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Summary
Fingered infiltration of a wetting fluid through a porous network is a widely
studied subject in the field of fluid mechanics. However, the effect of this het-
erogeneous percolation on the response of granular materials, in particular
fine-grained soils, is a poorly investigated and badly understood topic which
deserves deep analysis, considering, among others, possible applications in soil
remediation and underground energy storage. This paper presents a first appli-
cation of a new formulation of unsaturated poromechanics based on a phase
field approach that allows to characterize on the one hand the occurrence of
fingering hydraulic instabilities and on the other one to capture their effects
on the irreversible, and possible unstable, deformation of the solid skeleton.
The envisaged application concerns the behavior of fine-grained soils whose
dilatant/contractant behavior is more and more attracting the interest of the sci-
entific community both in the fields of experimental research and numerical
modeling.
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1 INTRODUCTION

Infiltration of a wetting fluid through a porous medium initially saturated by a non-wetting phase (imbibition process)
is particularly relevant in oil industry applications, where water is pumped into oil reservoirs to drive oil towards the
extraction wells when reservoir pressure declines,1 or in hydrology applications, where the infiltration of Non-Aqueous
Phase Liquids (NAPL) is studied to quantify dilution of contaminants in the soil and potential impact on groundwater
pollution, see for example, Leharne2 and references therein. Another possible application concerns underground storage
of hydrocarbons, considered as non-wetting fluids, and their interaction with the sealing caprock typically saturated by
brine, see for example, Espinoza and Santamarina3 and references therein. At the interface between the aquifer rock,
typically used as gas host rock, gas diffusion and capillary phenomena tend to trigger gas infiltration and brine receding
through the caprock (drainage process). Gas withdrawal yields the opposite process and brine tends to push the infiltrated
gas out of the sealing formation, so enhancing re-inbibition of the caprock.
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original work is properly cited.
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2 ZAÏM et al.

One of the most relevant characteristics of this process is the tendency of the interface between the injected wetting
fluid and the receding non-wetting one to destabilize in the form of a fingered front, in other words to exhibit preferen-
tial paths, when a driving flux forces the fluid-fluid interface through the porous network. This phenomenon has been
extensively studied in the past from the experimental point of view considering first of all the interaction between the two
fluids in a thin gap separating two flat plates (Hele-Shaw cell), without any obstacle, see Lenormand4 and Guo.5 More
recently important results have been obtained which clarify the role of wettability, summarized by the contact angle, in
the transition from stable to fingered percolation,6 and in enhancing/contrasting the efficient displacement of the defend-
ing fluid by the invading one.7 The microscale mechanisms responsible of these two last counter-current effects have also
been identified. The presence of gravity typically enhances the destabilization of the front when the injected fluid is more
dense of the defending one, see for example, DiCarlo et al.8

From the theoretical point of view the seminal paper of Saffman and Taylor9 constitutes a milestone in the formula-
tion of the problem followed by the study of Chuoke et al.10 and Wang et al.,11 all based on the characterization of a linear
instability criterion for the moving fluid-fluid interface. More recently an effort has been done to embed this study in
the framework of the mechanics of porous media. On the one hand it was proven that the Richards equation, commonly
adopted to describe bi-phasic flow through porous media, is unconditionally stable with respect to transversal pertur-
bation and consequently unable to reproduce the fingering phenomenon.12 On the other hand gradient and phase field
models have been introduced to obtain a regularized representation of the fluid-fluid interface, studying its stability and
modeling fingering occurrence.13-15

The present study stems from these results in mechanical modeling and aims to face a quite different aspect of the
imbibition process which has been poorly investigated in the past, say the action of heterogeneous percolation, in par-
ticular fingering, on the local rearrangement of grains in a fine-grained material. The idea is not just to consider the
porous network as a sequence of rigid obstacles to the fluid flux but also to account, in the framework of continuum
poromechanics and therefore adopting a purely macroscopic point of view, for the effect of this heterogeneous flux on the
deformation of the solid skeleton and potential strain localization. As mentioned by several authors, see among others
Li and Vanapalli16 and recently Liu and Santamarina,17 not just drainage but also imbibition processes can cause fabric
changes in fine-grained sediments, which could be associated to contractant behavior (capillary collapse), as proven by
Bruchon et al.,18 but also to swelling, because of the alteration of the yield surface and consequently of the reversibility
domain.19 To this purpose the present study develops a poromechanical model based on a phase field approach to par-
tial saturation,20 in order to overcome the above mentioned weakness of the formulation based on Richards’ equation,
endowed with an elasto-plastic model taking in due account the effect of saturation on the reduction of strength in a sim-
ilar way as done by Tamagnini21 and Rotisciani et al.22 In particular the two above mentioned features of a fine-grained
soil (a loamy sand), say its capability to contract or swell under hydraulic imbibition, are discussed as a consequence of
the initial state of stress and the rate of change of the yield surface due to saturation.

The paper is organized as follows: in Section 2 a brief presentation of the phase-field approach to partial saturation
is provided together with the implications of the extended Clausius-Duhem inequality in terms of the thermodynamical
restrictions on both the behavior of the solid phase and the mixture of a wetting and a non-wetting fluid saturating the
porous network. In Section 3, the governing equations of the problem are summarized and in Section 4 the corresponding
weak formulation is derived together with the Algorithm 1 used to implement this new formulation within the Matlab
Finite Element code written by Bonnet and Frangi.23 Section 5 is devoted to the analysis of the pure hydraulic problem in
order to get a preliminary estimate of the instability conditions that trigger fingering formation. Finally Section 6 presents
the results of the coupled problem, in particular two cases corresponding to a dilatant and a contractant behavior of the
same soil are discussed. Section 7 summarizes conclusions and perspectives of this study.

