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Computing the non-properness set of real polynomial
maps in the plane∗

Boulos EL HILANY† Elias TSIGARIDAS‡

Abstract

We introduce novel mathematical and computational tools to develop a complete algo-
rithm for computing the set of non-properness of polynomials maps in the plane. In partic-
ular, this set, which we call the Jelonek set, is a subset of K2 where a dominant polynomial
map f : K2 → K2 is not proper; K could be either C or R. Unlike all the previously known
approaches we make no assumptions on f whenever K = R; this is the first algorithmm with
this property.

The algorithm takes into account the Newton polytopes of the polynomials. As a byprod-
uct we provide a finer representation of the set of non-properness as a union of semi-algebraic
curves, that correspond to edges of the Newton polytopes, which is of independent interest.
Finally, we present a precise Boolean complexity analysis of the algorithm and a prototype
implementation in maple.
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1 Introduction
Let f = (f1, . . . , fn) : Kn → Kn be a polynomial map, where K ∈ {C,R}. We say that f is non-
proper at a point y ∈ Kn if for any neighborhood O of y, the preimage f−1(O) is not compact,
where O is the Euclidean closure of O. Namely, at the set Jf ⊂ Kn of points y at which f is
non-proper, there exists a sequence {xk}k∈N ⊂ Kn such that ∥xk∥ → ∞ and f(xk)→ y. We call
Jf the Jelonek set of f .

Jelonek first studied [19] the non-properness of maps Cn → Cn for the purpose of pushing
forward the state-of-the-art results around the Jacobian conjecture [44]. In this context, if the
Jacobian matrix of such a map f is everywhere non-singular, then the invertibility of f becomes
equivalent to emptiness of its Jelonek set. To this end, substantial work has been directed towards
the study of this set [20, 22, 25], which led to solving many problems regarding the topology of
polynomial maps [16, 20, 23, 26].

Besides the Jacobian conjecture, the description of the Jelonek set is essential to compute the
atypical values of a polynomial function Cn → C [23, 26], for classifying the algebraic subsets
of Rn that are images of Rn under a polynomial morphism [16], and for characterizing the
set of fixed points under a polynomial morphism [24]. As for applications to real-life problems,
polynomial maps appear as models in algebraic statistics [33], robotics [36], computer vision [13],
and chemical reaction networks [11]; to mention few of them. For such a setting, the input of
the problem is a point in the target space, while the output is a point in the preimage. Then,
the Jelonek set represents some of those inputs that result in a sub-optimal output.

There is no shortage of effective algorithms for computing exactly the Jelonek set of some
polynomial maps, even in more general settings [19, 20, 37, 43]. Unfortunately, they are not
universal; for example, in some cases [19, 21, 37] one requires K to be an algebraically closed
field, while in other cases, these methods require the maps to be finite [43]. In addition, to
our knowledge, there are no precise bit complexity estimates for the various algorithms. Even
more, the known algorithms rely on black box elimination techniques based on Gröbner basis
computations and they do not take into account the structure and the Newton polytopes of the
input. When K = R, the situation is more dire; even though the geometry of the Jelonek set
is fairly well understood [19, 22, 25, 43], to our knowledge, there are no dedicated algorithms
to compute it. Up until now, we had to rely on algorithms that assume K = C and compute a
superset of the (real) Jelonek set.

1.1 Our contribution
We consider a dominant polynomial map f = (f1, f2) : K2 → K2, where K ∈ {C,R}, i.e.,
f(K2) = K2. We present a complete and efficient algorithm to compute the Jelonek set of f ,
SparseJelonek-2 (Alg. 3), along with its mathematical foundations, complexity analysis, and
a prototype implementation.

The algorithm makes no assumptions on the input polynomials f . It outputs a partition of
the (equations of the) Jelonek set to subsets of semi-algebraic (or algebraic) curves of smaller
degree; hence it provides a more accurate and detailed picture of the topology and the geometry
of the Jelonek set, from the one known before. It depends on their Newton polytopes; the
latter encode the non-zero terms of the polynomials, see Sec. 3.1.1 for the definition and various
properties. This feature provides us with tools from combinatorial and toric geometry, and makes
the algorithm input and output sensitive. We present a precise bit complexity analysis of the
algorithm when the input consists of polynomials with rational coefficients, and a (prototype)
implementation in maple. To our knowledge this is the first dedicated algorithm for computing
the Jelonek set when K = R in the plane, under no assumptions.
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An important aspect of our approach is the partition of the Jelonek set into sets of irreducible
(semi-)algebraic curves. The equations of the curves in each partition set are obtained by analyz-
ing the coefficients of f restricted at some distinguished edge Γ of the polygon NP(f); the latter
is the Minkowski sum of the Newton polytopes of f1 and f2, NP(f1) and NP(f2), respectively.
As distinguished edges, we consider the ones that their corresponding inner normal vector has
at least one negative coordinate; we call them infinity edges (Definition 3.1).

Consider q to be a generic point of the Jelonek set of f , i.e., q ∈ Jf , and y sufficiently
close to q. By definition of Jf , there is an isolated point x ∈ f−1(y) whose Euclidean norm
takes arbitrary large values. One thus can construct a change of variables that sends x =
(x1, x2) to (zM1 , zM2) = (zM11

1 zM12
2 , zM21

1 zM22
2 ), where Mij ∈ Z, so that, in the new variables,

the (transformed) preimage is arbitrary close to one of the coordinate axes of K2. This suitable
change of variables depends on an edge of the Newton polytope of f in the following way: the
inverse U of the matrix M := (M1,M2) ∈ Z2×2 is such that its first row spans an edge of NP(f)
(Section 4.1). Accordingly, after the change of variables, the new polynomial system f(x)−y = 0
is written as U(f − y)(z) = 0.

The topological face multiplicity set corresponding to the face Γ, or T-multiplicity set for
short, collects all points q, for which any y sufficiently close to q, gives rise to a solution z to the
system U(f − y) = 0 satisfying ∥z − (ρ, 0)∥ → 0 for some ρ ∈ K∗.

We denote it by TFK(Γ) (Definition 4.5). Going over all the infinity edges of its Newton
polytope NP(f), we obtain the T-multiplicity set of f , and through it the Jelonek set of f . The
following theorem summarizes these properties; it appears in Thm. 4.15 along with its proof.

Theorem (The Jelonek set as a union of T-multiplicity sets). Let f : K2 → K2 be a dominant
polynomial map, where K ∈ {C,R}. Then, the Jelonek set of f is the union, over all the edges
of its Newton polytope NP(f) intersecting (R∗)2, of its T-multiplicity sets.

To compute the T-multiplicity sets we note that, as ∥y−q∥ → 0, if a solution z(y) ∈ K2 to any
(parametrized by y) polynomial system Fy = 0 converges to a point z(q), then the multiplicity
of z(q) (as a solution of Fy = 0) should usually be higher for y = q than for most other values of
y.

This observation demonstrates that we can detect points in T-multiplicity sets by capturing
the change in the multiplicity of some solutions of the transformed system. The set of all
such q ∈ K2 that increase the multiplicity of a solution to Fy = 0, is called the algebraic face
multiplicity set corresponding to Γ, or A-multiplicity for short, and we denote it by AFK(Γ)
(Definition 4.10). We develop an algorithm, ms_resultant, to compute the T-multiplicity set
using the A-multiplicity set by employing tools from elimination theory. The following theorem
supports ms_resultant; it appears in Prop. 6.1 along with its proof.

Theorem (ms_resultant and computation of the T-multiplicity sets). Let f : K2 → K2 be a
dominant polynomial map, where K ∈ {C,R}. Then, for any edge Γ of NP(f), ms_resultant
(Alg. 4), correctly computes the T-multiplicity set.

ms_resultant relies on resultant computations and exploits the property that the multi-
plicity of a root of the resultant accumulates the multiplicities of the solutions of the system
in the corresponding fiber. It is the best choice for maps that are quite degenerate and it has
polynomial worst case complexity. ms_resultant is straightforward for complex polynomial
maps. For polynomial maps f : R2 → R2, however, we need to perform a more refined analysis.
Namely, let g := Cf : C2 → C2 denote the complexification of f , and let Dg be its discrimi-
nant. This is the image, under g, of the critical points in C2 of g. For each edge Γ ≺ NP(g)
we consider the decomposition of AFC(Γ) ∩ R2 into a collection C of smooth disjoint segments
C1, . . . , Cr, separated by isolated points from Dg ∩ AFC(Γ) and singular points of AFC(Γ). That
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is, these points are boundary points of the curve segments and Jf is the Euclidean closure of the
disjoint union C1 ⊔ · · · ⊔ Cr. We show in §4 that each segment C ∈ C either lies entirely in the
T-multiplicity set of f , or it is disjoint from it. Then, once the A-multiplicity set of the complex
map g is computed, determining which of its segments C ∈ C is a part of the T-multiplicity set
of f reduces to picking a random point in C, and counting the number of its real preimages
under f . One has to make sure that this sampling procedure avoids other A-multiplicity sets.
We describe this in §6. Note that, thanks to our first theorem above, this approach holds true if
we replace the A-multiplicity set by Jg and the T-multiplicity set by Jf .

The complexity bound of ms_resultant for maps R2 → R2 (Thm. 6.5) is much higher than
the one in the complex case (Thm. 6.5). However, this worst case bound is attained only for
very particular polynomial maps.

Using the previous tools, a straightforward method to compute the Jelonek set is as follows:
For all edges Γ of NP(f) compute the corresponding T-multiplicity set. This is the backbone of
the proof of correctness of algorithm SparseJelonek-2.

Theorem (Computation of the Jelonek set). Let f : K2 → K2 be a dominant polynomial map,
where K = {C,R}. Then, SparseJelonek-2 (Alg. 3) computes correctly the Jelonek set of f .

Unlike previously known methods for computing Jf , SparseJelonek-2 depends on the
Newton polytope of f . Consequently, for maps that are mildly degenerate with respect to their
Newton polytopes, our methods outperforms standard algorithms for complex maps (cf. Thm. 2.5
and Cor. 5.2.)

As a byproduct of our methods for describing the Jelonek set, we obtain in Thm. 4.22 of §4
a partial characterization of real polynomial maps whose Jelonek set is a union of algebraic
curves in R2. Consequently (Corollary 4.23), we show that the Jelonek set of real maps, with a
birational complexification, is algebraic.

1.2 An example
The following example illustrates our first main Theorem that relates the Jelonek set to T-
multiplicity sets. Let f : K2 → K2 be the following polynomial map

f(x) = 0⇔

{
1 + 2x1x2 − x2

1x
3
2 = 0

5 + 12x1x2 − 10x2
1x

3
2 + 2x3

1x
5
2 = 0

}
. (1)

The corresponding Newton polytopes and their Minkowski sum are in Figure 1. The preimage
of y is such that x1 x2 = 2(y1−1)2

(−2y1+y2−3) . Thus, the norm of x takes arbitrary large values if y

converges to, say, (−2,−1).
To transform the polynomials in (1) we consider the edge Γ (in the Minkowski sum) with

outer normal (2,−1) and defined by the vertices (2, 2) and (5, 8); see the rightmost polygon in
Figure 1. The corresponding toric transformation has matrix U =

(−1 1
−2 1

)
and it transforms the

system f1(x1, x2)− y1 = f2(x1, x2)− y2 = 0 (up to a monomial multiplication) to{
2− z1 − z2(1− y1) = 0

12− 10z1 + 2z21 − z2(5− y2) = 0

}
. (2)

The new system has two simple solutions (2, 0) and σ :=
(

6y1−y2−1
2(y1−1) , y2−2y1−3

2(y1−1)2

)
. Notice that

if (y1, y2) → (−2,−1), then the second coordinate of σ goes to 0. In particular, if (y1, y2) →
(−2,−1), then σ → (2, 0). For our example it holds TFK(Γ) = {(y1, y2) ∈ K2 | 2y1 − y2 − 3 = 0};
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Figure 1: Two Newton polytopes and their Minkowski sum. They correspond to the polynomials
of the map in Eq. (2).

which is a curve. In addition, following Eq. (2), the solution (2, 0) is simple if y2 − 2y1 − 3 ̸= 0.
Indeed, the determinant of the Jacobian matrix of the system (2) evaluated at z = (2, 0) equals∣∣ −1 −2
1−y1 5−y2

∣∣. This is the polynomial the zero set of which defines TFK(Γ).

