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Abstract: This study explores the edaravone solubility space encompassing both neat and binary
dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and
mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously
inspected and cured, which made the dataset consistent and coherent. However, the lack of some
important types of solvents in the collection called for an extension of the available pool of edaravone
solubility data. Hence, new measurements were performed to collect edaravone solubility values in
polar non-protic and diprotic media. Such an extended set of data was used in the machine learning
process for tuning the parameters of regressor models and formulating the ensemble for predicting
new data. In both phases, namely the model training and ensemble formulation, close attention
was paid not only to minimizing the deviation of computed values from the experimental ones
but also to ensuring high predictive power and accurate solubility computations for new systems.
Furthermore, the environmental friendliness characteristics determined based on the common green
solvent selection criteria, were included in the analysis. Our applied protocol led to the conclusion
that the solubility space defined by ordinary solvents is limited, and it is unlikely to find solvents that
are better suited for edaravone dissolution than those described in this manuscript. The theoretical
framework presented in this study provides a precise guideline for conducting experiments, as well
as saving time and resources in the pursuit of new findings.

Keywords: edaravone; solubility; green solvents; deep learning; COSMO-RS; learning curve analysis;
hyperparameter tuning

1. Introduction

Edaravone (5-methyl-2-phenyl-4H-pyrazol-3-one, EDA), as an active pharmaceutical
ingredient (API), is used for the treatment of ischemic stroke [1,2] and amyotrophic lateral
sclerosis (ALS) [1,3]. These neuroprotective actions arise from the fact that edaravone,
being a free radical scavenger, has serious anti-oxidant activity [4,5]. There is, however, an
important limitation in the performance of edaravone; namely, its poor aqueous solubility,
documented by its categorization as a Class IV drug in the Biopharmaceutics Classification
System (BCS).

The solubility of chemical compounds plays a vital role in both theoretical and prac-
tical applications [6,7]. It is widely recognized that solubility has a significant impact on
bioavailability [8,9]. Hence, its enhancement remains of paramount significance in drug
design and has been the subject of extensive research [10–14].

Another interesting domain in which the solubility of pharmaceuticals and conse-
quently solvent selection play an important role is bioassay optimization [15–18]. It is
worth noting that in the case of biological activity assessment, water–organic solvents
typically containing DMSO are very often used. While water is, of course, the medium
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most closely resembling physiological conditions, the necessity to utilize water–organic
systems arises due to the limited solubility of many biologically active substances. In this
context, it should be emphasized that the solubility of pharmaceuticals, including the title
compound, in aqueous–organic and organic–organic solvent mixtures has been extensively
studied both experimentally and theoretically [6,19–32].

It is also worth highlighting that, apart from bioavailability and biological activity
determination, solubility is of crucial importance in pharmaceutical technology, particularly
concerning the selection of solvents for drug manufacturing processes [33,34]. In fact,
the significance of solvents is substantial, as they account for as much as 90% of the
total volume of chemicals used in the drug manufacturing process [35]. Their versatile
applications encompass the synthesis of active pharmaceutical ingredients (APIs) [36–38],
as well as separation and purification techniques (crystallization, extraction) [33,38–40].
Importantly, as the pharmaceutical industry places a growing focus on environmentally
friendly technologies, the necessity of exploring “green” alternatives to traditional organic
solvents has arisen [41–44].

In the case of edaravone, its solubility was studied in aqueous binary solvents, mixed
organic solvents, as well as neat solvents, including water [21,26,45]. Additionally our
research group contributed to these efforts by studying the solubility of edaravone in
aqueous solutions of deep eutectic solvents [45]. The selection of an appropriate solvent in
order to overcome the limited solubility of a particular API can be a tedious and difficult
task. The number of experiments that can be performed is limited not only by such
factors as laboratory time and financial aspects but also by the ongoing trend of restricting
the usage of chemicals in the framework of green chemistry. It seems, therefore, that a
screening stage, utilizing different computational methods, is necessary before starting
actual experiments [46–49]. Machine learning can offer valuable help in this process.
Therefore, the application of machine learning for the determination of the solubility limits
of pharmaceuticals deserves special attention [50].

The main objective of this work is to demonstrate the effectiveness of the machine
learning approach for exploring the extended solvent space of edaravone with the aim of
screening for new solvents with experimental validation.

