ( ℝ	∗ M
#7, ℝ	∗ M

#7) with supp𝑓8 ⊂ 𝑂8, supp𝑓: ⊂ 𝑂:. We 
set now    𝜑^,I# (𝑓8) = 𝐸𝑥𝑡- ∫ 𝜑^,I# (𝑥, 𝑡)	

ℝ	∗ :
#+ 𝑓8	(𝑥, 𝑡)𝑑

#7𝑥 and	𝜑^,I# (𝑓:) = 𝐸𝑥𝑡- ∫ 𝜑^,I# (𝑥, 𝑡)	
ℝ	∗ :
#+ 𝑓:	(𝑥, 𝑡)𝑑

#7𝑥. If region 
𝑂8 and region 𝑂:  are space-like separated, then  N𝜑^,I# (𝑓8), 	𝜑^,I# (𝑓:)R𝜓 ≈ 0 for all near standard vector 𝜓 ∈ 𝐻#. 

Proof. The commutator N𝜑^,I# (𝑓8), 	𝜑^,I# (𝑓:)R reads 
N𝜑^,I# (𝑓8), 	𝜑^,I# (𝑓:)R = 𝐸𝑥𝑡- ∫ 𝑑#B𝑥8𝑑#

	
ℝ	∗ :
#+ 𝑡8𝐸𝑥𝑡- ∫ 𝑑#B𝑥:𝑑#𝑡8∆^#

	
ℝ	∗ :
#+ (𝑥8 − 𝑥:, 𝑡8 − 𝑡:)𝑓8(𝑥8, 𝑡8)𝑓:(𝑥8, 𝑡8), 

∆^#(𝑥8 − 𝑥:, 𝑡8 − 𝑡:) = Ξ8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) − Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘), where 
Ξ8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = 𝐸𝑥𝑡- ∫ Hexp{[𝑖𝒑(𝑥8 − 𝑥:)] − 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)}S

	
|𝒑|D^	

	 O#$𝒑
T𝒑𝟐(Q%, 

Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = 𝐸𝑥𝑡- ∫ H−expN[𝑖𝒑(𝑥8 − 𝑥:)] + 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)RS
	
|𝒑|D^	

	 O#$𝒑
T𝒑𝟐(Q% . 

Here	𝜘 ∈ ℝ	∗ M,/
#  , 𝜔(𝑝) = |𝒑𝟐 +𝑚:. Define Ξ%8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) and Ξ%:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) by  

Ξ%8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = 𝐸𝑥𝑡-\ Hexp{[𝑖𝒑(𝑥8 − 𝑥:)] − 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)}S
	

|𝒑|V^
	
	 𝑑#B𝒑

|𝒑𝟐 +𝑚:
, 

Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = 𝐸𝑥𝑡- ∫ H−expN[𝑖𝒑(𝑥8 − 𝑥:)] + 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)RS
	
|𝒑|V^	

	 O#$𝒑
T𝒑𝟐(Q%. 

Note that: (a) Ξ%8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) ≈ 0 and Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) ≈ 0, (b) Ξ8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) and     
Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) are Lorentz ≈-invariant tempered distribution (see definition 4), since the distributions 
Ξ8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:) and	Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:) defined by 

Ξ8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) + Ξ%8(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = 𝐸𝑥𝑡- ∫ HexpN[𝑖𝒑(𝑥8 − 𝑥:)] − 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)RS
	
		

	 O#$𝒑
T𝒑𝟐(Q%  



Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) + Ξ%:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = 𝐸𝑥𝑡- ∫ HexpN[−𝑖𝒑(𝑥8 − 𝑥:)] + 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)RS
	
		

	 O#$𝒑
T𝒑𝟐(Q%  

are Lorentz invariant  by Theorem 56. From expression of the distribution Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) by 
replacement 𝒑 → −𝒑 we obtain    

Ξ:(𝑥8 − 𝑥:, 𝑡8 − 𝑡:; 𝜘) = −𝐸𝑥𝑡- ∫ HexpN[𝑖𝒑(𝑥8 − 𝑥:)] + 𝑖𝜔(𝒑)(𝑡8 − 𝑡:)RS
	
|𝒑|V^	

	 O#$𝒑
T𝒑𝟐(Q%.   

And therefore finally we get 
∆^#(𝑥8 − 𝑥:, 𝑡8 − 𝑡:) = 𝐸𝑥𝑡- ∫ sin[𝜔(𝒑)(𝑡8 − 𝑡:)]exp[𝑖𝒑(𝑥8 − 𝑥:)]

	
|𝒑|D^	

	 O#$𝒑
T𝒑𝟐(Q%.  

Thus for any points (𝑥8, 𝑡8) and (𝑥:, 𝑡:) separated by space-like interval we obtain that ∆^#(𝑥8 − 𝑥:, 𝑡8 − 𝑡:) ≈ 0, 
since	∆^#(𝑥8 − 𝑥:, 𝑡8 − 𝑡:) is a Lorentz ≈-invariant tempered distribution. 

Theorem 11.13 (Time zero free field ≈ -locality) Let 𝑓8, 𝑓: ∈ 𝑆 	,-.# ( ℝ	∗ M
#B, ℝ	∗ M

#B) with supp𝑓8 ⊂ 𝑂8,  and 
supp𝑓: ⊂ 𝑂:	 are disjoint bounded open regions of vector space ℝ	∗ M

#B, then N𝜑^,I# (𝑓8, 0), 𝜑^,I# (𝑓:, 0)R ≈ 0. 
Proof. It follows immediately from Theorem 11.12. 
Theorem 11.14 Let 𝑂 be a bounded #-open region of vector space ℝ	∗ M

#B, let	𝑡 ∈ ℝ	∗ M
# , let 𝑔 be a nonnegative 

function in 𝐿8#( ℝ	∗ M
#B) ∩ 𝐿:#( ℝ	∗ M

#B) and let 𝑔 be identically equal to one on 𝑂A.For 𝐴 ∈ ℬ#(𝑂), then  
𝜎A(𝐴) = {𝐸𝑥𝑡-exp[𝑖𝑡𝐻(𝑔)]}𝐴{𝐸𝑥𝑡-exp[−𝑖𝑡𝐻(𝑔)]} 

is independent of 𝑔 and 𝜎A(𝐴) ∈ ℬ#(𝑂A). 
Proof. Let  𝜎AI(𝐴) = {𝐸𝑥𝑡-exp[𝑖𝑡𝐻I]}𝐴{𝐸𝑥𝑡-exp[−𝑖𝑡𝐻I]} and 𝜎An(𝐴) = {𝐸𝑥𝑡-exp[𝑖𝑡𝐻n]}𝐴{𝐸𝑥𝑡-exp[−𝑖𝑡𝐻n]}. 

Notice that generalized Trotter's product formula is valid for the unitary group 𝐸𝑥𝑡-expN𝑖𝑡b𝐻I +𝐻n(𝑔)cR. Thus we 
get the following product formula for the associated automorphism group: 
 𝜎A(𝐴) = #-lim

2→ /	∗
N	b𝜎A/2I 𝜎A/2n c2(𝐴)R. (113) 

Each automorphism 𝜎An maps each ℬ#(𝑂a) into itself and is independent of 𝑔 on ℬ#(𝑂a) for |𝑠| ≪ |𝑡|. To see 
this, let 𝜒(𝑂a)  be the characteristic function of a set 𝑂a. We assert that 
 𝜎A/2n (𝐶) 	= H𝐸𝑥𝑡-expN𝑖(𝑡/𝑛)𝐻nb𝜒(𝑂a)cRS𝐶H𝐸𝑥𝑡-expN−𝑖(𝑡/𝑛)𝐻nb𝜒(𝑂a)cRS (114) 

for any 𝐶 ∈ ℬ#(𝑂a) and that 𝜎An(𝐶) ∈ ℬ#(𝑂a). In other words the interaction automorphism has propagation 
speed zero and is independent of 𝑔 on ℬ#(𝑂a) for	|𝑠| ≪ |𝑡|. The theorem follows from (113), (114) and Theorem 
11.9. To prove (113), we rewrite 𝐻n(𝑔) = 𝐻nb𝜒(𝑂a)c + 𝐻n(𝑔[1 − 𝜒(𝑂a)]) as a sum of commuting self-#-adjoint 
operators. By Theorem 11.15  𝐸𝑥𝑡-expN𝑖𝑡𝐻nb𝜒(𝑂a)cR ∈ ℬ#(𝑂a) and so the right side of (8.3) belongs to	ℬ#(𝑂a). By 
Theorem 70, 

𝐸𝑥𝑡-exp[𝑖𝑡𝐻n(𝑔[1 − 𝜒(𝑂a)])] ∈ ℬ#(𝑂a)� 
and (114) follows. 

Definition 11.13 Let 𝐵 be a bounded #-open region of spacetime 𝑀7
# and for any time	𝑡, let 𝐵(𝑡) 	=

	{𝑥|	𝑥, 𝑡	 ∈ 	𝐵} be the time 𝑡 time slice of 𝐵. We define ℬ#(𝐵) to be the von Neumann algebra generated by  
 ⋃ 𝜎a Xℬ#b𝐵(𝑡)cZ .a  (115) 

Theorem 11.16 The generalized Haag-Kastler axioms (1)-(5) are valid for all these local algebras	ℬ#(𝐵). 
Proof (Except Lorentz rotations) The axioms (1) and (2) are obvious, while (4) follows easily from the finite 

propagation speed, Theorem 11.10, together with the time zero ≈-locality, Theorem 11.12. Because the time zero 
fields coincide with the time zero free fields, and because the time zero fields generate ℬ# by Theorem 11.12 and the 
definition of the local algebras, the free field result carries over to our scalar model with interaction 𝐻n ≠ 0. In the 
Poincaré covariance axiom (3), the time translation is given by	𝜎A. Let 𝐵 + 𝑡  be the time translate of the space time 
region	𝐵 ⊂ 𝑀7

#. Then (𝐵 + 𝑡)(𝑠) = 𝐵(𝑠 − 𝑡) and so   
 𝜎A d⋃ 𝜎a Xℬ#b𝐵(𝑠)cZa e = ⋃ 𝜎a(A Xℬ#b𝐵(𝑠)cZa = ⋃ 𝜎a Xℬ#b𝐵(𝑠 − 𝑡)cZ = ⋃ 𝜎a(A Xℬ#b𝐵(𝑠 + 𝑡)cZaa  (116) 

Thus 𝜎Abℬ#(𝐵)c = ℬ#(𝐵 + 𝑡) and axiom (3) is verified for time translations. Since the local algebras are 
#-norm dense in ℬ# and since automorphisms of ∁#∗ -algebras preserve the #-norm, 𝜎A extends to an automorphism 
of algebra	ℬ#. 

Definition 11.14 To define the space translation automorphism	𝜎a, we set now 
 𝑃h = 𝐸𝑥𝑡- ∫ 𝑝h𝑎c(𝑝)𝑎(𝑝)	

‖X‖≪^ 𝑑#7𝑝, 𝜇 = 1,2,3; 𝜎A(𝐴) = {𝐸𝑥𝑡-exp[−𝑖𝑥𝑃]}𝐴{𝐸𝑥𝑡-exp[𝑖𝑥𝑃]}. (117) 
Then we get  {𝐸𝑥𝑡-exp[−𝑖𝑥𝑃]}𝜑^(𝑥){𝐸𝑥𝑡-exp[𝑖𝑥𝑃]} = 𝜑^(𝑥 + 𝑦),	 {𝐸𝑥𝑡-exp[−𝑖𝑥𝑃]}𝜋^(𝑥){𝐸𝑥𝑡-exp[𝑖𝑥𝑃]} =

𝜑(𝑥 + 𝑦).	 
The following theorem completes the proof of Theorem 11.16 except for Lorentz rotations. 



Theorem 11.17 The automorphism 𝜎0bℬ#(𝐵)c = ℬ#(𝐵 + 𝑥), st(𝜎0)	extends up to  ∁#∗ -automorphism of ℬ#, and 
〈𝑥, 𝑡〉 → st(𝜎0)st(𝜎A) =	= st(𝜎A)st(𝜎0)	 defines a 4-parameter abelian automorphism group of ℬ#. 

Theorem 11.18 Let 𝑂 be a bounded #-open region of space and let ℬ#(𝑂) be the von Neumann algebra 
generated by the operators 𝐸𝑥𝑡-expN𝑖b𝜑^(𝑓8) + 𝜋^(𝑓:)cR	where 𝑓8, 𝑓: ∈ ℰ,-.# ( ℝM

#
	
∗ ) and supp𝑓8 ⊂ 𝐵, supp𝑓: ⊂ 𝐵. 

Then 
𝐸𝑥𝑡-exp(𝑖𝑡𝐻I)ℬ#(𝑂)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻I) ⊂ ℬ#(𝑂A).   

Remark 11.7 We reformulate the theorem by saying that 𝐻I has propagation speed at most one. 
In order to obtain automorphisms for the full Lorentz group and to complete the proof of Theorem 11.16, there 

are four separate steps. 
1. The first step is to construct a self-#-adjoint locally correct generator for Lorentz rotations. This generator 

then defines a locally correct unitary group and automorphism group. 
2. The second step is to prove this statement for the fields, by showing that the field	𝜑^(𝑥, 𝑡), considered as a 

non-standard operator valued function on a suitable domain, and is transformed locally correctly by our 
unitary group. 

3. The third step is to show that the local algebras ℬ#(𝐵) are also transformed correctly. 
4. The fourth final step is to reconstruct the Lorentz group automorphisms from the locally correct pieces given 

by the first three steps. This final step is not difficult as in in the case of the two dimensional spacetime	𝑑 =
2, see [16-18]. 