1.3 Related work
There are already works that exploit the structure of Newton polyhedra for the computation
of topological data of polynomial maps. For polynomial functions this includes computing the
Milnor number at the origin [29] and the bifurcation set [32, 46]. Whereas for maps, Newton poly-
hedra were used to compute the Łojasiewicz exponents [3], prove non-properness conditions [42],
and compute the set of atypical values [7, 15]. In all these cases, there is the requirement of
some form of face non-degeneracy condition on the corresponding maps. That is, the tuple of
polynomials is required to be in a Zariski open set in the space of all polynomial maps with a
given set of Newton polyhedra. Our approach does not need any such assumption whatsoever.

1.4 Notation
We denote by O, resp. OB , the arithmetic, resp. bit, complexity and we use Õ, respectively ÕB ,
to ignore (poly-)logarithmic factors.

For a polynomial f ∈ Z[x] or f ∈ Z[x1, x2] its infinity norm ∥f∥∞ equals the maximum of
absolute values of its coefficients. We denote by L(f) the logarithm of its infinity norm. We also
call the latter the bitsize of the polynomial, that is a shortcut for the maximum bitsize of all its
coefficients. A univariate polynomial is of size (d, τ) when its degree is at most d and has bitsize
τ . We represent a real algebraic number α ∈ R using the isolating interval representation; it
includes a square-free polynomial, A, which vanishes at α and an interval with rational endpoints
that contains α and no other root of A. If α ∈ C, then instead of an interval we use a rectangle
in R2 where the coordinates of its vertices are rational numbers.

For a polynomial f ∈ K[x1, x2], where K ∈ {R,C}, we denote its zero set by VK(f) ⊂ K2 and
VK∗(f) ⊂ (K∗)2 is its zero set over the corresponding torus. We use the same notation if f is a
polynomial system, that is f = (f1, f2).

We use the abbreviation [n] for {1, 2, . . . , n}.
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1.5 Organization of the paper
Sec. 2 gives the state of the art of the problem. We present the known methods for computing
the Jelonek set for maps Cn → Cn (Algs. 1, and 2), and deduce their complexity in Thms. 2.4,
and 2.5. In Sec. 3 we give the necessary notations to introduce the algorithm SparseJelonek-
2. This includes a classification of faces of NP(f) and the introduction of the toric change
of coordinates. The first half of Section 5 gives a detailed description of the functionality of
SparseJelonek-2, while in the second half we present its complexity analysis (Thm. 5.1) and a
detailed example. Sections 4 and 6 concern the correctness of Algorithm SparseJelonek-2; in
particular we define T-multiplicity sets in terms of appropriate toric transformations introduced
in Sec. 4.1. Then, we reformulate Thm. 1.1 as Thm. 4.15 and prove it. The proof of Thm. 1.1 is
the proof of Prop. 6.1 in Sec. 6. Finally, Sec. 7 presents our prototype implementation.

2 Complexity of known methods
We start with a definition of the Jelonek set, see [19, 20].

Definition 2.1 (Jelonek set). Given two affine varieties, X and Y , and a map F : X → Y ,
we say that F is non-proper at a point y ∈ Y , if there is no neighborhood U ⊂ Y of y, such
that the preimage F−1(U) is compact, where U is the Euclidean closure of U . In other words,
F is non-proper at y if there is a sequence of points {xk}k∈N in X such that ∥xk∥ → +∞ and
f(xk)→ y. The Jelonek set of F , JF , consists of all points y ∈ Y at which F is non-proper.

Jelonek proved [19, 22] that for a dominant polynomial map f = (f1, . . . , fn) : Kn → Kn,
x := (x1, . . . , xn) 7→ f(x), the set Jf , if it is non-empty, then it is K-uniruled. That is, for every
point y ∈ Jf , there exists a non-constant polynomial map φ : K → Jf such that φ(0) = y.
Moreover, if K = C, then Jf is a hypersurface [19], while in the real case the dimension is less
than or equal to n − 1. These two properties are also valid for maps over algebraically closed
fields [38] and when the domain, or the codomain, is an affine variety [25]. In this setting, there
are methods for testing properness [20] and computing the Jelonek set [19, 37]. These is also an
upper bound on the degree of Jf when K = C [19], which is∏n

i=1 deg fi − µ(f)

mini=1,...,n deg fi
,

where µ(f) is the number of points in a generic fiber of f (cf. [19]).
Consider the maps Fi : Cn → Cn × C, such that Fi(x) := (f(x), xi), for i ∈ [n]. Also let∑Ni

k=0
Ai

k(f)x
Ni−k
i ∈ C[f1, . . . , fn, xi],

be the polynomial defining the equation of the hypersurface Fi(Cn) ⊂ Cn × C. Then, Ai
0(f) is

the i-th non-properness polynomial of f .

Theorem 2.2 ([19, Prop. 7]). The Jelonek set, Jf , of a dominant polynomial map f : Cn →
Cn, is the zero locus of the polynomial

∏n
i=1 A

i
0(y), where each Ai

0 is the i-th non-properness
polynomial of f .

For the special case n = 2, the following theorem holds:

Theorem 2.3 ([21, Thm. 2.2]). Consider a dominant polynomial map f : C2 → C2, (x1, x2) 7→
f(x1, x2). Let Pi(y1, y2, xi) =

∑ni

k=0 Pik(y1, y2)x
ni−k
i be the resultant of the polynomials (f1 −

y1, f2 − y2) with respect to xj for distinct i, j ∈ {1, 2}. Then, the Jelonek set of f is {(y1, y2) ∈
C2 | P1,0P2,0 = 0}.
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Algorithm 1: Jelonek_n(f1, . . . , fn)

Input : f = (f1, . . . , fn) ∈ Z[x1, . . . , xn]
n

Output : The set of non-properness of f : Cn → Cn

/* Notice that Fi ∈ (C[y])[x], where y = (y1, . . . , yn). */
1 F1 ← f1(x)− y1, . . . , Fn ← fn(x)− yn;
2 for i ∈ [n] do

/* Eliminate all the x-variables but xi. */
3 Ri = resxi

(F1, . . . , Fn) =
∑Ni

k=0 A
i
k(y)x

Ni−k
i ∈ (C[y])[xi]

4 return
∏n

i=1 A
i
0(y) ∈ C[y];

The computation of the implicit equation of parametrized hypersurfaces Fi(Cn) requires to
eliminate n−1 from the variables x1, . . . , xn. Thus, to compute the Jelonek set we need effective
computations with resultants or Gröbner bases.

In Alg. 2 and Alg. 1 we present the pseudo-code of the algorithms supported by Thms. 2.2
and 2.3 for computing the Jelonek set in Cn and C2. The proofs of the following two results are
in the appendix.

Theorem 2.4. Let f = (f1, . . . , fn) ∈ Z[x1, . . . , xn] be polynomials of size (d, τ). Alg. 1 computes
the Jelonek set Jf in

ÕB(2
nnn(ω+1)−ω+1dn

2+(n−1)ω(τ + nd)), (3)

where ω is the exponent in the complexity of matrix multiplication. It consists of polynomials in
Z[y1, . . . , yn] of size (O(dn), Õ((nd)n−1τ)).

For the special case of two variables a slightly better bound is possible.

Theorem 2.5. Let f1, f2 ∈ Z[x1, x2] be polynomials of size (d, τ). Alg. 2 computes the Jelonek
set Jf in ÕB(d

6τ). It consists of a polynomial in Z[y1, y2] of size (O(d), Õ(dτ)).

Algorithm 2: Jelonek_2(f1, f2)

Input : F = (f1, f2) ∈ Z[x1, x2]
2

Output : The set of non-properness of F : C2 → C2

1 g1 ← f1(x1, x2)− y1 ;
2 g2 ← f2(x1, x2)− y2 ;
3 r1 ← resx2

(g1, g2) ∈ (Z[y1, y2])[x1];
4 r2 ← resx1

(g1, g2) ∈ (Z[y1, y2])[x2];
/* Return the leading coefficient with respect to x1, resp. x2, of r1 and

r2 */
5 p← lcx1

(r1) · lcx2
(r2) ∈ Z[y1, y2] ;

6 return p ;

3 Preliminaries
We present the necessary terminology we need for the following sections.
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a0

a1
a2

a3
a4

⊕

b0
b1

b2
b3

b4

b5

b6
=

a0 ⊕ b1

a0 ⊕ b2

a1 ⊕ b3

a4 ⊕ b6
a2 ⊕ b4

a3 ⊕ b5

Figure 2: Two Newton polytopes and their Minkowski sum. They correspond to the polynomials
of the map in Section 5.4. The edges of the blue, resp. the black, polytope are labeled by ai,
resp. bj , for i, j ̸= 0. The vertices that correspond to (0, 0) are a0, and b0.

3.1 Polytopes, Minkowski sums, and mixed volume
A polytope, also called polygon, ∆ in R2 is a bounded intersection of closed half-spaces of the form
{a0 ≤ a1X1 + a2X2} ⊂ R2, where a0, a1, a2 ∈ R. The latter are the supporting half-spaces of ∆
and their boundary intersects the boundary of ∆, ∂∆, at a connected set of ∆ that we call face.
Thus, any face F of ∆ minimizes a function a∗ : ∆→ R, given by (X1, X2) 7→ −a0+a1X1+a2X2.
In this case a = (a1, a2) ∈ R2 is an interior normal vector to F and we say that it supports F .

The Minkowski sum A⊕ B of two subsets A,B ⊂ Rn is the set {a+ b | a ∈ A, b ∈ B}. Let
A1 and A2 denote the respective convex hulls of two finite sets in Z2 and let their Minkowski
sum be A = A1 ⊕ A2. The summands of A refers to the pair (A1, A2). If Γ is a face of A, that
is Γ ≺ A, then we denote the summands of Γ by (Γ1,Γ2), such that Γ = Γ1 ⊕ Γ2, Γ1 ≺ A1, and
Γ2 ≺ A2.

3.1.1 Mixed volume

Given a convex set ∆ ⊂ R2, let Vol(∆) be its fixed and Lebesgue measure endowed in R2.
Minkowski’s mixed volume is the unique real-valued multi-linear, with respect to the Minkowski
sum, function of two convex sets ∆1,∆2 ⊂ R2, whose value, if ∆1 = ∆2 = ∆, equals 2Vol(∆).
We denote the mixed volume by MV(∆1,∆2) and we can compute it using the inclusion-exclusion
formula

Vol(∆1 ⊕∆2)−Vol(∆1)−Vol(∆2).

If ∆1⊕∆2 is a line segment or if ∆i is a point for some i ∈ {1, 2}, then MV(∆1,∆2) = 0. The
other direction of this statement is also true; it is a particular case of Minkowski’s theorem for
the higher-dimensional mixed volume, see [28, Section 2].

A pair (∆1,∆2) is independent if MV(∆1,∆2) ̸= 0; or, equivalently, if dim(
∑

i∈I ∆i) ≥ |I| for
all I ⊂ {1, 2}. A pair is dependent if it is not independent.