2. Results and Discussion

2.1. Solubility Dataset

The dataset characterizing edaravone solubility is an accumulation of values collected
from available literature sources augmented with a series of new measurements reported
in this paper, which are summarized in Supplementary Section S1. There are three accounts
documenting the temperature-dependent solubility of the titled compound in fifteen neat
solvents including alcohols, esters, some aprotic solvents [21,26], and water [45]. Moreover,
nine binary solvent mixtures were used for EDA dissolution measurements [21] at a range
of temperatures with a variety of binary compositions. It might seem that such a collection is
extended enough for machine learning purposes; however, a closer inspection reveals three
fundamental problems, which are addressed in this study. First of all, one can notice serious
divergences in the reported solubility values for some systems. This inconsistency prohibits
the direct use of such a collection for the training of models due to the inherent noise in
the dataset, which is a frequently occurring problem intrinsic to diverse measurement
protocols. Hence, such methodological divergences require careful consideration [51] prior
to model formulation. Secondly, the solubility space is not represented uniformly due to
different numbers of measurements for dissimilar temperature ranges and concentrations
of solvent mixtures, which might overrepresent those systems studied more extensively
in the dataset. Finally, the main focus in solubility determination was narrowed to polar
protic solvents, with very limited representation of non-protic or diprotic solvents. To
address the first two issues, the final collection was cured using commonly accepted model
equations by fitting their parameters based on experimental mole fractions. Here, the
three-parameter van’t Hoff and Jouyban–Acree equations were used for neat and binary
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solvents, respectively. In addition, temperature standardization was performed for a
uniform representation of solubility in the final dataset. In Figure 1, there are examples
of the results of the data curation for two selected neat solvents, which have been found
to be the most problematic. The complete list of experimental solubility data is provided
in the Supporting Materials (see Section S2). As can be directly inferred from the plots
presented in Figure 1, incongruences appear not only in the solubility values but also in
their temperature trends. The highest discrepancies were observed for EDA solubility
measured in ethyl acetate. Since only an arbitrary decision would allow the rejection of
either of the measurement series, the final solubility dataset was constructed based on the
predictions of the van’t Hoff equation, parametrized using all available experimental data.
Moreover, temperature normalization was adopted by accepting data between 0 ◦C and
50 ◦C with 5 ◦C intervals. Hence, points marked with black diamonds constitute the final
solubility dataset. Fortunately, the majority of saturated EDA systems studied suffered
experimentally from much smaller deviations, as detailed in the Supplementary Materials
(see Section S2.1), and the ones presented in Figure 1 show the worst extremes.

Figure 1. Results of data curation of EDA solubility in neat methanol and ethyl acetate using values
measured by [a] Li et al. [21] and [b] Qiu et al. [26]. The consensus lines characterize fitting to the
van’t Hoff equation and black diamonds define solubility data included in the final dataset.

However, these two systems are very important from the perspective of solubility
data curation in binary mixtures, as frequently selected components of such complex sol-
vents. Indeed, in Figure 2, exemplary plots are presented characterizing EDA solubility
measured at T = 0 ◦C and 40 ◦C in binary solvents comprising either of the two solvents dis-
cussed above. All fitting results regarding binary solvents are presented in Supplementary
Section S2.2.

Figure 2. Results of data curation of EDA solubility in exemplary binary solvents using values
measured by Li et al. [21]. The consensus lines characterize fitting to the Jouyban–Acree equation.
The gray and black colors of markers and lines are used to distinguish lower from higher temperatures.
The xE, x*MeOH, and x*EtAc symbols denote the mole fraction solubility of EDA, the mole fraction of
methanol, and the mole fraction of ethyl acetate in solute-free solutions, respectively.
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Two very important conclusions can be drawn from the content of Figure 2. First
of all, the JA model performs very well for such systems for which the set of solvent
compositions is extended enough. Fortunately, this is the case for the majority of systems,
except for the ethyl acetate–methanol binary mixture. In this case, the fitting results in
precise back-computed solubility data but probably fails for other compositions not studied
experimentally. Such serious non-monotonous behavior of the solubility line is rather
unexpected, and the observed trends should be attributed to the high flexibility of the JA
equation rather than to the physical phenomenon. The second important aspect is related
to the abovementioned incongruences in neat solvent solubility, especially pronounced at
elevated temperatures. The reason for this is that after standardizing the solubility data for
pure solvents, the values obtained were also used for binary mixtures, which affected some
predictions of the JA model. However, this is not an issue from the perspective of dataset
curation, provided that only experimentally studied compositions are included. Indeed, the
corresponding back-computed values perfectly match the experimental ones, preserving
the congruency of solubility determined in both binary mixtures and neat solvents. Hence,
in the final dataset, the solubility values for binary mixtures were included as computed
from the JA model without applying concentration standardization.

All systems are characterized in Supporting Materials by providing graphical repre-
sentations of the solubility trends, the values of the fitted parameters of applied models,
and the elementary statistical measures quantifying the fitting accuracy.

2.2. Extension of EDA Solubility Space with Neat Solvents

The solubility dataset obtained after data curation and standardization still needs
some attention due to the limited diversity of the included solvents. In order to extend
the solubility space, new EDA solubility measurements were performed in a more diverse
set of solvents. For this purpose, several neat solvents of the polar aprotic type were
included, namely diglyme (DIG), triglyme (TIG), tetraglyme (TEG), dimethyl sulfoxide
(DMSO), 1-methyl-2-pyrrolidone, (NMP), and 4-formylmorpholine (4FM). Moreover, polar
diprotic solvents were taken into account by the inclusion of 2,4-dimethylphenol (DMP),
1,2-propanediol (PG), diethylene glycol (DG), triethylene glycol (TG), and 1,3-butanediol
(BG). Detailed results of the measurements carried out for new systems can be found in
Supplementary Materials Tables S1 and S2. Additionally, since the solvent can affect the
crystalline form of the solid, and hence its thermodynamic properties, the solid residues
obtained after the solubility determination procedure were analyzed using DSC and FTIR-
ATR techniques (see Supplementary Figure S1). The absence of significant differences
between the thermograms and spectra recorded for the precipitates and pure EDA, such
as new phase transition peaks or absorption band shifts related to new hydrogen bond
formation, suggests that no polymorphic or pseudo-polymorphic transformation occurs
under the applied experimental conditions.