Let 𝐻I,^(𝑥) denote the integrand in (103), where  
 𝐻I,^ = 𝐸𝑥𝑡-∫𝐻I,^(𝒙)𝑑#B𝒙 = 𝐸𝑥𝑡- ∫ 8

:
: b𝜋^:(𝒙) + ∇#𝜑^:(𝒙) +𝑚:𝜑^:(𝒙)c: 𝑑#B𝒙 . (118) 

The formal generator of classical Lorentz rotations is 
 𝑀^

IP = 𝑀I,^
IP +𝑀n,^

IP = 𝐸𝑥𝑡- ∫ 𝑥P𝐻I^,(𝒙)𝑑#B𝒙 + 𝐸𝑥𝑡- ∫ 𝑥P: 𝑃	(𝜑^(𝒙)): 𝑑#B𝒙, 𝑘 = 1,2,3. (119) 
The local Lorentzian rotations are   

 𝑀^
IPb𝑔8

(P), 𝑔:
(P)c = 𝜀𝐻I,^ +𝐻I,^b𝑔8

(P)c + 𝐻n,^b, 𝑔:
(P)c, 𝐻I,^b𝑔8

(P)c = 𝐸𝑥𝑡- ∫𝐻I,^(𝒙)𝑔8
(P)(𝒙)𝑑#B𝒙. (120) 

We require that 0 < 𝜀 and that: 𝑔8
(P)(𝑥8, 𝑥:, 𝑥B), 𝑔:

(P)(𝑥8, 𝑥:, 𝑥B), 𝑘 = 1,2,3  be nonnegative 𝐶I
/	∗  functions. In the 

second step we require more, for example that 𝜀 + 𝑔8
(P)(𝑥8, 𝑥:, 𝑥B) = 𝑥P and	𝑔:

(P)(𝑥8, 𝑥:, 𝑥B) = 𝑥P,	𝑘 = 1,2,3 in 
some local space region. This region is contained in the Cartesian product [𝜀, ∞	∗ ) × [𝜀, ∞	∗ ) × [𝜀, ∞	∗ ). By using 
decomposing  𝐻I,^b𝑔8

(P)c into a sum of a diagonal and an off-diagonal term we obtain 𝐻I,^b𝑔8
(P)c = 

𝐸𝑥𝑡- ∫𝑣	¢,^
(P) (𝒌, 𝒍) 𝑎∗(𝒌)𝑎(𝒍)𝑑#B𝒌𝑑#B𝒍+ 𝐸𝑥𝑡- ∫𝑣	I¢,^

(P) (𝒌, 𝒍) [𝑎∗(𝒌)𝑎∗(𝒍) + 	𝑎(−𝒌)𝑎(−𝒍)]𝑑#𝟑𝒌𝑑#𝟑𝒍 =   
= 𝐻I,^¢ b𝑔8

(P)c + 𝐻I,^I¢b𝑔8
(P)c, 

where 
𝑣	¢,^
(P) (𝒌, 𝒍) = 𝑐8𝜒(𝒌, 𝒍, 𝜘)(𝜇(𝒌)𝜇(𝒍) + 〈𝒌	, 𝒍	〉 + 𝑚:)[𝜇(𝒌)𝜇(𝒍)]H8/:𝑔Q8

(P)(−𝑘8 + 𝑙8, −𝑘: + 𝑙:, −𝑘B + 𝑙B),  
𝑣	I¢,^
(P) (𝒌, 𝒍) = 𝑐:𝜒(𝒌, 𝒍, 𝜘)(−𝜇(𝒌)𝜇(𝒍) − 〈𝒌	, 𝒍	〉 + 𝑚:)[𝜇(𝒌)𝜇(𝒍)]H8/:𝑔Q8

(8)(−𝑘8 − 𝑙8, −𝑘: − 𝑙:, −𝑘B − 𝑙B),	 
and where 𝒌 = (𝑘8, 𝑘:, 𝑘B), 𝒍 = (𝑙8, 𝑙:, 𝑙B), 〈𝒌	, 𝒍	〉 = ∑ 𝑘=B

=f8 𝑙= , 𝜒(𝒌, 𝒍, 𝜘) =1 if |𝒌| ≤ 𝜘 and |𝒍| ≤ 𝜘, otherwise 
𝜒(𝒌, 𝒍, 𝜘) = 0. 

Theorem 11.19 (a) 𝑣	I¢,^
(P) ∈ 𝐿:#( ℝ	∗ M

#B). (b) Function 𝑣	¢,^
(P)  is the kernel of a nonnegative operator and 

𝜀𝜇(𝒌)𝛿(𝒌 − 𝒍) + 𝛽𝑣	¢,^
(P) 	is the kernel of a positive self-#-adjoint operator, for 𝛽 ≥ 0, these operators are real in 

configuration space. 
Proof. The statement (a) is obvious. The statement (b) is proved by using a finite sequence of Kato 

perturbations. Let𝑣4
(P) = 𝜀𝜇(𝒌)𝛿(𝒌 − 𝒍) + 𝛽𝑣	¢,^

(P)  and let 𝑉4	and 𝑉¢ denote the operators with kernels 𝑣4
(P)	and 𝑣	¢,^

(P)  
correspondingly. The operator 𝑉¢	is a sum of three terms of the form 𝐴∗𝑀p&𝐴 in configuration space, where 𝑀p&is 
multiplication by 𝑔8 ≥ 0. Thus 0 ≤ 𝑉¢. Moreover for 𝛾 sufficiently small, but chosen independently of	𝛽, we 
obtain	𝛾𝑉¢ ≤

8
:
𝑉I ≤

8
:
(𝑉I + 𝛽𝑉¢) =

8
:
𝑉4 and therefore 𝑉4(¤ = 𝑉4 + 𝛾𝑉¢ is a Kato perturbation, in the sense of 

bilinear forms. Consequently if the operator 𝑉4 is self-#-adjoint, so is 𝑉4(¤ and 𝐷 X𝑉4(¤
8/:Z = 𝐷b𝑉¤

8/:c.	Thus 
canonical finite induction starting from 𝑉I = 𝑉I∗ shows that 𝑉4 is self-adjoint, for all 𝛽 ≥ 0. 

Theorem 11.20 The operator 𝐻I¢b𝑔8
(P)c is nonnegative and 𝜀𝐻I + 𝛽𝐻I¢b𝑔8

(P)c is self-#-adjoint, for all 𝛽 > 0. 



The main purpose of the third step is to give a covariant definition of the local algebras ℬ#(𝐵).	Le	𝑓 ∈ ℰ,-.# (𝐵) 
be the ℝ	∗ M

#B-valued function with support in 𝐵. Let {𝛼=}=f82 , 𝑛 ∈ ℕ	∗  be finite hyperreal numbers and consider the 
expressions 
 𝜑^#(𝑓) = 𝐸𝑥𝑡-∫𝜑^#(𝑥, 𝑡) 𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡 (121) 
 𝜑^#(𝑓, 𝑡) = 𝐸𝑥𝑡-∫𝜑^#(𝑥, 𝑡) 𝑓(𝑥, 𝑡)𝑑#B𝑥 (122) 
 ℜ(𝑓) = 𝐸𝑥𝑡-∑ 𝛼=𝜑^#(𝑓, 𝑡=)2

=f8  (123) 
 𝜋^#(𝑓, 𝑡) = 𝐸𝑥𝑡-∫𝜋^#(𝑥, 𝑡) 𝑓(𝑥, 𝑡)𝑑#B𝑥. (124) 

For 𝑔	 ≡ 1  on a sufficiently large set (the domain of dependence of the region	𝐵), the time integration in (1) 
#-converges strongly, and all four operators above are symmetric and defined on 𝐷b𝐻(𝑔)c. 

Theorem 11.21 The operators (1)-(4) are essentially self-#-adjoint on any #-core for 𝐻(𝑔)8/:. 
Theorem 11.22 The algebra ℬ#(𝐵)	is the von Neumann algebra generated by finitely bounded functions of 

operators of the form (121). 
Proof. Note that if a hyper infinite sequence  {𝐴2} of self-#-adjoins operators #-converges strongly to a self 

#-adjoint #-limit 𝐴 on a core for 𝐴 then the unitary operators 𝐸𝑥𝑡-exp(𝑖𝑡𝐴2) #-converge strongly to 𝐸𝑥𝑡-exp(𝑖𝑡𝐴). 
Using this fact, one can easily show that the operators (1) and (4) generate the same von Neumann algebra, ℬ#8(𝐵) 
and that ℬ#8(𝐵) ⊃ ℬ#(𝐵). To show that ℬ#8(𝐵) ⊂ ℬ#(𝐵), recall that a self- #-adjoint operator 𝐴 commutes with a 
finitely bounded operator 𝐶 provided 𝐶𝐷 ⊂ 	𝐷(𝐴) and 𝐶𝐴	 = 	𝐴𝐶 on 𝐷, for some core 𝐷 of 𝐴. Equivalently is the 
condition that the operator 𝐶 commutes with all finitely bounded functions of	𝐴. Also equivalent is the relation 
𝐶𝐴	 = 	𝐴𝐶 on 𝐷(𝐴). We choose 𝐷	 = 	𝐷(𝐻(𝑔)). If the operator 𝐶 commutes with all operators of the form (122), it 
also commutes on 𝐷(𝐻(𝑔)) with all operators of the form (123). Hence we get ℬ#(𝐵)� ⊂ ℬ#8(𝐵)� and so ℬ#8(𝐵) =
ℬ#8(𝐵)�� ⊂ ℬ#(𝐵)�� = ℬ#(𝐵)��. 

Remark 11.8 The Poincare group 𝑃(↑	
$  is the semidirect product of the space-time translations group ℝ8,B with 

the Lorentz group  O(1,3)	such that {𝑎8 + Λ8}{𝑎: + Λ:} = {𝑎8 + 𝛬8𝑎:,𝛬8𝛬:}. Here 𝑎 ∈ ℝ8,B and Λ(𝛽): (𝑥= , 𝑡) →
b𝑥= × cosh(𝛽) + 𝑡 × sinh(𝛽), 𝑥= × sinh(𝛽) + 𝑡 × cosh(𝛽)c, 𝑖 = 1,2,3. We prove that there exists a representation 
𝜎(𝑎, Λ) of the Poincare group  𝑃(↑	

$  by ∗ - automorphisms of ℬ#, such that 𝜎(𝑎,𝛬)bℬ#(𝑂)c = ℬ#({𝑎,𝛬}𝑂) for all 
bounded open sets 𝑂 and all {𝑎,𝛬} ∈ 𝑃(↑	

$ . The Lorentz group composition law gives 𝜎(𝑎,𝛬) = 𝜎(𝑎, 𝐼)𝜎(0,𝛬). 
Obviously the existence of the automorphism representation 𝜎(𝑎,𝛬) follows directly from the construction of the 
pure Lorentz transformation 𝜎(0,𝛬) = 𝜎(𝛬). One obtains 𝜎(𝛬) by constructing locally correct infinitesimal 
generators. Formally, the operators, 
 𝑀^

IP = 𝑀I,^
IP

	 +𝑀n,^
IP
	
	=	𝐸𝑥𝑡- ∫ 8

:
^: 𝜋^(𝑥):: +: b∇𝜑^(𝑥)c

:: +𝑚:: 𝜑^(𝑥):: _
	
ℝ	∗ :
#$ 𝑥P𝑑#B𝑥 + 𝐻n,^(𝑥P𝑔) (125) 

𝑘 = 1,2,3 s infinitesimal generators of Lorentz transformations in a region 𝑂 if the cutoff function 𝑔 equals one 
on a sufficiently large interval. We consider now the regions 𝑂8 contained in the sets {𝑥 ∈ ℝ	∗ M

#B|	𝑥8, 𝑥:, 𝑥B > |𝑡| +
1}. Thus for such regions 𝑂8  we may replace (1) by 𝑀IP = 	𝐸𝑥𝑡- ∫ 𝐻(𝑥)	

ℝ	∗ :
#$ 𝑥P𝑔(𝑥)𝑑#B𝑥, with a nonnegative 

functions 𝑥P𝑔(𝑥), 𝑘 = 1,2,3.  Here 𝐻(𝑥) is the formally positive energy density: 

𝐻(𝑥) =
1
2 ^: 𝜋^

(𝑥):: +: b∇#𝜑^(𝑥)c
:: +𝑚:: 𝜑^(𝑥):: _ + 𝐻n,^(𝑥) = 𝐻I,^(𝑥) + 𝐻n,^(𝑥). 

Therefore 𝑀IP is formally positive. In fact it is technically convenient to use different spatial cutoffs in the free 
and the interaction part of	𝑀IP , 𝑘 = 1,2,3. Final formulas for 𝑀^

IP reads 
 𝑀^

IP = 𝑀^
IPb𝑔IP	, 𝑔

Pc = 𝛼𝐻I,^ +𝐻I,^(𝑥P𝑔IP) + 𝐻n,^(𝑥P𝑔	). (126) 
Here 0	 < 𝛼  and 0 ≤ 𝑥P𝑔IP(𝑥), 0 ≤ 𝑥P𝑔	(𝑥), 𝑘 = 1,2,3 and in order that (126) be formally correct, we assume 

that:	𝛼 + 𝑥P𝑔IP = 𝑥P = 𝑥P𝑔		 on [1,𝑅]B = [1,𝑅] × [1,𝑅] × [1,𝑅] with 𝑅 sufficiently large. For technical reasons 
we assume that: 𝛼 + 𝑥P𝑔IP(𝑥) = 𝑥P , 𝑘 = 1,2,3 on	supp(𝑔).  By above restrictions on 𝑔IP and 𝑔P we have that 
supp(𝑔IP), supp(𝑔	) ⊂ {𝑥|𝛼 ≤ 𝑥P , 𝑘 = 1,2,3}	and we show that the operator 𝑀^

IP is essentially self- #-adjoint and it 
generates Lorentz rotations in an algebra  ℬ#(𝑂8) 
 𝐸𝑥𝑡-exp(𝑖𝛽𝑀^

IP)ℬ#(𝑂8)𝐸𝑥𝑡-exp(−𝑖𝛽𝑀^
IP) ⊂ ℬ#({𝑎, Λ(𝛽)}𝑂8) (127) 

provided that 𝑂8 and {𝑎, Λ(𝛽)}𝑂8 are contained in the region 
 {𝑥 ∈ ℝ	∗ M

#B, 𝑡 ∈ ℝ	∗ M
#|	|𝑡| + 1 < 𝑥P < 𝑅 − |𝑡|, 𝑘 = 1,2,3}, (128) 

where 𝑀IP is formally correct. These results permit us to define the Lorentz rotation automorphism 𝜎(𝛬) on an 
arbitrary local algebra	ℬ#(𝑂	). Using a space time translation	𝜎(𝑎),	𝑎 ∈ ℝ	∗ M