3.1.2 Characterization of the faces

In what follows, we distinguish types of edges of the Minkowski sum of ∆ := ∆1 ⊕ ∆2. The
following definition details these types, while Figure 3 gives a pictorial overview.

Definition 3.1. Let ∆ = ∆1 ⊕ ∆2. A face Γ ≺ ∆ with summands (Γ1,Γ2) is an edge if
dim(Γ) = 1. An edge is

• long if both of its summands have dimension 1, that is if dim(Γ1) = dim(Γ2) = 1.

9



Edge

Infinity

non-infinity

pertinent

semi-origin

long

short

Γ1 6= 0

Γ1 = 0Γ = Γ1 ⊕ Γ2 other
(one summand is a vertex)

Figure 3: The partition of the edges that SparseJelonek-2 exploits. Γ is an edge of the
Minkowski sum and its summands are Γ1 and Γ2.

• short if it is not long.

• pertinent if it is long and both of its summands do not contain the origin, that is (0, 0) ̸∈ Γ1

and (0, 0) ̸∈ Γ2.

• semi-origin if at least one of its summands contains the origin, that is (0, 0) ∈ Γ1 or
(0, 0) ∈ Γ2.

• origin if both of its summands contain the origin, that is (0, 0) ∈ Γ1 and (0, 0) ∈ Γ2.

• infinity if the corresponding (inner) normal vector has a negative coordinate.

Example 3.2. Consider the three (Newton) polytopes in Figure 2. The third polytope is the
Minkowski sum of the first two and we have the following characterization of its edges:

• Semi-origin long edges: a1 ⊕ b3, a4 ⊕ b6.

• Origin long edges: a4 ⊕ b6.

• Semi-origin short edges: a0 ⊕ b1, a0 ⊕ b2.

• Origin short edges: a0 ⊕ b0, a0 ⊕ b1.

• Pertinent edges: a2 ⊕ b4, a3 ⊕ b5.

• All of the edges are infinity edges.

3.2 Polynomials restricted to faces
Let P ∈ K[x±1

1 , x±1
2 ] be a bivariate Laurent polynomial, that is

P (x) =
∑
a∈Z2

ca x
a =

∑
(a1,a2)∈Z2

ca x
a1
1 xa2

2 ,

where ca ∈ K. The support of P is the set supp(P ) = {a ∈ Z2 | ca ̸= 0}. The Newton polytope
of P is the convex hull of its support; we denote it by NP(P ).

Consider the pair of polynomials f := (f1, f2) ∈ K[x±1
1 , x±1

2 ]2, with non-zero constant terms
such that

f1 =
∑

a∈S1

c1,ax
a and f2 =

∑
b∈S2

c2,ax
b, (4)
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v

w

v′

a1

a2

a3

c

`

Figure 4: Toric change of basis. The face Γ is the edge delimited by a1 and a2, while Γ′ is
delimited by a1 and a3. The corresponding primitive vectors are v and v′, respectively. The
vectors v and w consist a basis of Z2. In addition they define a cone that contains all the
lattice points of the polygon. Thus, the toric change of basis consists of the vectors v and w and
ẽ = (v, w).

where Si = supp(fi) ⊂ Z2. The corresponding Newton polytopes (in our case polygons) are
∆i = NP(fi), for i ∈ {1, 2}. Also let NP(f) := ∆ = ∆1 ⊕ ∆2. For any face Γ ≺ ∆ with
summands (Γ1,Γ2), we denote by fΓ1

the restriction of f1 to those monomial terms c1,ax
a for

which a ∈ Γ1 ∩ Z2. Similarly for fΓ2
. We also write fΓ for the pair (fΓ1

, fΓ2
) ∈ K[x±1

1 , x±1
2 ]2.

4 Decomposing the Jelonek set
Let f : K2 → K2 be a dominant polynomial map sending (0, 0) to (K∗)2. The main goal of this
section is to describe Jf in terms of the multiplicities and the existence of solutions of polynomial
systems resulting from suitable toric transformation of f . The results of this section contribute
to the correctness proof of the main algorithm in Sec. 6.

We keep using ∆1, ∆2, and ∆ to denote NP(f1), NP(f2), and NP(f1)⊕NP(f2), respectively.

4.1 Toric change of variables using edges
To each edge Γ ≺ ∆, we introduce a toric change of coordinates U ∈ SL(2,Z) to deduce a
description of the points in the preimage of f that escape to infinity.

Assume that (Γ1,Γ2) is the pair of summands of Γ, and let a1 be any endpoint of Γ. We use
v to denote the primitive vector starting from a1 along the direction of Γ.

Then, there exists a vector w ∈ Z2 satisfying det(v, w) = ±1 and such that for any point in
∆ ⊕ {−a1} spanned by the basis ẽ := (v, w), the coefficient in front of w is positive. In other
words, w points towards the direction of the polygon. We call (v, w) a Γ-basis for ∆.

The linear transformation U : Z2 → Z2 maps the new basis ẽ to the canonical basis of Z2.
We can also relate the computatin of ẽ to the computation of the shorted vector problem in Z2

[45, Lecture VIII].
Now consider the matrix T , where

T =
(
t11 t12
t21 t22

)
=

(
v1 v2
w1 w2

)
∈ SL(2,Z).
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It corresponds to the following change of variables z = xT(11). The transformation U that we are
looking for is the transpose of the inverse of T , that is U = T−⊤ which induces an isomorphism
(K∗)2 → (K∗)2, given by the transformation

(z1, z2) 7→
(
z
w2/D
1 z

−v2/D
2 , z

−w1/D
1 z

v1/D
2

)
,

where D = det(T ) = ±1 is the determinant of T . We deduce that T , and thus also U , depends
on Γ and ∆.

Definition 4.1. The set of Γ-toric transformations is the subset of all matrices
( w2/D −w1/D
−v2/D v1/D

)
∈

SL(2,Z), where (v, w) is a Γ-basis for ∆. We denote this set by TMΓ(Z2).

We also have the following immediate consequence.

Lemma 4.2. Let α ∈ Z2 be the primitive integer vector supporting an edge Γ ≺ ∆. Then, for
any U ∈ TMΓ(Z2), UΓ is an edge of U∆. Moreover, there is a U such that the vector U−⊤ · α
equals (0, 1) and it supports UΓ.

Remark 4.3. If f = (f1, f2) is a pair of bivariate polynomials and Uf = (Uf1, Uf2), then
VK∗(f) has the same number of isolated points as VK∗(Uf).

If Uf consists of Laurent polynomials, then there might be monomials with negative ex-
ponents. We transform them to polynomials by multiplying them by suitable monomials. We
denote this transformation by Uf , which is the map (Uxr1f1, Uxr2f2), for suitable r1, r2 ∈ Z2; in
other words we multiply by monomials of the smallest possible degree to clear the denominators.

The following observations will be useful in the sequel as they relate the roots of the trans-
formed polynomial system to the roots of the original one.

Remark 4.4 (Toric transformation and polynomials). For any f ∈ K[x1, x2]
2, where ∆ =

NP(f), the following hold:

(i) For any U ∈ TMΓ(Z2), the system UfΓ = 0 is univariate and Uf = 0 is bivariate, and

(ii) UfΓ = 0 has a solution ρ ∈ K∗ iff Uf = 0 has a solution (ρ, 0) ∈ K∗ × {0} iff fΓ = 0 has
a solution in (K∗)2.

4.2 The topological and algebraic multiplicity sets of f

Let f : K2 → K2 be a polynomial map whose Newton polytope is denoted by ∆ and let U ∈
TMΓ(Z2) for some fixed Γ ≺ ∆. Define the graph

G := G(U, f) =
{
(z, y) ∈ (K∗)2 ×K2

∣∣ U(f − y)(z) = 0
}
,

and consider the projection π : K2 ×K2 → K2, (z, y) 7→ y.

Definition 4.5 (TFK(Γ), topological face multiplicity set). For any ρ ∈ K∗, consider the
following set

T ρ(Γ) :=

{
y ∈ K2 | ∃ {(zk, yk)}k∈N ⊂ G(U, f), zk −→

k→∞
(ρ, 0) and yk → y

}
.

Then TF
ρ
K(Γ) is the Euclidean closure T ρ(Γ), that is TF

ρ
K(Γ) = T ρ(Γ)

E
.
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The topological face multiplicity set of f corresponding to Γ, TFK(Γ), is the union of the sets
TF

ρ
K(Γ), that is

TFK(Γ) =
⋃

ρ
TF

ρ
K(Γ),

where ρ takes all distinct values in K∗ satisfying U(f − ỹ)((ρ, 0)) = 0 for some ỹ ∈ K2. For
brevity, we call it T-multiplicity set.

We prove later in Thm. 4.15 that the Jelonek set of f is formed by the union of all T-
multiplicity sets, running over all the infinity edges of NP(f).

Depending on the type of the edge Γ ≺ ∆, a non-empty set TFρK(Γ) can be either a finite set
or a semi-algebraic curve.

We represent those cases in two examples.

Example 4.6. Consider the case g := U(f−y), where g1 = −y1+z21+z2 and g2 = −y2+z21 . For
any ρ ∈ K∗, consider the sequence z(k) := (ρ, 1/k) for k ∈ N. If y(k) = (ρ2 +1/k, ρ2), then the
sequence {(z(k), y(k))}k∈N ⊂ G converges to (ρ, 0, ρ2, ρ2). Hence, it holds TFρK(Γ) = {(ρ2, ρ2)},
and thus TFK(Γ) = {(ρ2, ρ2) | ρ ∈ K}.

Example 4.7. Assume now that g := U(f − y) is given by g1 = 1 − z1 − y1z2 and g2 =
1+2z1−3z21−y2z2. On the one hand, for each i ∈ {1, 2}, it holds gi(z1, 0) = 0 ⇔ z1 = 1 making
the set TFρK(Γ) empty whenever ρ ̸= 1. On the other hand, as the sequence z(k) := (1+1/k, 1/k)
converges to (1, 0), the sequence y(k) := (1, 4 + 3/k) satisfies g(z(k), y(k)) = 0, and converges
to the line L := {4y1 = y2}. We deduce that if ρ = 1, then TF

ρ
K(Γ) = TFK(Γ) = L.

The following observation follows from the definitions.

Lemma 4.8. The T-multiplicity set of f corresponding to Γ, TFK(Γ), does not depend on the
choice of the toric transformation U from TMΓ(Z2).

To compute T-multiplicity sets we need to introduce the multiplicity of a solution of a poly-
nomial system.

Definition 4.9. [8, Ch. 4, Def. 2.1] Let g := (g1, g2) ∈ K[z1, z2]
2 and J = ⟨g1, g2⟩ the corre-

sponding ideal. The multiplicity of a solution x ∈ K2 of the system g = 0 is the dimension of the
ring obtained by localizing K[z1, z2] at the maximal ideal m := ⟨z1 − x1, z2 − x2⟩ and considering
the quotient ring K[z1, z2]m/J K[z1, z2]m.

For our purposes, to compute the multiplicity of the solution of a bivariate polynomial system
we proceed as follows. We augment the system with a linear form, say g0 = s−r1z1−r2z2, where
s is a new variable and r{1,2} are suffiently generic integers. After we eliminate the variables
z1, z2 from the system g0 = g1 = g2 = 0, we obtain a univariate polynomial in s. The multiplicity
of the roots of this last polynomial correspond to the multiplicities of the roots of the system.
For the further details of this approach we refer the reader to [5, 6, 35].

For any point ρ ∈ K and any y ∈ K2, we denote by µρ(y) the multiplicity of a solution (ρ, 0)
to the system U(f − y) = 0.