When taking into account the solubility of edaravone in neat polar aprotic solvents,
it can be concluded that DMSO offers the highest dissolution potential among the stud-
ied solvents. At 25 ◦C, the mole fraction solubility of EDA in this solvent is equal to
xEDA = 7.57 × 10−2, while at 40 ◦C, the solubility is elevated to xEDA = 29.81 × 10−2.
DMSO is followed by TEG in terms of effectiveness, with EDA solubility amounting to
xEDA = 4.63 × 10−2 and xEDA = 21.21 × 10−2 for 25 ◦C and 40 ◦C, respectively. The sol-
ubility of edaravone in other solvents is substantially lower; however the general trend
of solubility increase with raised temperatures holds for all studied cases. The results are
graphically depicted in Figure 3, along with values cured using the three-parameter van’t
Hoff model. In addition, a single diprotic solvent, namely DMP, is listed here.
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Figure 3. Graphical representation of mole fraction solubility of edaravone in selected polar aprotic
solvents. Gray and open symbols represent measured values and crosses depict values cured using
the three-parameter van’t Hoff model.

2.3. Extension of EDA Solubility Space with Aqueous Binary Solvents

Apart from using neat polar solvents, both aprotic and diprotic, additional solubility
experiments were conducted for aqueous binary solvents (Supplementary Table S2). These
were created by mixing four diprotic solvents with water in varying molar proportions.
Quite often the addition of another solvent, for example, water, can lead to a substantial
solubility increase of a particular API compared to the neat solvent, which is described as a
cosolvency effect [27,52]. Triethylene glycol (TG) was responsible for the highest solubility
of EDA amounting to a molar fraction of xEDA = 2.75 × 10−2 at 25 ◦C. Interestingly, the
aqueous binary composition with the molar fraction of the organic solvent equal to x2* = 0.9
offered even better EDA solubility with xEDA = 3.58 × 10−2. In addition, for 1,3-butanediol
(BG)–water and 1,2-propanediol (PG)–water mixtures, this particular composition results
in higher solubility compared to pure solvents. The only exception is the binary solvent
containing diethylene glycol (DG), for which no cosolvency effect was observed. The results
are depicted in Figure 4, together with values cured using the Jouyban–Acree model.

Figure 4. Mole fraction solubility of edaravone at 25 ◦C in aqueous binary mixtures of selected polar
diprotic solvents. Gray symbols represent measured values and crosses depict values cured using the
JA model.
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2.4. Machine Learning Solubility Model

The machine learning was performed by training a set of 36 regression models, which
were used for the ensemble definition based on the performance and predictability potential.
These parameters were assessed based on test and validation subsets not used during the
training phase. It adheres to good practice to tune the parameters of the models on the
training set and verify their effectiveness using a portion of the data that has not been seen
before. This procedure increases the predictability of the trained models. Figure 5 shows a
scatter plot of the models’ characteristics, which enables the identification of two sets of
regressors with similar efficiencies. It is worth emphasizing that due to the definition of the
score function used during the tuning of the models’ parameters, the results of the learning
curve analysis are used as a final evaluation approach rather than mean absolute error
(MAE) or the coefficient of determination (R2) themselves. For this purpose, the area under
the curve (AUC) was determined for every regressor model with optimized parameters,
for which the percentage of the sample was systematically increased from 50% up to 100%
of the dataset.

Figure 5. Results of regression models’ selection based on the distributions of the area under the
AUC curve (blue dots) determined from learning curve analysis, loss values of test, and validation
sets. Set A comprises the following five models: NuSVR, SVR, CatBoostRegressor, XGBRegressor,
and HistGradientBoostingRegressor. In set B, twelve additional regressors were categorized in-
cluding GaussianProcessRegressor, BaggingRegressor, RandomForestRegressor, LGBMRegressor,
MLPRegressor, LassoLars, LassoLarsCV, Ridge, KNeighborsRegressor, AdaBoostRegressor, Orthogo-
nalMatchingPursuitCV, and TransformedTargetRegressor.

