
HAL Id: hal-04223511
https://hal.science/hal-04223511

Submitted on 29 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomized geometric tools for anomaly detection in
stock markets

Cyril Bachelard, Apostolos Chalkis, Vissarion Fisikopoulos, Elias Tsigaridas

To cite this version:
Cyril Bachelard, Apostolos Chalkis, Vissarion Fisikopoulos, Elias Tsigaridas. Randomized geometric
tools for anomaly detection in stock markets. 26th International Conference on Artificial Intelligence
and Statistics (AISTATS), Apr 2023, Valencia, Spain. �hal-04223511�

https://hal.science/hal-04223511
https://hal.archives-ouvertes.fr


Randomized geometric tools for anomaly detection in stock markets

Cyril Bachelard Apostolos Chalkis Vissarion Fisikopoulos Elias Tsigaridas
Faculty of Business

and Economics,
Dept of Operations

Univ of Lausanne, Switzerland

Quantagonia,
and GeomScale Org

Department of Informatics
& Telecommunications

National & Kapodistrian
University of Athens,
and GeomScale Org

Inria Paris and IMJ-PRG
Sorbonne Université
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Abstract

We propose novel randomized geometric tools
to detect low-volatility anomalies in stock mar-
kets; a principal problem in financial economics.
Our modeling of the (detection) problem results
in sampling and estimating the (relative) volume
of geodesically non-convex and non-connected
spherical patches that arise by intersecting a non-
standard simplex with a sphere. To sample, we
introduce two novel Markov Chain Monte Carlo
(MCMC) algorithms that exploit the geometry
of the problem and employ state-of-the-art con-
tinuous geometric random walks (such as Bil-
liard walk and Hit-and-Run) adapted on spheri-
cal patches. To our knowledge, this is the first
geometric formulation and MCMC-based analy-
sis of the volatility puzzle in stock markets. We
have implemented our algorithms in C++ (along
with an R interface) and we illustrate the power
of our approach by performing extensive exper-
iments on real data. Our analyses provide ac-
curate detection and new insights into the distri-
bution of portfolios’ performance characteristics.
Moreover, we use our tools to show that classical
methods for low-volatility anomaly detection in
finance form bad proxies that could lead to mis-
leading or inaccurate results.

1 INTRODUCTION

We consider two fundamental problems from Computa-
tional Geometry and Financial Economics through the lens
of efficient sampling from high dimensional (truncated)
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distributions. The geometrical problem involves the com-
putation of volume of and sampling from non-convex and
possibly disconnected spherical patches arising by the in-
tersection of a non-standard simplex with a sphere. The ab-
sence of convexity and the presence of multiple connected
components make the problem very challenging from an
algorithmic and implementation point of view. Both sam-
pling and volume estimation have a wide range of appli-
cations both in (computational) statistics, e.g., Friel and
Wyse (2012); Fong and Holmes (2020); Gelman and Meng
(1998) but also across the whole range of science and en-
gineering, e.g., systems biology Chalkis et al. (2021) and
robotics Althoff et al. (2011), to mention few of them.

The geometric viewpoint has a financial interpretation,
which is the set of portfolios, i.e., investments in a col-
lection of stocks, having a certain risk level. Thus, our
motivation to solve this (of independent interest) geometri-
cally hard problem emanates from questions on the feasible
space of investable portfolios obeying certain regulatory
and risk related constraints. The fundamental (and long-
standing) economic question we address is on the relation
between risk and return: do assets with higher risk levels
provide higher returns, as suggested by economic theory,
or is there an empirically observable anomaly?

Contributions. We contribute to the literature on the low-
volatility anomaly via a novel methodology to generate
risk-sorted portfolios in high dimensions. Our approach
directly samples uniformly distributed long-only portfo-
lios having a certain level of volatility, which considers
correlations and provides insights into the distribution of
portfolios’ performance statistics. Our empirical applica-
tion of the geometric approach shows how the distributions
of portfolios’ performance statistics vary with the ex-ante
volatility level and where the performance statistics of the
standard sorting-based approach reside: are they close to
the modes or outlying? Given that we find sorting-based
results which are strong outliers wrt the distribution of
sampling-based statistics, we conclude that the classical
sorting-based portfolios form bad proxies and one should



Randomized geometric tools for anomaly detection in stock markets

Figure 1: Left: Feasible set and iso-volatility lines in risk-return
space. The grey area represents the set of feasible portfolios. Iso-
volatility level sets form vertical lines and are color-coded by in-
creasing variance from green to red. The blue curve highlights the
set of Pareto-efficient portfolios in the trade-off between risk and
return. The part above the minimum variance portfolio (light blue
dot) is called the efficient frontier. Right (our settings): Feasible
set and iso-volatility curves in asset weights space. The grey area
depicts the simplex of feasible portfolios. Iso-volatility level sets
form ellipsoidal curves, again color-coded by increasing variance
from green to red. The blue line, called the critical line, high-
lights the set of Pareto-efficient portfolios in the trade-off between
risk and return. The minimum variance portfolio, again illustrated
with a light blue dot, forms the centroid of the 2-dimensional iso-
volatility ellipses and indicates the point where the 3-dimensional
ellipsoid centred at the origin touches the simplex.

be careful to base inference on them.

We introduce a geometric modeling of the financial prob-
lem and develop efficient randomized geometric tools to
compute with. First, we apply proper linear transforma-
tions to end up operating on the intersection of the unit ball
with an arbitrary full-dimensional simplex. Then, we sam-
ple at the intersection and apply the inverse transformation
to obtain volatility-constrained portfolios. We develop two
new geometric random walks to sample from such spheri-
cal, geodesically, non-convex, and non-connected patches
according to any given probability distribution. We also
design a new MMC scheme to estimate the volume of a
spherical patch. That is a practical randomized method
based on simulated annealing and sampling from the Von-
Mises Fischer distribution. Our MMC scheme general-
izes and extends existing randomized volume approxima-
tion schemes Cousins and Vempala (2015). Last but not
least, we offer an efficient open-source implementation in
C++ with interface in R (see Section 3 for details).

1.1 Geometry, methodology, challenges

It is common in finance and economic literature to repre-
sent financial terms geometrically Markowitz (1992). In
our setting, we estimate the covariance matrix from his-
torical data and set several volatility levels that define a
sequence of concentric ellipsoids intersecting the standard

simplex that represents the set of all feasible portfolios (see
Figure 1). By sampling independently and uniformly from
each intersection, we obtain sets of volatility-constrained
portfolios. Then, by computing the future returns for each
sample we then capture the dependency between portfolio
volatility and future portfolio return using several statisti-
cal tools from quantitative analysis. Note that one could
directly extend this approach to capture the dependency be-
tween volatility and other portfolio scores.

From a geometric point of view, the intersection between
the canonical simplex and the boundary of an ellipsoid in
Rd is a (d−1)-dimensional (geodesically) non-convex and
non-connected body (Figure 3). Sampling from such a set
is a very challenging problem. An additional challenge,
in our case, comparing to existing work on manifold sam-
pling, comes from non-connected-ness i.e., we have to esti-
mate the volume of each connected part to achieve uniform
sampling.

Our approach to sample from such a set relies on Markov
Chain Monte Carlo (MCMC) sampling while uses efficient
practical Multiphase Monte Carlo (MMC) volume approx-
imation to sample from disconnected regions from the cor-
rect distribution.

In previous approaches, quantile or MV portfolios corre-
sponds to points belonging to the boundary of the set of
constrained volatility portfolios. In particular, they lie on
the intersection between several facets of the simplex and
the boundary of the ellipsoid. Hence, the volume of the
region around those portfolios is typically small, i.e., it is
unlikely to be visited by the random walk. Thus, it is likely
that the analysis of the volatility puzzle with those portfo-
lios can done using outliers in our statistical framework.