Definition 4.10 (AFK(Γ), algebraic face multiplicity set). For any ρ ∈ K∗, define AF
ρ
K(Γ)

to be the set of all points y ∈ K2 such that for any ỹ ̸∈ AF
ρ
K(Γ), it holds

µρ(y) > µρ(ỹ).

The algebraic face multiplicity set of f corresponding to Γ, AFK(Γ), is the union of all AFρK(Γ),
where ρ takes all distinct values in K∗ satisfying U(f − ỹ)((ρ, 0)) = 0 for some ỹ ∈ K2.

For brevity, we also call it A-multiplicity set.
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Example 4.11. Consider the polynomials (g1, g2) = (−y1+z21+z2, −y2+z21) from Example 4.6.
If K = C, then the equalities TFC(Γ) = {(ρ2, ρ2) ∈ C2 | ρ ∈ C} = {y1 − y2 = 0} = AFC(Γ) ⊂ C2

follow from the fact that y1 = y2 if and only if the system U(f − y) = 0 has a solution of the
form (ρ, 0) for some ρ ∈ C∗. Similarly, if K = R, then TFR(Γ) = {(ρ2, ρ2) ∈ R2 | ρ ∈ R} =
{y1 − y2 = 0} ∩ R2

≥0 = AFR(Γ).

Example 4.12. Consider the polynomials (g1, g2) = (1 − z1 − y1z2, −1 + 2z1 − 3z21 − y2z2)
from Example 4.7. For any K ∈ {R, C}, the point (1, 0) is a simple solution to the system
U(f − y) = 0 whenever y ̸∈ L. Indeed, the line L is the zero locus of the polynomial in K[y1, y2]
obtained as the determinant of the Jacobian matrix det Jac(1,0)U(f − y). Therefore, it holds
L = AFK(Γ).

As the previous examples indicate, for any Γ ≺ ∆, it holds TFK(Γ) ⊂ AFK(Γ). Indeed, since
the system U(f − y) = 0, from Def. 4.5, has a solution ϱ ∈ K∗×{0} whose multiplicity increases
at points y ∈ TFK(Γ), we get the inclusion “⊆”. We will see (Prp. 4.16) that we have equality
if K = C, and the inclusion may be strict for K = R (Rem. 4.17 and Thm. 4.22). Furthermore,
notice (see e.g., Example 4.11) that, in general, we have TFR(Γ) ̸= AFC(Γ) ∩ R2.

In Section 6.1.2 we present an algorithm to indentify the components (if any) of AFR(Γ)
contributing to TFR(Γ) and hence to Jf .

4.3 The Jelonek set as a union of multiplicity sets
We start by introducing some useful notation and auxiliary results. We use SolK(Γ) to denote
the set of numbers ρ ∈ K for which (ρ, 0) is a solution of the system U(f − y) = 0, for some
y ∈ K2 and U ∈ TMΓ(Z2), where Γ is an edge of ∆. We denote by Df the discriminant of f .
That is, if Cf :=

{
x ∈ K2 | det(Jacx(f)) = 0

}
, then Df = f(Cf ).

Since f is a dominant map, the following holds.

Lemma 4.13. The set Df ∪ f
(
K2 \ (K∗)2

)
is a finite union of curves.

We need the following technical lemma for the proof Thm. 4.15. It identifies the edges that
we can safely exclude from our computations.

Lemma 4.14. Let Γ ≺ ∆ be an edge. If one of the summands of Γ is a vertex that is not the
origin, then for any y ∈ K2, the system (f − y)Γ = 0 has no solutions in (K∗)2 .

Proof. Let Γ = Γ1⊕Γ2. Assume that Γ1 is the vertex that is not the origin. Then, (f1− y1)Γ =
cwx

w and cw ̸= 0. Thus, its solution is 0 and so the system (f − y)Γ = 0 has no solutions in the
torus (K∗)2.

Now we are ready to state and prove our main result.

Theorem 4.15. Consider a dominant polynomial map f : K2 → K2 and its Newton polytope
∆, where K ∈ {C,R}. The Jelonek set of f is

Jf =
⋃
Γ

TFK(Γ), (5)

where Γ runs over all infinity edges of ∆.

Proof. Consider the subset J •
f ⊆ Jf containing points y such that f−1(y) is finite1. Thus,

J •
f = {y ∈ Jf | dim(f−1(y)) ≤ 0}.

1For example consider the blowup f : (x1, x2) 7→ (x1, x1x2). Then, J •
f = {(0, y2) | y2 ∈ K∗} and f−1(y) = ∅,

for any y ∈ Jf \ {(0, 0)}, and hence it is a finite set.
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On the other hand,
Jf \ J •

f = {y ∈ Jf | dim(f−1(y)) = 1},

and so the preimage of any point in Jf \ J •
f shares with Cf an irreducible curve. In addition

the Jf \ J •
f is finite, i.e., it has dimension 0, as there are finitely many points y ∈ K2 for which

the system (f − y)(x) = 0 is not zero dimensional. So J •
f is dense in Jf .

Let T ρ(Γ) be the subset of points y ∈ TFK(Γ) as in Def. 4.5 (without taking the Euclidean
closure). It is enough to show that

J •
f =

⋃
Γ

T ρ(Γ), (6)

where the faces Γ are the infinity edges of ∆. This is so, because both sets, on the left and on the
right hand side of Eq. (6), are dense subsets of the corresponding closed (under the Euclidean
topology) sets.

To prove the inclusion J •
f ⊆

⋃
Γ T

ρ(Γ), we borrow the arguments of the proof of [2, Thm.
B] that relates the branches of the curves at infinity to the faces of the corresponding Newton
polytopes (cf. also [18, Lemma 1]). Lem. 4.13, the fact that the Jelonek set is K-uniruled [19, 22]
(see also the proof of Prop. 6.1) imply that the discriminant, the T-multiplicity sets

and the image of the coordinate axes form a union of curves in K2.
Therefore, for any y ∈ J •

f , one can choose a point q ∈ K2, and a line segment λ(]0, 1]) outside⋃
Γ

TFK(Γ) ∪ Df ∪ J •
f ∪ f

(
K2 \ (K∗)2

)
,

where λ := (λ1, λ2) : [0, 1] → K2, t 7→ (1 − t)y + tq. Then, we consider the parametrized
polynomial system

f − λ(t) = 0. (7)

Our assumptions on λ imply that all the solutions x(t) ∈ K2 of (7) are simple and contained
in (K∗)2. Moreover, the corrdinates of every solution is a function in t. In particular, the
coordinates of the solutions have the following Puiseux series expansion

xi(t) = ait
αi + higher order terms in t, for i ∈ {1, 2}, (8)

where ai ∈ K∗ and αi ∈ Q. If we substitute x(t) in fi − λi(t) and set to zero the coefficient of
the smallest power of t, say ω∗, then we obtain (fi − yi)Γ(a1, a2) = 0, for some edge Γ ≺ NP(f).
Indeed, the value ω∗ is min(⟨α, ω⟩ | ω ∈ NP(fi)), which is attained only for points w in the face
of NP(fi) supported by the vector α = (α1, α2). Therefore, the point a = (a1, a2) ∈ (K∗)2 is a
solution to (f − y)Γ = 0.

To prove that Γ is an infinity edge we use the definition of the Jelonek set (Def. 2.1). As
y ∈ J •

f , one of the solutions x(t) of (7) converges to infinity as t→ 0 (we may take, e.g. a branch
from f−1(λ(]0, 1[))). Then, the value αi appearing in (8) is negative for some i. Together with
Lem. 4.14, it implies that Γ is an infinity edge.

To prove that y ∈ T ρ(Γ), we combine the previous description with toric change of coordi-
nates. The vector (β1, β2) :=

(
U−1)⊤ · α which supports the edge Ξ := UΓ of the transformed

polytope UNP(f) equals (0, 1) (Lem. 4.2). The point z(t), satisfying zU (t) = x(t), is a solution
to U(f − λ(t)) = 0, and we have

zi(t) = bit
βi + higher order terms in t, for i ∈ {1, 2}, (9)

for some b = (b1, b2) ∈ (K∗)2. Therefore, as t→ 0, z(t) converges to a point ϱ ∈ K∗ × {0}.
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To prove the inclusion J •
f ⊇

⋃
Γ T

ρ(Γ), let Γ ≺ NP(f) be an infinity edge. Assume that
T ρ(Γ) ̸= ∅ for some matrix U ∈ TMΓ(Z2). For any y ∈ T ρ(Γ), let q be close enough to y, which
results a solution p ∈ (K∗)2 to U(f − q) = 0 as in Def. 4.5. As q converges to y, the second
coordinate of p converges to 0, while the first one remains close to a non-zero constant. Then,
we can express p by a Puiseux series of the form (9), with β = (0, 1). The matrix U ∈ TMΓ(Z2)
transforms the point p into a solution pU to the system f−q = 0, whose coordinates are expressed
as in (8). The assumptions on Γ imply that one of the αi appearing in (8) is negative. Then,
the solution pU converges to infinity as p→ ϱ, and q → y. This proves that y ∈ J •

f .

4.3.1 The T-multiplicity sets in C

In what follows, we describe the relation between T-multiplicity and the A-multiplicity sets for
different cases of K.

Proposition 4.16. Consider a dominant polynomial map f : C2 → C2, its Newton polytope ∆,
and let ρ ∈ SolC(Γ). Then, for any edge Γ ≺ ∆, it holds

TF
ρ
C(Γ) = AF

ρ
C(Γ). (10)

Proof. We first prove the statement for the case where Γ is a semi-origin edge. Recall the
surface G ⊂ (C∗)2 × C2, and G ⊂ C4 defined in Sec. 4.2. Then, Def. 4.5 shows that TFC(Γ) =
π(G ∩ {z2 = 0}). Furthermore, since Γ is semi-origin, the value yi appears in the equation
U(fi − yi)Γ(z1, z2) = U(fi − yi)(z1, 0) for some i ∈ {1, 2} (see Remark 4.4) . Hence, for any
ρ ∈ C∗ and y ∈ C2, it holds U(f − y)(ρ, 0) = 0 if and only if (ρ, 0, y1, y2) ∈ G ∩ {z2 = 0}. We
deduce that y ̸∈ π(G ∩ {z2 = 0}) ⇒ y ̸∈ AFC(Γ), which yields the equality TFC(Γ) = AFC(Γ).

Note that, for a semi-origin edge Γ, the above arguments hold true after we replace C by R.
Thus, we also get TFR(Γ) = AFR(Γ). The same cannot be said for pertinent edges.

Assume now that Γ is pertinent, and let T (Γ) be the subset of TFρC(Γ) defined as in Def. 4.5
but without taking the Euclidean closure.

The inclusion T (Γ) ⊆ AF
ρ
C(Γ) follows directly from the definition of the multiplicity sets.

Since AF
ρ
C(Γ) is closed, the closure of T (Γ) (i.e. the set TFρC(Γ)) is included in AF

ρ
C(Γ).

To prove the inclusion TFC(Γ) ⊇ AF
ρ
C(Γ) we proceed as follows. Consider the set A(Γ) of

points y ∈ AF
ρ
C(Γ) at which the system U(f − y) = 0 has finitely-many solutions. One can check

(see e.g. proof of Thm. 4.15) that AFρC(Γ) \A(Γ) is finite and hence A(Γ) is dense in AF
ρ
C(Γ).

Next, we choose a point q ∈ A(Γ), and will show that it belongs to TFC(Γ). Then, the point
(ρ, 0) is an isolated solution to U(f − q) = 0.