Both sets of regressors comprise machine learning models commonly used for re-
gression problems. These models have different algorithms for learning the relationship
between input and output variables, as well as varying levels of complexity and hyperpa-
rameters that need to be tuned. While all models excel at handling high-dimensional input
data and continuous variables, they differ in their strengths and weaknesses in terms of
their ability to handle different types of data and noise levels. By grouping these models
based on their performance, one can assess their effectiveness in predicting solubility and
identify the most suitable model for our dataset. The first set of regressors, denoted as
A, includes five models. For instance, support vector machines are often used for small
datasets, while ensemble-based models such as HistGradientBoostingRegressor, CatBoost-
Regressor, and XGBRegressor are preferred for larger datasets. The second set of regressors,
marked B, includes twelve models. Among them, GaussianProcessRegressor is known for
its ability to model complex functions and handle small datasets, while ensemble-based
models such as BaggingRegressor, RandomForestRegressor, and AdaBoostRegressor are
often used for larger datasets.
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Using a set of models, instead of relying on a single best-performing one, can offer
several benefits. Firstly, it allows for the evaluation of the performance of multiple models
by averaging their predictions. This takes advantage of the strengths of regressors from
complementary models that can capture different aspects of the data, providing more robust
predictions. Grouping models into subsets based on their predicting abilities provides
additional validation of the overall performance by comparing both back computations
and new predictions. The fact that the yielded mean values and standard deviations were
very similar is a good prognostic for practical ensemble applications. Secondly, using a
set of models can help mitigate the risk of overfitting to a particular model architecture
or hyperparameters, which can be a common issue when relying on a single best model.
Therefore, using an ensemble of models can provide a more comprehensive and reliable
approach for predicting solubility and other regression problems. Hence, the ensemble
comprising all the subsets was used for EDA solubility computations in the extended
set of neat solvents and binary mixtures. The details of ensemble predictions, as well as
contributions from all three subsets, are provided in the Supplementary Materials (see Excel
file SM_models.xlsx). Moreover, all hyperparameters tuned for corresponding regressors
are provided.

In the caption of Figure 5, the regressor sets are ordered according to the descending
values of the AUC for the validation set. It can be seen that the two best models take
advantage of regression algorithms based on the support vector machine (SVM) technique.
These are the NuSVR (Nu support vector regression) and SVR (support vector regression)
models, and the former is generally considered more robust to outliers compared to SVR.
The “nu” parameter in NuSVR controls the upper bound on the fraction of margin errors
and support vectors. Adjusting this parameter enables the trade-off between the number
of support vectors and the errors allowed in the training set to be controlled. SVR, on the
other hand, penalizes points that lie outside the error bounds more heavily, which can
make it more sensitive to outliers. The overall performance of the best model is presented
in Figure 6. Similar characteristics of all other regressors included in the two subsets are
presented in the Supplementary Materials (see Section S3 and Tables S5 and S6).

Figure 6. Graphical illustration of the NuSVR regression model’s performance. The panels (a), (b),
and (c) document the correlation between computed and consensus solubility values with annotation
of the standard deviation as circle’s radius, applicability domain plots, and the results of learning
curve analysis concerning both R2 and MAE, respectively. The xEest symbol denotes the estimated
EDA solubility values.
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2.5. The Solubility Space Characteristics

The main reason for ensemble model development is the extension of the solubility
space for systems not studied experimentally. This cannot be carried out solely using
COSMO-RS predictions, which is clearly documented in Figure 7. The left panel, present-
ing the correlation between computed and experimental solubility values, suggests only a
qualitative accuracy of this theoretical framework. Conversely, a perfect match between
estimated and measured solubility can be observed in the case of the ensemble. In the
right panel, predictions made using both theoretical approaches were assorted according
to increasing values of solubility derived from the machine learning model. The region
marked by a green rectangle corresponds to higher EDA solubility than the one achieved
in dichloromethane (which was the most effective solvent studied experimentally) at am-
bient conditions. Additionally, the green circles identify solvents, which are supposed
to be environmentally friendly according to US Environmental Protection Agency (EPA)
classification. It relies on the estimation of the so-called environmental index (EI), which in
turn can be calculated using the PARIS III application [53]. This parameter includes several
toxicological factors: human toxicity by inhalation (HTPInh), human toxicity by ingestion
(HTPIng), aquatic toxicity (ATP), terrestrial toxicity (TTP), and physicochemical features re-
lated to ozone depletion (ODP), global warming (GWP), acid rain (AR), and photochemical
oxidation (PCOP). However, when the latter factor is taken into account, EI is very high
in the case of DMSO, which is commonly regarded as green. Since other physicochemical
parameters, namely ODP, GWP, and AR, include all important atmospheric hazards related
to the potential reactivity of the solvents, the contribution of PCOP was set to zero. For the
purposes of this study, all solvents from the PARIS III collection with EI < 1.0 are regarded
as green ones [28] and are marked by green circles in Figure 7. Two main conclusions can be
inferred from both panels. First of all, there is very little space for solubility extensions by
the application of new solvents, especially if the “greenness” criterion is imposed. Indeed,
the top five ranked solvents pointed out by the ensemble model as the most suited for
edaravone are collected in Table 1. It is interesting to note that all these solvents belong to
the class of polar aprotic solvents. The first three seem to be almost identically effective,
bearing in mind the values of the standard deviations. Hence, DMSO is supposed to fulfill
the criterion of the highest solubility limit of EDA in a neat solvent. It is also unlikely
that any binary mixture, except those comprising DMSO, can offer higher solubility. This
conclusion cannot be so definitely stated based solely on COSMO-RS-derived solubility, as
is clearly visible by the cloud of points within the green zone in Figure 7.