2 KINEMATICS AND THERMODYNAMICS

We consider a porous medium constituted by a deformable solid skeleton whose pores are saturated by a mixture of two
immiscible fluids phases, a wetting liquid (water) and a non-wetting gas (air), this last directly in contact with the atmo-
sphere. The liquid phase is assumed incompressible (𝜌w = const) and the gaseous phase passive, say of infinite mobility.
The gas density can therefore be neglected with respect to that of the liquid phase (𝜌g ≃ 0).

Rather than the classical approach to unsaturated poromechanics,24 an alternative modeling scheme20 is here adopted,
consisting in considering the gas-liquid mixture filling the porous network as a non-uniform fluid in the sense of
Cahn-Hilliard.25 To this aim an order parameter, the phase field, is introduced which is uniform in the bulk phases and
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ZAÏM et al. 3

varies continuously through the interface between them. From now on the volume of the liquid phase with respect to the
volume of the pores, say the degree of saturation Sr will play the role of the phase field, being equal to 1 in the liquid and
0 in the gaseous phase. Being the gas passive, the non-uniform fluid density is 𝜌f = 𝜌wSr .

In a similar way as in the standard formulation of continuum poromechanics,24 the pull-back of the mass balance of
the non-uniform fluid in the reference configuration of the solid skeleton can be written, stating the small strains (small
displacement gradients) assumption to hold true, as follows:

dmf

dt
+ ∇.M = 0 with mf = 𝜌f𝜙 and M = 𝜌f𝜙(V f − V s), (1)

where mf is the mass of the mixture per unit reference volume, M is the mass flow vector, 𝜙 the Lagrangian porosity, V f is
the velocity of the fluid and V s that of the solid, this last being obviously the time derivative of a suitable displacement u.
It is worth to underline that in this case the fluid under consideration is the above mentioned mixture of the two phases.

Following the seminal works of Cahn-Hilliard the distinction between the two phases is operated via an adapted form
of the Helmoltz free energy of the fluid mixture, which is given by

Ψmix = 𝜙Ψf (Sr) + Ψnl, Ψnl =
1
2

Ck∇(𝜙Sr) ⋅ ∇(𝜙Sr), (2)

whereΨf is a double well potential with two isopotential local minima which correspond to the equilibrium states of the
mixture, say the above mentioned phases. The gradient, non-local, energy contribution Ψnl incorporates a penalization
associated to the diffuse interface formation and allows to convexify the problem. The coefficient Ck, which controls the
strength of the gradient–energy terms, is a higher order stiffness which has the same physical dimension as an energy per
unit volume multiplied by a squared length 𝓁. This last characterizes the thickness of the diffuse interface between the
two phases. We underline that the gradient term does not involve just the saturation but the water content 𝜙Sr so as to
account for the gradient of water distributed within a representative volume rather than just in its pores.

The thermodynamic pressure P and the chemical potential 𝜇 of the fluid can be defined via the state equations in
terms of the saturation degree Sr as

P = Sr
𝜕Ψf

𝜕Sr
− Ψf and 𝜇 =

𝜕Ψf

𝜕Sr
. (3)

From now on we adopt the following simple functional form for the fluid bulk energy

Ψf (Sr) = C
𝛾lg

R
S2

r (1 − Sr)2, (4)

which assures the two isopotential minima ofΨf associated to the gaseous and the liquid phase to be at Sr = 0 and Sr = 1,
respectively. As depicted in Figure 1 the two minima of Ψf correspond to the zeros of its non-monotonic first derivative
𝜇. The physical meaning of 𝜇 will be clarified once the restrictions on the constitutive laws imposed by the first and the
second principle of thermodynamics will be stated, see Section 2.4. In Equation (4), 𝛾lg is the liquid-gas surface tension
and R a characteristic length describing the effective size of the pore space through which the fluid flows; in the following
the Leverett26 estimate of R is considered, say: R =

√
𝜘

𝜙0
, 𝜙0 being the initial porosity of the material and 𝜘 its intrinsic

permeability. In a similar way as modeling of multi-phase flow in fluid mechanics, see for example, Kim27 and refer-
ences therein, this approach, whose extended formulation is provided by Sciarra,20 allows to capture pattern formation
in fluid flow through porous media, as for instance pinching-off, coalescence and fingering of a wetting fluid displacing
a non-wetting one initially saturating the porous network.

As discussed by Sciarra20 in order to account for the transition from partially to fully saturated conditions, the inequal-
ity Sr ≤ 1 should be also taken into account. This can be done via a slack variable transforming the inequality constraint
into an equality. The Lagrangian multiplier corresponding to the constraint is in this case the reactive chemical potential
𝜇r, which will be zero in partially saturated conditions and different from zero when saturation is achieved. We refer to
Sciarra20 for more details. For the sake of simplicity all the deductions which are presented in the following are however
only valid in the regime of partial saturation. A straightforward extension of these results can be obtained to incorporate
in the model the above mentioned slack variable and the corresponding reactive chemical potential.
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4 ZAÏM et al.

(A) (B)

F I G U R E 1 (A) The energy density, Ψf ; (B) the chemical potential, 𝜇.