High-dimensional sampling from multivariate distributions
with MCMC algorithms is a fundamental problem with
many applications in science and engineering Iyengar
(1988); Somerville (1998); Genz and Bretz (2009); Schel-
lenberger and Palsson (2009); Venzke et al. (2021). In
particular, multivariate integration over a convex set and
volume approximation of such sets —a special case of
integration— have accumulated a broad amount of effort
over the last decades. Nevertheless, these problems are
computationally hard if we want to solve exactly in gen-
eral dimension Dyer and Frieze (1988).

MCMC sampling algorithms have made remarkable
progress in solving efficiently the problems of sampling
and volume approximation of full-dimensional convex
bodies in Rd while enjoying great theoretical guaran-
tees Chen et al. (2018); Lee and Vempala (2018); Man-
goubi and Vishnoi (2019). Sampling from the boundary of
a convex body has also been studied Dieker and Vempala
(2015). However, these algorithms could not be used in our
setting since they are focused either on full-dimensional
convex bodies or on sampling from the entire boundary of
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(a) Intersection of the ellipsoid with
the unit simplex (b) Transformed intersection

(c) Uniform points on the trans-
formed intersection

(d) Uniformly distributed
points on the ellipsoid

Figure 2: Illustration of the various phases of the algorithm: Initially, from the data we build the covariance matrix; this
corresponds to an ellipsoid. Then we consider the intersection of the unit simplex with the ellipsoid; this intersection is the
red curve in Fig. 2a. Then, we transform the ellipsoid to the unit sphere (one dimension lower); red curve in Fig. 2b. Next,
we sample points from the intersection of the unit sphere with the (transformed) simplex (orange points in Fig. 2c). Finally,
we apply the inverse transformation to map back the sampled points to the original ellipsoid (orange points in Fig. 2d).
The latter correspond to (samples of) volatility constrained portfolios.

Figure 3: Three examples in R3 of the body K = S2 ∩∆ (the unit sphere intersected by the interior of a simplex) that we sample from.
In general, K is a non-connected and geodesically non-convex body in Rd.

a convex body instead of a part of it (as in our case).

Manifold sampling is a well-studied problem Narayanan
and Niyogi (2006); Diaconis et al. (2013) with various ap-
plications, e.g., in machine learning Byrne and Girolami
(2013). Of special interest is the case where the mani-
fold is a hyperpshere Davidson et al. (2018); Grattarola
et al. (2019); Reisinger et al. (2010). Moreover, sampling
efficiently on constraint manifolds is a core problem in
robotics Ortiz-Haro et al. (2021). Finally, in Cong et al.
(2017) they propose a method for sampling multivariate
normal distributions truncated on the intersection of a set
of hyperplanes.

From a practical perspective, theoretical sampling algo-
rithms cannot be applied efficiently for real-life computa-
tions. For example, the asymptotic analysis by Lovász and
Vempala (2006) hides some large constants in the complex-
ity, and in Lee and Vempala (2018) the step of the random
walk used for sampling is too small to be an efficient choice
in practice. Recently, practical volume algorithms have
been designed by relaxing the theoretical guarantees and
applying new algorithmic and statistical techniques; they
are very efficient in practice and they also guarantee high
accuracy results Emiris and Fisikopoulos (2014); Cousins

and Vempala (2016); Chalkis et al. (2019). The most re-
cent addition to this list is Chevallier et al. (2022) that is
numerically robust and exploits a Piecewise Deterministic
Markov Process.

Volume computation and uniform sampling have been
shown to have useful applications in finance for crises de-
tection Calès et al. (2018) and efficient portfolio allocation
and analysis Pouchkarev et al. (2004); Hallerbach et al.
(2002). In Chandrasekaran et al. (2010) they propose a
polynomial-time algorithm for the more general problem
of sampling and volume computation of star-shaped bodies,
an important non-convex generalization of convex bodies.

In Abbasi-Yadkori et al. (2017) they prove that Hit-and-
Run mixes fast in a more general setting that includes star-
shaped bodies and spiral bodies appearing in motion plan-
ning. For the more general problem of approximating the
volume of basic semi-algebraic sets (that is a set defined
by a disjunction of polynomial equalities and inequalities)
based on the so-called Moment-SOS hierarchy we refer the
reader to Tacchi et al. (2020, 2022).
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1.2 (brief) Financial background

It has long been recognized that the capital asset pricing
model (CAPM), a cornerstone of financial economic theory
and the workhorse model of classical capital market the-
ory, independently developed by Sharpe (1964) and Lintner
(1965) and Mossin (1966), does not do justice in explain-
ing the complexity of real world market dynamics. Con-
trary to the equilibrium model’s predicted simple positive
linear relation between risk and expected return, higher risk
is not generally rewarded with higher return in global stock
markets. According to the CAPM, the return one should
expect from an investment depends solely on the riskiness
of the investment relative to a single factor which is the
overall market. Investments which bear higher risk than
the market portfolio should pay out a higher return in ex-
pectation, i.e., a risk premia. However, Haugen and Heins
Haugen and Heins (1975) were the first to recognize that
risk does not generate a special reward following the early
warning signs from Black et al. (1972), Miller and Scholes
(1972) and Fama and MacBeth (1973). Their finding has
subsequently been confirmed by Fama and French (1992)
and Black (1973). Further studies have found a wealth
of anomalies, i.e., systematic and persistent deviations of
empirical observations from model prediction, e.g., Banz
(1981); Rosenberg et al. (1985); Jegadeesh and Titman
(1993); Asness et al. (2019). Even more, the outperfor-
mance of low-volatility stocks compared to high-volatility
stocks has been shown to be robust among different mar-
kets, industries and sub-periods Blitz and van Vliet (2007),
Blitz et al. (2013), Baker and Haugen (2012), van Vliet and
de Koning (2017), Blitz et al. (2019), Walkshäusl (2014).

We refer the interested reader to the supplementary material
where we present a more detailed overview of the financial
background that help us to obtain accurate description of
the various mathematical, algorithmic, and computational
problems that we need to address.

2 GEOMETRIC MODELING AND
ALGORITHMS

We introduce the geometric modeling of long-only
volatility-constrained portfolios, we develop two sampling
algorithms, and an MMC scheme for volume approxima-
tion. We denote a full dimensional (convex) body with a
capital letter and if applicable with an index we denote its
dimension; e.g., the unit ball in Rd is Bd. For lower dimen-
sional, possibly (geodesically) non-convex, bodies we use
a calligraphic letter; e.g., Sd−1 is the (d − 1) dimensional
sphere in Rd. Usually, they subsets of the boundary of a
full-dimensional convex body.

2.1 Geometric modeling

In finance, a portfolio is a collection of assets. Each portfo-
lio allocates a percentage of a given budget to every asset.
Thus, in our setting, the set of long-only portfolios, is the
canonical d-dimensional simplex ∆d := {x ∈ Rd+1 | xi ≥
0,

∑d+1
i=1 xi = 1} ⊂ Rd+1, where each point represents a

portfolio and d+1 is the number of assets. The vertices rep-
resent portfolios composed entirely of a single asset. The
portfolio weights, i.e., the fractions of investment for each
asset, are non-negative and sum up to 1. Notice that ∆d is
a d-dimensional body that lies in Rd+1; that is, it is a lower
dimensional body.

Given a vector of assets’ returns R ∈ Rd+1 and a portfolio
x ∈ ∆d, the return of x is fret(x,R) = RTx. Similarly,
for a positive definite covariance matrix Σ ∈ R(d+1)×(d+1)

of the distribution of the assets’ returns, let the portfolio
volatility be fvol(x,Σ) = xTΣx. Thus, to model portfo-
lios’ volatility we employ ellipsoids intersecting ∆d, i.e.,

Ecd∩∆d = {x ∈ ∆d | xTΣx = c, c ∈ R+} ⊆ Rd+1, (1)

corresponds to the portfolios with volatility c. Notice that
portfolios, that is the points, that belong to the (centered at
the origin) ellipsoid, Ecd := {x ∈ Rd+1 | xTΣx = c, c ∈
R+} ⊆ Rd+1, achieve volatility equal to c. The portfolios
in the interior of Ecd achieve lower volatility, while those in
the complement of Ecd achieve higher volatility than c.