Figure 7. The experimentally and theoretically determined solubility values of EDA.
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Table 1. Five top-ranked solvents, selected from the PARIS III collection (EI < 1.0) [28,53], most suited
for EDA dissolution. In parentheses, values predicted by the COSMO-RS approach are given. The
xEest symbol denotes the estimated EDA solubility values.

Solvent [CAS
number] Structure Log (xEest) EI (PCOP = 0)

enflurane
[13838-16-9]

–1.20 ± 0.42
(–1.29) 0.47

DMSO
[67-68-5]

–1.22 ± 0.20
(–1.28) 0.26

isoflurane
[26675-46-7]

–1.29 ± 0.46
(–1.05) 0.56

NMP
[872-50-4]

–1.40 ± 0.09
(–0.92) 0.97

2-ethenoxyethanol
[764-48-7]

–1.41 ± 0.09
(–1.35) 0.97

3. Materials and Methods

3.1. Materials

Edaravone (EDA, CAS Number: 89-25-8, MW = 174.20 g/mol) was supplied by Sigma
Aldrich (Saint Louis, MO, USA) and its purity was ≥98%. The following compounds were
used as solvents throughout the study: diglyme (DIG, CAS Number: 111-96-6), triglyme
(TIG, CAS Number: 112-49-2), tetraglyme (TEG, CAS Number: 143-24-8), dimethyl sul-
foxide (DMSO, CAS Number: 67-68-5), 1-methyl-2-pyrrolidone, (NMP, CAS Number:
872-50-4), 4-formylmorpholine (4FM, CAS Number: 4394-85-8), 2,4-dimethylphenol (DMP,
CAS Number: 105-67-9), 1,2-propanediol (PG, CAS Number: 57-55-6), diethylene glycol
(DG, CAS Number: 111-46-6), triethylene glycol (TG, CAS Number: 112-27-6),
1,3-butanediol (BG, CAS Number: 107-88-0), and methanol (CAS Number: 67-56-1). The
above chemicals were also purchased from Sigma Aldrich and their purity was stated by
the supplier as ≥ 98%. All chemicals were used as obtained without any initial procedures.

3.2. Solubility Measurements

To assess the solubility of EDA in various solvents, excess amounts of EDA were
added to test tubes containing either a specific solvent or a binary mixture containing
the organic solvent and water in different molar proportions. The saturated solutions
were then placed in an Orbital Shaker Incubator ES-20/60 from Biosan (Riga, Latvia) and
incubated at various temperatures for 24 h. Four temperature points, ranging from 25 ◦C to
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40 ◦C with 5 ◦C intervals, were used for the incubation. The incubator temperature was
precisely adjusted to within 0.1 degrees, with a variance of 0.5 degrees during the 24 h
cycle. The samples were simultaneously mixed at 60 rev/min. Next, the samples were
filtered using syringes equipped with PTFE filters with a pore size of 0.22 µm. To prevent
precipitation due to temperature differences between the solutions and instruments, all
test tubes, pipette tips, syringes, and filters were preheated. They were placed in the same
incubator as the samples and heated to the same temperature before handling. This step
was particularly crucial when dealing with elevated temperatures, as the temperature
difference could be substantial. After filtration, small quantities of the obtained filtrate
were diluted in test tubes containing methanol and measured spectrophotometrically. The
density of each solution was measured by weighing a 1 mL volume in 10 mL volumetric
flasks using an Eppendorf Reference 2 pipette (Hamburg, Germany) with a systematic
error of 6 µL. The RADWAG AS 110 R2.PLUS analytical balance (Radom, Poland) with a
precision of 0.1 mg was also used for this purpose. Solubility determination was conducted
using the A360 spectrophotometer from AOE Instruments (Shanghai, China). Spectra were
recorded in the wavelength range of 190 nm to 400 nm with a resolution of 1 nm. Methanol
was used for both diluting the samples and the initial calibration of the spectrophotometer.
The analytical wavelength was set at 243 nm, and the absorbance at this wavelength was
used to determine the EDA concentration in the samples and subsequently calculate its
mole fractions. To ensure accuracy, three separate measurements were performed, and the
resulting values were averaged. The calibration curve for EDA was prepared by diluting an
initial stock solution and measuring the resulting solutions’ spectrophotometric properties
at decreased concentrations. The molar concentrations of the measured solutions ranged
from 0.0023 to 0.023 mg/mL. The relationship between the absorbance values at 243 nm
and the solution concentration was described by a linear equation A = 85.603 × C − 0.0179,
with high linearity denoted by the determination coefficient R2 equal to 0.9993.