#7 we can translate 𝑂 into a region   𝑂 +
𝑎 = 𝑂8 ⊂ {𝑥 ∈ ℝ	∗ M

#B, 𝑡 ∈ ℝ	∗ M
#|	𝑥8 > |𝑡| + 1} and for	𝑅 ∈ ℝ	∗ M

# large enough, 𝑂8 and {𝑎, Λ(𝛽)}𝑂8 are contained in the 
region (1) we define 𝜎b0, Λ(𝛽)c = 𝜎bΛ(𝛽)c by 



𝜎bΛ(𝛽)c ↾ 	ℬ#(𝑂	) = 𝜎({−Λ(𝛽)𝑎, 𝐼})𝜎({0, Λ(𝛽)})𝜎({𝑎, 𝐼}) ↾ 	ℬ#(𝑂	). 
Theorem 11.23 Let 𝑀IP(𝑔I, 𝑔), 𝑘 = 1,2,3 be given by (126), with  𝛼, 𝑔I(𝑥), 𝑔(𝑥) restricted as mentioned 

above. Then 𝑀IP(𝑔I, 𝑔) is essentially self #-adjoint on 𝐶 /	∗ (𝐻 ∩ 𝐻I). 
Theorem 11.24 Let 𝑂8 and {0, Λ(𝛽)}𝑂8 be contained in the set (1). Then the following identity holds between 

self- #-adjoint operators: 
 𝐸𝑥𝑡-exp(𝑖𝛽𝑀IP)𝜑^#(𝑓)𝐸𝑥𝑡-exp(𝑖𝛽𝑀IP) ≈ 	𝜑^#b𝑓({0, Λ(𝛽)}𝑥)c = ∫ 𝜑^# X𝑓b{0, Λ(𝛽)}(𝑥, 𝑡)cZ

	
ℝ	∗ :
#+ 𝑑#B𝑥𝑑#𝑡. (129) 

Here provided  supp(𝑓) ⊂ 𝑂8. 
The proof of the Theorem 11.24 is reduced to the verification of the following equations 

 ^𝑥P
�#

�#A
+ 𝑡 �#

�#0;
_𝜑^#(𝑥, 𝑡) = [𝑖𝑀IP , 𝜑^#(𝑥, 𝑡)], 𝑘 = 1,2,3. (130) 

Here (130) that is equation for bilinear forms on an appropriate domain. Since 𝑀IP is self #-adjoint, we can 
integrate (130), thus we compute formally for 𝐻 = 𝐻I,^ +𝐻n,^(𝑔),    

[𝑖𝑀IP , 𝜑^#(𝑥, 𝑡)] = [𝑖𝑀IP , 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)] = 
 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)[𝑖𝑀IP(−𝑡), 𝜑^#(𝑥, 0)]𝐸𝑥𝑡-exp(−𝑖𝑡𝐻). (131) 

Here 𝑀IP(−𝑡) = 𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)𝑀IP𝐸𝑥𝑡-exp(𝑖𝑡𝐻). Formally one obtains that   

	𝑀IP(−𝑡) = 𝐸𝑥𝑡-ÿ
(−𝑡)2

𝑛!
/	∗

2fI
𝑎𝑑2(𝑖𝐻)(𝑀IP), 𝑘 = 1,2,3. 

Note that if 𝑀IP and 𝐻 were the correct global Lorentzian generators and Hamiltonian they would satisfy 
 [𝑖𝐻,𝑀IP] = 𝑎𝑑	(𝑖𝐻)(𝑀IP) = 𝑃P , N𝑖𝐻, [𝑖𝐻, 	𝑀IP]R = 0, 	𝑀IP(−𝑡) = 	𝑀IP − 𝑃P𝑡. (132) 

Here 𝑃P , 𝑘 = 1,2,3 are the generators of space translations. Thus from (131) we get 
[	𝑖𝑀IP , 𝜑^#(𝑥, 0)] = [𝑖𝑀I

IP] = 𝑥𝜋^#(𝑥, 0),	[𝑖𝑃P , 𝜑^#(𝑥, 0)] = −∇#(𝜑^#)(𝑥, 0). 
Formally we have (130).However the difficulty with this formal argument is that 𝐻 and 	𝑀IP  do not obey (132) 

exactly, since they are correct only in	𝑂8. We have instead (132) the equations 
 [𝑖𝐻,𝑀IP] = 𝑃e¥MP , N𝑖𝐻, [𝑖𝐻, 	𝑀IP]R = 𝑅Pe¥M , 𝑘 = 1,2,3. (133) 

Here 𝑃e¥MP  acts like the momentum operators only in the region	𝑂8, i.e. 
N𝑃e¥MP , 𝜑^#(𝑥, 𝑡)R = [𝑃P , 𝜑^#(𝑥, 𝑡)], (𝑥, 𝑡) ∈ 𝑂8. 

Hence N𝑖𝐻, 𝑃e¥MP R = 𝑅Pe¥M , 𝑘 = 1,2,3 is not identically zero, but commutes with	ℬ#(𝑂8). Formally, further 
commutators of 𝑅Pe¥M , 𝑘 = 1,2,3 with 𝐻 are localized outside region	𝑂8, and (130) follows formally even for our 
approximate, but locally correct 𝐻 and	𝑀IP. In order to convert this formal argument into a rigorous mathematical 
result, we apply now generalized Taylor series expansion [12] for the quantities  
 𝐸P(−𝑡) = 〈Ω, [	𝑖𝑀IP(−𝑡), 𝜑^#(𝑥, 0)]Ω〉, 𝑘 = 1,2,3. (134) 

Here Ω ∈ 𝐶 /	∗ (𝐻) and thus we obtain 
𝐸P(−𝑡) = 𝐸P(0) − 𝑡

O#\;(I)
O#A

	+	A
%

:
O#%\;(¦)
O#A%

 , where	𝜉 ∈ [−𝑡, 𝑡]. 
From (133) we obtain 

𝑑#:𝐸P(−𝜉)
𝑑#𝑡: = 〈𝐸𝑥𝑡-exp(𝑖𝜉𝐻)Ω, N𝑖𝑅Pe¥M , 𝜑^#(𝑥, 𝜉)R𝐸𝑥𝑡-exp(𝑖𝜉𝐻)Ω〉. 

Note that	(𝑥, 𝑡) ∈ 𝑂8, so that with	𝜉 ∈ [−𝑡, 𝑡], (𝑥, 𝜉) ∈ 𝑂8 and therefore  
 N𝑅Pe¥M , 𝜑^#(𝑥, 𝜉)R ≡ 0. (135) 

After integration over 𝑥 ∈ ℝ	∗ M
#B with a function 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M

#B) we obtain the operator identity: 
 𝐸𝑥𝑡-∫ N𝑅Pe¥M , 𝜑^#(𝑥, 𝜉)R𝑓(𝑥)𝑑#B𝑥

	
ℝ	∗ :
#$ ≡ 0, 𝑘 = 1,2,3. (136) 

Therefore    O
#%\;(¦)
O#A%

≡ 0 if |𝜉| ≤ |𝑡| and 

𝐸P(−𝑡) = 𝐸P(0) − 𝑡
O#\;(I)
O#A

= 〈Ω, H[	𝑖𝑀IP , 𝜑^#(𝑥, 0)] − 𝑡N𝑃e¥MP , 𝜑^#(𝑥, 0)RSΩ〉 =  
= 〈Ω, {𝑥𝜋^#(𝑥, 0) + 𝑡∇#(𝜑^#)(𝑥, 0)} Ω	〉. 

Thus we get  
 [	𝑖𝑀IP(−𝑡), 𝜑^#(𝑥, 0)] = 𝑥𝜋^#(𝑥, 0) + 𝑡∇#𝜑^#(𝑥, 0) (137) 

Inserting the relation (137) in (131) finally we obtain (130).This completes the proof of Lorentz covariance. 
Definition 11.14 For the local free field energy we set 𝑇I(𝑔) = 𝑇I8(𝑔) + 𝑇I:(𝑔), where 

 𝑇I8(𝑔) = 𝑐8𝐸𝑥𝑡- ∫ 𝑑#B	
|𝒌&|D^

𝒌8𝐸𝑥𝑡- ∫ 𝑑#B	
|𝒌%|D^

𝒌:𝑔Q(𝑘88 − 𝑘:8, 𝑘8: − 𝑘:B, 𝑘8B − 𝑘:B) +
h(𝒌&)h(𝒌%)(〈𝒌&,𝒌%〉(Q%

Th(𝒌&)h(𝒌%)
, × (138) 



𝑎c(𝒌8)𝑎(𝒌:),         
𝑇I:(𝑔) = 𝑐:𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌&|D^
𝒌8𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌%|D^
𝒌:𝑔Q(𝑘88 − 𝑘:8, 𝑘8: − 𝑘:B, 𝑘8B − 𝑘:B) +

Hh(𝒌&)h(𝒌%)(〈𝒌&,𝒌%〉(Q%

Th(𝒌&)h(𝒌%)
, × (139) 

 × {𝑎c(𝒌8)𝑎c(−𝒌:) + 𝑎(−𝒌8)𝑎(𝒌:)}.   
Here 𝒌8 = (𝑘88, 𝑘8:, 𝑘8B),	𝒌: = (𝑘:8, 𝑘::, 𝑘:B), 〈𝒌8, 𝒌:〉 = ∑ 𝑘8=B

=f8 𝑘:= ,  𝑔Q(𝒑) = 𝐸𝑥𝑡- ∫ (𝐸𝑥𝑡-[𝑖〈𝒑, 𝒙〉])𝑔(𝑥)	
ℝ	∗ 𝒄
#𝟑 𝑑#B𝒙. 

Similarly, for the local momentum we set 𝑃= 	(𝑔) = 𝑃	 =8(𝑔) + 𝑃	 =:(𝑔), 𝑖 = 1,2,3 where 
 𝑃	 =8(𝑔) = 𝑐8𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌&|D^
𝒌8𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌%|D^
𝒌:𝑔Q(𝑘88 − 𝑘:8, 𝑘8: − 𝑘:B, 𝑘8B − 𝑘:B) × (140) 

× +�P&
&(P&%(P&$�h(𝒌%)(�P%&(P%%(P%$�h(𝒌&)

Th(𝒌&)h(𝒌%)
,𝑎c(𝒌8)𝑎(𝒌:),   

 𝑃	:(𝑔) = 𝑐:𝐸𝑥𝑡- ∫ 𝑑#B	
|𝒌&|D^

𝒌8𝐸𝑥𝑡- ∫ 𝑑#B	
|𝒌%|D^

𝒌:𝑔Q(𝑘88 − 𝑘:8, 𝑘8: − 𝑘:B, 𝑘8B − 𝑘:B) × (141) 

× +�P&
&(P&%(P&$�h(𝒌%)H�P%&(P%%(P%$�h(𝒌&)

Th(𝒌&)h(𝒌%)
, {−𝑎c(𝒌8)𝑎c(−𝒌:) + 𝑎(−𝒌8)𝑎(𝒌:)}.  

Definition 11.15 Let 𝑃%̂ (𝑓) be the local operator, defined for 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#B) by  

 𝑃%̂ (𝑓) = 𝐻I^,(𝑓) −𝑚: ∫ :	
ℝ	∗ :
#$ 𝜑^#:(𝑥):	𝑓(𝑥)𝑑#B𝑥 (142) 

Theorem 11.25 Let the operators 𝑀IP , 𝑘 = 1,2,3 are given by 𝑀IP = 𝛼𝐻I + 𝑇Ib𝑥P𝑔I
(P)c + 𝑇nb𝑥P𝑔8

(P)c, 𝐻 ≜
𝐻I,^ +   where 𝐻I ≜ 𝐻I,^ and 𝑇n ≜ 𝐻n,^. Then the following statements hold. 

(1) For 𝑘 = 1,2,3, 𝐷((𝑀IP):) ⊂ 𝐷(𝐻	), 𝐷(𝐻:) ⊂ 𝐷(𝑀IP). 
(2) For 𝑘 = 1,2,3,  𝐷(𝑀IP) ⊂ 𝐷 X(𝐻	 + 𝑏)

&
%Z, 𝐷(𝐻	) ⊂ 𝐷 X(𝑀IP	 + 𝑏)

&
%Z. 

Theorem 11.26 Let the operators  𝑀IP , 𝑘 = 1,2,3 are given by 𝑀IP = 𝛼𝐻I + 𝑇Ib𝑥P𝑔I
(P)c + 𝑇nb𝑥P𝑔8

(P)c, where 
𝐻I ≜ 𝐻I,^ and  𝑇n ≜ 𝐻n,^.  Then the following statements hold. 