Let us now move to thermodynamics and constitutive laws of the porous medium. Assuming the power of external
forces to be a linear functional of the velocity field parametrized by bulk forces, tractions and double forces,28 acting
on the solid and the fluid mixture, and requiring the overall balance of momentum to hold true, allows to deduce an
extended version of the Clausius-Duhem inequality from the first and the second principle of thermodynamics. We
refer to Coussy24 for the general framework of thermodynamics of porous media and to Sciarra20 for the specific for-
mulation valid in the case of second gradient continua, see Equation (27) therein. It is not the purpose of this paper
to deduce again this result, the interested reader could refer to the above cited reference for further details. In order to
further simplify the formulation, the hyper-stress of the solid is assumed to be the negative of that of the fluid so as
to obtain a vanishing overall hyper-stress. Under isothermal conditions the Clausius–Duhem inequality can be finally
formulated as:

Φ = 𝜎 ∶ �̇� + (P − SrPc)
d𝜙
dt
− 𝜙Pc

dSr

dt
−

𝜸

𝜙Sr

d∇(𝜙Sr)
dt

− dΨs

dt
− 1
𝜌w

{
1
Sr
∇P + ∇

[
∇.

(
𝜸

𝜙Sr

)
− Pc

]
− bf

𝜙Sr

}
.M ≥ 0. (5)

Here 𝜎 is the total stress of the overall porous medium, required to verify the overall momentum balance equation
div 𝜎 + 𝜌g = 0, 𝜌 being the total density of the porous medium including the solid skeleton and the fluid inside the pores;
Pc is the capillary pressure, 𝛾 is the fluid hyper-stress vector and bf the bulk force exerted on the fluid.Ψs is the free energy
of the porous solid defined as the difference of the free energy of the overall porous continuum and the bulk energy of
the non-uniform fluid multiplied by the Lagrangian porosity, 𝜙Ψf . As the double well potential Ψf accounts only for the
energy of the fluid mixture, all the contributions relative to the solid-fluid and the fluid-fluid interfaces are stored intoΨs.
In the following an additive decomposition of the solid energy Ψs will be proposed.

According to Coussy,24 the dissipation inequality given by Equation (5) can be split into two separate non-negative
contributions: Φs relative to the solid and Φf relative to the non-uniform fluid defined as:

Φs = 𝜎 ∶ �̇� + (P − SrPc)
d𝜙
dt
− 𝜙Pc

dSr

dt
−

𝜸

𝜙Sr

d∇(𝜙Sr)
dt

− dΨs

dt
≥ 0. (6)

Φf = −
1
𝜌w

{
1
Sr
∇P + ∇

[
∇.

(
𝜸

𝜙Sr

)
− Pc

]
− bf

𝜙Sr

}
.M ≥ 0. (7)

In the following the implications of the two contributions to the dissipation inequality are separately discussed.

2.1 Prescriptions on the constitutive law of the solid, with interfaces

We consider first of all the poro-elastic conditions, which correspond to the case when Equation (6) holds true
as an equality. As usually done in rational thermodynamics,29 assuming the dissipation to vanish allows to
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ZAÏM et al. 5

characterize the free energy as a state function, in this case of the state variables 𝜀e, 𝜙e, Sr and ∇(𝜙Sr). 𝜀e indicates the
purely reversible part of the strain in the additive decomposition 𝜀 = 𝜀e + 𝜀p, valid within the assumed framework of small
strains, while 𝜙e corresponds to the reversible contribution to the current value of the Lagrangian porosity, also provided
by an additive decomposition. In other words, the state of the porous skeleton is characterized at any place x and at any
time t by the values of each of these variables. Hence, the skeleton Helmholtz free energy is assumed to have the following
form:

Ψs = Ψs(𝜀e
, 𝜙

e
, Sr,∇(𝜙Sr)), (8)

which depends not only on strain, porosity and saturation degree, as in standard unsaturated poromechanics, but also on
the gradient of the wetting fluid content 𝜙Sr. Using the chain rule to develop the time derivative of Ψs and replacing the
obtained result into Equation (6) yields the following form for the skeleton dissipation:

(
𝜎 − 𝜕Ψs

𝜕𝜀e

)
∶ d𝜀e

dt
+
(

P − SrPc −
𝜕Ψs

𝜕𝜙e

)
d𝜙e

dt
+
(
−𝜙Pc −

𝜕Ψs

𝜕Sr

)
dSr

dt
+
(
−
𝜸

𝜙Sr
− 𝜕Ψs

𝜕∇(𝜙Sr)

)
d∇(𝜙Sr)

dt
= 0, (9)

so that the skeleton state equations can be given by:

𝜎 = 𝜕Ψs

𝜕𝜀e ; P − SrPc =
𝜕Ψs

𝜕𝜙e ; −𝜙Pc =
𝜕Ψs

𝜕Sr
; −

𝜸

𝜙Sr
= 𝜕Ψs

𝜕∇(𝜙Sr)
. (10)

According to the previous remarks on the free energy of the porous skeleton and adopting a similar approach as in classical
unsaturated poromechanics to account for the retention properties of the solid, the following decomposition of Ψs is
proposed:

Ψs(𝜀e
, 𝜙

e
, Sr,∇(𝜙Sr)) = 𝜓s(𝜀e

, 𝜙
e) + 𝜙U(Sr) + Ψnl(∇(𝜙Sr)), (11)

where𝜓s represents the energy of the saturated porous solid and U is the so-called capillary energy, which only depends on
the saturation degree and accounts for the energy stored within the solid-fluid interfaces. As already mentioned the energy
of the fluid-fluid interfaces, intrinsic to the non-uniform fluid, is counted intoΨnl. It is worth to notice that decomposition
(11) implies that strain and porosity variation do not affect the capillary energy U and consequently the water retention
curve. This choice assumed for the sake of simplicity must obviously be relaxed within the framework of a more general
formulation, in particular when the soil volume significantly reduces.30,31 Replacing Equations (11) into (6) allows to
rephrase the third of the state Equation (10) in the usual form −Pc = dU

dSr
. The classical van Genuchten32 expression of the

capillary pressure is assumed:

Pc(Sr) =
𝜌wg
𝛼

((
Sr − Sres

r

1 − Sres
r

) 1
m

− 1

)1−m

, (12)

where the dimensionless parameter m and the inverse of a characteristic length 𝛼 assign the retention properties of the
porous medium, Sres

r being the residual saturation degree of the wetting fluid. The capillary energy is the integral of Pc(Sr)
between Sr and 1.

Once moving from poro-elasticity to poro-elasto-plasticity we still consider the Helmoltz free energy Ψs to be
a function of the elastic strain, the elastic porosity, the saturation and, in this case, the gradient of the wet-
ting fluid content; additional dependency on suitable internal (hardening) variables 𝜒j is also considered: say
Ψs = Ψs(𝜀e

, 𝜙
e
, Sr,∇(𝜙Sr);𝜒j). It is worth to underline that no hypothesis is formulated at this level concerning the tenso-

rial order of these variables. Moreover considering that elastic deformations occur at a time scale much lower than that
which characterizes dissipative processes, Equation (10) continue to hold true, which implies the solid dissipation Φs to
reduce to

Φs = 𝜎 ∶ �̇�p + (P − SrPc) �̇�
p − 𝜕Ψs

𝜕𝜒j
�̇� j ≥ 0. (13)
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6 ZAÏM et al.

As usual in plasticity, this last is verified with a proper choice of the potential g providing the plastic strain rate (and the
plastic porosity rate) as a function of the state of stress.24 The plastic model adopted in the present study will be discussed
in Section 2.3.

2.2 The effective stress

In order to further simplify the formulation, we refer here to the simplest deduction of the effective stress tensor in par-
tially saturated conditions as reported for example, Coussy et al.33 Assuming the solid grains, forming the matrix, to be
incompressible and in the absence of any occluded porosity, the volumetric strain of the porous medium results from the
porosity variation:

𝜖 = tr𝜀 = 𝜙 − 𝜙0, (14)

Equation (14) can be verified, considering 𝜖e = 𝜙e − 𝜙0 and �̇�p = �̇�p.
In the poro-elastic case Equation (5) therefore reduces to

Φs = 𝜎′ ∶
d𝜀e

dt
− 𝜙Pc

dSr

dt
−

𝜸

𝜙Sr

d∇(𝜙Sr)
dt

− d𝜓s

dt
− 𝜙dU

dt
− dΨnl

dt
= 0, (15)

with the effective stress 𝜎′ defined as the total stress 𝜎 plus the so-called equivalent pore pressure 𝜋:

𝜎
′ = 𝜎 + 𝜋1; 𝜋 = P − SrPc − U, (16)

and the energy per unit volume 𝜓s just dependent on 𝜀e. Apparently the state equations are therefore simplified into

𝜎
′ = 𝜕𝜓s

𝜕𝜀e ; −Pc =
dU
dSr

; −
𝜸

𝜙Sr
= 𝜕Ψs

𝜕∇(𝜙Sr)
. (17)

Using the same arguments as in the previous section, the reduced form (13) of the dissipation inequality in the
poro-elasto-plastic case can be further simplified into

Φs = 𝜎′ ∶ �̇�p − 𝜕Ψs

𝜕𝜒j
�̇� j ≥ 0. (18)

2.3 The elasto-plastic constitutive model

The constitutive relation for the effective stress is provided via an elasto-plastic constitutive model where, for the sake of
simplicity, the elastic part is kept as the classical Hooke law, while the plastic one is assumed to be given by the modified
Cam-Clay model (MCC). Let p′ = − tr𝜎′

3
be the effective pressure and q′ =

√
3
2

s′ ∶ s′ the deviator stress defined as the
second invariant of the deviatoric (effective) stress s′ = 𝜎′ + p′1. The yield function f has the form

f = f (p′, q′, pc) = q′2 +M2p′(p′ − pc), (19)

where pc is the so-called preconsolidation pressure, say the highest mean effective stress ever experienced by the soil and
M indicates the slope of the critical state line, which can be related to the friction angle 𝜑 via M = 6 sin𝜑∕(3 − sin𝜑). The
preconsolidation pressure is, in the current formulation, the only non-vanishing among the previously cited hardening
variables 𝜒 . A detailed presentation of the MCC model can be found in Nova.34 The MCC being an associated plastic
model, it is therefore characterized by the associated flow rule

�̇�
p = Λ̇

𝜕f
𝜕𝜎′

, (20)
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ZAÏM et al. 7

prescribing the evolution of the plastic strain in terms of the derivative of the yield function with respect to the effective
stress. Λ̇ is the corresponding plastic multiplier. The presence of the hardening variable pc necessitates of a hardening
law, which in the MCC is given by:

ṗc(sat) = −v pc�̇�
p
v with �̇�

p
v = tr �̇�p and v = 1 + e

𝜆 − 𝜅
(21)

where �̇�p
v indicates the volumetric plastic strain rate, e is the void ratio, 𝜆 the compression index and 𝜅 the swelling index.