3.3. Instrumental Analysis of Solid Residues

The dried solid residues obtained after the solubility determination procedure were
subjected to Fourier transform infrared spectroscopy (FTIR) and differential scanning
calorimetry (DSC) measurements. For this purpose, the Perkin Elmer Spectrum Two
spectrophotometer (Waltham, MA, USA) equipped with an attenuated total reflection
(ATR) device and the DSC 6000 calorimeter from PerkinElmer (Waltham, MA, USA) were
used. The calorimetric measurements were conducted with a heating rate of 5 K/min and
a 20 mL/min nitrogen flow to create an inert atmosphere. The samples were placed in
standard aluminum pans and the DSC apparatus was calibrated using indium and zinc
standards prior to the measurements.

3.4. Solubility Data Curation

The datasets used for model development underwent curing and unification. All
solubility data in neat solvents were analyzed using a simple thermodynamic model
relying on the fundamental van’t Hoff equation extended for the temperature dependence
of the equilibrium constant by a polynomial fit [54]. The following equation

ln(xcur
E ) = A +

B
T
+

C
T2 (1)

has three adjustable parameters, the values of which were computed by minimizing
root mean square deviations (RMSD) between experimental and computed values. The
collection of obtained parameter values for all analyzed systems (including literature
data [21,26,45]), along with graphical illustrations, is provided in the Supplementary Mate-
rials (see Section S2, Table S3 and Figure S2).

The solubility of EDA in binary mixtures was also prone to curation. For this pur-
pose, the Jouyban–Acree model [25,55] was used as it was proven to be able to ade-
quately represent the spectrum of solution behavior from ideal to highly non-ideal sys-
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tems [56]. This semi-empirical thermodynamic mixing model relies on a nearly ideal
binary solvent/Redlich–Kister equation accounting for contributions from both two-body
and three-body interactions [25]. The following adaptation was used for the purpose of
this study:

ln(xcur
E ) = x∗1 ·ln

(
x(1)E

)
+ (1 − x∗1)·ln

(
x(2)E

)
+ x∗1 ·(1 − x∗1)·

2

∑
i=0

Ji·(2x∗1 − 1)i (2)

where J0, J1, and J2 are adjustable parameters and x∗1 represents the mole fraction of the
first solvent in the initial binary mixture. The collection of all fitted values determined in
this study and obtained from the literature is provided in the Supplementary Materials (see
Section S2, Table S4).

3.5. Model Development

For the purpose of exploring the solubility space of edaravone, an extensive search for
non-linear models was performed. The full hyperparameter tuning procedure was used
for 36 regression models, which were chosen based on a variety of algorithms including
linear models, boosting, ensembles, nearest neighbors, neural networks, and other types of
regressors. A Python code was developed specifically for this study, and the search for the
optimal parameters of each model was conducted using Optuna study, a freely available
Python package for hyperparameter optimization [57]. The collection of the tuned models
was formulated after 5000 minimization trials using TPE (Tree-structured Parzen Estimator)
as a sampler of the search algorithm. TPE is known for being computationally efficient and
uses a probability density function to model the relationship between hyperparameters
and performance metrics. To evaluate the performance of each regression model, a custom
score function was developed, which combines multiple metrics, taking into account both
the model’s accuracy and ability to generalize. This scoring function was previously
discussed [28] and only a short note is provided here. In the present study, the training
dataset was used for computations using Formula (3), which includes the mean squared
error between the predicted and actual values of the target variable, as well as penalties on
the number of positive values and outliers.

losstrain = MSELC,train
train +

∣∣∣MSELC,train
train − MSELC,test

train

∣∣∣+
+MSEtrain

(
1 + 100·Npos

traint + 10·Nout
train

) (3)

where MSEtrain is the value of the mean squared error between the predicted and actual
values, Npos

train is the number of positive values, and Nout
train is the number of outliers, while

MSELC,train
train and MSELC,test

train values are obtained from the learning curve analysis. The
scoring function has two penalties for the number of positive values and outliers. The
first penalty ensures that the predicted values are formally acceptable, as the models were
trained against the values of solubility expressed as the logarithm of the mole fraction,
which should always be positive. The second penalty directs the acceptance of models
with as few outliers as possible, defined as values that exceed three times the standard
deviation. The first two terms in Formula (3) were obtained from the learning curve
analysis (LCA) of the scikit-learn 1.2.2 library [58], which provides information on the
model’s performance for different training set sizes. It is worth noting that LCA utilizes
cross-validation (CV), which was set to a 5-fold CV of the training dataset. The first two
contributions are obtained from the learning curve analysis, which provides information on
the model’s ability to generalize to new, unseen data. To perform the learning curve analysis,
the sklearn.model_selection.learning_curve function from the scikit-learn library [58] was
used. Due to its computational expense, only two-point computations were performed
by including 50% to 100% of the total data. Overall, this approach allowed us to evaluate
the performance of the models and identify the optimal training set size for each model.
To assess the performance of the tuned models, a learning curve analysis (LCA) was
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conducted using 20-point computations. The values included in the custom loss function
corresponded to the mean absolute error (MAE) values obtained at the largest training
set size. By combining the two types of components, the custom loss function provided
information on the model’s accuracy and ability to generalize to new, unseen data. The
ensemble model (EM) was formed by selecting the subset of regression models with the
lowest values for both criteria. The final predictions were obtained by averaging the
predictions from the selected models. This approach allowed us to develop an ensemble of
models that provided more robust and accurate predictions of solubility.