(1) For 𝑙 = 2,3, 4,	 𝑀:𝐷(𝐻e) → 𝐷(𝐻eH:).	  
(2) As operator equalities on 𝐷(𝐻B) for 𝑘 = 1,2,3, 

 [𝑖𝐻,𝑀IP] = 𝑃 �
O#S0;p5

(;)U

O#0;
�. (143) 

(3) As operator equalities on 𝐷(𝐻7), for 𝑘 = 1,2,3, 

 N𝑖𝐻, [𝑖𝐻,𝑀IP]R = 𝑃%̂ �∑
O#%S0;p5

(;)U

O#02
%

=fB
=f8 � − 𝑇n Ä∑

O#p&
(;)

O#02
=fB
=f8 Æ. (144) 

(4) For 	𝑙 = 2,3, 4,	 𝐻:𝐷((𝑀IP)e) → 𝐷((𝑀IP)eH:). 
The equalities (143) hold on the domain 𝐷((𝑀IP)B), and on the domain 𝐷((𝑀IP)7), for 𝑘 = 1,2,3, 

 N𝑖𝑀IP , [𝑖𝑀IP , 𝐻]R = 𝑇I ?�
O#

O#0;
b𝑥P𝑔I

(P)c�
:

@+ 𝑇n ��
O#

O#0;
b𝑥P𝑔8

(P)c�
	

�−	𝑃%̂ �b𝛼 + 𝑥P𝑔I
(P)c O#%

O#0;
% b𝑥P𝑔I

(P)c� (145) 

Theorem 11.27 As bilinear forms on 𝐷(𝐻I) × 𝐷(𝐻I) for 𝑓, 𝑔 ∈ 𝑆,-.# ( ℝ	∗ M
#B) 

 [𝑖𝑇I(𝑓), 𝑇I(𝑔)] = 𝑃 �𝑓 X∑ O#p
O#02

=fB
=f8 Z − 𝑔 X∑ O#]

O#02
=fB
=f8 Z�, (146) 

 [𝑖𝑇I(𝑓), 𝑃(𝑔)] = 𝑃% �𝑓 X∑ O#p
O#02

=fB
=f8 Z� −𝑇I �𝑔 X∑

O#]
O#02

=fB
=f8 Z�. (147) 

The equalities (146)-(147) also hold if 𝑓 = 1 or 𝑔 = 1. In particular from (147) we get  
 [𝑖𝐻I(𝑓), 𝑃(𝑔)] = 𝑃% X∑ O#p

O#02
=fB
=f8 Z. (148) 

Proof. The operators 𝑇I, 𝑃, 𝑃% are #-closable (symmetric), defined on 𝐷(𝐻I) and bounded as operators relative to 
𝐻I + 𝐼. Therefore (146)-(147) are defined as bilinear forms on 𝐷(𝐻I) × 𝐷(𝐻I)  and it suffices to establish equality 
on a core for 𝐻I, e.g. on 𝐷# = H𝜓 ∈ ℱ#|𝜓(2) ∈ 𝑆,-.# ( ℝ	∗ M

#B2), 𝜓(Q) = 0	for	all	sufficiently	large	mS. By direct 
calculations on 𝐷# × 𝐷# one obtains the equalities (146)-(147). For example 
 [𝑖𝐻I, 𝑇I8(𝑔)] = 𝑐8𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌&|D^
𝒌	𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌%|D^
𝒑𝑔Q(𝑘8	 − 𝑝8	 , 𝑘:	 − 2, 𝑘B	 − 𝑝B	 ) +

h(𝒌	)h(𝒑)(〈𝒌,𝒑〉(Q%

Th(𝒌)h(𝒑)
,× (149) 

	[𝐻I, 𝑎c(𝒌)𝑎(𝒑)] = 
𝑖𝑐8𝐸𝑥𝑡-∫ 𝑑#B	

|𝒌&|D^
𝒌	𝐸𝑥𝑡- ∫ 𝑑#B	

|𝒌%|D^
𝒑𝑔Q(𝑘8	 − 𝑝8	 , 𝑘:	 − 2, 𝑘B	 − 𝑝B	 )b𝜇(𝒌	) − 𝜇(𝒑)c +

h(𝒌	)h(𝒑)(〈𝒌,𝒑〉(Q%

Th(𝒌)h(𝒑)
,𝑎c(𝒌)𝑎(𝒑)   

=𝑐8𝐸𝑥𝑡- ∫ 𝑑#B	
|P&|D^

𝒌	𝐸𝑥𝑡- ∫ 𝑑#B	
|P%|D^

𝒑𝑖b∑ (𝑘=	 − 𝑝=	)=fB
=f8 c𝑔Q(𝑘8	 − 𝑝8	 , 𝑘:	 − 2, 𝑘B	 − 𝑝B	 ) +

(P&	 (P%	 (P$	 )h(𝒑)((X&	 (X%	 (X$	 )h(𝒌	)
Th(𝒌)h(𝒑)

, 



 = 𝑃(8) �X∑ O#p
O#02

=fB
=f8 Z� 

By a similar calculation on 𝐷# × 𝐷# one obtains 

N𝑖𝑇I
(8)(𝑓), 𝑇I

(8)(𝑔)R + N𝑖𝑇I
(:)(𝑓), 𝑇I

(:)(𝑔)R = 𝑃(8) ?𝑓 �ÿ
𝑑#𝑔
𝑑#𝑥=

=fB

=f8
� − 𝑔 �ÿ

𝑑#𝑓
𝑑#𝑥=

=fB

=f8
�@. 

Theorem 11.28 As bilinear forms on 𝐷b𝐻I,^𝑁^c × 𝐷b𝐻I,^𝑁^c 
 [𝑖𝑇n(ℎ), 𝑇I(𝑓)] = −4𝜆𝐸𝑥𝑡- ∫ 𝑓(𝑥)	

ℝ	∗ :
#$ ℎ(𝑥): 𝜑^#B(𝑥)𝜋^#(𝑥): 𝑑#B𝑥, (150) 

 [𝑖𝑇n(ℎ), 𝑃(𝑓)] = −𝑇n X∑
O#(]�)
O#02

=fB
=f8 Z. (151) 

Proof. The operators 𝑇I, 𝑇n , 𝑃 are #-closable, defined on	𝐷b𝐻I,^𝑁^c, and are bounded as operators relative to 
b𝐻I,^𝑁^ + 𝐼c. Note that the right hand side of (150) is a bilinear form on 𝐷b𝐻I,^𝑁^c × 𝐷b𝐻I,^𝑁^c,	and that  
b𝐻I,^𝑁^ + 𝐼c

H8 d𝐸𝑥𝑡- ∫ 𝑓(𝑥)	
ℝ	∗ :
#$ ℎ(𝑥): 𝜑^#B(𝑥)𝜋^#(𝑥): 𝑑#B𝑥e b𝐻I,^𝑁^ + 𝐼c

H8
 is a bounded operator. Hence each term 

in (150)-(151) is a bilinear form on 𝐷b𝐻I,^𝑁^c × 𝐷b𝐻I,^𝑁^c. It suffices to establish equality on	𝐷# × 𝐷#, as in the 
proof of the Theorem 84, since 𝐷# is a #-core for	𝐻I,^𝑁^. Note that on the domain	𝐷# × 𝐷#, the equalities (150)-
(151) are seen to hold by direct computation in momentum space similarly to proof of the Theorem 11.27. 

Remark 11.9 We assume now the relations: 
 0 < 𝛼, 𝑥P𝑔=

(P)(𝑥8, 𝑥:, 𝑥B) = Nℎ=
(P)(𝑥8, 𝑥:, 𝑥B)R

:
, 𝑘 = 1,2,3; 𝑖 = 0,1; ℎ=

(P) ∈ 𝑆,-.# ( ℝ	∗ M
#B). (152) 

On a neighbourhood of a polyhedron	[𝑎, 𝑏]B ⊂ ℝ	∗ M
#, we assume for 𝑘 = 1,2,3  

 𝛼 + 𝑥P𝑔I
(P)(𝑥8, 𝑥:, 𝑥B) = 𝑥P = 𝑥P𝑔8	 (𝑥8, 𝑥:, 𝑥B). (153) 

For all	𝑥P ∈ ℝ	∗ M
#B, 𝑘 = 1,2,3, we assume 

 𝑥P𝑔8	 (𝑥8, 𝑥:, 𝑥B) = X𝛼 + 𝑥P𝑔I
(P)(𝑥8, 𝑥:, 𝑥B)Z 𝑔8	 (𝑥8, 𝑥:, 𝑥B). (154) 

The conditions (154) are satisfied if 𝛼 + 𝑥P𝑔I
(P)(𝑥8, 𝑥:, 𝑥B) = 𝑥P is valid on the support of 𝑔8	  for 𝑘 = 1,2,3. The 

condition (154) makes the required commutators densely defined operators, rather than bilinear forms. 
Definition 11.16 Let ℜ[�,�]

7 	be a set 
 ℜ[�,�]

7
	
= {(𝑥8, 𝑥:, 𝑥B, 𝑡) ∈ ℝ	∗ M

#7|𝑎 + |𝑡| < 𝑥P < 𝑏 − |𝑡|	for	all	𝑘 = 1,2,3}. (155) 
Remark 11.10 Note that the operators 𝑀IP , 𝑘 = 1,2,3 are formally a Lorentz generators for the space-time 

region ℜ[�,�]
7 , also note that (152) implies that interval 𝐼 = [𝑎, 𝑏] lies in the positive half line. Of course, we can also 

consider the operators 𝑀XIP = −𝛼𝐻I + 𝑇Ib𝑥P𝑔�I
(P)c + 𝑇nb𝑥P𝑔�8

(P)c with 𝑔�=
(P)(𝑥) = 𝑔=

(P)(−𝑥) and therefore the 
operators 𝑀XIP , 𝑘 = 1,2,3 are locally correct generators for ℜX [�,�]7

	
= ℜ[H�,H�]

7 . 
Definition 11.17  We also write ℜn

7 instead ℜ[�,�]
7

	
 for 𝐼 = [𝑎, 𝑏]	 and we write 𝐼	a

B for 𝐼B	 = [𝑎 − 𝑠, 𝑏 + 𝑠]B. The 

conditions (152)-(1544) are satisfied since we can choose 𝑔=
(P) so that for some 𝜀, 0	 < 	𝜀	 < 	𝑎/3, 

 supp𝑔8	 ⊂ 𝐼	:N
B ; supp𝑔I

(P) ⊂ 𝐼	BN
B ,  𝑘 = 1,2,3 (156) 

and	𝛼 + 𝑥P𝑔I
(P)(𝑥8, 𝑥:, 𝑥B) = 𝑥P ,	 𝑥P ∈ 𝐼	:N

B  . Hence the conditions (154) hold. We can also let𝑔8	 = 1, 𝑥P ∈ 𝐼	N
B; so the 

conditions (153) hold on 𝐼	N
B.  The Hamiltonian 

 𝐻 = 𝐻I^ + 𝑇n(𝑔8	 ) (157) 
 is correct in the region ℜn

7. We shall work as above with this particular choice of the Hamiltonian. 
Theorem 11.29 For the operators 𝑀IP in Theorem 11.25 and 𝐻 in (157) the following hold: 
(1) 𝐷((𝑀IP):) ⊂ 𝐷(𝐻	), 𝐷(𝐻:) ⊂ 𝐷(𝑀IP), 𝑘 = 1,2,3 
(2) 𝐷(𝑀IP) ⊂ 𝐷 X(𝐻 + 𝑏)

&
%Z , 𝐷(𝐻	) ⊂ 𝐷 X(𝑀IP + 𝑏)

&
%Z𝑘 = 1,2,3 

where 𝑏 is an constant sufficiently large so that the operators  𝐻 + 	𝑏 and 𝑀IP + 	𝑏 are positive. 
Theorem 11.30 Ander the conditions (152) and (154) the equalities (143)-(145) hold as bilinear forms on 

𝐷(𝐻:) × 𝐷(𝐻:) and on	𝐷((𝑀IP):) × 𝐷((𝑀IP):). 
Proof. As bilinear forms on 𝐷(𝐻:) × 𝐷(𝐻:) or 𝐷((𝑀IP):) × 𝐷((𝑀IP):)	for 𝑘 = 1,2,3 the following equalities 

hold [𝑖𝐻,𝑀IP] = N𝑖𝐻I, 𝑇Ib𝑥P𝑔I
(P)cR + ^[𝑖𝐻I, 𝑇n(𝑥P𝑔8	 )] + [𝑖𝑇n(𝑔8	 ), 𝛼𝐻I] + N𝑖𝑇n(𝑔8	 ),	 𝑇Ib𝑥P𝑔I

(P)cR_. In order to 
compute these commutators we apply Theorem 11.27 and Theorem 11.28.  



[𝑖𝐻,𝑀IP] = 𝑃 �
O#S0;p5

(;)U

O#0;
� + 4𝜆𝐸𝑥𝑡- ∫ ^𝑥P𝑔8	 (𝑥) − 𝛼𝑔8	 (𝑥) − 𝑥P𝑔8	 (𝑥)𝑔I

(P)(𝑥)_	
ℝ	∗ :
#$ : 𝜑^#B(𝑥)𝜋^#(𝑥): 𝑑#B𝑥 =

𝑃�
O#S0;p5

(;)U

O#0;
�,  

This equality holds by the conditions (154). Hence the equality (143) holds on 𝐷(𝐻:) × 𝐷(𝐻:) and on the 
domain 	𝐷((𝑀IP):) × 𝐷((𝑀IP):). 

Theorem 11.31 If n≥2, 𝐷(𝐻2)	is a #-core for 𝑀 and 𝐷((𝑀IP)2) is a #-core for 𝐻. 
Theorem 11.32 Let 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M

#B) and supp𝑓 ⊂ ℜ[�,�]
7

	
, then the operator 𝜑#(𝑓) is defined on	𝐷((𝑀IP):), 

𝜑#(𝑓): ((𝑀IP):) → 𝐷(𝑀IP), 𝑘 = 1,2,3 and, as the operator equalities on 𝐷(𝑀IP), 𝑘 = 1,2,3 
 [𝑖𝑀IP , 𝜑^#

	(𝑓)] = −𝜑^#
	 X𝑡 �#]

�#0;
+ 𝑥P

�#]
�#A
Z. (158) 

Remark 11.11 Note that for 𝑓 real, the operator 𝜑^#
	(𝑓) is essentially self #-adjoint on 𝐷(𝐻2) for any 𝑛 ≥ 1/2  

and 
 𝜑^#

	(𝑓): 𝐷((𝐻 + 𝑏)2) → 𝐷 X(𝐻 + 𝑏)2H
&
%Z. (159) 

Proof The terms in (158) are operators on 𝐷(𝐻B) since 𝜑^#
	(𝑓)𝐷(𝐻B) ⊂ 𝐷(𝐻:) ⊂ 𝐷(𝑀IP), 𝑘 = 1,2,3 and 

𝑀IP𝐷(𝐻B) ⊂ 𝐷(𝐻	) ⊂ 𝐷b𝜑^#
	(𝑓)c by (157) and Theorem 11.26. Note that by Theorem 11.40 (158) holds on the 

domain	𝐷(𝐻©). Assuming this, we now can to prove the theorem. Let 𝜓 ∈ 𝐷((𝑀IP):), 𝑘 = 1,2,3. By Theorem 
11.29, 𝐷((𝑀IP):) ⊂ 𝐷(𝐻	) and by (159) we get	𝜓 ∈ 𝐷b𝜑^#

	(𝑓)c. Let us prove now that 
 𝜑^#

	(𝑓)𝜓 ∈ 𝐷(𝑀IP), 𝑘 = 1,2,3. (160) 
Note that 𝑀IP𝜓 ∈ 𝐷(𝑀IP) ⊂ 𝐷 X(𝐻 + 𝑏)

&
%Z ⊂ 𝐷b𝜑^#

	(𝑓)c by Theorem 11.29 and (159), also for 𝑘 = 1,2,3 

𝜓 ∈ 𝐷 ?𝜑^#
	 �𝑡

𝜕#𝑓
𝜕#𝑥P

+ 𝑥P
𝜕#𝑓
𝜕#𝑡�@. 