In the case of unsaturated soils it is of interest to include in the formulation of the plastic model, and more specifically
in that of the hardening law, the effect of the progressive saturation of the porous network. Following a similar approach
as that developed by Nova et al.35 to describe plastic strains in bonded geomaterials, caused by bonding failure induced
by chemical or mechanical degradation, a similar approach has been proposed21 and exploited22 to describe plastic defor-
mations in geomaterials caused by failure of capillary bridges induced by saturation. In this framework the variation of
the preconsolidation pressure depends not only on the volumetric plastic strain but also on suction or saturation degree.
In particular a double hardening law21 is introduced for the preconsolidation pressure which separately accounts for a
parametrization of ṗc by the plastic strain rate as well as by the variation of the saturation degree:

ṗc = ṗc(sat) + ṗc(unsat), (22)

where ṗc(sat) is given by the original MCC hardening law, see Equation (21), and ṗc(unsat) describes the variation of the
preconsolidation pressure with respect to the variation of the saturation degree:

ṗc(unsat) = −𝛽pcṠr, (23)

where 𝛽 is a new constitutive parameter to be calibrated. Equation (23) implies that the preconsolidation pressure
decreases with increasing saturation, which causes the shrinkage of the yield surface and may induce plastification of the
solid skeleton even at constant effective stress.

As previously mentioned the elastic behaviour of the solid phase is assumed linear; and the isotropic material
symmetry is also chosen. Accordingly the effective stress rate is given by

̇
𝜎
′ = C

e ∶ (�̇� − �̇�p) with C
e = 3KJ + 2GK, (24)

where K and G are the skeleton bulk and shear module, while J and K are the tensor product of two second order identity
tensors and the fourth order identity tensor minus one third of the previous tensor J, respectively. The plastic strain rate,
given by Equation (20) is determined calculating the positive plastic multiplier from the consistency condition, that is,
requiring that a state of stress which at time t belongs to the yield surface f = 0 remains on it at time t + dt:

ḟ =
𝜕f
𝜕𝜎′

∶ ̇
𝜎
′ +

𝜕f
𝜕pc

ṗc = 0. (25)

Λ̇ = 1
H

[
𝜕f
𝜕𝜎′

∶ ̇
𝜎
′ +

𝜕f
𝜕pc

ṗc

]
with H = −vpc

𝜕f
𝜕p′

𝜕f
𝜕pc

. (26)

2.4 The generalized Darcy law

Positive definiteness of the fluid dissipationΦf can be satisfied assuming this last to be a quadratic form of the Lagrangian
mass flow vector M, so that:

Φf =
𝜂

𝜘k(Sr)
M ⋅M
𝜌

2
w
≥ 0, (27)

where 𝜘 is the already mentioned intrinsic permeability, 𝜂 the viscosity of the wetting fluid and k(Sr) a function that
accounts for non-uniform mobility of the fluid mixture within the pore network. From now on we assume that it coincides
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8 ZAÏM et al.

with the relative permeability of the wetting phase. Accordingly, the van Genuchten or the simpler Leverett form of k(Sr)
can be adopted.36 Comparison of Equations (7) and (27), and taking in due account the state equations (17), yield the
following generalized form of the isotropic Darcy law:

M = −𝜌w
𝜘k(Sr)
𝜂

{
1
Sr
∇P + ∇

[
∇.

(
𝜸

𝜙Sr

)
− Pc

]
− bf

𝜙Sr

}
, (28)

which with respect to the standard one, that in partially saturated conditions just depends on the gradient of the capil-
lary pressure, incorporates the contributions arising from the thermodynamic pressure P of the non-uniform fluid and
the hyper-stress fluid vector 𝛾 . Using the definition of the thermodynamic pressure given by Equation (3) and the state
equation (17)3 implies Equation (28) to be rewritten as follows:

M = −𝜌w
𝜘k(Sr)
𝜂

{
∇
[
𝜕Ψf

𝜕Sr
+ 𝜕U
𝜕Sr

− ∇.
(

𝜕Ψnl

𝜕∇(𝜙Sr)

)]
− bf

𝜙Sr

}
. (29)

It is worth to underline that in a similar way as discussed by Gurtin,37 the argument of the ∇ operator in Equation (29)
can be regarded as the variational derivative of Ψmix, defined by Equation (2), plus U with respect to Sr divided by 𝜙, say
1
𝜙

𝛿(Ψmix+U)
𝛿Sr

. From now on the notion of pore-fluid energy is introduced as Ψpf = Ψf + U, so that, taking in due account
the form of Ψnl, a kind of effective chemical potential can be defined:

𝜇
eff =

𝜕Ψpf

𝜕Sr
− Ck∇. (∇(𝜙Sr)) , (30)

which incorporates the so-called pore-fluid chemical potential, 𝜇pf obtained as the derivative of the pore-fluid energyΨpf
with respect to Sr, and the divergence of the derivative of the non-local energy contribution, with respect to the gradient
of the wetting fluid content. In the absence of bulk forces acting on the fluid, Equations (29) and (30) imply that the fluid
mass flows from higher to lower effective chemical potentials. Apparently in the presence of conservative bulk forces
an augmented chemical potential could be defined, as commonly done in the case of gravity. The pore-fluid energy Ψpf
describes the bulk energy of the wetting and the non-wetting phases stored into the porous network. Due to the form
of the capillary energy, Ψpf can possibly maintain a similar double well shape as Ψf , however the two minima, if they
exist, are no more isopotential. A double-tangent construction, equivalent to the well-known equal-area Maxwell rule
can be adopted to identify the value of the pore-fluid chemical potential which re-equilibrates the two wells. From the
physical point of view this is the same as saying that isopotential minima can exist when a suitable suction is applied at the
boundary. Apparently the new isopotential minima will fall inside the (0, 1) interval, rather than being on its boundary, see
Figure 2. When the double tangency condition is verified, and therefore its derivative with respect to Sr is a non-monotonic
function of the saturation, the current formulation is similar to the one based on a modified capillary pressure, introduced
by DiCarlo et al.38 which incorporates a hypo-diffusive term in addition to the capillary and gravity terms within the
traditional Richards equation. The higher order stiffness Ck is from now on prescribed in terms of the characteristic
lengths 𝛼−1 and 𝓁, associated to capillary rise and fluid-fluid interface thickness, as Ck = 𝜌w||g||𝛼−1𝓁2, where ||g|| is the
magnitude of the gravity acceleration g.

3 THE GOVERNING EQUATIONS

The equation governing the behavior of the fluid is obtained by substituting the generalized Darcy law Equation (29)
into the Lagrangian mass balance of the fluid mixture Equation (1), which implies the following fourth order partial
differential equation involving the current values of porosity and saturation degree:

d𝜙Sr

dt
= ∇.

{
𝜘k(Sr)
𝜂

[
∇
(
𝜕Ψf

𝜕Sr
+ 𝜕U
𝜕Sr

− ∇.
(

𝜕Ψnl

𝜕∇(𝜙Sr)

))
− bf

𝜙Sr

]}
. (31)

Even if Equation (31) looks similar to the one introduced by Cueto-Felgueroso et al.39-41 the additional contribution of the
chemical potential of the non-uniform fluid, 𝜇 = 𝜕Ψf

𝜕Sr
, which we adopted in our formulation, allows to capture different
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ZAÏM et al. 9

(A) (B)

F I G U R E 2 (A) The pore-fluid energy, Ψpf ; (B) the pore-fluid chemical potential, 𝜇pf . The grey area corresponds to the value of the pore
fluid chemical potential which guarantees phase coexistence.

forms of instability of a gravity driven imbibition front propagating through a porous medium, even without any hetero-
geneity in the permeability or in the retention properties of the material.14,15 A detailed discussion of instability conditions
of a fluid-fluid interface with respect to transversal perturbation is reported in Section 5. According with the definition of
the effective chemical potential provided in Equations (30), (31) can be rewritten as follows:

d𝜙Sr

dt
= ∇.

{
𝜘k(Sr)
𝜂

[
∇𝜇eff − bf

𝜙Sr

]}
. (32)

Equation (32) has the same form as the well known Richards equation,42 describing flow induced by gravity of a wetting
fluid through an unsaturated porous medium, however in the present formulation the chemical potential 𝜇eff , replacing
the derivative of Richards capillary potential, is not directly prescribed via a state equation, function of the saturation
degree and possibly of porosity, but it is the solution of the coupled boundary value problem defined by Equations (30)
and (32), endowed with suitable boundary conditions. Apparently Equation (32) can be reduced to Richards equations
assuming bf = 𝜌w𝜙Srg, say the gravity force acting on the fluid, and neglecting the energy contribution of the non-uniform
fluid Ψf as well as the gradient, non-local, energy contribution Ψnl. The proposed numerical implementation, that will
be discussed in Section 4, is based on the above decomposition of Equations (31) into (30) and (32), considering therefore
the degree of saturation as well as the chemical potential as the two primary unknowns of a system of two coupled second
order partial differential equations.

Equations (30) and (32) must be accompanied by suitable boundary and initial conditions. Adopting the usual dis-
tinction between essential (Dirichlet) and natural (Neumann) boundary conditions, the boundary of the integration
domain could be differently subdivided when considering the boundary conditions relative to the above mentioned par-
tial differential equations. In particular considering Equation (30), essential boundary conditions assign the value of the
saturation degree Sr while natural boundary conditions prescribe that of its normal derivative, which means providing
the value of Young’s contact angle.43-45 Concerning Equation (32), essential boundary conditions assign the value of the
effective chemical potential 𝜇eff , natural boundary conditions its normal derivative. Taking in due account the form of
Equation (32) this will imply providing the value of the fluid inflow. In Section 4 the weak formulation of the problem
will allow to underline this fundamental distinction. To solve Equation (32) also the initial value of saturation must be
prescribed.

In addition to Equations (30) and (32), with their own boundary and initial conditions, the momentum balance
equation of the overall porous medium must be also considered, say

div 𝜎 + 𝜌g = 0, (33)

where the total stress 𝜎 is given by Equation (16) coupled with the stress-strain constitutive relation of effective stress
Equation (24), the flow rule Equation (20) and the consistency condition Equation (26). In this case prescribing essential
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10 ZAÏM et al.

boundary conditions will obviously mean assigning the value of displacement, while prescribing natural boundary
conditions will obviously mean assigning the value of the traction applied on the overall porous medium.

It is worth to underline that Equations (30), (32), and (33) constitute a fully coupled system of second order differential
equations in the space variable and a first order differential equation in time.