3.6. Molecular Descriptors

In order to develop a model for selecting effective EDA solubilizers, suitable molecular
descriptors need to be selected. Selecting the molecular descriptors carrying sufficient
structural information is a crucial step in the model’s development. Since the input data
depend on the temperature, the quantum chemistry COSMO-RS method available in the
COSMOtherm package [59] was applied [60] instead of typical QSPR/QSAR molecular
features. The set of computed variables comprised intermolecular interaction descrip-
tors, chemical potentials, activities, solubility values, gas phase properties, σ-profiles,
σ-potentials, σ-moments, and other features. Notably, several previous studies revealed
the high predicting power of the COSMO-RS descriptors combined with machine learning
techniques [19,30,32,51,61]. In order to develop the most reliable tool for solvent screen-
ing, the sets of computed molecular descriptors were subjected to preselection according
to the following inclusion criteria: (1) correlation with experimentally determined data,
(2) sufficient variability, and (3) orthogonality [62].

Based on the previous studies [19,28], the COSMO-RS-computed solubility values
seem to be the first-choice descriptors. Although COSMO-RS is frequently used, it is
generally known as being only qualitatively accurate. There are several limitations to
this approach, among which is the necessity of providing experimental values for fusion
thermodynamics if solid–liquid equilibria (SLE) are the subject of interest. Luckily, for many
compounds, there are available [63,64] values of melting temperatures, Tm, and fusion
enthalpies, ∆Hfus. Indeed, for EDA, the following values are reported: Tm = 127 ◦C [21,65]
and ∆Hfus = 29.61 kJ/mol [21]. However, the SLE equilibrium is generally defined by the
following equation [66–68]:

lnas =
∆H f us

R
·
(

1
Tm

− 1
T

)
+

1
R

∫ T

Tm

∆Cp

T
dT − 1

RT

∫ T

Tm
∆CpdT (4)

where R is the gas constant, as is the solute activity in saturated systems, and ∆Cp stands
for heat capacity change upon melting. This value is generally unavailable but seems to be
important [68,69], especially for temperature ranges far from the melting point, which is
surely the case for SLE measurements. Some researchers have argued [32,70] that ignoring
this contribution, ∆Cp = 0, introduces an acceptable estimation due to the cancelation of er-
rors in Equation (4). On the other hand, there is evidence that ∆Cp ≈ ∆Sfus ≈ ∆Hfus × Tm

−1

is a better choice [32,71]. To ensure as high as possible accuracy of COSMO-RS solubility
estimation, preliminary computations were performed to find the value minimizing the
overall mean average percentage error, MAPE, for the whole solubility dataset. Hence,
several trials of solubility computations were performed for a broad range of heat capacity
changes, and the resulting correlation between MAPE and the values of ∆Cp is plotted
in Figure 8. It is interesting to see that the performed tuning induces quite a small effect
on the overall accuracy of solubility determined using COSMO-RS. The initial guess
∆Cp ≈ ∆Sfus ≈ ∆Hfus × Tm

−1 = 74.0 J/(mol·K) is very close to the optimized value
∆Cp(opt) = 61.59 J/(mol·K). Hence, the final set of solubilities taken for machine learn-
ing purposes corresponds to this latter value. All solubility computations were performed
by allowing the SLE to be solved by COSMOtherm software (version 22.0.0) in order to
avoid problems with the iterative protocol.



Molecules 2023, 28, 6877 13 of 18

Figure 8. The results of optimization of the ∆Cp value for solubility computations using the COSMO-
RS approach.

The second molecular descriptor selected for machine learning is the relative value of
the infinite dilution activity coefficient (IDAC), ∆ln

(
γ∞

ES
)
, defined as follows:

∆ln(γ∞
ES) = ln(γ∞

E )− ln(γ∞
S ) (5)

where the S symbol denotes either the neat solvent or the binary mixtures. In the latter
case, the value is computed simply as a sum of the neat solvent IDAC values weighted
with the mole fraction composition of the mixture without the solute.

The output files generated for the purpose of IDAC computations were used for
the extraction of the relative values of intermolecular interactions in the studied systems.
Hence, the inclusion criteria met the following energetic terms:

∆E∞
ES(int) = ∆E∞

E (int)− ∆E∞
S (int) (6)

where int stands for the total, misfit, van der Waals, or hydrogen bonding contributions.
Again, in the case of mixed solvents, the values were computed as a weighted sum of the
solvents’ contributions.