Therefore by the assumption mentioned above that (158) holds on domain	𝐷(𝐻©), we get for all 𝑘 = 1,2,3  and 
for all 𝜒 ∈ 𝐷(𝐻©) that  
 〈𝑀IP𝜒, 𝜑^#

	(𝑓)𝑀IP𝜓〉 = 〈𝜒, 𝜑^#
	(𝑓)𝑀IP𝜓〉 + 𝑖 〈𝜒, 𝜑^#

	 X𝑡 �#]
�#0;

+ 𝑥P
�#]
�#A
Z𝜓〉. (161) 

So 𝜑^#
	(𝑓)𝜓 ∈ 𝐷bb𝑀IP ↾ 𝐷(𝐻©)c∗c for 𝑘 = 1,2,3. By Theorem 11.31, 𝐷(𝐻©) is a #-core for the 	𝑀IP , 𝑘 = 1,2,3 

and therefore we get inclusion (160). By using (160) we can rewrite (161) in the following equivalent form 
 〈𝜒, [𝑀IP , 𝜑^#

	(𝑓)]𝜓〉 = 〈𝜒, 𝑖𝜑^#
	 X𝑡 �#]

�#0;
+ 𝑥P

�#]
�#A
Z𝜓〉. (162) 

Since 𝐷(𝐻©) is #-dense, we get[𝑀IP , 𝜑^#
	(𝑓)]𝜓 = 𝑖𝜑^#

	 X𝑡 �#]
�#0;

+ 𝑥P
�#]
�#A
Z𝜓, proving (158) on the stated domain 

𝐷(𝑀IP), 𝑘 = 1,2,3. 
Remark 11.12 Let us consider the self #-adjoint operators 𝑀IP(𝑡) = 𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)𝑀IP𝐸𝑥𝑡-exp(𝑖𝑡𝐻), 𝑘 =

1,2,3. Since the operator 𝐸𝑥𝑡-exp(𝑖𝑡𝐻) leaves 𝐷(𝐻2) invariant, we have by Theorem 11.29 and Theorem 11.26 that 
𝐷(𝐻:) ⊂ 𝐷b𝑀IP(𝑡)c, 𝑘 = 1,2,3. And for 𝑙 = 2,3, 4 we have that  
 𝑀IP(𝑡): 𝐷(𝐻e) → 𝐷(𝐻eH:), 𝑘 = 1,2,3. (163) 

Let 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7) with supp𝑓 ⊂ ℜn

7
	 for 𝐼 = [𝑎, 𝑏]. By (159) and (160) we can to conclude that 𝜑#(𝑓)𝐷(𝐻B) ⊂

𝐷(𝐻:) ⊂ 𝐷b𝑀IP(𝑡)c, 𝑘 = 1,2,3 and  𝑀IP(𝑡)𝐷(𝐻B) ⊂ 𝐷(𝐻	) ⊂ 𝐷(𝜑^#(𝑓)	) or more generally, we can replace the 
operator 𝜑^#(𝑓) by 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#(𝑓)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻). Thus for 𝜓 ∈ 𝐷(𝐻B) and 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M

#7) with supp𝑓 ⊂
ℜ∆
7
	, we can to define the functions  

 𝐹P(𝑡) = 〈𝜓, [𝑖𝑀IP(𝑡), 𝜑^#(𝑓)]𝜓〉 = 〈𝜓(𝑡), [𝑖𝑀IP , 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#
	(𝑓)𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)]𝜓(𝑡)〉, (164) 

 𝜓(𝑡) = 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜓. (165) 
Let 𝐼 = [𝑎, 𝑏], 𝐼J = [𝑎 − 𝛿, 𝑏 + 𝛿]	 and let ℜ∆A be the causal shadow of	∆J= 𝐼J × 	𝐼J × 	𝐼J. Let ℜa

7
	 be a set  

 ℜa
7 = ℜ∆8|C| ∩ ^(𝑥, 𝑡)||𝑡| <

8
:
𝜀_ = ^(𝑥, 𝑡)||𝑡| < 8

:
𝜀, 𝑎 + |𝑠| + |𝑡| < 𝑏 − |𝑠| − |𝑡|_. (166) 

Note that the points of  ℜa
7 have small times, and ℜa

7 translated by times less than |𝑠| lies in ℜ∆
7. 

Theorem 11.33  Let 𝜓 ∈ 𝐷(𝐻©), then 𝐹P(𝑡), 𝑘 = 1,2,3 in (161) is twice #-continuously differentiable. If 
function 𝑓 has #-compact support in	ℜa, then for |𝑡| ≤ |𝑠|, O

#%«;(A)
O#A%

≡ 0. 



Proof First we prove the differentiability of	𝐹P(𝑡), 𝑘 = 1,2,3. Let ∆2 be the difference quotient for the 
𝑛-derivative of 𝐸𝑥𝑡-exp(𝑖𝑡𝐻) at	𝑡 = 0. For instance, ∆8(𝜀) = 𝜀H8(𝐸𝑥𝑡-exp(𝑖𝜀𝐻) − 𝐼	). Note that for a given vector 
	𝜓 ∈ 𝐷(𝐻2), and 𝑚+ 𝑗 ≤ 𝑛, as	𝜀 →# 0, we get	Í𝐻QH∆[(𝜀) − (𝑖𝐻)[S𝜓Í# = ÍH∆[(𝜀) − (𝑖𝐻)[S𝐻Q𝜓Í

#
→# 0. Hence, 

for	𝜓 ∈ 𝐷(𝐻2), the operator valued functions  𝑀IP(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	) is 𝑛 − 2 times #-differentiable, since for 𝑗 ≤
𝑛 − 2 we get Í𝑀IP(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)H∆[(𝜀) − (𝑖𝐻)[S𝜓Í# ≤ ÍH∆[(𝜀) − (𝑖𝐻)[S(𝐻 + 𝑏):𝜓Í# →# 0. All these 
functions 𝐹P(𝑡) has the following form 
𝐹P(𝑡) = 𝑖〈𝑀IP(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜓, 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#

	(𝑓)𝜓〉 − 𝑖〈𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#
	(𝑓)𝜓,𝑀IP(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜓〉. 

For a given vector 	𝜓 ∈ 𝐷(𝐻©), 𝜑^#
	(𝑓)𝜓 ∈ 𝐷(𝐻7) and 𝐹P(𝑡) is three times #-continuously #-differentiable. 

Note that 
 O#«;(A)

O#A 	
= 〈𝑀IP𝐻𝜓(𝑡), 𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#

	(𝑓)𝜓〉 − 〈𝑀IP𝜓(𝑡), 𝐻(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜓〉 − (167) 
〈𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#

	(𝑓)𝜓,𝐻𝑀IP𝜓(𝑡)〉 + 〈𝐸𝑥𝑡-exp(𝑖𝑡𝐻)𝜑^#
	(𝑓)𝜓,𝑀IP𝐻𝜓(𝑡)〉. 

By rearranging the terms in (167) and using the domain relations of Theorem 11.26.1) we obtain by (143) that 
 O#«;(A)

O#A 	
= 〈𝜓, [𝐻,𝑀IP(𝑡)]𝜑^#

	(𝑓)𝜓〉 − 〈𝜑^#
	(𝑓)𝜓, [𝐻,𝑀IP(𝑡)]𝜓〉 = (168) 

−𝑖 〈𝜓, (𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)	)𝑃?
𝑑#b𝑥P𝑔I

(P)c
𝑑#𝑥P

@ (𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#
	(𝑓)𝜓〉 + 

𝑖 〈𝜑^#
	(𝑓)𝜓, (𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)	)𝑃 ?

𝑑#b𝑥P𝑔I
(P)c

𝑑#𝑥P
@ (𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜓〉. 

By #-differentiating (168) and writing 𝑃P for the operator 𝑃 �
O#S0;p5

(;)U

O#0;
� we obtain 

 O#%«;(A)
O#A%

= −〈𝜓, (𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)	)[𝐻, 𝑃P](𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜓〉 + (169) 
〈𝜑^#

	(𝑓)𝜓, (𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)	)[𝐻, 𝑃P](𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜓〉 = 

𝑖 〈𝜓(𝑡), Ê𝑃% �
O#%S0;p5

(;)U

O#0;
%
	
� − 𝑇n X

O#(p&)
O#0;

Z , (𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#
	(𝑓)(𝐸𝑥𝑡-exp(−𝑖𝑡𝐻)	)𝜓Ë〉. 

Note that the all terms in (169) are well defined. For instance, 𝐻𝑃P(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#
	(𝑓)𝜓 is well defined 

since, for a given vector	𝜓 ∈ 𝐷(𝐻©), (𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#
	(𝑓)𝜓 ∈ 𝐷(𝐻7), and by Theorem 11.26 for all 𝑘 = 1,2,3 

we obtain 
𝑃P(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#

	(𝑓)𝜓 = [𝑖𝐻,𝑀IP](𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#
	(𝑓)𝜓.  

Note that 𝐻𝑀IPb𝐷(𝐻7)c ⊂ 𝐷(𝐻	) and	𝑀IP𝐻b𝐷(𝐻7)c ⊂ 𝐷(𝐻	), so 𝐻𝑃P(𝐸𝑥𝑡-exp(𝑖𝑡𝐻)	)𝜑^#
	(𝑓)𝜓 is well 

defined.         Now, assuming that supp𝑓 ⊂ ℜa
7, |𝑡| ≤ |𝑠| we can to show that O

#%«;(A)
O#A%

≡ 0, 𝑘 = 1,2,3, this proof is 
based on the locality of the operators 𝑆P , 𝑘 = 1,2,3 

 𝑆P = 𝑃%̂ �∑
O#%S0;p5

(;)U

O#02
%

=fB
=f8 � − 𝑇n X∑

O#p&	

O#02
=fB
=f8 Z. (170) 

The operators 𝑆P are symmetric on 𝐷(𝐻I𝑁) and by (153) for 𝑘 = 1,2,3 and 𝑖 = 1,2,3    
O#%S0;p5

(;)U

O#02
% = 0 = O#p&	

O#02
	in 

a neighbourhood of	∆= [𝑎, 𝑏]B. We prove that 𝑆P , 𝑘 = 1,2,3 commutes with the von Neumann algebra  𝑊(𝐼) =
H𝐸𝑥𝑡-expb𝑖𝜑^#

	(ℎ8) + 𝑖𝜋^#
	(ℎ:)c|ℎ= = ℎ�' ∈ 𝑆,-.# ( ℝ	∗ M

#B), suppℎ= ⊂ ℜnS
��

generated by the spectral projections of the 
time zero fields  𝐸𝑥𝑡- ∫ 𝜑^#(𝑥)

	
ℝ	∗ :
#$ ℎ8(𝑥)𝑑#B𝑥 and 𝐸𝑥𝑡- ∫ 𝜋^#(𝑥)

	
ℝ	∗ :
#$ ℎ:(𝑥)𝑑#B𝑥, ℎ= = ℎ�' ∈ 𝑆,-.# ( ℝ	∗ M

#B), suppℎ= ⊂ ℜn . 
Theorem 11.34 On the domain 𝐷(𝐻:) for 𝑘 = 1,2,3	the equalities hold 

 [𝑆P ,𝑊(𝐼)]𝐷(𝐻:) = 0. (171) 
Proof Let 𝐷# be the domain of well-behaved vectors. 

 𝐷# = H𝜓 ∈ ℱ#|𝜓(2) ∈ 𝑆,-.# ( ℝ	∗ M
#B2), 𝜓(Q) = 0	for	all	sufficiently	large	mS. (172) 

For 𝜒8, 𝜒: ∈ 𝐷#, direct momentum space computation gives for all 𝑛 ∈ ℕ	∗  
 〈𝑆P𝜒8, b𝜑^#

	(ℎ8) + 𝜋^#
	(ℎ:)c

2𝜒:〉 = 〈b𝜑^#
	(ℎ8) + 𝜋^#

	(ℎ:)c
2𝜒8, 𝑆P𝜒:〉 (173) 

By easy computation we get the inequality Íb𝜑^#
	(ℎ8) + 𝜋^#

	(ℎ:)c
2𝜒	Í ≤ 𝑐8𝑐:2(𝑛!)

&
%	for constants 𝑐8 and 𝑐: 

depending on vector 𝜒 ∈ 𝐷#. Therefore 𝜒 ∈ 𝐷# are entire vectors for the operator b𝜑^#
	(ℎ8) + 𝜋^#

	(ℎ:)c,  and the 
sum 



 𝑈𝜒 = 𝐸𝑥𝑡- ∑
S=�D#

	(�&)(=;D#
	(�%)U

𝒏

2!
/	∗
2fI 𝜒 = 𝐸𝑥𝑡-expN𝑖b𝜑^#

	(ℎ8) + 𝜋^#
	(ℎ:)cR𝜒 (174) 

#-converges strongly. Now, we multiply (173) by 𝑖	2(𝑛!)H8	and by summation over 𝑛 using the #-convergence of 
the hyper infinite series (174) we get for all 𝑘 = 1,2,3 that 〈𝑆P𝜒8, 𝑈𝜒:〉 = 〈𝑈∗𝜒8, 𝑆P𝜒:〉 = 〈𝜒8, 𝑈𝑆P𝜒:〉 for	𝜒= ∈ 𝐷#, 
𝑖 = 1,2. Note that this equality extends to 𝜒= ∈ 𝐷(𝐻I^𝑁), 𝑖 = 1,2 since 𝐷# is a core for operators 𝐻I^𝑁 and 𝑆P and 
‖𝑆P𝜒‖# ≤ 𝜇‖(𝐻I^𝑁 + 𝐼)𝜒‖# where 𝜇 is finite constant. Therefore for 𝜒 ∈ 𝐷(𝐻I^𝑁), we have proved that 𝑈𝜒 ∈
𝐷(𝑆P∗) and 𝑆P∗𝑈𝜒 = 𝑈𝑆P	 𝜒, 𝑘 = 1,2,3. For the next step we now prove that 𝜒 ∈ 𝐷(𝐻I^𝑁) ⇒ 𝑈𝜒 ∈ 𝐷(𝐻I^𝑁), so that 
𝑆P	 𝑈𝜒 = 𝑈𝑆P𝜒, 𝑘 = 1,2,3, since the operators 𝑆P	  are symmetric on 𝐷(𝐻I^𝑁). We define on 𝐷(𝐻I^𝑁) a #-norm by 
‖𝜒‖# = ‖(𝐻I^𝑁 + 𝐼)𝜒‖#; Note that the corresponding scalar product makes 𝐷(𝐻I^𝑁) a non-Archimedean Hubert 
space, say 𝐻#8	 . For the next step we now prove that the operator ℬ = 𝜑^#

	(ℎ8) + 𝜋^#
	(ℎ:) generates a one parameter 

group  𝑈(𝛼) = 𝐸𝑥𝑡-exp(𝑖𝛼ℬ) = 𝐸𝑥𝑡-expN𝑖𝛼bℬ = 𝜑^#
	(ℎ8) + 𝜋^#

	(ℎ:)cR on 𝐻#8	  and therefore we need to prove that 
the operator 
 ℬZ = (𝐻I^𝑁 + 𝐼)ℬ(𝐻I^𝑁 + 𝐼)H8 (175) 

is a generator to one parameter group on a corresponding Fock space.  Since ℬZ is essentially self #-adjoint on	𝐷#, 
and on this domain we have that 

ℬZ = ℬ + [𝐻I^𝑁,ℬ](𝐻I^𝑁 + 𝐼)H8 = ℬ + [𝑁,ℬ]𝐻I^(𝐻I^𝑁 + 𝐼)H8 +𝑁[𝐻I^,ℬ](𝐻I^𝑁 + 𝐼)H8 = ℬ + 𝐴. 
Hear 𝐴 is bounded operator. Note that  ℬZ ↾ 𝐷# is a bounded perturbation of an essentially self #-adjoint operator. 