4 INTEGRATION OF THE BOUNDARY VALUE PROBLEM

The coupled problem described by the mass balance Equation (31), endowed with the generalized Darcy law,
Equation (29), the momentum balance Equation (33) and the constitutive law of the effective stress is here reformulated
in a suitable weak form so that an adapted finite element method implementation strategy can be developed. Using the
formulation of the fluid problem based on Equations (30) and (32) rather than the one directly based on Equation (31)
implies, as already mentioned, the unknowns of the boundary value problem to be the two scalar fields Sr and 𝜇eff as well
as the vector field u, representing the displacement of the porous medium; the plastic strain 𝜀p which is also an unknown
of the problem does not necessitate any boundary condition and is therefore treated as a local variable, as discussed in
the following.

Let Ω be the partially saturated porous medium which constitutes the domain of the boundary value problem, and Γ
its boundary. According to remarks concerning essential and natural boundary conditions for the balance of total moment
and fluid mass stated in Section 3, Γ can be differently decomposed into two parts, Γ𝛼D and Γ𝛼N , where Dirichlet and
Neumann boundary conditions are imposed respectively. Different decompositions of Γ can be considered when 𝛼 is
chosen as the saturation degree Sr, the effective chemical potential 𝜇eff or the displacement u so that

u = ud on Γu
D; 𝜎.n = T on Γu

N , (34)

𝜇
eff = 𝜇d on Γ𝜇D; −𝜘

𝜂
k(Sr)(∇𝜇eff − 𝜌wg).n = qw.n on Γ𝜇N , (35)

Sr = Srd on ΓSr
D ; Ck∇(𝜙Sr).n = −qSr on ΓSr

N . (36)

In Equations (34)–(36) T indicates the applied traction, qw the fluid inflow and qSr the so-called doubly normal
double force.28 The weak solution of the boundary value problem defined by Equations (30), (32), (33), (34)–(36)
will be looked for in the functional space Hu ×H𝜇 ×HSr where Hu ∶=

{
u ∈ H1(Ω,Rn) ∶ u = ud on Γu

D
}

, H𝜇 ∶={
𝜇

eff ∈ H1(Ω) ∶ 𝜇eff = 𝜇d on Γ𝜇D
}

, HSr ∶=
{

Sr ∈ H1(Ω) ∶ Sr = Srd on ΓSr
D

}
, R

n being the vector space where displace-
ment are observed. Test functions 𝛿u, 𝛿𝜇 and 𝛿Sr, will be taken in the space Hu0 ×H𝜇0 ×HSr0, the 0 indicating that
homogeneous Dirichlet boundary conditions are assumed. The weak formulation is obtained as usual multiplying
Equation (32) by 𝛿𝜇, Equation (30) by 𝛿Sr and Equation (33) by 𝛿u and integrating over the domain Ω using the
Green-Gauss Theorem to eliminate second-order derivatives. This leads to

∫Ω
(𝜎′ − I𝜋) ∶ 𝛿𝜀 dv =

∫Ω
f .𝛿u dv +

∫Γu
N

t.𝛿u da, (37)

∫Ω

d𝜙Sr

dt
𝛿𝜇 dv +

∫Ω

[
𝜘

𝜂
k(Sr)(∇𝜇eff − 𝜌wg)

]
.∇𝛿𝜇 dv = −

∫Γ𝜇N
qw.n 𝛿𝜇 da, (38)

∫Ω
𝜇

eff
𝛿Sr dv −

∫Ω
Ck∇(𝜙Sr).∇(𝛿Sr) dv −

∫Ω

𝜕(Ψf + U)
𝜕Sr

𝛿Sr dv =
∫ΓSr

N

qSr𝛿Sr da, (39)

which must hold true for any 𝛿u ∈ Hu0, 𝛿𝜇 ∈ H𝜇0 and 𝛿Sr ∈ HSr0 . Equation (37) represents the weak form of the momen-
tum balance Equation (33) and can obviously be recognized as the principle of virtual working. In Equation (37) the
test function 𝛿u can therefore be interpreted as the virtual displacement, and consequently 𝛿𝜀 as the virtual strain. In
Equation (38) the bulk force is assumed to be the weight of the wetting fluid as in Richards equation. It is worth to under-
line that Equations (37)–(38) must hold true at any time t. As usual when working with elasto-plastic problems the above
mentioned weak formulation must be complemented by the equations that provide at any time step the current value
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ZAÏM et al. 11

of the effective stress as a function of the plastic strain. These are local equations which do not necessitate boundary
conditions and are therefore just solved locally.

The spatial discretization is obtained by applying the usual Galerkin procedure with linear Lagrange finite elements.
The unknowns u, 𝜇eff and Sr are therefore prescribed at any time t as a linear combination of piecewise linear functions
weighted by the nodal values of the unknowns, say

u = Nu u, 𝜇
eff = N𝛍 𝛍, Sr = Ns Sr, (40)

where Nu, N𝛍, Ns are the shape function matrices, say matrices assembling at the global level the contribution of the above
mentioned piecewise linear functions that provide the approximate solution of the problem within each element, and u,
𝛍, Sr the vectors of nodal values. In a three dimensional space, the 3M-dimensional vector of nodal displacements, with
M the number of nodes, is organized in the form u = [u1, v1,w1, ...,uM , vM ,wM], therefore Nu is a 3 × 3M matrix whose
component Nuij is different from zero only if j = i + 3k ≤ 3M. In a similar way N𝛍 and Ns are line vectors of dimension M.