The COSMO-RS theory introduced the concept of Taylor series expansion of the
σ-potential:

MEDA
i =

∫
pEDA(σ)·σidσ (7)

and the resulting quantities were termed σ-moments. The zero-order σ-moment, MBSA
i=0 , is

simply the molecular area of the EDA. The first σ-moment MEDA
i=1 , is the negative charge

of the compound. The second σ-moment, MEDA
i=2 , is related to the screening charge of the

system. The third and fourth σ-moments characterize σ-profile skewness and kurtosis,
respectively. The COSMOtherm program (version 22.0.0) allows for computing at most the
sixth σ-moment and the last two have no simple meaning. For the purpose of this study,
the inclusion criteria were fulfilled by third-, fifth-, and sixth-order σ-moments.

The successful calculation of all molecular descriptors with the aid of COSMOth-
erm [59] requires a proper representation of the molecular structure. This step is performed
only once and our database comprises tens of thousands of compounds prepared for use
with the BP_TZVPD_FINE_21.ctd parametrization. This step is described in every paper
dealing with COSMO-RS computations, so here only a reminder is given that the COS-
MOconf program (Version 22.0.0) [72] was used for generating the most representative
conformers and the geometries were optimized using Turbomole (Version 7.6.0) [73,74].
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4. Conclusions

This study investigated the solubility of edaravone both experimentally and theoreti-
cally. An effort was made to ensure that the solubility data collection was representative
and coherent. This is a crucial step for machine learning purposes, aimed at reducing the
noise of the data used for model development. The main idea behind the whole project was
an extensive exploration of the solubility space by taking edaravone as an exemplary drug.

Finally, it is worth emphasizing that the ensemble of regression models developed in
this study was tailored to the physicochemical properties of edaravone solubility by tuning
the values of their parameters to a restricted solubility set of this particular drug. While
this approach may appear limited to a specific system, it still offers broad generalization
potential. In machine learning development, there are generally two philosophies that are
not necessarily mutually exclusive. The first one aims for generalization across a broad
set of systems but requires a vast amount of experimental data. The second approach
restricts itself to a narrower range of systems but is more pragmatic by accepting the
scarcity of available measurements. Both approaches share the common tenet of non-
linear relationships between the target property and known features. Solubility is one
such complex physicochemical property that is dependent on many solute–solvent-related
interrelationships. In this study, we offer a balance between these two main attitudes with
a pragmatic approach. Our Python code, which utilizes comprehensive parameter tuning,
can be used to solve a variety of practical problems encountered in real-life screening.
The application of our protocol led to the conclusion that the solubility space defined by
ordinary solvents is limited, and it is unlikely to find solvents that are better suited for
edaravone dissolution than those depicted in this manuscript. This is not a negative or
restrictive conclusion; on the contrary, it points out that this direction is not worth the effort
and that focusing on other possibilities might be a better solution. The solubility space is
vast and extensive, and one can consider many more potential systems than just common
solvents if one is open to accepting new, designed solvents that take advantage of ion pairs.
Indeed, such a direction was previously suggested [45], and this study further supports
this lineage of future work.

The theoretical framework presented in this study, along with the previous work [28],
provides a more precise guide for conducting experiments, saving time and resources in
the pursuit of new findings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28196877/s1, (a) in document file: Table S1. The ex-
perimentally determined mole fraction solubility of Edaravone (xEDA, ×102) in diglyme (DIG),
triglyme (TIG), tetraglyme (TEG), dimethyl sulfoxide (DMSO), 1-methyl-2-pyrrolidone, (NMP),
4-formylmorpholine (4FM), and 2,4-dimethylphenol (DMP) at various temperatures. Standard de-
viation values are given in parentheses. Table S2. The experimentally determined mole fraction
solubility of Edaravone (xEDA, ×102) in 1,2-propanediol (PG), diethylene glycol (DG), triethylene
glycol (TG), and 1,3-butanediol (BG), as well as in their aqueous binary mixtures at 25 ◦C. In the
first column, x2* denotes the mole fraction of the organic solvent in solute-free solutions. Standard
deviation values are given in parentheses. Table S3. Optimized values of model parameters used for
data curation along with statistical measure of the fitting accuracy. Table S4. Solubility data curation
of edaravone in binary solvents. All experimental data come from reference [18] as cited in main text
or from this work. The xE and x2* symbols denote mole fraction solubility of EDA and mole fraction
of component 2 in solute-free solutions, respectively. Table S5. Graphical illustration of the of the
regression model performance belonging to set A. The panels a,b, and c document the correlation
between computed and consensus solubility values with annotation of the standard deviation as
circles radius, applicability domain plots, and results of learning curve analysis concerning both
R2 and MAE, respectively. Table S6. Graphical illustration of the of the regression model perfor-
mance belonging to set B. The panels a,b, and c document the correlation between computed and
consensus solubility values with annotation of the standard deviation as circles radius, applicability
domain plots, and results of learning curve analysis concerning both R2 and MAE, respectively.
Figure S1. The DSC (a) and FTIR-ATR (b) characteristics of the solid residues obtained after shake-

https://www.mdpi.com/article/10.3390/molecules28196877/s1
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flask solubility determination procedure. Figure S2. Graphical illustration of the solubility data
curation of edaravone in neat solvents.
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