Let R ∈ C[y1, y2, z1] be the generator in the elimination ideal

⟨U(f1 − y1), U(f2 − y2)⟩ ∩ C[y1, y2, z1], (11)

and let k be the largest integer allowing the factorization R = (z1 − ρ)kR0, with R0 := ϕ0(y) +
ϕ1(y)(z1 − ρ) + · · ·+ ϕr(y)(z1 − ρ)r.

Note that, we have R0(q, ρ) = 0, and R0(q̃, ρ) ̸= 0 for any q̃ ̸∈ AF
ρ
C(Γ). There exists m > 0

such that the polynomial R0 is expressed as

ϕ0 ·R01 + (z1 − ρ)mR02, (12)

where R01 collects all terms of R0 that are factors of ϕ0, and R02 is not a factor of (z1 − ρ).
Moreover, we have R02 is not identically zero since ∀y ∈ C2, ∃z ∈ C2 such that U(f − y)(z) ̸= 0.
This shows that AFρC(Γ) is given by the curve V(Q), where ϕ0 is a factor of Q ∈ C[y].
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Now, for any generic point q̃ → q, we get Q(q̃) → 0, and the solutions to U(f − q̃) = 0 are
mapped to the roots Σq̃ ⊂ C of R0(q̃, z1) under the projection π1 : C2 → C, (z1, z2) 7→ z1. The
point q̃, together with each such solution σ ∈ Σq̃ satisfy

ϕ0(q̃) = −R02(q̃, σ)/R01(q̃, σ). (13)

It follows from (12) that the rational function φq̃ : C→ C, defined as z1 7→ −R02

R01
(q̃, z1) satisfies

φq̃(ρ) = 0. Therefore, whenever Q → 0, equation (13) has a solution σ → ρ. We deduce that a
point in the set

π−1
1 (σ) ∩ VC∗(U(f − q))

converges to the vertical line π−1(ρ), containing (ρ, 0). To show that at least one of the points
in Σσ converges to (ρ, 0) it is enough to note that the same arguments apply if we exchange z1,
ρ, and the line π−1

1 (ρ) with z1, 0, and the line π−1
2 (0).

We have shown that A(Γ) ⊂ TF
ρ
C(Γ). This yields the inclusion "⊃", of (10) as A(Γ) is a dense

subset of AFρC(Γ) and TF
ρ
C(Γ) is closed.

Remark 4.17. Using the same arguments as in the proof Prop. 4.16, we can extract two further
statements:

1. the set AFC(Γ) is a union of irreducible algebraic curves, and

2. if f is a real map instead, and Γ is a semi-origin edge, then AF
ρ
R(Γ) = TF

ρ
R(Γ).

Let us further describe the multiplicity sets for the complex case.

Lemma 4.18. Let f and ∆ be as in Prop. 4.16, and let S be an irreducible component of AFC(Γ)
(see Rem. 4.17). Then, for any p ̸∈ S, and any q ∈ S \ Σ for some finite subset Σ ⊂ S, the
following two quantities are equal and independent of the choice of p and q.

1. The number of solutions in (C∗)× {0} of the system U(f − q) = 0 if Γ is semi-origin, and

2. The difference µρ(p)− µρ(q) if Γ is pertinent.

We denote the value of theses two quantities by m, which we also call the weight of the algebraic
multiplicity.

Proof. Since the map is complex, the set G∩ {z2 = 0} is a union of irreducible algebraic curves.
Then, Prop. 4.16 shows that S is the image of a component C ⊂ G∩{z2 = 0} under the projection
π : (x, y) 7→ y.

Assume first that Γ is semi-origin. Then, for some i ∈ {1, 2}, the equation U(fi−yi)(z1, 0) = 0
can be written as U(fi)(z1, 0) − yi = 0. Hence, the map K : C → {z2 = 0}, given by the
restriction to C of the other projection (z, y) 7→ z, is a generically finite map, where K−1(q) is
a set of solutions to U(f − q) = 0 in (C∗) × {0}. The value m ∈ N will thus be exactly the
topological degree of K.

Assume now that Γ is pertinent. Then, the above map K is not dominant, and S = AF
ρ
C(Γ)

for some ρ ∈ C∗. Following the steps of the proof of Prop. 4.16 and using its notations we
conclude that AF

ρ
C(Γ) is given by a polynomial Q ∈ C[y1, y2] that divides ϕ0. Since the poly-

nomial (12) is obtained from the ideal (11), the value m appearing therein is exactly the dif-
ference of multiplicities µρ(p) − µρ(q). Here, we set V ⊂ V(Q) \ V(ϕi1) ∪ · · · ∪ V(ϕik), where
R02 = ϕi1z

i1 + · · ·+ ϕikz
ik .

17



4.3.2 The T-multiplicity sets in R

Let f : K2 → K2 be a dominant polynomial map, let ∆ be its Newton polytope, let Γ be an edge
of ∆, and let U ∈ TMΓ(Z2). We use g to denote the pair of polynomials (g1, g2) := U(f − y)(z).
Recall that G is given by {(z, y) | g = 0} ⊂ (K∗)2 × K2, and G is given as the closure of G in
K4. Let P := π|G, where π : K4 → K2, (z, y) 7→ y.

Lemma 4.19. It holds that
P (CritP ) = Df ∩ (K∗)2.

Proof. First, note that P (CritP ) can be expressed as

P ({(z, y) ∈ G | det Jaczg = 0})

From its construction, the map g is written as

(z, y) 7−→ (zs1(f1 ◦ φ− y1), zs2(f2 ◦ φ− y2)),

for some s1, s2 ∈ N2, where φ : (K∗)2z → (K∗)2x is the coordinate change of variables induced by
U .

Let (z, y) ∈ G. Then, there exists v ∈ Z2 such that

Jaczg = zv · Jacz(f1 ◦ φ− y1, f2 ◦ φ− y2),

and since z1 · z2 ̸= 0, we get

det Jaczg = 0⇔ det Jacz(f ◦ φ).

The multivariate chain rule implies that

Jaczf ◦ φ = (Jacφf ◦ φ) · Jaczφ,

where det Jaczφ is non-zero for any z ∈ (K∗)2. Therefore, we have (z, y) ∈ G and det Jacz(f ◦
φ) = 0 if and only if there exists x ∈ (K∗)2 such that x = φ(z), f(x) = y and det Jacx(f) = 0.
This readily yields the proof.

In what follows, we assume that K = R. Let S ⊂ R2 be a semi-algebraic curve, such that
there exists a polynomial surjective map ϕ : R→ S. Then S will be called a parametric semi-line.
Jelonek showed in [22] that Jf can be decomposed into a finite union of parametric semi-lines.
In the rest of this section, we use Theorem 4.15 to obtain several results on this decomposition.

We say that p ∈ S is an endpoint if for any small enough ε > 0, the open ball Bε(p) ⊂ R2,
intersected with S is homeomorphic (in the Euclidean topology) to the half-open interval [0, 1[.

Theorem 4.20. let S be a parametric semi-line of Jf , and assume that S has an endpoint q.
Then q belongs to a component of the algebraic curve Df not containing S.

Proof. Let Γ be an edge of ∆. We keep the same notation as in this Section for U , g, and G for
K = R. We use CG to denote the complex surface in (C∗)2 × C2 given by V(g), and by CG its
Zariski closure in C4.

Eventhough the closure G ⊂ R4 is smooth over all points in G, the same cannot be said
about its boundary ∂G := G \G = G ∩ {z1 · z2 = 0}. Then, using a sequence of blow-ups of C4

at the complex algebraic curves CG ∩ {z1 · z2 = 0}, if necessary, we may assume (with abuse of
notation) that G is smooth. The set G ∩ {z2 = 0} is now a union of real irreducible algebraic
curves and of points.
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Then, we deduce from Thm. 4.15 that there exists an irreducible curve C from G∩ {z2 = 0},
such that S = π(C), where π : (z, y) 7→ y.

Recall that q is an endpoint of S. Then, if π|C denotes the restriction of π to the curve C,
we conclude that there exists a point p in its critical locus Crit(π|C) such that π(p) = q. In fact,
since C ⊂ G, the point p is in the critical locus Crit(π|G) of π restricted to G.

Thanks to Lemma 4.19, it is enough to show that π(Crit(π|G)) contains a curve D satisfying

q ∈ D ̸⊂ π(G ∩ {z2 = 0}).

Since C is an algebraic curve and π(C) is a semi-algebraic curve with an endpoint q, it holds
that |π−1(y) ∩ C| ≥ 2 for finitely-many y ∈ π(C). Let U be a neighborhood of p, and let K be
a connected component of G ∩ U , adjacent to C. Since π|G is dominant, for all y ∈ π(K), the
preimage π−1

|K (y) also has at least two points. It follows that

∅ ̸= π(Critπ|K) ⊂ π(Crit(Π|G)).

Here, the non-emptiness follows from π|K being a proper, locally algebraic morphism over a
connected set K, whereas the inclusion is obvious.

Corollary 4.21. With the same notations as in Theorem 4.20, let Σ ⊂ R2 be the finite set of
points formed by endpoints of S and its singularities. Then S is homeomorphic to a line if Σ
is empty. Otherwise, each connected component of S \ Σ is a segment homeomorphic (in the
induced Euclidean topology) to the open interval ]0, b[, where b ∈ {1,+∞}.

Theorem 4.22. Let g := Cf : C2 → C2 be the complexification of f , and let AF
ρ
C(Γ) be a

component of the multiplicity set AFC(Γ) of f̃ having odd weight (see Lemma 4.18), for some
ρ ∈ R∗ and some Γ ≺ ∆. Then, it holds that

AF
ρ
C(Γ) ∩ R2 ⊂ Jf .

Proof. Let S denote the component AF
ρ
C(Γ). We retain the set Σ ⊂ S from Lemma 4.18, and

define V := S \ Σ. Then, the set RV := R2 ∩ V is (homeomorphic to) a disjoint union of open
intervals in S ∩ R2. Prop. 4.16 shows that for any q ∈ RV, there exists a point y ∈ R2 \ S,
converging to q, and a set Ky of points z ∈ (C∗)2, converging to a subset Kq ⊂ C∗ × {0}, such
that U(f − y)(z) = 0. Lemma 4.18 shows that, there exists m ∈ N such that #Kq = m if Γ is a
semi-origin edge, and Kq is a point of multiplicity m otherwise. Therefore, we get m = #Ky.

Recall that U(f − y) = 0 is a real polynomial system for each y ∈ R2 above, and Kq has at
least one point in R∗ × {0}. Then, if z is a point from Ky converging to Kq ∈ R2, so does its
complex conjugate z. Since m = #Ky is odd, at least one of the points in Ky is real. We get
q ∈ TF

ρ
R(Γ), and thus q ∈ Sf from Thm. 4.15.

Corollary 4.23. Let f : R2 → R2 be a polynomial map such that its complexification f̃ := Cf :
C2 → C2 is birational. Then, the non-properness set Jf is a union of algebraic curves in R2.

Proof. Since the map is birational, for any edge Γ of the Newton polytope ∆ of f , each non-
empty component S of AFC(Γ) has odd weight. Thm. 4.22 shows that Jf contains each component
S ∩R2, and Thm. 4.15 shows that Jf is formed by all such components S ∩R2. The proof thus
follows from Remark 4.17(1).
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5 Strategy for computing the Jelonek set
In what follows f = (f1, f2) : K2 → K2, where f1, f2 ∈ Z[x1, x2] are as in (4); we consider integer
coefficients to study the bit complexity of the corresponding algorithms. Also, we consider
∆1 = NP(f1), ∆2 = NP(f2), and ∆ = ∆1 ⊕∆2.

As a preproccessing step we consider the pair (f1 + a1, f2 + a2), where a := (a1, a2) ∈ Z2 is
a random point. This is to ensure that they both have a constant term, or in other words both
their Newton polytopes contain the origin. Consequently, the output of SparseJelonek-2 will
differ from the "true" Jelonek set of f by exactly this translation.