Geodesics on ellipsoids (as distinct from spheres) are not,
in general, closed. That is, while we can compute geodesics
on a sphere by exploiting spherical trigonometry, this is not
the case for ellipsoids where one has instead to solve dif-
ferential equations Karney (2012). Thus, for efficiency, we
map the ellipsoid Ecd onto the unit hypersphere Sd−1 ⊂ Rd

and we apply the same transformation to the simplex ∆d

to obtain a full-dimensional simplex ∆ ∈ Rd. In particu-
lar, first, we use an orthonormal basis that spans the linear
subspace that ∆d lies on to obtain both an ellipsoid and
a simplex in Rd. Then, we transform the latter ellipsoid
into Sd−1 and use this transformation to obtain a simplex
∆ ∈ Rd. Therefore, instead of sampling from Ecd ∩∆d, we
sample fromK := Sd−1∩∆. We can use the inverse trans-
formations to obtain uniformly distributed portfolios with
volatility c as the transformation is isometric, e.g., Chalkis
et al. (2021).

In general, K is a set of geodesically non-convex1 spher-
ical surface patches (see Figure 3 for a few examples).
We call these patches the (connected) components of K;
we denote them by Ki, i ∈ [M ], where M is their car-
dinality. To sample uniformly from K, we sample uni-
formly from each component according to its relative vol-

1A subset C of a surface is geodesically convex set if, given
any two points in C, there is a unique minimizing geodesic con-
tained within C that joins those two points. A geodesic represents
the shortest path or arc between two points on a surface.
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ume. In particular, first we sample u ∼ U(0, 1). After-
wards, if u ∈ [

∑m
i=1 wi,

∑m+1
i=1 wi], for some m < M ,

then we sample a uniformly distributed point from Km,
where wi = vol(Ki)/vol(K), i ∈ [M ] is the relative vol-
ume of the i-th component.

To identify and represent the components of K we use the
vertices and the edges of ∆. In particular, we consider the
1-skeleton of ∆ i.e. the graph whose vertices are the ver-
tices of ∆, with two vertices adjacent if they form the end-
points of an edge of ∆. Note that in the case of ∆ the 1-
skeleton is a clique. We identify the edges of ∆ that Sd−1

intersects and remove them from the 1-skeleton. We also
identify the vertices of ∆ that lie in the interior of Sd−1 and
remove them as well as their adjacent edges. We denote the
resulting graph by G. There is a bijection between the con-
nected components of G and the connected components of
K. Thus, we represent each connected component of K us-
ing the set of vertices of the corresponding connected com-
ponent of G. To decide if a given point p ∈ Sd−1 belongs
to a certain component of K we develop a membership or-
acle. One call costs O(d2) operations.

2.2 Sampling from a connected component of K

We introduce two geometric random walks, namely the
Great Cycle Walk and the Reflective Great Cycle Walk,
to sample from a (connected) component of K. To design
these algorithms we employ the geodesics of Sd−1. Note
that the great circles on the Sd−1 are the intersection of the
Sd−1 with 2-dimensional hyperplanes that pass through the
origin in the Rd. These great circles are the geodesics of the
Sd−1 Byrne and Girolami (2013).

Great Cycle Walk (GCW) is a random walk to sample from
any probability density function π(x) supported on a con-
nected component ofK. GCW generalizes the Hit-and-Run
sampler Bélisle et al. (1993) on a spherical patch. At each
step, GCW starts from a point p ∈ K and picks uniformly a
great cycle ℓ of Sd−1 passing through p. Then, it computes
the part of the great cycle that lies in K and contains p. It
samples a point from that part of ℓ according to πℓ to set the
next Markov point, where πℓ is the restriction of π on ℓ. We
prove (Theorem 6) that the (unique) stationary distribution
of this algorithm is π and moreover, that GCW converges
to π from any starting point in K.

GCW (at each step) chooses uniformly a great cycle pass-
ing from a point p by sampling uniformly at random a unit
vector v from the hypersphere Sd−1 restricted to the hy-
perplane Hp := {x ∈ Rd | pTx = 0}. The parametric
equation of the great cycle is

ℓ(θ) := {p cos θ + v sin θ, θ ∈ [−π, π]}. (2)

We compute v by sampling uniformly at random a point u

in Sd−1 ∩Hp and setting

v =
(Id − ppT )u

∥(Id − ppT )u∥2
, (3)

where Id is the d × d identity matrix. In this way, v is the
normalized projection of u on the hyperplane Hp and it is
uniformly distributed in Sd−1.

GCW computes the connected part of ℓ(θ) that lies in ∆
and contains p by computing the intersection of ℓ(θ) with
each facet of ∆. For this, it computes the smallest positive
and the largest negative solution of the following equations,

aTj ℓ(θ) = bj ⇐⇒ aTj xi cos θ + aTj vi sin θ = bi, (4)

with θ ∈ [−π, π], j ∈ [d + 1], where aj ∈ Rd

are normal vectors of the facets of ∆. Let zj =

bj/
√
(aTj xi)2 + (aTj vi)

2. If zj ∈ [−1, 1], then the values
of θ that correspond to the intersections are

θ−j , θ
+
j = ± cos−1(zj) + tan−1(

aTj vi

aTj p
). (5)

Otherwise, the great cycle does not intersect with the j-
th facet. Thus, GCW keeps θ+ = min

j≤m
{θ+j } and θ− =

max
j≤m
{θ−j } and the intersections are ℓ(θ+) and ℓ(θ−), resp.

ALGORITHM 1: GCW(∆, p, π)

Input : Simplex ∆; point p; PDF π.
Require: Sd−1 ∩∆ ̸= ∅; point p ∈ K = Sd−1 ∩∆
Output : Next Markov point in K
Pick a uniform vector v from Sd−1 ∩ {x ∈ Rd | pTx = 0};
Let the great cycle ℓ(θ) := {p cos θ + v sin θ, θ ∈ [0, 2π]};
Let (θ−, θ+) the values s.t.
ℓp(θ) := {p cos θ + v sin θ, θ ∈ [θ−, θ+]} is the part of
ℓ(θ) ∩∆ that contains p;

Pick θ̃ from ℓp(θ) according to πℓ;
return p cos θ̃ + v sin θ̃;

Theorem 1. The stationary distribution of Alg. 2,
CGW(∆, p, π), where the starting point p belongs to K,
is π for any starting point p in K.

Finally, ∆ has d facets while the computations of the in-
tersection of ℓ(θ) with a facet of ∆ takes O(d) arithmetic
operations. Thus, the cost per step is O(d2) operations.

GCW can also be used to sample uniformly from a compo-
nent of K. However, we also propose Reflective Great Cy-
cle Walk that exploits boundary reflections and has superior
practical performance compared to GCW for uniform sam-
pling. We provide details in the supplementary material,
while a pictorial overview of the algorithm is in Fig. 7.
Theorem 2. The Reflective Great Cycle Walk has a unique
stationary distribution, which is the uniform distribution; it
converges from any starting point.
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Figure 4: An illustration of the reflection of the ReGCW. The
orange trajectory, starting from the black point, hits the boundary
of the component defined by the intersection of the sphere with
the green hyperplane (red point). The blue hyperplane is the tan-
gent space at the intersection point. The resulted trajectory is in
magenta.

2.3 Practical volume approximation

At a high level, our method is based on that of Lovász and
Vempala (2006); Cousins and Vempala (2015) and on the
practical variant Cousins and Vempala (2016). However,
those algorithms are designed for full dimensional bodies
in Rd. Thus, we have to make the necessary practical ad-
justments to develop a practical volume estimation method.
Since in our case we estimate the volume of geodesically
non-convex spherical patches we do not have most of the
theoretical guarantees appeared in previous work Lovász
and Vempala (2006); Cousins and Vempala (2015). In par-
ticular, given a connected component Ki, i ∈ [M ], for any
sequence of k functions fj : Sd−1 → R+, j ∈ [k] we con-
sider the following representation of vol(Ki), for i ∈ [M ],

vol(Ki) =

∫
Ki

fkdx

∫
Ki

fk−1dx∫
Ki

fkdx
· · ·

∫
Ki

dx∫
Ki

f1dx
(6)

=
( 1∫

Ki
fkdx

∫
Ki

fkdx∫
Ki

fk−1dx
· · ·

∫
Ki

f1dx∫
Ki

dx

)−1

,

while we prefer the right hand of (6) for reasons we ex-
plain in the sequel. We set each fj to be proportional to
the von-Mises Fischer (vMF) distribution, i.e., fj(x) =

eaj(µ
T x), x, µ ∈ Sd−1, aj > 0, where µ is the mean and

aj is the inverse of the variance. The vMF distribution is
the restriction of the spherical Gaussian distribution on the
hypersphere Sd−1 Mardia (1975).