Hence it #- closure #- bℬZ ↾ 𝐷#c������������ generates a one parameter group on Fock space ℱ#, and operator ℬ ↾ (𝐻I^𝑁 +
𝐼)𝐷# has a #- closure in 𝐻#8	  that generates a one parameter group on 𝐻#8	 . Since the topology of 𝐻#8	  is stronger than 
that of ℱ#,  the #-closure of ℬ ↾ (𝐻I^𝑁 + 𝐼)𝐷# in 𝐻#8	  is a restriction of #- ℬ' in ℱ# and the one parameter group in 
𝐻#8	  is a restriction of the one parameter group generated by #- ℬ' in ℱ#. This proves that  

𝑈:𝐷(𝐻I^𝑁) → 𝐷(𝐻I^𝑁) 
Therefore we have proved that  𝑆P	 𝑈𝜒 = 𝑈𝑆P𝜒, 𝑘 = 1,2,3. Now by passing to strong limits of linear combinations 

of such operators 𝑈 we obtain (165) on restricting to the domain 𝐷(𝐻:) ⊂ 𝐷(𝐻I^𝑁). This makes precise the 
statement that operators 𝑆P	 , 𝑘 = 1,2,3 are localized outside ∆= [𝑎, 𝑏]B. 

Remark 11.13 Note that for each 𝑡8, |𝑡8| ≤ |𝑠8|, the spectral projections of  𝐸𝑥𝑡- ∫ 𝜑^#(𝑥)𝑓(𝑥, 𝑡8)𝑑#B𝑥
	
ℝ	∗ :
#$  

belong to 𝑊X#-intb∆H|a|cZ, where #-intb∆H|a|c is the #-interior of 	∆H|a|= {𝑥|(𝑥, 𝑡8) ∈ ℜa
7} = {(𝑥8, 𝑥:, 𝑥B)|𝑎 +

|𝑠| < 𝑥P < 𝑏 − |𝑠|}. Note that supp𝑓 ⊂ ℜa
7, hence the spectral projections of 

 𝐸𝑥𝑡-exp[𝑖𝐻(𝑡 + 𝑡8)] X𝐸𝑥𝑡- ∫ 𝜑^#(𝑥)𝑓(𝑥, 𝑡8)𝑑#B𝑥
	
ℝ	∗ :
#$ Z 𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡 + 𝑡8)] (176) 

belong to 𝑊X#-intb∆|A|H|a|cZ. For	|𝑡| ≤ |𝑠|, #-𝑖𝑛𝑡b∆|A|H|a|c ⊂ ∆; so the spectral projections of  (170) belong to 
𝑊(∆). Now we use the locality property of the operators 𝑆P	 , 𝑘 = 1,2,3. Note that for vector	𝜒 ∈ 𝐷(𝐻:),𝜓 ∈ 𝐷(𝐻B) 
we have that	𝜓 ∈ 𝐷 X𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 0)𝑓(𝑥, 𝑡8)𝑑#B𝑥

	
ℝ	∗ :
#$ Z, and for 𝜑^#(𝑓) = 𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 𝑡)𝑓(𝑥, 𝑡	)𝑑#B𝑥

	
ℝ	∗ :
#$ 𝑑#𝑡,	by 

(159) it follows 
 𝐸𝑥𝑡-exp[𝑖𝑡𝐻]𝜑^#(𝑓)𝐸𝑥𝑡-exp[𝑖𝑡𝐻]𝜓 ∈ 𝐷(𝐻:). (177) 

Therefore by (171) and the localization of (176) for all 𝑘 = 1,2,3 we get 
 〈𝑆P	 𝜒, 𝐸𝑥𝑡-exp[𝑖𝐻(𝑡 + 𝑡8)] X𝐸𝑥𝑡- ∫ 𝜑^#(𝑥)𝑓(𝑥, 𝑡8)𝑑#B𝑥

	
ℝ	∗ :
#$ Z 𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡 + 𝑡8)]𝜓〉 = (178) 

〈𝐸𝑥𝑡-exp[𝑖𝐻(𝑡 + 𝑡8)] X𝐸𝑥𝑡- ∫ 𝜑^#(𝑥)𝑓(𝑥, 𝑡8)𝑑#B𝑥
	
ℝ	∗ :
#$ Z𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡 + 𝑡8)]𝜒, 𝑆P	 𝜓〉.  

Note that for |𝑡| ≤ |𝑠| and 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7) with supp𝑓 ⊂ ℜa

7
	 we can integrate the equality (178) over 𝑡8 to 

obtain 
 〈𝑆P	 𝜒, 𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]𝜓〉 = 〈𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]𝜒, 𝑆P	 𝜓〉 = (179) 

〈𝜒, 𝑆P	 𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]𝜓〉.    
Here the last equality in (179) follows by (177) and the fact that 𝑆P	  is a symmetric operator on	𝐷(𝐻I^𝑁) ⊃

𝐷(𝐻:). From (179) we obtain that 𝑆P	 𝜓 ∈ 𝐷bb(𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]) ↾ 𝐷(𝐻:)c∗c and therefore 
that 𝑆P	 𝜓 ∈ 𝐷(𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]), since 𝐷(𝐻:) is a #-core for	𝜑^#(𝑓). Finally from (179) we 
get for |𝑡| ≤ |𝑠| and 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M

#7) with supp𝑓 ⊂ ℜa
7
	 for all 𝑘 = 1,2,3 that 

 𝑆P	 𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]𝜓 = 𝐸𝑥𝑡-exp[𝑖𝐻(𝑡)]𝜑^#(𝑓)𝐸𝑥𝑡-exp[−𝑖𝐻(𝑡)]𝑆P	 𝜓. (180) 
We apply the relation (180) to (169). In that case 𝜓(𝑡) ∈ 𝐷(𝐻©) ⊂ 𝐷(𝐻B), so  O

#%«;(A)
O#A%

≡ 0, for |𝑡| ≤ |𝑠|. 



Theorem 11.35 [15] Let	𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7) and supp𝑓 ⊂ ℜa

7
	, then on domain 𝐷(𝐻©) the operator equalities hold 

for all 𝑘 = 1,2,3 

 [𝑖𝑀IP(𝑠), 𝜑^#(𝑓)	] = [𝑖𝑀IP , 𝜑^#(𝑓)	] − 𝑠 Ê𝑃 �
O#S0;p5

(;)U

O#0;
� , 𝜑^#(𝑓)Ë. (181) 

The next step in the proof of Theorem 11.32 is to pass to the sharp time #-limit of Theorem 11.35, thus we need 
to choose a hyper infinite sequence of functions 𝑓2 ∈ 𝑆,-.# ( ℝ	∗ M

#7), 𝑛 ∈ ℕ	∗  which pick out a time zero contribution in 
the #-limit. Let us define now 
 𝐴^(𝑓, 𝑡) = 𝐸𝑥𝑡- ∫ 𝜑^#(𝑥)𝑓(𝑥, 𝑡)𝑑#B𝑥

	
ℝ	∗ :
#$ , (182) 

 𝐵^(𝑓, 𝑡) = 𝐸𝑥𝑡- ∫ 𝜋^#(𝑥)𝑓(𝑥, 𝑡)𝑑#B𝑥
	
ℝ	∗ :
#$ . (183) 

Where	𝜑^#(𝑥) and 𝜋^#(𝑥) the canonical time-zero fields. For real 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7), with #-compact support, 𝐴^(𝑓, 𝑡) 

and 𝐵^(𝑓, 𝑡) are essentially self-#-adjoint on	𝐷 X(𝐻 + 𝑏)
&
%Z. Let 𝑓 ∈ 𝐶 	I

/	∗ (	ℜn
7) and let 𝑓2(𝑥, 𝑡) ∈ 𝑆,-.# ( ℝ	∗ M

#7), 𝑛 ∈ ℕ	∗  
be a hyper infinite sequence of functions of the following form 𝑓2(𝑥, 𝑡) = 𝑓2(𝑥, 𝑠)𝛿2(𝑡) with support in ℜa

7 and 
#-converging in the weak sense to 𝑓2(𝑥, 𝑠)𝛿	(𝑡) as 𝑛 → ∞.	

∗  For the vector  𝜓 ∈ 𝐷(𝐻©), the vectors 𝑀IP(𝑠)𝜓, 𝑘 =

1,2,3, and the vectors 𝑀IP𝜓, 𝑃 �
O#S0;p5

(;)U

O#0;
�𝜓 the same as in the proof of Theorem 11.35. Note that the bilinear form 

	𝜑^#(𝑥, 𝑡) for (𝑥, 𝑡) ∈ ℜn
7 determines a bounded operator 

 𝐺(𝑥, 𝑡) = (𝐻 + 𝑏)
&
%	𝜑^#(𝑥, 𝑡)(𝐻 + 𝑏)

H&%. (184) 
Note that the operator valued function 𝐺(𝑥, 𝑡)  is #-continuous in variable (𝑥, 𝑡). 
Theorem 11.36 Let 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M

#7) and supp𝑓 ⊂ ℜ∆
7.	Then, in the sense of bilinear forms on 𝐷(𝐻©), for all 𝑘 =

1,2,3 
 [𝑖𝑀IP(𝑠), 𝐴^(𝑓, 𝑠)] = [𝑖𝑀IP , 𝐴^(𝑓, 𝑠)] − 𝑠[𝑖𝑃P , 𝐴^(𝑓, 𝑠)] (185) 

Here	𝑃P = 𝑃�
O#S0;p5

(;)U

O#0;
�. 

Theorem 11.37 [15] Let 𝑓 ∈ 𝐶 	I
/	∗ (	ℜ∆

7). As an equality of bilinear forms on 𝐷(𝐻	) × 𝐷(𝐻	) 
 [𝑖	𝑃P , 𝐴^(𝑓, 𝑠)] = 𝐴 X O

#]
O#0;

, 𝑠Z. (186) 
And where 	𝑃P is defined in Theorem 11.36. 
Theorem 11.38 As the equalities of bilinear forms on 𝐷(𝐻:) × 𝐷(𝐻:) for all 𝑘 = 1,2,3 

 [𝑖𝑀IP , 𝐴^(𝑓, 𝑠)] = [𝑖𝐻, 𝐴^(𝑥P𝑓, 𝑠)] = 𝐵^(𝑥P𝑓, 𝑠). (187) 
Theorem 11.39 [15] Let	|𝑓|#8 be the #-norm	|𝑓|#8 = 𝑐 X𝐸𝑥𝑡- ∫ ^‖𝑓(∙, 𝑡)‖#: +∑ Í𝜕02

# 𝑓(∙, 𝑡)Í
#:

B
=f8 _ 𝑑#𝑡	

ℝ	∗ 𝒄
#𝟑 Z. 

Let 	|𝑓|#8 is finite. Then on the domain  𝐷 X(𝐻 + 𝑏)
$
%Z, ), the field 𝜑^#(𝑓) satisfies the following equation 

 (𝜕A#𝜑^#)(𝑓) = −𝜑^#(𝜕A#𝑓) = 𝜋^#(𝑓) = [𝑖𝐻, 𝜑^#(𝑓)]. (188) 
Proof Note that the first equality in (188) is the definition of a distribution #-derivative. The out the difference 

quotient ∆N𝑓(𝑥, 𝑡) to #-derivative  𝜕A#𝑓 reads ∆N𝑓(𝑥, 𝑡) =
[](0(N,A)H](0,A)]

N
,  note that #-lim

N→#I
∆N𝑓(𝑥, 𝑡) = 𝜕A#𝑓(𝑥, 𝑡). 

Note that for any vector 𝜓 such that 𝜓 ∈ 𝐷 X(𝐻 + 𝑏)
&
%Z by canonical consideration we get  

#-lim
N→#I

Í𝜑^#(𝜕A#𝑓)𝜓 − 𝜑^#b∆N𝑓(𝑥, 𝑡)c𝜓Í# = 0. 

We have for 𝜓 ∈ 𝐷 X(𝐻 + 𝑏)
$
%Z that   

𝜑^#b∆N𝑓(𝑥, 𝑡)c𝜓 = 𝜀H8(𝐼 − 𝐸𝑥𝑡-exp[𝑖𝜀𝐻]) ^𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 𝑡 − 𝜀)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓𝑑#𝑡
	
ℝ	∗ 𝒄
#𝟑 _+ 

𝜀H8 \𝐸𝑥𝑡-\ 𝐴^(𝑓, 𝑡)(𝐸𝑥𝑡-exp[𝑖𝜀𝐻] − 𝐼)𝜓𝑑#𝑡
	

ℝ	∗ 𝒄
#𝟑

]. 