Accordingly, in what follows we assume that polynomials have a constant term.
The algorithm has two phases. During the first phase, which we detail in Sec. 5.1, we compute

the Minkowski sum of the Newton polytopes of the input polynomials and we characterize its
edges, following Def. 3.1. The partition of the edges with respect to the various types appears
in Fig. 3. Following Lem. 4.14 we have to consider only the semi-origin and pertinent edges for
our computations. At the second phase, which we detail in Sec. 5.2, for each edge of interest, we
compute with a restricted polynomial system. For each, real or complex depending on K, solution
of this system, we exploit its multiplicity to compute the corresponding T-multiplicity set, using
Prop. 4.16 or Cor. 4.21. The union of the T-multiplicity sets is the Jelonek set (Thm. 4.15).

Algorithm 3: SparseJelonek-2 (f = (f1, f2),K)

Input : f1, f2 ∈ Z[x1, x2], K ∈ {C,R}
Require: Both f1 and f2 have a non-zero constant term.
Output : The Jelonek set J .

1 J ← ∅ ;
2 ∆1 ← NP(f1) ; ∆2 ← NP(f2) ;
3 ∆←Minkowski_sum_2(∆1,∆2) ;

4 forall semi-origin edges Γ ≺ ∆ do
/* It holds Γ = Γ1 ⊕ Γ2 */

5 f1|Γ1 ← xu ·
∑|Γ1∩N2|

i=0 ai(x
k
1x

l
2)

i ; f2|Γ2
← xv ·

∑|Γ2∩N2|
j=0 bj(x

k
1x

l
2)

j ;

6 if 0 ̸∈ Γ1 then J ← J ∪
{
(y1, y2) ∈ K2 | y2 =

∑
j bjt

j , with P1(t) =
∑

i ait
i = 0

}
;

7 if 0 ̸∈ Γ2 then J ← J ∪
{
(y1, y2) ∈ K2 | y1 =

∑
i ait

i, with P2(t) =
∑

j bjt
j = 0

}
;

8 if 0 ∈ Γ1 and 0 ∈ Γ2 then J ← J ∪
{
(y1, y2) ∈ K2 | y1 =

∑
i ait

i, y2 =
∑

j bjt
j , where t ∈ K

}
;

9 forall pertinent edges Γ ∈ ∆ such that f |Γ = 0 has solutions in (K∗)2 do
/* Let a1 be the vertex of Γ closer to the origin. Let v be a primitive vector on Γ

starting from a1. We compute a basis for the lattice Z2, (v, w) that spans
positively the polytope ∆− a1. */

10 (v, w)← Compute_Lattice_Basis ;
/* It holds T =

( v1 v2
w1 w2

)
∈ SL(2,Z) and D = det(T ). */

/* We perform the change of variables x1 ← z
w2/D
1 z

−v2/D
2 , x2 ← z

−w1/D
1 z

v1/D
2 . */

11 D ← det(T ) = v1w2 − v2w1 /* Notice that D = ±1, because v, w is a unimodal basis. */

12 g1 ← numer(f1(z
w2/D
1 z

−v2/D
2 , z

−w1/D
1 z

v1/D
2 )− y1) ∈ Z[y1, z1, z2] ;

13 g2 ← numer(f2(z
w2/D
1 z

−v2/D
2 , z

−w1/D
1 z

v1/D
2 )− y2) ∈ Z[y2, z1, z2] ;

14 g ← gcd(g1(y1, z1, 0), g2(y2, z1, 0)) ∈ Z[z1] ;

15 h← det(Jacz(g1, g2)) ∈ Z[y1, y2][z1, z2] ;

16 J ← J ∪ cim_by_resultant(g1, g2, g,K) ;

17 return J ;
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5.1 Characterizing the edges
The first phase of SparseJelonek-2 characterizes the edges (and the corresponding summands),
see Sec. 3.1.2, of the Minkowski sum ∆ = ∆1 ⊕∆2. In particular, it identifies the infinity edges
Γ ≺ ∆ which are either semi-origin or pertinent. The characterization relies on the summands of
Γ, say (Γ1,Γ2). The algorithm for computing the Minkowski sum should check whether dim(Γi)
is zero or not and if Γi contains {0} or not, for i ∈ {1, 2}, see Def. 3.1.

5.2 Computing the multiplicity sets
We consider only the semi-origin and the pertinent edges (Lem. 4.14). For each one them, say
Γ with summands (Γ1,Γ2), the algorithm computes the A-multiplicity set, AFK(Γ), which is a
superset of the T-multiplicity set TFK(Γ). The A-multiplicity set consists of the set of points
y ∈ K2 for which there exists a particular transformation U ∈ SL(2,Z) (see Section 4.1) such
that U(f − y) = 0 has more isolated solutions (counted with multiplicities) in K∗ × {0} than
Uf = 0 has in K∗ × {0} (see Defs. 4.5 and 4.10).

First, we consider the semi-origin edges, Line 4 in SparseJelonek-2 (Alg. 3). For each such
Γ, we deduce from Remark 4.4 that after we restrict f−y to Γ, we obtain univariate polynomials
in a monomial xk

1x
l
2 for some k, l ∈ N; which in turn we consider it as new variable t.

Thus, (f1 − y1)Γ ∈ Z[y1, t] and (f2 − y2)Γ ∈ Z[y2, t], which is a parametric representation
of TFK(Γ); see Lines 6, 7, and 8 of SparseJelonek-2. We can obtain the implicit equation
TFK(Γ) by eliminating the common variable t from the system. The multiplicity set is a point, a
parametrized curve, or a union of lines.

Next, we consider the pertinent edges, Line 9 of SparseJelonek-2. Let Γ ≺ ∆ be pertinent.
First, we transform the polynomials f − y, using a toric change of variables, to g = (g1, g2) ∈
Q[y1, y2][z1, z2], Lines 12 and 13, i.e., g := U(f − y). The change of variables corresponds to a
Γ-basis for A (see Sec. 4.1.) of the lattice Z2, Line 10.

Following Remarks 4.3, 4.4, and Lem. 4.14, the change of basis preserves the number of
the 0-dimensional solutions and results in a simpler system to solve; actually a univariate one,
Line 14.

We consider Γ only if UfΓ = 0 has solutions in K∗ × {0}; (see Remark 4.4 and Lem. 4.14).
This excludes edges Γ that are not semi-origin or not pertinent; see Lem. 4.14. Therefore, g = 0
has solutions (ρ, 0) ∈ K∗×{0} whose multiplicity changes depending on whether y belongs to the
A-multiplicity set or not (Def. 4.5). For each above solution ρ we compute a bivariate polynomial
Jρ ∈ Z[ρ][y1, y2] the zero set of which is a curve Kρ := VK(Jρ) = AF

ρ
K(Γ) ⊂ K2, which the

A-multiplicity set.
If K = C, then TFC(Γ) = AFC(Γ) and the T-multiplicity set is the union of all AF

ρ
C(Γ);

Prop. 4.16. If K = R, then we have to test whether certain distinguished
points, say {p1, . . . , pr}, in AF

ρ
R(Γ) (if any) are in the Jelonek set or not. That is, according to

Cor. 4.21, we subdivide AFρC(Γ)∩R2 into r+1 open intervals separated by points in Df ∩AFρC(Γ),
Sing(AFρC(Γ)), and so to avoid the discriminant and all other multiplicity sets.

If pi belongs to the Jelonek set, then TFR(Γ) contains the interval ℓi ⊂ AF
ρ
C(Γ) ∩ R2. The

union of all such intervals forms TFR(Γ). If pi is not in the Jelonek set, then we ignore this line
segment.

We present Alg. ms_resultant in Sec. 6.1 for computing the multiplicity of a solution of a
bivariate system and the corresponding T-multiplicity sets.
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5.3 Complexity and representation of the output
Let f1, f2 ∈ Z[x1, x2] be polynomials of degree d and bitsize τ . Also, assume that their Newton
polytopes have at most n edges. We go over the various steps of SparseJelonek-2 to estimate
their complexity.

Initial computations. First, we compute the Minkowski sum, Line 3. This costs Õ(n) and results
a polygon with at most O(n) edges at its convex hull. We do this by slighly modifying the well
known optimal algorithm [9, Sec. 13.3] for computing the Minkowski sum of two polygons to
remember the summands of its edge of the sum.

Computations with semi-origin edges. Next, we consider the semi-origin edges of the Minkowski
sum, Line 4 to 8; that is edges having at least one summand containing 0. The most com-
putational expensive operation is the computation of the roots (real or complex) of univariate
polynomials; these are the polynomials P1(t) and P2(t) appearing at Lines 6 and 7. They come
from the restriction of f1 or f2 on Γ and so their degree is at most d and bitsize at most τ . The
computation of their roots (real or complex) costs ÕB(d

3+ d2τ) [34]. As there are at most O(n)
semi-origin edges, the total cost of the first phase is ÕB(n(d

3 + d2τ)).
Regarding the output of this phase, first we assume that K = R. If the real roots of P1 ∈ Z[t]

are γ1, . . . , γr, then whenever 0 ̸∈ Γ2, the output is a union of horizontal lines defined by numbers
in Z[γi], for i ∈ [r]. Similarly for the case 0 ̸∈ Γ1. When both Γ1 and Γ2 contain 0 (Line 8), then
Jf is a parametrized polynomial curve, defined by polynomials in Z[t] of degree at most d and
bitsize at most τ . For K = C, its implicit representation, consists of a polynomial in Z[y1, y2] of
degree at most d and maximum coefficient bitsize Õ(dτ). We compute it in ÕB(d

3τ), e.g., [31].
If K = C and 0 ∈ Γ1 (or 0 ∈ Γ2), then we represent the union of lines in a more unified way by
considering the resultant R2(y) = res(y2 −

∑
j bjt

j , P1(t), t) ∈ Z[y2]. In this way we have the
implicit representation (y1, R2(y)) for Jf whenever K = C and a parametrized one when K = R.

Computations with pertinent edges. The last phase of the algorithm deals with pertinent edges.
The first task consists in computing a unimodular basis that fits our needs Line 10 and Section 4.1.
The most costly part of this procedure is the computation of the Smith Normal Form (SNF) of
matrix. As the degree of the input polynomials is O(d), this also bounds the dimension of the
matrices. The cost of SNF is ÕB(d

ω+1) [39], where ω is the exponent of matrix multiplication.
After the toric change of variables we obtain a univariate polynomials and we compute its

roots. Then, we compute the multiplicity sets by exploiting the multiplicities of the roots of the
corresponding bivariate polynomial system. ms_resultant (Alg. 4) computes the correspond-
ing multiplicity sets in ÕB(d

7 + d6τ) for the complex case and ÕB(d
19.11 + d18.11τ) in the real

case. As there at most n pertinent edges, we should multiply the previous bounds by n to get
the overall cost. The latter bounds dominate the complexity of the algorithm.

Theorem 5.1. Let f = (f1, f2) : K2 → K2 be a dominant polynomial, where f1, f2 ∈ Z[x1, x2] are
polynomials of size (d, τ) and their Newton polytopes have at most n edges. SparseJelonek-2
computes the Jelonek set of f in ÕB(n(d

7+d6τ)) over the complex and in ÕB(n(d
19.11+d18.11τ))

over the real numbers.

If the polynomials are generic, then the complexity bound becomes significantly better.

Corollary 5.2. Let f = (f1, f2) : K2 → K2 be a dominant polynomial, where f1, f2 ∈ Z[x1, x2]
are polynomials of size (d, τ) and their Newton polytopes have at most n edges. If f1 and f2 are
generic, then SparseJelonek-2 computes the Jelonek set of f in ÕB(n(d

3 + d2τ)).