In our case, we cannot guarantee that the mass of the dis-
tribution corresponding to αk is almost inside Ki; thus,
we start from the uniform distribution and then decrease
the variance until we reach a distribution with sufficiently
small variance. To terminate, at each step of our schedule,
we sample from fj and we probabilistically bound the pro-
portion of the mass outside Ki exploiting Bernoulli trials.

By standard error analysis Jeter (2005), to estimate vol(Ki)

within relative error ϵ it suffices to estimate each integral ra-
tio in (6) within error ϵk = O(ϵ/

√
k) while the

∫
Ki

fkdx is
computed within an error ϵ0 < ϵ. To estimate each integral

ratio within ϵk,let Yj =

∫
Ki

fjdx∫
Ki

fj−1dx
=

∫
Ki

fj
fj−1

fj−1∫
Ki

fj−1dx
.

Then, we use GCW to generate N random samples from
a distribution proportional to fj−1 and restricted to Ki and
we estimate each integral ratio using the following estima-
tor Rj = 1

N

∑N
l=1

fj(xl)
fj−1(xl)

, while E[Yj ] = lim
N→∞

Rj . Us-

ing Chebyshev’s inequality, when V ar[Yj ]/E[Yj ]
2 ≤ 1 we

guarantee that N = Õ(1) points suffice to approximate Yj

within relative error ϵk Cousins and Vempala (2015).
Fixing the sequence. In Cousins and Vempala (2015)
they prove that when fj are Gaussian functions in Rd,
if αj = αj−1(1 + 1

d ), then V ar[Yj ]/E[Yj ]
2 ≤ 1. To

the best of our knowledge it is unclear if the Lemma 3.2
in Cousins and Vempala (2015) can be extended in our
framework. To fix the sequence of variances we define the
following practical annealing schedule based on the prac-
tical techniques in Cousins and Vempala (2016). We set
αj = αj−1(1 +

1
d )

r, r ∈ R+. Then, we sample N ′ points
with GCW from fj−1 and we search for the maximum r
s.t. the ratio of the variance over the square of the average
value of fj/fj−1 evaluated on this sample lie in an inter-
val [1 − δ, 1] for a predefined small value of δ. To esti-
mate the desired value of r we binary search in an interval
rmin, rmax, where rmin = 0 and rmax is found by setting
rmax = 2n and n the smallest integer s.t. the average value
of the ratio fj/fj−1 with αj = αj−1(1 +

1
d )

rmax is larger
than 1. Following Cousins and Vempala (2016) we set N ′

for computations, and thus, we choose the value 1200+d2.
First variance. To compute α1 we set α0 = 0 and we
use N ′ uniformly distributed points in Ki generated by
ReGCW. Then, we binary search for α1 from a proper in-
terval s.t. the average ratio between f1 and the uniform dis-
tribution is smaller than 1.
Last variance. To stop we compute a large enough αk s.t.
almost the entire mass of the distribution proportional to
fk and restricted to Ki is inside Ki, i.e., for a predefined
ϵ0 we have,

∫
Ki

fkdx = (1 − ϵ0)
∫
Sd−1

fkdx with high
probability. To achieve this objective, when we compute a
new fj , we sample ν points from the corresponding exact
vMF distribution supported on Sd−1 using the algorithm
in Kurz and Hanebeck (2015) and we stop when less than
ϵ0ν points are outside Ki. Clearly, from Hoeffding’s in-
equality ν = O(log( 1

1−ζ )
/
ϵ20) points suffices to guarantee

that
∫
Ki

fkdx ≥ (1−ϵ0)
∫
Sd−1

fkdx with probability 1−ζ.
In practice, ϵ0 = 0.05.
Ratio convergence. If the points generated by GCW were
independent, then we would use the theoretical bound on
N , derived from Chebyshev’s inequality in Cousins and
Vempala (2015) to estimate each integral ratio. How-
ever, these samples are correlated and thus, we use the
same convergence criterion as in Cousins and Vempala
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(2016). In particular, for each point, we update the
value of the integral ratio and we store the last values
on a sliding window W . We declare convergence when,
(max(W )−min(W ))/min(W ) ≤ ϵk/2, where max(W )
and min(W ) correspond to the maximum and minimum
values of the sliding window respectively. As in Cousins
and Vempala (2016) it is unclear how to obtain a good
bound on the probability of failure with relation to the
window size. To set the length of the sliding window, as
in Cousins and Vempala (2016), we set it 4d2 + 500.
Sampling from a segment. To sample from the latter
univariate distribution we use Metropolis-Hastings algo-
rithm Chib and Greenberg (1995) (see section 3).

3 IMPLEMENTATION, EXPERIMENTS,
RESULTS

We present the implementation of our algorithms and the
tuning of various parameters. We provide a complete open-
source software framework 2 to address low-volatility de-
tection in stock markets with hundreds of assets. We will
make our code publicly available. The core of our im-
plementation is in C++ to optimize performance while
the user interface is implemented in R. The package em-
ploys eigen Guennebaud et al. (2010) for linear algebra,
boost Maurer and Watanabe (2017) for random number
generation, and expands volesti Chalkis and Fisikopou-
los (2021), an open-source library for high dimensional
MCMC sampling and volume approximation. In our soft-
ware we also use the package LogConcDEAD Cule et al.
(2009) to fit logconcave distributions for the analysis of the
samples generated by our random walks (see below in this
section). Last but not least, to obtain an efficient implemen-
tation for our methods we introduce an efficient parameter-
ization. For reasons of space, we present part of our results,
experiments, and analysis in this section. We refer the sup-
plementary material for further details.

Construction of volatility-constrained random portfo-
lios and backtesting framework. To perform experiments
we construct volatility-constrained random portfolios. In
particular, we sample to construct sets of portfolios having
a predefined variance and investigate whether the out-of-
sample performance of so constructed portfolios varies in a
systematic way with the variance level (do portfolios with
higher variance deliver higher, lower, or equal returns?).
Out-of-sample means that we analyze the future (ex-post)
performance of portfolios formed with volatility targets de-
rived from past (ex-ante) stock price information and that,
at every point of the back-testing procedure, we only use
information that was effectively available at that point in
time. Starting in March 2002, the earliest possible date for
our data set described below, the implementation consists
of a three-step process that is applied initially and repeated

2https://zenodo.org/record/7198256

every three months in order to account for new informa-
tion about stock risks and index composition. The three
steps are data cleaning, covariance estimation, and sam-
pling. In total, the quarterly reviews amount to 80 time
points where portfolios are rebuilt by first, cutting out a his-
torical data sample of five years of cleaned weekly returns
to estimate the covariance matrix which defines the ellip-
soidal portfolio-variance level sets. Our choice of estima-
tor is the non-linear shrinkage estimator Ledoit and Wolf
(2020) which has been shown to possess desirable proper-
ties in large-dimensional setups and is guaranteed to pro-
duce non-singular matrices and thus non-degenerate ellip-
soids. Given the covariance matrix, five variance targets
are computed from volatility-sorted quintile portfolios with
equal weighting of within-quintile assets. From each of the
five volatility level sets, 1 000 portfolios are sampled3. The
investments are held over the following three months until
the process is repeated. Ultimately, we arrive at a total of
5 000 backtested portfolio price paths capturing the prof-
its and losses endured over a period spanning from March
2002 to Dec 2021 by randomly concatenating time series
within each volatility cluster at the 80 rebalancing dates.
The entire procedure is repeated several times to control
for size and sector effects by distinguishing between the
50% smallest and largest companies and by further label-
ing companies as either defensive or cyclical according to
the sector classification methodology employed by MSCI4

building on the Global Industry Classification Standards

To argue on our choice of non-linear shrinkage for the es-
timation of the covariance matrix was made particularly
because of the robustness of the estimator (regulates the
eigenvalues). It is a state-of-the-art robust estimator and
particularly suitable to rather high-dimensional portfolio
applications (see e.g., Ledoit and Wolf (2012, 2017)). In
addition our simulations using the (i) sample covariance
estimator and (ii) exponentially weighted covariance matri-
ces (which overweighs the recent history) result the same
qualitative conclusions. Also, our results are robust vis-à-
vis the number of historical data points for the estimation
of the covariances which we varied from one to five years
for robustness checks.