Here the last term #-converges as 𝜀 →# 0 and it #-limit is: 𝑖 X𝐸𝑥𝑡- ∫ 𝐴^(𝑓, 𝑡)𝐻𝜓𝑑#𝑡
	
ℝ	∗ 𝒄
#𝟑 Z.	Since	𝜑^#b∆N𝑓(𝑥, 𝑡)c𝜓  

#-converges as	𝜀 →# 0, the remaining term in expression for	𝜑^#b∆N𝑓(𝑥, 𝑡)c𝜓  #-converges also to a #-limit	𝜓8. For 
𝜒 ∈ 𝐷(𝐻) we obtain that 

〈𝜒, 𝜓8〉 = #-lim
N→#I

〈𝜒, 𝜀H8(𝐼 − 𝐸𝑥𝑡-exp[𝑖𝜀𝐻]) ^𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 𝑡 − 𝜀)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓𝑑#𝑡
	
ℝ	∗ 𝒄
#𝟑 _〉 = 〈𝑖𝐻𝜒, 𝜑^#(𝑓)𝜓〉. 



Since	𝐻 = 𝐻∗, it follows that 𝜑^#(𝑓)𝜓 ∈ 𝐷(𝐻) and 𝜓8 = 𝑖𝐻𝜑^#(𝑓)𝜓 and therefore: −𝜑^#(𝜕A#𝑓)𝜓 =
[𝑖𝐻, 𝜑^#(𝑓)]𝜓. From the above equation we obtain 

〈𝜓, 𝜑^#(𝜕A#𝑓)𝜓〉 = 𝐸𝑥𝑡-\ 〈𝐻𝜓(𝑡), 𝐸𝑥𝑡-\ 𝜑^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓(𝑡)	
	

ℝ	∗ 𝒄
#𝟑

〉
	

ℝ	∗ 𝒄
#

𝑑#𝑡 − 

𝐸𝑥𝑡-\ 〈𝐸𝑥𝑡-\ 𝜑^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓(𝑡),	𝐻𝜓(𝑡)
	

ℝ	∗ 𝒄
#𝟑

〉
	

ℝ	∗ 𝒄
#

𝑑#𝑡. 

Here	𝜓(𝑡) = 𝐸𝑥𝑡-exp[𝑖𝑡𝐻]𝜓. Note that	𝜓(𝑡) ∈ 𝐷(𝐻I^) ∩ 𝐷b𝐻n,^c, and Í𝐻n,^b𝜓(𝑡) − 𝜓(𝑠)cÍ# ≤ 𝑎Í(𝐻 +
𝑏)b𝜓(𝑡) − 𝜓(𝑠)cÍ

#
→# 0, as |𝑡 − 𝑠| →# 0. Therefore we may substitute 𝐻I^ +𝐻n,^ for 𝐻 and consider each term 

separately. Note that the operators 𝐻n,^ and 𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥 	
	
ℝ	∗ 𝒄
#𝟑  commute and therefore 𝐻n,^ contribute 

zero to equality above. The following identity by canonical computation holds for any  𝜓 ∈ 𝐷(𝐻I^), in particular for 
𝜓(𝑡) = 𝐸𝑥𝑡-exp[𝑖𝑡𝐻]𝜓 ∈ 𝐷(𝐻I^) 

〈𝐻I^𝜓, 𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓		
ℝ	∗ 𝒄
#𝟑 〉 − 〈𝐸𝑥𝑡- ∫ 𝜑^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓		

ℝ	∗ 𝒄
#𝟑 , 𝐻I^𝜓〉 =  

〈𝜓,−𝑖𝐸𝑥𝑡-\ 𝜋^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓	
	

ℝ	∗ 𝒄
#𝟑

〉. 

Therefore finally we get 
𝑖〈𝜓, 𝜑^#(𝜕A#𝑓)𝜓〉 = 𝐸𝑥𝑡- ∫ 〈𝜓(𝑡), −𝑖𝐸𝑥𝑡- ∫ 𝜋^#(𝑥, 0)𝑓(𝑥, 𝑡)𝑑#B𝑥𝜓		

ℝ	∗ 𝒄
#𝟑 〉	

ℝ	∗ 𝒄
# 𝑑#𝑡 = 〈𝜓,−𝑖𝜋^#(𝑓)𝜓〉. 

This equality finalized the proof. 
Theorem 11.40 As the operator equalities on 𝐷(𝐻©) for all 𝑘 = 1,2,3 

 [𝑖𝑀IP , 𝜑^#
	(𝑓)] = −𝜑^#

	 X𝑡 �#]
�#0;

+ 𝑥P
�#]
�#A
Z. (189) 

Proof We first prove (189) as equalities of bilinear forms on 𝐷(𝐻©) × 𝐷(𝐻©).	Let 𝜓 is a near standard vector 
and	𝜓 ∈ 𝐷(𝐻©). By Theorems 11.37-11.39, for all 𝑘 = 1,2,3 we get   

〈𝜓, 𝑖𝑀IP(𝑠), 𝐴^(𝑓, 𝑠)𝜓〉 = 〈𝜓, 𝐵^(𝑥P𝑓, 𝑠)𝜓, 〉 − 〈𝜓, 𝐴 �
𝑑#𝑓
𝑑#𝑥P

, 𝑠�𝜓〉. 

Substituting 𝐸𝑥𝑡-exp(𝑖𝐻𝑠) for	𝜓, we obtain that 
 〈𝜓, [𝑖𝑀IP , 𝐸𝑥𝑡-exp(𝑖𝐻𝑠)𝐴^(𝑓, 𝑠)𝐸𝑥𝑡-exp(−𝑖𝐻𝑠)]𝜓〉 = (190) 

〈𝜓, 𝐸𝑥𝑡-exp(𝑖𝐻𝑠) \𝐵^(𝑥P𝑓, 𝑠) − 𝐴�𝑠
𝑑#𝑓
𝑑#𝑥P

, 𝑠�]𝐸𝑥𝑡-exp(−𝑖𝐻𝑠)𝜓〉. 

From (188) we get   
 𝐸𝑥𝑡- ∫ 𝐸𝑥𝑡-exp(𝑖𝐻𝑡)	

ℝ	∗ 𝒄
#𝟒 𝜋^#(𝑥)𝐸𝑥𝑡-exp(𝑖𝐻𝑡)𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡 = −𝜑^# X

�	#]
�	#A
Z. (191) 

Using (191) we integrate (190) over s to obtain for all 𝑘 = 1,2,3  the equalities of bilinear forms 
 〈𝜓, 𝑖𝑀IP , 𝜑^#

	(𝑓)𝜓〉 = − 〈𝜓, 𝜑^#
	 X𝑡 �#]

�#0;
+ 𝑥P

�#]
�#A
Z𝜓〉. (192) 

Since 𝑀IP𝜑^#
	(𝑓), 𝜑^#

	(𝑓)𝑀IP , and 𝜑^#
	 X𝑡 �#]

�#0;
+ 𝑥P

�#]
�#A
Z are operators on 𝐷(𝐻©) for all 𝑘 = 1,2,3, the operator 

equalities (189) follows by polarization and the #-density of  𝐷(𝐻©). This final remark completes the proof of the 
theorem and hence it completes the proof of Theorem 11.32. 

Theorem 11.41 [15] Let	ℜ ⊂ ℝ	∗ M,,-.
#7  be an bounded region in ℝ	∗ M,,-.

#7   and let 𝐹P(𝛽, 𝑥, 𝑡), 𝑘 = 1,2,3 be a functions 

such that 𝐹P(𝛽, 𝑥, 𝑡), 𝛽 ∈ ℝ	∗ M,,-.
#  and �

#«;(4,0,A)
�#4

 are #-	continuous in (𝛽, 𝑥, 𝑡), where the partial #-derivative exists for 

each point (𝑥, 𝑡) ∈ ℝ	∗ M,,-.
#7 . Assume that for all 𝑓(𝑥, 𝑡) ∈ 𝐶 	I,,-.

/	∗ (	ℜ) the following equalities hold for all 𝑘 = 1,2,3, 

 𝐸𝑥𝑡- ∫ �#«;(4,0,A)
�#4

𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡	
ℝ	∗ 𝒄
#𝟑 = −𝐸𝑥𝑡- ∫ 𝐹P(𝛽, 𝑥, 𝑡) d𝑥P

�#]
�#A

+ 𝑡 �#]
�#0;

e 𝑑#B𝑥𝑑#𝑡	
ℝ	∗ :
#$ . (193) 

Then for all (𝛽, 𝑥, 𝑡) such that Λ¤4(𝑥, 𝑡) ∈ ℜ for 0	 ≤ 	𝛾 ≤ 	1, 𝑘 = 1,2,3 
 𝐹P(𝛽, 𝑥, 𝑡) = 𝐹P X0,𝛬¤4(𝑥, 𝑡)Z + 𝛿(𝛽, 𝑥, 𝑡) = (194) 

𝐹P(0, 𝑥P cosh𝛽 + 𝑡 sinh𝛽, 𝑥P sinh𝛽 + 𝑡 cosh𝛽) + 𝛿(𝛽, 𝑥, 𝑡). 
Here 𝛿(𝛽, 𝑥, 𝑡) is a nonzero function such that 𝛿(𝛽, 𝑥, 𝑡) ≠ 0 and 𝛿(𝛽, 𝑥, 𝑡) is #-	differentiable with zero partial 

#-derivatives 𝛿4#�(𝛽, 𝑥, 𝑡) ≡ 0, 𝛿0;
#6(𝛽, 𝑥, 𝑡) ≡ 0, 𝛿A#

6(𝛽, 𝑥, 𝑡) ≡ 0. 



Proof Obviously (194) is a solution to the equations (193). Thus we need prove uniqueness (194) for a given 
function 𝛿(𝛽, 𝑥, 𝑡) and for all	𝑘 = 1,2,3 and it is sufficient to prove uniqueness for the case 𝐹P(0, 𝑥, 𝑡) = 𝛿(0, 𝑥, 𝑡). 
Let 𝐴P be the operator	𝐴P = 𝑥P

�#

�#A
+ 𝑡 �#

�#0;
. Note that by (177), provided supp𝑓 X𝛬¤46(𝑥, 𝑡)Z ⊂ ℜ we get   

 �#

�#46
X𝐸𝑥𝑡- ∫ 𝐹P(𝛽�, 𝑥, 𝑡)𝑓 X𝛬¤46(𝑥, 𝑡)Z 𝑑#B𝑥𝑑#𝑡

	
ℝ	∗ :
#$ Z = (195) 

𝐸𝑥𝑡-\ \
𝜕#𝐹P(𝛽�, 𝑥, 𝑡)

𝜕#𝛽� 𝑓 X𝛬¤46(𝑥, 𝑡)Z + 𝐹P(𝛽�, 𝑥, 𝑡)𝐴P𝑓 X𝛬¤46(𝑥, 𝑡)Z]𝑑#B𝑥𝑑#𝑡
	

ℝ	∗ :
#$

= 0. 

Let  ℜ6 = ⋂ 𝛬¤4		
I	D	¤D	8 ℜ and	𝑓(𝑥, 𝑡) ∈ 𝐶 	I,,-.

/	∗ b	ℜ6c, then (195) holds for all 𝛽� such that 0 ≤ 𝛽� ≤ 𝛽. Note that 
for all functions 𝑓(𝑥, 𝑡) ∈ 𝐶 	I,,-.

/	∗ (	ℜ) the following equalities (196) hold for all	𝑘 = 1,2,3, 
 𝐸𝑥𝑡- ∫ 𝐹P(𝛽, 𝑥, 𝑡)𝑓 X𝛬¤46(𝑥, 𝑡)Z 𝑑#B𝑥𝑑#𝑡

	
ℝ	∗ :
#$ = 0.	 (196) 

Thus, in the sense of distributions we obtain that 
 𝐹P(𝛽, 𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ ℜ6 . (197) 

Since 𝐹P(𝛽, 𝑥, 𝑡) is #-continuous, (197) holds in usual sense everywhere in	ℜ̂. This establishes required 
uniqueness, and completes the proof of the theorem. 

Definition 11.18 (1) Let (𝐻#, ‖∙‖#) be a linear normed space over field	 ℂ	∗ 𝒄
#. An element 𝑥 ∈ 𝐻# is called finite 

or norm finite if ‖𝑥‖# ∈ ℝ	∗ M,,-.
#  and we let Fin(𝐻#) denote the set of the all finite elements of 𝐻#; the element 𝑥 ∈

𝐻# is called infinitesimal if ‖𝑥‖# ≈ 0 and we write 𝑥 ≈ 𝑦 for ‖𝑥 − 𝑦‖# ≈ 0. (2)Let (𝐻#, 〈∙,∙〉#) be a non-
Archimedean Hilbert space over field	 ℂ	∗ 𝒄

# endowed with a canonical  #-norm ‖𝑥‖# = |〈𝑥, 𝑥〉#, then we apply the 
same definition as in (1). 

Definition 11.19 Let 𝐴 be a linear operator 𝐴:𝐻# → 𝐻# with domain 𝐷(𝐴). Let 𝐷,-.(𝐴) ⊂ 𝐷(𝐴) be a subdomain 
such that for all  𝜓 ∈ 𝐷(𝐴): 𝜓 ∈ 𝐷,-.(𝐴)⟺ ‖𝑥‖# ∈ ℝ	∗ M,,-.

#  and let 𝐷,-.# (𝐴) be a subdomain 𝐷,-.# (𝐴) ⊂ 𝐷,-.(𝐴) such 
that for all  𝜓 ∈ 𝐷,-.(𝐴): 𝜓 ∈ 𝐷,-.# (𝐴)⟺ ‖𝐴𝑥‖# ∈ ℝ	∗ M,,-.

# . 
Definition 11.20 Let 𝑞(∙,∙) be a bilinear form with domain 𝐷(𝑞) × 𝐷(𝑞) on 𝐻# such that 𝐷(𝑞) × 𝐷(𝑞) ⊊

𝐻# ×𝐻# and 𝐷(𝑞) × 𝐷(𝑞) → ℂ	∗ M
#. Let 𝐷,-.(𝑞) × 𝐷,-.(𝑞) ⊂ 𝐷(𝑞) × 𝐷(𝑞) be a subdomain such that for 

all	{𝜓8, 𝜓:} ∈ 𝐷,-.(𝑞) × 𝐷,-.(𝑞)⟺ |〈𝜓8, 𝜓:〉#| ∈ ℝ	∗ M,,-.
# . Let 𝐷,-.# (𝑞) × 𝐷,-.# (𝑞) ⊂ 𝐷,-.(𝑞) × 𝐷,-.(𝑞) be a 

subdomain such that for all	{𝜓8, 𝜓:} ∈ 𝐷,-.(𝑞) × 𝐷,-.(𝑞): {𝜓8, 𝜓:} ∈ 𝐷,-.# (𝑞) × 𝐷,-.# (𝑞)⟺ 𝑞(𝜓8, 𝜓:) ∈ ℂ	∗ M,,-.
# . 