Proof. When the input polynomials are generic, then the Minkowski sum of their Newton poly-
topes does contain a pertinent edge with probability 1. Therefore, the complexity of the algorithm
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depends on the computation of the Minkowski sum and the manipulation of the semi-origin edges.
The latter dominates the complexity bound. Its complexity is ÕB(n(d

3 + d2τ)), as we have to
solve n times a univariate polynomial.

Remark 5.3. The genericity property of the polynomials in Cor. 5.2 is with respect to fixed
Newton polytopes and with respect to non-fixed ones.

5.4 An example
Let ∆ := ∆1 ⊕∆2, where ∆1, and ∆2 are integer polytopes in (R≥0)

2; they appear at the left
hand side of Figure 2. The right hand side illustrates ∆.

We want to compute the Jelonek set Jf of the map f = (f1, f2) : K2 → K2, where

f1 =1 + x1x2 + 2x2
1x

2
2 − 7

10x
2
1x2 − 3x3

1x
2
2,

f2 =1 + 3x1x2 − 4x2
1x

2
2 + 5x3

1x
3
2 − 6x4

1x
4
2 +

37

25x
10
1 x4

2 − 54x6
1x

3
2 +

5103
320 x9

1x
3
2 − x7

1x
2
2 + x4

1x2.

Figure 2 shows that NP(f) = ∆ has exactly six infinity edges; they are either pertinent or semi-
origin (see Def. 3.1). Let S01, S02, S13, S24, S35, S46 ⊂ K2, denote the corresponding multiplicity
sets in K2 (see Def. 4.5) where

Sij := TFK(ai ⊕ bj).

By Thm. 4.15, the union of the latter is Jf . We apply SparseJelonek-2 to compute Jf .

• Edges a0 ⊕ b1, a0 ⊕ b2, and a1 ⊕ b3 are infinity semi-origin an only a0 contains (0, 0).
Therefore, Lines 7 and 8 of SparseJelonek-2 results

S01 ={(y1, y2) ∈ K2 | y1 = 1, 1 + t = 0} = {y1 = 1},
S02 ={(y1, y2) ∈ K2 | y1 = 1, 1− t = 0} = {y1 = 1},
S13 ={(y1, y2) ∈ K2 | y1 = 1− 7t/10, 320 + 5163t = 0} = {y1 − 761/729 = 0}.

• The edge a4 ⊕ b6 is origin, where (0, 0) ∈ a4 and (0, 0) ∈ b6. Then, Line 8 results

S46 ={(y1, y2) ∈ K2 | y1 = 1 + t+ 2t2, y2 = 1 + 3t− 4t2 + 5t3 − 6t4}.

• Edges a2⊕b4, and a3⊕b5 are pertinent. Moreover, the systems f |a2⊕b4 = 0 and f |a3⊕b5 = 0
have solutions in (K∗)2. Then, we apply Lines 10 – 16 to f for both edges. The algorithm
outputs

AFK(a2 ⊕ b4) = {y1 + 1468/18225 = 0} and AFK(a3 ⊕ b5) = {y1 + 6238/10935 = 0},

and the reader can check that TFK(a2 ⊕ b4) and TFK(a3 ⊕ b5) are non-empty when K = R.

6 Computing the multiplicity sets
Let f : K2 → K2 be a dominant polynomial map sending (0, 0) to (K∗)2 and ∆ := NP(f). In this
section we present how to compute the T-multiplicity set, TFK(Γ), corresponding to a pertinent
edge Γ ≺ ∆.
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Following the process of SparseJelonek-2, for a pertinent edge Γ, after we perform a toric
change of variables, we obtain a bivariate polynomial system that has solutions of the form (ρ, 0),
for some complex (or real) ρ, Line 14. Each ρ gives rise to the set AFρK(Γ), where

TFK(Γ) ⊆ AFK(Γ) =
⋃

ρ∈SolK(Γ)

AF
ρ
K(Γ).

The computation of AFρK(Γ) depends on the multiplicity of (ρ, 0). We present an algorithm
ms_resultant, for computing the multiplicity of (ρ, 0) as a root of a bivariate polynomial
system and then use it to compute the multiplicity set AFρK(Γ). The algorithm exploits resultant
computations and its worst case complexity is polynomial.

6.1 Resultant computations for the multiplicity set
The pseudo-code of the algorithm appears in Alg. 4 and its proof of correctness presents the
details of the various steps.

Proposition 6.1. ms_resultant, Alg. 4, correctly computes the A-multiplicity set AFK(Γ) that
corresponds to a pertinent edge Γ ≺ ∆. The result is a (possibly empty) union

⋃
ρKρ of finitely-

many curves Kρ that are the zero loci of polynomials in K[y1, y2], where K ∈ {R,C} and ρ runs
over all points in K∗.

Proof. Let (ρ, 0) be a solution of g1 = g2 = 0, say of multiplicity µ, where gi ∈ Z[y1, y2][z1, z2].
We will exploit the fact that if we project on z1, then ρ is a root of the resultant of multiplicity
at least µ.

We consider the resultant of g1 and g2 with respect to z2. This results a polynomial R1 ∈
Z[y1, y2][z1]. Obviously, ρ is a root of g of multiplicity at least µ, say µ1 ≥ µ. We also know that
R1 factors as R1 = R11R12, where R11 ∈ Z[z1] and R12 ∈ Z[y1, y2][z1]. The presence of the factor
R11 is guaranteed because the system has solutions of the form (ρ, 0). We divide out the factors
of R1 that depend only on z1, that is R11, and we end up with the polynomial R12. If we do the
substitution z1 = ρ to R12, then the resulting polynomial J1 is in Z[ρ][y1, y2] and it is non-zero.
If we want ρ to be of higher multiplicity as a root of R1, then J1 should be zero. Thus, J1 is a
superset of the part of the multiplicity set AFρK(Γ) that emanates from (ρ, 0). Then, we consider
the resultant of g1 and g2 with respect to z1. We proceed as before, mutatis mutandis, where
now the R21 is a power of z2. At the end we compute a superset of the part of the multiplicity
set AFK(Γ) emanating from (ρ, 0).

If we want the solution (ρ, 0) to have multiplicity higher than µ as a solution to the system
g1 = g2 = 0, then both ρ and 0 should be roots of higher multiplicity of the corresponding
resultants, that is R1 and R2, respectively. Thus, the gcd of J1 and J2 should vanish. The latter
is Jρ ∈ Z[ρ][y1, y2] which is the implicit equation of a curve Kρ = AF

ρ
K(Γ) that is the A-multiplicity

set. For the complex case, the A-multiplicity set AFρC(Γ) is the T-multiplicity set TFρC(Γ). For the
real case, following Cor. 4.21, we have to check if a line segment of AFρC(Γ)∩R2 belongs to TF

ρ
R(Γ)

or not.
By repeating the same procedure over all solutions (ρ, 0) of the system g1 = g2 = 0, we obtain

the T-multiplicity set TFR(Γ).

6.1.1 The complexity of the complex T-multiplicity set

Theorem 6.2 (Complexity of ms_resultant over C). Consider the polynomials g1, g2 ∈
Z[y1, y2][z1, z2] which are of degree d with respect to z1 and z2 and of degree 1 with respect to y1 and

24



y2 and bitsize τ . Let g ∈ Z[z1] be of size (d, τ). The bit complexity of ms_resultant(g1, g2, g,C),
Alg. 4, is ÕB(d

7 + d6τ).

Proof. The resultant R1 is a polynomial in (z1, y1, y2) of degree (O(d2),O(d),O(d)) respectively
[1, Prop. 8.49], and bitsize Õ(dτ) [1, Prop. 8.50]. To compute R1 we employ fast subresultant
algorithms, e.g., [31]. We perform Õ(d) operations. Each operation consists of multiplying
two trivariate polynomials in z1, y1, y2; with degrees and bitsize as mentioned before. Each
multiplications costs ÕB(d

5τ) and so the overall costs for computing R1 is ÕB(d
6τ).

To compute R12 we consider R1 as a bivariate polynomial in y1 and y2 with coefficients in
Z[z1] and we compute its primitive part; that is to compute the gcd of all the coefficients and
then divide all of them with it. The coefficients are polynomials in z1 of degree Õ(d2) and
bitsize ÕB(dτ). We can compute their common gcd in ÕB(d

6 + d5τ) with Las Vegas algorithm
[27, Lem. 2.2]. The cost of the exact division is dominated by the cost of this operation. The
polynomial R12 ∈ Z[y1, y2][x1] has degree(s) (O(d2),O(d),O(d)) and bitsize Õ(d2 + dτ).

The same complexity and bitsize bounds hold for the computation of R2 and R22.
The polynomial g is of size (d, τ) and so the cost for solving is ÕB(d

3 + d2τ) [34]. Then, for
each root of g, say ρ, we make the substituion (z1, z2)← (ρ, 0) to obtain the polynomials J1 and
J2 and we compute their gcd, that is J = gcd(J1, J2) ∈ Z[ρ][y1, y2]. The latter is of degree d

with respect to both y1 anf y2. Its coefficients are polynomials in ρ of bitsize Õ(d3 + d2τ). The
expected cost of the gcd is ÕB(d

6 + d5τ) [30], that is almost linear in the size of the output. As
we have to do this at most d times in the worst case, which corresponds to the different roots of
g, the bounds follows for the complex case.

Remark 6.3. For the complex case, we can avoid working with algebraic numbers. We notice
that we perform computations with all the roots of g and so we exploit the Poisson formula of
the resultant. Thus, we first consider the resultant of R12 and g, that is H ← res(R12, g, z1) ∈
Z[y1, y2]; this is the evaluation of R12 over all the roots of g. Then, we consider the gcd with
R22, that is gcd(R22, H) ∈ Z[y1, y2].

The theoretical complexity is same as considering each root independently and perform gcd
computations in an extension field. The gain is that all the output polynomials have integer
coefficients.

6.1.2 Testing the emptiness of TFρR(Γ) and its complexity

Our setting is as follows. Assume that for a pertinent edge Γ ∈ ∆ we have performed the toric
transformation to the system and have computed a real value ρ resulting in a polynomial in
Jρ ∈ Z[ρ][y1, y2] the zero set of which is a curve VR(Jρ) = AF

ρ
R(Γ) ⊂ R2. Let us call this curve

Cρ. The degree of Jρ, with respect to y1 and y2, is O(d) and its coefficients are polynomials in ρ

of bitsize Õ(d3 + d2τ); also the ρ is the real root of a polynomial of size (O(d), Õ(d+ τ)).
First, we check the condition of Thm. 4.22: We pick a point p ∈ Cρ and we compute the

value δ := µρ(p) − µρ(0). Due to the preprocessing procedure, recall that 0 ̸∈ Jf . If δ is odd,
Thm. 4.22 shows that Cρ ⊂ Jf , and we are done. The complexity of this step is dominated by
the complexity of the subsequent steps, so we do not elaborate further.

If Thm. 4.22 does not apply, then we need to consider the intersection points of Cρ with the
discriminant of f , say D. Recall that D is defined by a polynomial in Z[y1, y2] and has size
(Õ(d2), Õ(d2 + dτ)). Consequently, we partition C using these intersection points and we test
which curve segments contribute to the Jelonek set of f .