Our conclusion that the sorting-based portfolios form bad
proxies which could lead to misleading results stems from
empirical observations (cross-checked across different sub-
universes and sub-periods) that the risk-return statistics of

3Increasing the number of samples is not a bottleneck (linear
complexity). However, we found no economic value by adding
more samples as qualitatively, our results do not change.

4Defensive sectors: Staples, Utilities, Energy and Health
Care. Cyclical sectors: Financials, Real Estate, Infor-
mation Technology, Discretionary, Industrials, Materi-
als, Communication. For more detailed information see:
https://www.msci.com/eqb/methodology/meth_
docs/MSCI_Cyclical_and_Defensive_Sectors_
Indexes_Methodology_Nov18.pdf

http://eigen.tuxfamily.org
http://boost.com
https://github.com/GeomScale/volume_approximation
https://CRAN.R-project.org/package=LogConcDEAD
https://zenodo.org/record/7198256
https://www.msci.com/eqb/methodology/meth_docs/MSCI_Cyclical_and_Defensive_Sectors_Indexes_Methodology_Nov18.pdf
https://www.msci.com/eqb/methodology/meth_docs/MSCI_Cyclical_and_Defensive_Sectors_Indexes_Methodology_Nov18.pdf
https://www.msci.com/eqb/methodology/meth_docs/MSCI_Cyclical_and_Defensive_Sectors_Indexes_Methodology_Nov18.pdf
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the sorting-based approach typically deviate substantially
from the average sampling-based portfolio characteristics
(this actually has a geometric explanation) and that the
variation in the return among the five volatility clusters
is much more erratic for the sorting-based method than
for the mode of the sampling-based portfolio return dis-
tributions. Hence, depending on the (sub-) universe and
time period one might over- or underestimate the low-vola
anomaly whereas inference from the average sampled port-
folio performance is more robust. The sorting-based ap-
proach (which ignores correlations) was used to conclude
that stocks with higher volatility underperform stocks with
low volatility and there is nothing wrong with that. How-
ever, on a portfolio level, the same conclusion (i.e., port-
folios with low volatility outperform portfolios with high
volatility) should not be drawn from the sorting-based port-
folio only as it represents just one particular point out of the
many possible portfolios with the same (ex-ante) volatility.

Experimental results and analysis. Our experimental in-
vestigation of the low-volatility effect over the past nearly
twenty years using introduced geometric tools allows for
a series of interesting conclusions. In particular, the
sampling-based method provides insights into the distribu-
tion of risk and return statistics as visualized in Fig. 5. The
charts show the risk-return profiles of the five clusters of
backtested sampling-based portfolios for the U.S. (left plot)
and European (right plot) markets where clusters are color-
coded by increasing variance from green to red. Each point
indicates the annualized performance statistics of a back-
tested strategy using the procedure described in above. The
points per volatility group are overlaid by bivariate (non-
parametric kernel) density contours lines. The black dots
represent the cluster averages whereas blue dots depict the
performance of the classical sorting-based quintile portfo-
lios. The light blue dot further shows the performance of a
minimum-variance portfolio backtest and the black square
tells the performance of the capitalization-weighted market
index. Inspection of Fig. 5, as well as the figures in the
supplementary material reveal the following results.

First, we can confirm the presence of the low-volatility ef-
fect in both universes and corresponding sub-markets. Sec-
ond, the variation in portfolio returns increases with the
increasing ex-ante variance target and is largest for the
highest variance group which contains both, the worst and
the best performing portfolios. This shows that the con-
struction method, i.e., the choice of weighting to form the
volatility-targeting portfolios can heavily impact the final
outcome. Further, also the spread in realized volatility lev-
els increases with higher volatility targets, meaning that
there is a larger estimation error for such portfolios.

Third, we observe that inference from the classical sorting-
based method can be rather misleading in that resulting
risk-return statistics can deviate substantially from the av-
erage sampling-based portfolio characteristics. Moreover,

cross-checking the different sub-universes the deviation
seems to be non-systematic. To evaluate the likelihood
of finding the sorting-based risk-return vector within the
cloud of sampling-based performance vectors we parame-
terize the risk-return distribution by fitting a log-concave
model. We use the non-parametric model in Cule et al.
(2010) and its implementation of LogConcDEAD pack-
age Cule et al. (2009) that fits on the data a log-concave
density function which logarithm is a tenant function and
its support is the convex hull of the cluster. The fitted den-
sity gives us the mode of the risk-return distribution (i.e.
the most likely risk-return vector). Then, we compute the
measures of a small rectangle centered on i) the mode, ii)
the empirical cluster average and iii) the risk-return veco-
tors of the sorting based quintile portfolios. In all 10 (sub-)
universes, we take the volume of the small rectangle to be
1% of the volume of the support of the distribution. The
plots in the supplementary material illustrate the PDF com-
puted by LogConcDEAD package and the quintile portfo-
lios for each volatility level that corresponds to the plots
in Figure 5. We also report the measures of the rectan-
gles in Table 1. The measure of the area around the av-
erage is almost equal to that of the area around the mode,
which is strong empirical evidence that the model in Cule
et al. (2010) is a reasonable choice to evaluate the likeli-
hood of finding the performance vector of a particular back-
test within each volatility cluster. Next, there is only one
case —Europe/4th volatility level— where the rectangu-
lar area around the sorting-based quintile portfolio statis-
tics achieves almost the same probability as the one around
the average or the mode. In 4 cases the performance vector
of the quintile portfolio is even outside the convex hull of
the cluster, i.e., the measure is zero. In another 4 cases, the
probability of the area around the quintile portfolio statis-
tics is more than 10 times smaller than that of the average
or the mode and in one case it is 4 times smaller. Conse-
quently, according to the log-concave model in Cule et al.
(2010), in most of the cases it is unlikely to find the per-
formance results obtained from the sorting-based quintile
portfolio backtests among the results of the sampling-based
backtests within a volatility cluster.

We also analyze the difference of Sharpe ratios between
the lowest and highest volatility portfolios. We employ a
Sharpe ratio test Ledoit and Wolf (2008) which accounts
for time series structures in the data by employing het-
eroscedasticity and autocorrelation consistent (HAC) es-
timates of standard error. In the U.S., the null of equal
Sharpe ratios among the sorting-based portfolios can not
be rejected at the 5% significance level. This also holds
for any of the analyzed sub-markets except for the group of
small defensives stocks. In Europe, the results are more
mixed. The overall market, and the sub-markets small
defensives and small cyclicals, show a significant Sharpe
ratio difference, while large companies on the two-sector
groups do not. Using the sampling-based simulations, we
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Figure 5: Risk-return profiles of the five clusters of backtested sampling-based portfolios for the U.S. (left) and European (right) market
where clusters are color-coded by increasing variance from green to red. The black dots represent the cluster averages whereas blue
dots depict the performance of the classical sorting-based quintile portfolios. The light blue dot further shows the performance of a
minimum-variance portfolio backtest and the black square tells the performance of the capitalization-weighted market index.