Theorem 11.42 [15] Assume that the operators 𝑀IP = 𝑀^
IP = 𝑀I,^

IP
	 +𝑀n,^

IP
	
, 𝑘 = 1,2,3  satisfy conditions (152)-

(154) and where the operators 𝑀I,^
IP   are defined by (125). We set now 𝛿(𝛽, 𝑥, 𝑡) ≈ 0. 

(1) If 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7), supp𝑓 ⊂ #-int(	ℜ∆

7),∆= [𝑎, 𝑏]B		and	supp𝑓¬(4) ⊆ #-int(	ℜ∆
7) = ℘­

7 , then for all 𝑘 =
1,2,3 on domains 𝐷,-.((𝑀IP):) 

 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑓)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽) ≈ 𝜑^#b𝑓¬(4)c. (198) 
Here the ≈ -	equalities (198) hold as ≈ -equalites for self #-adjoint operators. 
(2) If (𝑥, 𝑡) ∈ ℜ∆

7 and	Λ4(𝑥, 𝑡) ∈ ℜ∆
7, then for all 𝑘 = 1,2,3 

 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽) ≈ 𝜑^# X	Λ4(𝑥, 𝑡)Z (199) 
Here the ≈ -	equalities (199) hold in the sense of ℝ	∗ M,,-.

# - valued bilinear forms on domains 𝐷,-.# (𝑀IP) ×
𝐷,-.# (𝑀IP) and on domains 𝐷,-.# (𝑀IP) × 𝐷,-.# (𝑀IP). 

Remark 11.15 Note that (1) for real-valued 𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7) is a self-#-adjoint operator	𝜑^#(𝑓), essentially 

self	-#-adjoint operator on a variety of appropriate domains. It is for this self #-adjoint operator that (198) is valid; 
(2) on the subdomains 𝐷,-.# ((𝑀IP):)  ≈ -equalites (198) entail for all 𝑘 = 1,2,3 the equalities  

stb𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)c = st Ä𝜑^# X	Λ4(𝑥, 𝑡)ZÆ ;  

(3) on the subdomains 𝐷,-.# ((𝑀IP):) the ≈ -equalites (198) entail for all 𝑘 = 1,2,3 the equalities  
stb𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑓)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)c = st X𝜑^#b𝑓¬(4)cZ. 

Proof Let 𝜓 ∈ 𝐷(𝑀IP) and let 𝐹P(𝛽, 𝑥, 𝑡) be the function is defined by  
 𝐹P(𝛽, 𝑥, 𝑡) = 〈𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓, 𝜑^#(𝑥, 𝑡)(𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓)〉. (200) 

For all (𝛽, 𝑥, 𝑡) ∈ ℝ	∗ M,,-.
# × ℝ	∗ M,,-.

#7  and for	𝑓 ∈ 𝑆,-.# ( ℝ	∗ M
#7), let 𝐹P(𝛽, 𝑓) be the function is defined by  

𝐹P(𝛽, 𝑓) = 〈𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓, 𝜑^#(𝑓)(𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓)〉 = 



 𝐸𝑥𝑡- ∫ 𝐹P(𝛽, 𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡
	
℘G
+ . (201) 

Note that 𝜑^#(𝑥, 𝑡) is a bilinear form defined on	𝐷 X(𝐻 + 𝑏)
$
%Z × 𝐷 X(𝐻 + 𝑏)

$
%Z, #-continuous in	(𝑥, 𝑡) ∈ ℝ	∗ M,,-.

#7 . 

By Theorem 11.29 𝐷(𝑀IP) ⊂ 𝐷 X(𝐻 + 𝑏)
&
%Z and therefore 𝐹P(𝛽, 𝑥, 𝑡) is well defined and #-continuous in (𝑥, 𝑡). 

Note   that a function 𝐹P(𝛽, 𝑥, 𝑡)	is #-continuously #-differentiable in 𝛽 ∈ ℝ	∗ M,,-.
#  and for all 𝑘 = 1,2,3 

 �#«;(4,0,A)
�#4

= −〈𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝑖𝑀IP𝜓,𝜑^#(𝑓)(𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓)〉 (202) 
−〈𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓, 𝜑^#(𝑓)(𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝑖𝑀IP𝜓)〉.  

By the canonical argument, we have for all 𝑘 = 1,2,3 that  
 �#«;(4,])

�#4
= 〈𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓, [𝑖𝑀IP , 𝜑^#(𝑓)](𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓)〉 = (203) 

𝐸𝑥𝑡-\ 𝐹P(𝛽, 𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡
	

℘G
+

. 

By Theorem 11.40 under the condition supp𝑓 ⊂ #-int(	ℜ∆
7) we have for all 𝑘 = 1,2,3 that  

𝜕#𝐹P(𝛽, 𝑓)
𝜕#𝛽 = − 〈𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓, 𝜑^# �𝑥P

𝜕#𝑓
𝜕#𝑡 + 𝑡

𝜕#𝑓
𝜕#𝑥P

�𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓〉 = 

 −𝐸𝑥𝑡- ∫ 𝐹P(𝛽, 𝑥, 𝑡) X𝑥P
�#]
�#A

+ 𝑡 �#]
�#0;

Z𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡	
ℝ	∗ :
#$ . (204) 

Therefore by Theorem 11.40 under the condition   
 ⋃ 	𝛬¤4(𝑥, 𝑡) ∈ ℜ∆

7	
ID¤D8  (205) 

we have for all 𝑘 = 1,2,3	that  
 𝐹P(𝛽, 𝑥, 𝑡) = 𝐹P X0, 	𝛬¤4(𝑥, 𝑡)Z + 𝛿(𝛽, 𝑥, 𝑡) (206) 

That is, if (205) holds, then (206) also holds for all 𝑘 = 1,2,3 and finally we get 
 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽) = 𝜑^# X	𝛬4(𝑥, 𝑡)Z + 𝛿(𝛽, 𝑥, 𝑡). (207) 

Here the equations (207) hold in the sense of bilinear forms on 𝐷((𝑀IP):) × 𝐷((𝑀IP):), i.e. 
 〈𝜓8, 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓:〉 = 〈𝜓8, 𝜑^# X	𝛬4(𝑥, 𝑡)Z𝜓:〉 + 𝛿(𝛽, 𝑥, 𝑡)〈𝜓8, 𝜓:〉. (208) 

From (208) on the domain 𝐷,-.# 	((𝑀
IP):) × 𝐷,-.# ((𝑀IP):) ⊂ 𝐷,-.((𝑀IP):) × 𝐷,-.((𝑀IP):) ⊂ 𝐷((𝑀IP):) ×

𝐷((𝑀IP):) we get the ≈ -equality 
 〈𝜓8, 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓:〉 ≈ 〈𝜓8, 𝜑^# X	𝛬4(𝑥, 𝑡)Z𝜓:〉, (209) 

since	〈𝜓8, 𝜓:〉  is finite and therefore  𝛿(𝛽, 𝑥, 𝑡)〈𝜓8, 𝜓:〉 ≈ 0. 
Note that in the #-limit 𝜆 →# 0	by (125) we get 

 #- lim
→#I

𝑀	
IP	 = 𝑀^

IP . (210) 

Therefore in the #-limit 𝜆 →# 0 from (208) and (210) we obtain that     
 lim

o→#I	
〈𝜓8, 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓:〉 = (211) 

〈𝜓8, 𝐸𝑥𝑡-exp(𝑖𝑀^
IP𝛽)𝜑I,^# (𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀^

IP𝛽)𝜓:〉 = 
Lim
o→#I	

〈𝜓8, 𝜑^# X	𝛬4(𝑥, 𝑡)Z𝜓:〉 + 𝛿(𝛽, 𝑥, 𝑡)〈𝜓8, 𝜓:〉 = 〈𝜓8, 𝜑I,^# X	𝛬4(𝑥, 𝑡)Z 𝜓〉 + 𝛿(𝛽, 𝑥, 𝑡)〈𝜓8, 𝜓:〉. 

From (211) on the domain 𝐷,-.# 	((𝑀
IP):) × 𝐷,-.# ((𝑀IP):) ⊂ 𝐷,-.((𝑀IP):) × 𝐷,-.((𝑀IP):) ⊂ 𝐷((𝑀IP):) ×

𝐷((𝑀IP):) we get the ≈ -equality for free quantum field 𝜑I,^# (𝑥, 𝑡)  
 〈𝜓8, 𝐸𝑥𝑡-exp(𝑖𝑀^

IP𝛽)𝜑I,^# (𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀^
IP𝛽)𝜓:〉 ≈ 〈𝜓8, 𝜑I,^# X	𝛬4(𝑥, 𝑡)Z𝜓:〉. (212) 

Remark 11.16 Note that the ≈ -equality required by (212) is necessary, see Remark 9.2. 
The ≈ -equality (209) extends by #-closure to 𝐷,-.# 	(𝑀) × 𝐷,-.

# (𝑀), since 𝐷,-.# 	(𝑀) ⊂ 𝐷,-.# 	b(𝐻 + 𝑏)
8/:c by 

Theorem 11.29, and the estimate 
 |〈𝜓, 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑥, 𝑡)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓	〉| ≈ (213) 

W〈𝜓, 𝜑^# X	𝛬4(𝑥, 𝑡)Z𝜓〉W ≤ 𝑐Í(𝐻 + 𝑏)8/:𝜓Í:.  
Here 𝑐 is finite constant. Furthermore 𝐷((𝑀IP):) for any 𝑘 = 1,2,3 is a #-core for 𝐻, by Theorem 11.31, and 

therefore a #-core for	(𝐻 + 𝑏)
&
%. Thus (208) extends to 𝐷((𝑀IP):) × 𝐷((𝑀IP):) and on this domain we also have 

#-continuity of the form in	(𝑥, 𝑡) ∈ ℝ	∗ M,,-.
#7 . Note that it is necessary to assume that	⋃ 	𝛬¤4(𝑥, 𝑡) ∈ ℜ∆

7	
ID¤D8 . 



However for the regions ℜ∆
7 this statement follows from the condition	(𝑥, 𝑡) ∈ ℜ∆

7 ⇒ 	𝛬4(𝑥, 𝑡) ∈ ℜ∆
7. This final 

remark completes the proof of this theorem part (2). Now we go to prove the operator ≈ -equality (198) for the case 
𝑓 ∈ 𝑆,-.# ( ℝ	∗ M

#7), supp𝑓 ∪ supp𝑓	¯H . By Theorem 11.29, the operators 𝜑^#(𝑓) and 𝜑^# X𝑓	¯HZ  are defined on domain 
𝐷((𝑀IP):). Integrating (207) against 𝑓(𝑥, 𝑡), we get the equalities   
 𝐸𝑥𝑡-exp(𝑖𝑀IP𝛽)𝜑^#(𝑓)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽) = 𝜑^# X𝑓	¯HZ + 𝐸𝑥𝑡- ∫ 𝛿(𝛽, 𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡.	

ℜ∆
+  (214) 

Obviously the equalities (213) hold on the domains	𝐷((𝑀IP):) with 𝑘 = 1,2,3 correspondingly. For any vector 
𝜓 such that 𝜓 ∈ 𝐷((𝑀IP):) from (207) we obtain the equalities 
 𝜑^#(𝑓)𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜓 = 𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝜑^# X𝑓	¯HZ𝜓 + X𝐸𝑥𝑡- ∫ 𝛿(𝛽, 𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑#B𝑥𝑑#𝑡	

ℜ∆
+ Z𝜓. (215) 

Since   Ì𝜑^# X𝑓	¯HZ𝜓Ì ≤ 𝑐8 Ì(𝐻 + 𝑏)
&
%𝜓Ì

	
and 𝐷((𝑀IP):) for any 𝑘 = 1,2,3 is a #-core for 𝐻, by Theorem 

11.31, the equalities (215) extends by #-closure to 𝐷(𝐻) and (215) holds for 𝜓 ∈ 𝐷(𝐻). Since the domain 	𝐷(𝐻) is 
a #-core for the operator 𝜑^# X𝑓	¯HZ, we conclude that (214) extends by #-closure to 𝐷 Ä𝜑^# X𝑓	¯HZÆ and therefore the 

equalities (215) hold for all 𝑘 = 1,2,3 and for any 𝜓 such that  𝜓 ∈ 𝐷 Ä𝜑^# X𝑓	¯HZÆ. Thus we have proved that 

𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝐷 Ä𝜑^# X𝑓	¯HZÆ ⊂ 	𝐷b𝜑^#(𝑓)c. 
By similar consideration one obtains that 

𝐸𝑥𝑡-exp(−𝑖𝑀IP𝛽)𝐷 Ä𝜑^# X𝑓	¯HZÆ ⊂ 	𝐷b𝜑^#(𝑓)c. 
This proves (214) as an equality between self- #-adjoint operators, completing the proof of the theorem. 

CONCLUSION 

A new non-Archimedean approach to interacted quantum fields is presented. In proposed approach, a field 
operator 𝜑(𝑥, 𝑡) no longer a standard tempered operator-valued distribution, but a non-classical operator-valued 
function. We prove using this novel approach that the quantum field theory with Hamiltonian 𝑃(𝜑)7 exists and that 
the canonical 𝐶∗- algebra of bounded observables corresponding to this model satisfies all the Haag-Kastler axioms 
except Lorentz covariance. We prove that the 𝜆(𝜑7)7 quantum field theory model is Lorentz covariant. For each 
Poincare transformation 𝑎	,𝛬	 and each bounded region 𝑂 of Minkowski space we obtain a unitary operator 𝑈 which 
correctly transforms the field bilinear forms 𝜑(𝑥, 𝑡) for (𝑥, 𝑡) ∈ 𝑂. The von Neumann algebra  ℭ(𝑂) of local 
observables is obtained as standard part of external nonstandard algebra ℬ#(𝑂). 
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