To do so, we choose a generic point, say p, at each curve segment and we rely on the fact
that the following two conditions are equivalent:
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Algorithm 4: ms_resultant (g1, g2, g,K)

Input : (g1, g2) ∈ (Z[y1y2])[z1, z2], h ∈ Z[z1], K ∈ {R,C}
Require: The g1, g2 are the polynomials we obtain after we apply a toric change of

variables to f1, f2, that corresponds to a pertinent edge Γ of the Minkowski
sum NP(f1)⊕ NP(f2).
The distinct roots of h are ρ1, . . . , ρr, and (ρi, 0) is a solution to the system
g1 = g2 = 0, for all i ∈ [r]. Notice that h(z1) = c

∏r
i=1(z1 − ρi)

µi , where c ∈ Z.
Output : The multiplicity set Mf (Γ) corresponding to a pertinent edge Γ.

1 R1 ← res(g1, g2, z2) ;
/* It holds R1 = R11R12, R11 ∈ Z[z1], R12 ∈ Z[y1, y2][z1] */
/* In particular R11(z1) = c1

∏m
i=1(z1 − ρi)

µ1,i and c1 ∈ Z. */

2 R2 ← res(g1, g2, z1) ;
/* It holds R2 = R21R22, R21 ∈ Z[z2], R22 ∈ Z[y1, y2][z2] */
/* In particular, R21 = zµ2

2 , for some δ2 ∈ N. */

3 TFK(Γ)← ∅ ;
4 if K = R then
5 for every real root ϱ of g do
6 J1 ← subs(z1 = ϱ,R12) ;
7 J2 ← subs(z2 = 0, R22) ;
8 Jρ ← gcd(J1, J2) ∈ Z[ρ][y1, y2] ;
9 Partition V(Jρ) to curve segments based on its topology ;

10 Check which segments contributes to the Jelonek set ;

11 if K = C then
12 H ← res(R12, g, z1) =

∏
g(ρ)=0 R12(ϱ, y1, y2) ∈ Z[y1, y2] ;

13 J ← gcd(R22, H) ∈ Z[y1, y2] ;
14 TFK(Γ)← V(J) ;

15 return TFK(Γ) ;

(C1) The point p is a generic point in Jf .

(C2) There exists a point q ̸∈ Jf outside a small-enough ball in R2 around p such that the
number of real solutions (counted with multiplicities) of f − p = 0 is smaller than the
number of real solutions to f − q = 0.

Partition Cρ to curve segments Our strategy to partition Cρ is as follows. We compute the
topology of Cρ, that is an abstract graph that is isotopic to the curve in R2 [4, p. 184]. Then,
we further refine the graph by considering the intersection points with Df . This algorithm also
provides points on its of the corresponding curve segments.

To compute the topology of Cρ we employ the state-of-the-art algorithm in [10]. Unfortu-
nately, this algorithm considers polynomials with integer coefficients, which is not our case. We
notice that the bottleneck in the algorithm for the computing the topology is the projection on
the coordinate axis and the solutions of univariate polynomials; the solution of which correspond
to the coordinates of the critical points of the curve. The project Cρ on the y1 (or y2 axis) we
consider the resultant of Jρ, and its derivative with respect to y1, we eliminate y2 and we obtain
a polynomial in y1. The projection costs ÕB(d

6τ) [12, Prop. 8]. This results a univariate polyno-
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mial in Z[ρ][y1] of size (Õ(d2), Õ(dτ)). We can solve this polynomial, that have coefficients in an
extension field, in ÕB(d

11+d10τ) [40]. The latter bound dominates the complexity of computing
the topology of Cρ.

Then we need to consider the intersection points of Cρ and Df . This costs less that computing
the topology of Cρ as the latter (implicitly) requires to solve the system of Jρ and its derivatives
and it involves polynomials of higher degree and bitsize than the polynomial defining Df .

At this point we can assume that we have partitioned Cρ to curve segments and we have
computed a generic point at each, say p. One the coordinates is a rational number of bitsize at
most Õ(d7 + d6τ).

Therefore, it suffices to test condition (C2) for a point p in Cρ. To do this, we perform the
following steps.

(S1) We compute a point q = (q1, q2) ∈ R2 such that the segment from p to q does not intersect
any other curve Cρ′ and the discriminant curve of f . The curves Cρ′ correspond to A-
multiplicity sets emanating from other roots ρ′ and/or edges of NP(f). We obtain the
discriminant curve by eliminating x1 and x2 from the equations {f1(x1, x2)−y1, f2(x1, x2)−
y2,det(Jac(f1, f2))}.

(S2) We check whether the systems f − p = 0 and f − q = 0 have the same number of real
solutions. If this is the case, then the curve segment of Cρ that p belongs to does is not
part of the multiplicity set TFR(Γ), following Def. 4.5.

The above three steps are enough for our purposes: The set R2 \Df ∪Jf is a union of connected
components, each of which has a constant number of real preimages under f . A ball B small
enough around a generic point p ∈ Cρ is either included in one of the components of R2 \Df ∪Jf
or intersects exactly two of them. Assume that p ∈ Df .

We conclude from condition (C2) that if we sample two points q and q′, following (S1), then
they belong to two different connected components of R2 \ Df ∪ Jf adjacent to Jf if and only
if the number of real solutions (counted with multiplicities) of the system f − p = 0 is smaller
than that of either f − q = 0, or f − q′ = 0.

There is a straightforward way of realizing the steps to test the where the corresponding
curve segment contributes to the Jelonek set by solving various polynomial systems. Instead, we
will avoid solving systems (as much as possible) and we will rely on (separation) bounds of their
roots [14] to compute the points of interest.

The polynomial Jρ has degree O(d) with respect to ρ, y1, and y2 and its bitsize is O(d3+d2τ)
[30, 30]; the latter follows from the gcd computations in an extension field.

(S1) Compute the intermediate point q One of the coordinates of p is a rational number.
Assume, without loss of generality that this is the second one and its value is c. That is p = (p1, c),
where p1 is a root of Jρ,c ∈ Z[ρ][y1] of degree d and bitsize Õ(d8 + d7τ). Consider the line y2 = c
and the intersection of this line with all the other curves, say Cρ′ with equation Jρ′(y1, y2) that
correspond to other multiplicity sets, and the discriminant curve of f . Let the closest intersection
to p be a point p′. Then it suffices to choose the middle point of the segment p p′. Even more,
we can estimate, using root bounds how close to p the point p′ could be in the worst case. Then
choose a point q that it closest to p with respect to this worst case estimation. Using root bounds,
there is no need to solve the corresponding equations.

Regarding the curves corresponding to multiplicity sets, the polynomials Jρ′ ∈ Z[ρ′][y1, y2]
have degree O(d) and bitsize Õ(d3 + d2τ). Therefore, if we substitute c for y2, we end up with
a polynomial in Jρ′,c ∈ Z[ρ′][y1]; it has degree d andbitsize Õ(d8 + d7τ).
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Figure 5: How to test a curve segment of Cρ contributes to the Jelonek set. The horizontal line
y1 = p1 intersects the other curves of other multiplicity sets. If p′ is the closest intersection to p,
then q is a point in the segment p p′.

Now, we consider the polynomial Jρ,c Jρ′,c ∈ Z[ρ, ρ′][y1]. Then, among its roots are the p1
and the first coordinate of the closest point of Cρ′ to p′, say p′1. Therefore, the separation bound
|p1−p′1| ≥ 2−Õ(d10+d9τ) [41] gives a way to choose (the first coordinate) of the intermediate point
q. Hence, the bitsize of the coordinates of q is Õ(d7 + d6τ).

Consider the system f1(x1, x2)−y1 = f2(x1, x2)−y2 = det(Jac(f1, f2)) = 0. This is a system
of three equations in four variables. If we eliminate x1 and x2, then we obtain a polynomial
D ∈ Z[y1, y2] which is the discriminant of f . It has degree O(d2) and its bitsize is Õ(d2τ). Then,
we work similarly as in the case of the curves that correspond to the multiplicity sets. The
bounds for q are similar.

To summarize, if we add a number of order 2Õ(d10+d9τ) to the coordinates of p, then we obtain
a point q such that the segment p q does not intersect neither any other curve corresponding to
another multiplicity set, nor the discriminant curve.

(S2) Count the number of real roots Having computed the points p = (p1, p2) ∈ Kρ

and q = (q1, q2) it remains to compute the real roots of the systems f(x1, x2) − p = 0 and
f(x1, x2)− q = 0.

The second system consists of polynomials in Z[y1, y2] of degree d and bitsize Õ(d10 + d9τ).
Using [6], we can solve the system and thus compute its real roots in ÕB(d

14.37 + d13.37τ),
using the fastest algorithm for matrix multiplicaiton.

The polynomials of the first system have coefficients in an extension field. Recall that p1 =

c ∈ Z, where c ≤ 2Õ(d7+d6τ) and p2 is a root of a polynomial Jρ(c, y1) ∈ Z[ρ][y1] and ρ is a real
root of the polynomial g(z1) = 0. Thus, we can compute the real roots of f(y1, y2) − p = 0 by
computing the real solutions of the system

f1(x1, x2)− y1 = f1(x1, x2)− c = Jz1(c, y1) = g(z1) = 0.

This is a system of four equations in four unknowns, that is x1, x2, y1, z1. The degree of the
polynomials is bounded by O(d) and their bitsize is Õ(d7 + d6τ). We can solve this system in
ÕB(d

22.11 + d21.11τ) [6]. The latter bound dominates the complexity of the overall procedure.

Lemma 6.4. The complexity of testing emptiness of TFρR(Γ) is ÕB(d
22.11 + d21.11τ).
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Theorem 6.5 (Complexity of ms_resultant over R). Consider the polynomials g1, g2 ∈
Z[y1, y2][z1, z2] which are of degree d with respect to z1 and z2 and of degree 1 with respect to y1 and
y2. Let g ∈ Z[z1] be of degree d and bitsize τ . The bit complexity of ms_resultant(g1, g2, g,R),
Alg. 4, ÕB(d

22.11 + d21.11τ).

7 Implementation
We have implemented in maple a prototype version of our algorithm for computing the Jelonek
set, SparseJelonek-2 (Alg. 3). We have also implemented Jelonek’s algorithm [21] (Alg. 2).
Our code also uses convex [17] to perform some polyhedral computations and to multires2 to
perform some polynomial manipulations.

A sample use of our software to compute the Jelonek set of the polynomials (f1, f2) =
1+xy+2x2y2− 7x2y/10− 3x3y2, g := 1+3xy− 4x2y2+5x3y3− 6x4y4+37x10y4/25− 54x6y3+
5103x9y3/320 + x7y2 + x4y) is as follows:

r e s t a r t ;
l ibname := "path to convex l i b r a r y " , l ibname :
with ( convex ) :
read ("/ path to / mu l t i r e s . mpl " ) :
read ("/ path to / Je lonek . mpl " ) :
f := 1 + x∗y+2∗x^2∗y^2 −7∗x^2 ∗y/10 − 3∗x^3∗y^2;
g := 1+3∗x∗y−4∗x^2∗y^2+5∗x^3∗y^3−6∗x^4∗y^4+3^7∗x^(10)∗y^4/2^5

−54∗x^(6)∗y^3+5103∗x^(9)∗y^3/320+x^7∗y^2+x^4∗y ;
SJ := Sparse_Jelonek_2 :
SJ:− i n i t ( [ f , g ] ) ;
SJ:−compute ( ) ;

The output is
−150304 + 349920y1 = 32(10935 y1 − 4697)

To compute using Jelonek’s algorithm, we type

Jelonek_2 ( [ f , g ] , u , v ) ;

The output is

− 1
64000 (4428675 y1 − 4071951)(729 y1 − 761)(y1 − 1)2(10935 y1 − 4697)

(9 y1
4 − 32 y1

3 + 12 y1
2y2 + 5 y1

2 + 19 y1y2 + 4 y2
2 − 35 y1 − 25 y2 + 43)

As we can see, it contains a superset of the Jelonek set.
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