USA
Volatility level 1st 2nd 3rd 4th 5th
Model-based

mode 0.051 0.042 0.071 0.057 0.061

Sampling-based
average 0.051 0.041 0.071 0.056 0.060

Sorting-based
(quintile portfolios) 0.002 0.010 0.004 0 0.001

Europe
Volatility level 1st 2nd 3rd 4th 5th
Model-based

mode 0.049 0.045 0.054 0.061 0.074

Sampling-based
average 0.048 0.044 0.053 0.056 0.073

Sorting-based
(quintile portfolios) 0 0 0 0.051 0.007

Table 1: For each volatility cluster in Figure 5 we fit a log-
concave distribution using the non-parametric model in Cule
et al. (2010). We report the probability —w.r.t. the log-concave
measure we obtain from LogConcDEAD package Cule et al.
(2009)— of a small rectangle centered on the model-based mode,
the sampling-based average and the sorting-based quintile port-
folio. In all cases, the volume of the rectangle is 1% of the vol-
ume of the support of the distribution obtained by the log-concave
model.

run the test on all pairwise combinations of high minus low
volatility simulations and count the number of significant t-
statistics. We get less than 10% significant test results in the
U.S. and about 15% in Europe, which, at first glance, does
not exactly speak for the existence of an anomaly. How-
ever, if we discriminate the pairwise differences at a level
of zero, i.e., we divide the sample between positive and
negative Sharpe ratio differences, we observe that 98% and
99% of the Sharpe ratio differences are positive in the U.S.
and European markets and all significant test results come
from the subset with positive Sharpe ratio differences.

We conclude that, while test statistics using sorting-based
quintile portfolios do not provide an unambiguous pic-
ture, it is overwhelmingly clear from the descriptive analy-
sis of sampling-based portfolios that low-volatility portfo-

lios have delivered higher Sharpe ratios than high-volatility
portfolios, irrespective of the weighting scheme used to
form the portfolios.
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A ADDITIONAL FINANCIAL
BACKGROUND

It has long been recognized that the capital asset pricing
model (CAPM), a cornerstone of financial economic theory
and the workhorse model of classical capital market the-
ory, independently developed by Sharpe (1964) and Lintner
(1965) and Mossin (1966), does not do justice in explaining
the complexity of real world market dynamics. Contrary to
the equilibrium model’s predicted simple positive linear re-
lation between risk and expected return, higher risk is not
generally rewarded with higher return in global stock mar-
kets. According to the CAPM, the return one should expect
from an investment depends solely on the riskiness of the
investment relative to a single factor which is the overall
market. Investments which bear higher risk than the mar-
ket portfolio should pay out a higher return in expectation,
i.e., a risk premia. However, Haugen and Heins Haugen
and Heins (1975) were the first to recognize that risk does
not generate a special reward following the early warning
signs from Black et al. (1972), Miller and Scholes (1972)
and Fama and MacBeth (1973). Their finding has subse-
quently been confirmed by Fama and French (1992) and
Black (1973).

Further studies have found a wealth of anomalies, i.e., sys-
tematic and persistent deviations of empirical observations
from model prediction. Prominent examples include firm
size Banz (1981) (stocks with lower market capitalization
tend to outperform stocks with a higher market capitaliza-
tion in the future), value Rosenberg et al. (1985) (stocks
that have a low price relative to their fundamental value,
commonly tracked via accounting ratios like price to book
or price to earnings outperform high-value stocks), mo-
mentum Jegadeesh and Titman (1993) (stocks that have
outperformed in the past tend to exhibit strong returns go-
ing forward) or quality Asness et al. (2019) (stocks which
have low debt, stable earnings, consistent asset growth, and
strong corporate governance, commonly identified using
metrics like return to equity, debt to equity, and earnings
variability).

Building upon the anomalous findings, the original single-
factor CAPM has then been augmented with other factors
besides the market, namely size and value Fama and French
(1992), size value and momentum Carhart (1997) and size,
value, and two quality factors Fama and French (2015).
Nevertheless, despite the wealth of documented anoma-
lies and cited extensions, the CAPM has shown great re-
silience vis-à-vis a transition to an alternative paradigm.
This is particularly surprising in the light of a large body
of literature subsumed under the term low-risk anomaly or
low-volatility anomaly which directly attacks the very core
of the CAPM by showing that, even after controlling for
other factors as done by the latest CAPM extensions, (i)
low-risk companies outperform high-risk companies and

that (ii) low-risk portfolios produce higher risk-adjusted re-
turns than capitalization weighted benchmarks. In partic-
ular, Falkenstein (1994) found that, when controlling for
size, the relation between risk and return gets reversed.
Further, the outperformance of low-volatility stocks com-
pared to high-volatility stocks has been shown to be robust
among different markets, industries and sub-periods Blitz
and van Vliet (2007), Blitz et al. (2013), Baker and Haugen
(2012), van Vliet and de Koning (2017), Blitz et al. (2019),
Walkshäusl (2014).

The typical approach pursued by the studies on the low-
volatility anomaly is to sort stocks according to their his-
torical volatility and to form portfolios, either weighted
equally or proportional to market capitalization, within
quantiles of volatility levels. The process is then repeated
on a monthly or quarterly basis, thus giving rise to, say, five
(quintile) or ten (decile) backtested portfolios of increasing
ex-ante volatility.

The performance difference between the lowest and highest
volatility stocks is called the low-volatility premia. It can
be exploited, in principle, by forming long-short portfolios
having positive weights (i.e., a long position) in the low-
volatility stocks and negative weights (i.e., a short position
meaning that one sells stocks) in the high-volatility stocks.
In practice, however, many investors and investment vehi-
cles like mutual funds are prohibited by regulation to short
sell assets. Thus, their potential benefit from the anomalous
risk-return relation is not to bet on the underperformance
of high-volatility stocks, but to overweight low-volatility
stocks while avoiding exposure to high-volatility titles.

However, the ignorance of correlations between assets’ re-
turns in the formation of volatility-ranked portfolios poses
a drawback in the existing literature analyzing the volatil-
ity puzzle Haugen and Baker (1991); Clarke et al. (2006,
2011). Instead of clustering stocks according to volatility
and representing the subgroups by a single portfolio, we
propose an alternative. That is, pre-define certain volatil-
ity targets and to sample portfolios with exactly those ex-
ante volatilities from the entire collection of investable
firms. Using sampling, we consider correlation but we also
overcome the somewhat arbitrary choice of the weighting
scheme for the quantile-portfolios (equally or relative to
firm size), which is known to have a large impact on per-
formance and inference Plyakha et al. (2014).

B MEMBERSHIP ORACLE FOR A
CONNECTED COMPONENT

Lemma 3. Given a body K = Sd−1 ∩∆ and a point p ∈
Sd−1 to decide if p ∈ K costs O(d2) operations.

Proof. The Figure 6 describes the steps of the algorithm in
2D. This procedure can be generalized for any dimension d.
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In particular, we consider the half-line lop which starts from
the origin and passes through p. Let lop to intersect ∂∆ at
point q. Let also u one vertex of ∆ that q has visual contact
with, i.e., the segment defined by q and u does not intersect
Sd−1. Then, due to convexity, p belongs to the component
of K that corresponds to the component of graph G that
contains u.

The computation of q takes O(d2) operations and the de-
tection of the vertex u takes O(d2) operations too.

v1

v2

v3

O

p

q

f12
f23

f13

Figure 6: Illustration of how the membership oracle works.
In this example, there are two connected subsets of S1. We
would like to answer in which component the point p be-
longs. The half-line lop intersects ∂P on q which lies in
the facet f23. The point q has visible contact with the ver-
tex v2, and thus, belongs to the connected component of S1
that corresponds to the connected component {v1, v2} of
graph G.

C SAMPLE UNIFORMLY WITH GREAT
CYCLE WALK

To sample uniformly a connected component of K, GCW
samples uniformly a point from ℓ(θ) in each step. In gen-
eral, to sample uniformly from a parametric curve, we have
to sample from the univariate probability density induced
by the norm of the derivative of the curve. In our case, the
curve is a (part of a) great circle and so GCW samples from

ϕ(θ) ∝ ∥ℓ′(θ)∥2 = ∥−p sin θ+v cos θ ∥2 = 1, θ ∈ [θ−, θ+],
(7)

which is the uniform distribution over the segment
[θ−, θ+]. Consequently, starting from p the next Markov
point is p cos θ̃ + v sin θ̃, for θ̃ sampled uniformly from
[θ−, θ+].

D REFLECTIVE GREAT CYCLE WALK
(ReGCW)

We introduce the Reflective Great Cycle Walk (ReGCW), a
geometric random walk that operates on a connected com-
ponent of K and converges to the uniform distribution.
ReGCW is a generalization of Billiard Walk Gryazina and
Polyak (2014) on a spherical patch. Similar to GCW it
starts from a point p in a connected componentKi. At each

ALGORITHM 2: GCW(∆, p, π)

Input : Simplex ∆; point p; PDF π.
Require: Sd−1 ∩∆ ̸= ∅; point p ∈ K = Sd−1 ∩∆
Output : Next Markov point in K
Pick a uniform vector v from Sd−1 ∩ {x ∈ Rd | pTx = 0};
Let the great cycle ℓ(θ) := {p cos θ + v sin θ, θ ∈ [0, 2π]};
Let (θ−, θ+) the values s.t.
ℓp(θ) := {p cos θ + v sin θ, θ ∈ [θ−, θ+]} is the part of
ℓ(θ) ∩∆ that contains p;

Pick θ̃ from ℓp(θ) according to πℓ;
return p cos θ̃ + v sin θ̃;

Figure 7: An illustration of the reflection of the ReGCW.
The orange trajectory, starting from the black point, hits the
boundary of the component defined by the intersection of
the sphere with the green hyperplane (red point). The blue
hyperplane is the tangent space at the intersection point.
The resulted trajectory is in magenta.

step, it generates uniformly a great cycle passing through
p and it computes a trajectory length L = −τ ln η, where
η is a uniform number in [0, 1], i.e., η ∼ U [0, 1], and τ
is a predefined constant. When the generated great cycle
hits ∂∆, it reflects and the reflected curve is also a (part of
a) great cycle of Sd−1. ReGCW returns the next Markov
point when it travels distance L; if the number of reflec-
tions exceeds a given upper bound ρ ∈ N+ then, the next
point is p itself. It is useful to set a bound on the number of
reflections to avoid computationally hard cases where the
trajectory may stick in corners. We detail our choices for τ
and ρ.

Some details of the computations are in order. At each step
of ReGCW, we are at a point p, we denote by ℓ(θ) :=
{p cos θ + v sin θ, θ ∈ [0, L]} the part of the great cycle
emanating from p and has length L; since we are on the
unit sphere, geodesic length is numerically equal to the ra-
dian measure of the angles that the great circle arcs subtend
at the center. We compute the smallest angle θ̃ as in Equa-
tion

v =
(Id − ppT )u

∥(Id − ppT )u∥2
,
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ALGORITHM 3: Reflective Great Cycle
Walk(∆, p, ρ, τ)

Input : Simplex ∆ ∈ Rd; current Markov point p; upper
bound on the number of reflections ρ; length of
trajectory parameter τ ;

Require: Sd−1 ∩∆ ̸= ∅; point p ∈ Sd−1 ∩∆
Output : Next Markov point in the same component of

Sd−1 ∩∆ as p

L← −τ ln η, η ∼ U(0, 1) // length of the
trajectory

i← 0 // current number of reflections
p0 ← p // initial point of the step

Let the hyperplaneHp := {x ∈ Rd | pTx = 0};
Pick a uniform vector v from Sd−1 ∩Hp;
do

Let the curve ℓ(θ) := {p cos θ + v sin θ, θ ∈ [0, L]};
θ̃ ← argmin

θ∈[0,L]

{ℓ(θ) ∈ ∂∆} ; // intersection

angle

if L < θ̃ or ∂∆ ∩ ℓ(θ) = ∅ then return
p cosL+ v sinL ;

p← ℓ(θ̃) and v ← ℓ′(θ̃) ; // point and
direction update

Let s the normalized projection of inner vector of the
facet of ∆ at p onHp;

v ← v − 2(vT s)s // reflected direction

L← L− θ̃;
i← i+ 1;

while i ≤ ρ;
if i = ρ then return p0 ;
return p

hence, q := ℓ(θ̃) ∈ ∂∆ is the point on the components
boundary hit by the ReGCW trajectory. If θ̃ < L, then we
compute the reflection of ℓ(θ) at θ̃ as follows: Let a ∈ Rd

the normal vector of the facet of P that ℓ(θ) hits. We com-
pute the normalized projection of a onto the hyperplane
Hq := {x ∈ Rd | qTx = 0}, say a′, using the previous
equation. Then, the reflection of ℓ(θ) at q is,

ℓr(θ) = {q cos θ + vr sin θ, θ ∈ [0, L− θ̃]}, (8)

where vr = v − 2(vTα′)α′. We also update the length
travelled so far, i.e., L ← L − θ̃. When L < θ̃ we set
ℓ(L) as the next Markov point. The defined reflection op-
erator guarantees that vr ∈ Hq which implies that ℓr(θ) is
a part of a great cycle. A single reflection of the ReGCW
is depicted in Figure 7.

Theorem 4. The Reflective Great Cycle Walk of Alg. (3)
has a unique stationary distribution, which is the uniform
distribution; it converges from any starting point.

Proof. We build upon the results and the methodology
in Gryazina and Polyak (2014). Let Ki a connected com-
ponent of K = ∆∩Sd−1. The Theorem 2 in Smith (1984)
proves that if the transition density r(q|p) exists and is sym-
metric as well as it is positive for all p, q ∈ Ki then, the

uniform distribution over Ki is a unique stationary distri-
bution, and it is achieved for any starting point p ∈ Ki. To
prove convergence to the uniform distribution we consider
two cases: when Ki is geodesically convex set and when
Ki is geodesically non-convex set. In both cases, being at
a Markov point pj , the next Markov point pj+1 is obtained
with positive probability with less than ρ+ 1 reflections.

For the first case, the existence of the probability density
r(q, p) for any q, p ∈ Ki is implied when the transition
probability from p to an infinitesimally small neighborhood
dq is proportional to the volume of dq. Considering all pos-
sible piece-wise geodesic trajectories —defined as pieces
of great cycles— that go from p to dq, take those that per-
form 0 ≤ k ≤ ρ reflections. With this set of trajectories
there is a conic bundle on the plane Hp centered at p with
with small spatial angle dθ that define these trajectories.
The area of reflection can be approximated as plain region,
and thus, a reflection does not change the geometry of the
bundle. Then,

Pr[δq|p] ∝ Pr[δθ] Pr[δL], (9)

where Pr[dθ] is the probability of choosing the spatial an-
gle (proportional to the volume of the base of the cone)
and Pr[dL] is the probability of choosing a certain trajec-
tory length L ∈ dL. Thus, Pr[dq|p] ∝ vol(dq). For a
geodesically convex Ki the density r(q|p) as all the points
are reachable from any p ∈ Ki with a trajectory with no
reflections. The symmetry of the probability density func-
tion r(q|p) follows from the uniformity of the distribution
of the directions and reversibility of a billiard trajectory due
to the reflection law: the angle of incidence equals the an-
gle of reflection.

For the case of a geodesically non-convex Ki, the con-
nectedness guarantees that starting from any point, we can
reach a measurable neighborhood of any other point of Ki.
Thus, there exists a piece-wise geodesic trajectory that con-
nects any two points in Ki. Therefore, the transition prob-
ability density function r(q|p) > 0 for any q, p ∈ Ki. The
symmetry of r(q, p) holds using the same arguments as in
the geodesically convex case.

Finally, ReGCW performs at most ρ reflections per step,
while the computation of the intersection of ℓ(θ) with ∂∆
costs O(d2) arithmetic operations, which leads to the fol-
lowing remark.

Remark 5. The cost per step of ReGCW is O(ρd2) arith-
metic operations.

Parameters of ReGCW. To employ ReGCW (see sec-
tion D), we have to efficiently select values for the param-
eter τ that controls the length of the trajectory in each step,
for the maximum number of reflections per step ρ, and for
the walk length of the random walk. We have experimen-
tally found that setting the walk length equal to 1, is the
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fastest choice so that the empirical distribution converges
to the uniform distribution. To set τ for a componentKi we
sample 20d points with GCW with uniform target distribu-
tion. Then, we set τ equal to the length of the maximum
geodesic chord in Equation (5), in the main text, comput-
ing in those 20d steps of GCW. For the maximum number
of reflections, we experimentally found that ρ = 100d is
violated in less than 0.1% of the total number of ReGCW
steps in our experiments.

E PROOF OF THEOREM 1 IN THE
MAIN TEXT

Theorem 6. The stationary distribution of Alg. 2,
CGW(∆, p, π), where the starting point p belongs to K,
is π for any starting point p in K.

Proof. We build upon the results and the methodology
in Bélisle et al. (1993). Let D be a set of subsets of K
and P (p,A), with p ∈ K and A ∈ D, denotes the one
step transition probabilities (Markov kernel) of CGW algo-
rithm. We will prove that P is reversible with respect to π,
that is∫

A

P (p,B)π(dp) =

∫
B

P (r,A)π(dr), for all A,B ∈ D
(10)

Then, the stationarity of π follows at once since we set B =
K in Equation (10) and we get,

π(A) =

∫
K

P (r,A)π(dr), for all A ∈ D, (11)

which implies stationarity of π Vempala (2005).

For p, q ∈ K with pT q = 0 let,

Φ(p, q) = {θ ∈ [−π, π] | p cos θ + q sin θ ∈ K}. (12)

Let f be the probability distribution function (PDF) of the
constrained π on a great cycle, then, let f(p,q) be the PDF
on [θ−, θ+] defined by

f(p,q)(θ) =

{
f(p cos θ+q sin θ)∫

Φ(p,q)
f(p cos t+q sin t) dt

if θ ∈ Φ(p, q),

0, otherwise.
(13)

Consider the random variables Q and U , where Q follows
the uniform distribution over Sd−1 ∩ Hp, where Hp :=
{x ∈ Rd | pTx = 0}, U follows the uniform distribution
over (0, 1), and F(p,q) is the cumulative distribution func-
tion (CDF) of f(p,q). Then, the Markov kernel P (p,A) is

P (p,A) = Pr[F−1
(p,Q)(U) ∈ A]

=

∫
Sd−1∩Hp

1

vol(Sd−1 ∩Hp)
Pr[F−1

(p,q)(U) ∈ A]dq

=

∫
Sd−1∩Hp

1

vol(Sd−1 ∩Hp)

∫
Φ(p,q)

1A(p cos θ + q sin θ)f(p,q)(θ)dθ dq,

(14)

where 1A(·) is the indicator function of the set A and F−1
(p,q)

is the left-continuous inverse of CDF F(p,q). Let W the
conic bundle on Hp centered at p with small spatial angle
dϕ that defines the geodesic trajectories starting from p and
have non-empty intersection with an infinitesimally small
neighborhood dr in K. Then, the Markov kernel becomes
P (p,A) =

∫
A
g(p, r)π(dr), where

g(p, r) =
vol(W ∩ Sd−1 ∩Hp)

vol(Sd−1 ∩Hp)
∫
Φpr

p cos t+ q sin t dt
, (15)

where Φpr = {θ ∈ [−π, π] | p cos θ+q sin θ ∈ C(pr)}, for
well-chosen q ∈ Sd−1∩Hp and C(pr) being the part of the
great cycle defined by p, r ∈ Sd−1 inside K. Notice that
g(p, r) is symmetric.

Then, the left side in Equation (10) becomes∫
A

∫
B
g(p, r)π(dr) π(dp) while the left side becomes∫

B

∫
A
g(r, p)π(dp) π(dr). Reversibility then follows

from Fubini’s theorem and from the fact that g(p, r) is
symmetric.

F EFFICIENT PARAMETERIZATION OF
THE IMPLEMENTATION

To obtain an efficient implementation for our methods we
introduce the following parameterizations.
Computing a starting point on Ki. We first compute the
maximum inscribed ball in the intersection ∆ ∩Bd, where
Bd is the unit ball. Since this is the intersection of a con-
vex polytope with a ball, the maximum inscribed ball with
center xc and radius r is given by the optimal solution of
the following conic program,

max r, subject to : aTi xc + r||ai|| ≤ bi, ||xc|| ≤ 1− r,
(16)

where ∆ is defined as the intersection of the half-spaces
aTi x ≤ bi, i = 1, . . . , d + 1. Then, any vertex v of ∆ that
also belongs to the connected component of graph G corre-
sponds to a component Ki and thus we can use it to obtain
a point in Ki. For this, we consider the segment defined by
v and xc, then, the intersection of the segment with Sd−1

lies in Ki.

Convergence to the target distribution. We assess the
quality of our results by employing a widely used Markov
Chain Monte Carlo diagnostic, namely the potential scale
reduction factor (PSRF) Gelman and Rubin (1992). In par-
ticular, we compute the PSRF for each univariate marginal
of the sample that both GCW and ReGCW output. Follow-
ing Gelman and Rubin (1992), and plenty of other works,
a convergence is satisfying according to PSRF when all the
marginals have PSRF smaller than 1.1.

mVF restricted a segment (GCW). To sample from mVF
using GCW, in each step of the random walk, we have to
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sample from the mVF constrained on a part of a great cy-
cle. Thus, the goal is to sample from the univariate distri-
bution πℓ(θ) ∝ eα(µ

T p cos θ+µT v sin θ), for θ ∈ [θ1, θ2]. To
perform this operation, we use Metropolis-Hastings Chib
and Greenberg (1995). The proposal probability density
we use is the uniform distribution on a segment of length
(θ2−θ1)/3 with the median being the current Markov point
of GCW. We set the walk length (the number of Markov
points to burn until storing a point) equal to a fixed value,
i.e., 10. We found that this value is an efficient choice; in
our experiments the Markov point of GCW changes after
the 95% of the total number of steps we performed in our
experiments. Thus, the empirical probability of stacking at
a certain point is quite small.

G DATA

The data basis for our empirical study consists of two large
universes of stock price series of companies covered by
the MSCI USA and the MSCI Europe indices5 which en-
compass large and mid-cap equities traded in the U.S. and
across 15 developed countries in Europe.

Our estimations are based on discrete weekly total6 returns
using Wednesday closing prices denoted in local curren-
cies. We use local currencies since we do not want to model
any foreign exchange rates which would add another layer
of volatility to the return series when expressed in a partic-
ular base currency (except for stocks that are already de-
nominated in that currency). The currency effect is only
relevant for the European market. Out-of-sample simula-
tions are based on discrete daily total returns denoted in
U.S. Dollars. Finally, we calculate all descriptive statistics
and significance tests on discrete monthly returns as is cus-
tomary in the financial industry.

The data cleaning process starts with adjustments for past
corporate actions such as dividends, mergers and acquisi-
tions, name changes, and other corporate actions. In addi-
tion, stocks that do not have enough history are excluded
from the sample. To be included in the study, stocks need a
consistent price history of five years, the equivalent of 260
weekly returns, without any gaps larger than two weeks.
Further, otherwise, illiquid stocks are removed from the in-
vestable universe. As a threshold, we require a median trad-
ing volume over the previous 365 days to be above USD 1.5
million. We do this because, on the one hand, such illiquid
stocks are not easily tradable and therefore would lead to a
large implementation shortfall (i.e., the difference between
a simulated performance and one obtained from real invest-
ments) and on the other hand, such companies display ar-

5see https://www.msci.com/our-solutions/indexes/developed-
markets

6Returns, i.e., the percentage changes in prices from time t−1
to t, are termed total when adjusted for dividends (i.e., dividends
are re-invested).

tificially low volatility due to a lack of trading and not be-
cause they are not risky. The cleaning process is necessary
to ensure that at every point in time, the investable universe
only contains information that was effectively available at
that point in time and to avoid any positive survivorship
bias. Reference index membership over the full sample pe-
riod is therefor not a requirement.
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