As a result of the spatial discretization, Equations (37)–(39) can be compactly written in the following form:

N1l (u) +N2l(Sr) = Fext
1l
, l = 1, … , 3M, (41)

C𝜇u
jl

(
Sr

) duj

dt
+ C𝜇S

jl (u)
dSrj

dt
+K𝜇𝜇

jl (Sr)𝝁j +N3l(Sr) = Fext
2l
, l = 1, … ,M, (42)

KSS
jl (u)Srj +KS𝜇

jl 𝝁j +N4l (Sr) = Fext
3l
, l = 1, … ,M. (43)

where the l index indicates the nodal force working on the corresponding nodal virtual displacement in Equation (41), the
nodal volume change of the liquid wetting phase working on the corresponding virtual chemical potential in Equation (42)
and the nodal chemical potential working on the corresponding saturation in Equation (43).

The following definition of the quantities introduced in Equations (41)–(43) are assumed:

C𝜇u
jl (Sr) =

∫Ω
Nu

ij,iN
𝛍

lNS
kSrk dv; C𝜇S

jl (u) = ∫Ω

(
𝜙0 +Nu

ik,iuk

)
NS

j N𝜇

l dv,

K𝜇𝜇

jl (Sr) =
∫Ω

𝜘

𝜂
k(Sr)N𝜇

j,kN𝜇

l,kdv, KS𝜇
jl =

∫Ω
N𝜇

j NS
l dv, KSS

jl (u) = −
∫Ω

Ck

(
𝜙0 +Nu

ik,iuk

)
NS

j,kNS
l,kdv;

N1l(u) =
∫Ω

𝜎
′
ij(u)N

u
il,jdv, N2l (Sr) = −

∫Ω
b𝜋(Sr)𝛿ijNu

il,jdv, N3l(Sr) = −𝜌w
∫Ω

𝜘

𝜂
k(Sr)NS

l,kgkdv,

N4l (Sr) = −
∫Ω

𝜕

(
Ψf + U

)

𝜕Sr

|||||Sr

NS
l dv,

Fext
1l
=
∫Ω

fiNu
ildv +

∫Γu
N

TiNu
ilda, Fext

2l
= −
∫Γ𝜇N

qwi niN𝜇

l da, Fext
3l
=
∫ΓSr

N

qSr N
S
l da.

Combining Equations (41), (42), and (43) the following coupled system of non-linear differential equations is obtained

C(U)dU
dt

+K(U)U +N(U) = Fext, (44)

where the vector U and the matrices C(U) and K(U) and the vector N(U) are defined by

U =
⎡
⎢⎢⎢⎣

u
𝝁

Sr

⎤
⎥⎥⎥⎦
, C(U) =

⎡
⎢⎢⎢⎣

0 0 0
C𝜇u 0 C𝜇S

0 0 0

⎤
⎥⎥⎥⎦
, K(U) =

⎡
⎢⎢⎢⎣

0 0 0
0 K𝜇𝜇 0
0 KS𝜇 KSS

⎤
⎥⎥⎥⎦
, N(U) =

⎡
⎢⎢⎢⎣

N1 +N2

N3

N4

⎤
⎥⎥⎥⎦
, Fext =

⎡
⎢⎢⎢⎣

Fext
1

Fext
2

Fext
3

⎤
⎥⎥⎥⎦
. (45)

Concerning time discretization, the implicit Euler scheme of the first order is used, which is unconditionally stable
and commonly used in computational poromechanics literature. Following this method over a time step Δt = tn+1 − tn
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12 ZAÏM et al.

Algorithm 1. Alternating algorithm for global and local problem

Input: (un−1,𝝁n−1, Srn−1, 𝜀
p
n−1)

• initialization (u0
n,𝝁

0
n, Sr

0
n, 𝜀

p0
n )← (un−1,𝝁n−1, Srn−1, 𝜀

p
n−1)

• i = 1
while alternating algorithm not converged do
• Solve the governing equation for (ui

n,𝝁
i
n, Sr

i
n) | 𝜀p

n = 𝜀
p(i−1)
n ;

• Solve the local problem for the integration of the constitutive law ⏐ (un,𝝁n, Srn) = (u
i
n,𝝁

i
n, Sr

i
n);

• i ← i + 1;
end while
• update (un,𝝁n, Srn, 𝜀

p
n)← (ui

n,𝝁
i
n, Sr

i
n, 𝜀

pi
n )

Output: (un,𝝁n, Srn, 𝜀
p
n)

and using the approximation:

.
U = Un+1 −Un

Δt
= ΔUn

Δt
, (46)

Equation (44) can be rewritten at a time tn+1 as:

C(Un+1)
ΔUn

Δt
+K(Un+1)Un+1 +N(Un+1) = Fn+1

ext . (47)

The above system of non-linear coupled algebraic equations that allows to determine nodal displacements, effective chem-
ical potential and saturation degrees will be solved adopting the Newton-Raphson method. As mentioned before the
non-linear system (41)–(43) is coupled with the equations that allow to update, at any time step, and during the iteration
process, the stress-strain constitutive relation. Being these equations local, they are required to hold true, for any finite
element, just in the Gauss integration points used to obtain Equation (41) as the discretized form of Equation (37). A
return mapping algorithm,46,47 parametrized by the current approximation not only of the displacement solution but also
of the saturation degree which controls the preconsolidation pressure is therefore implemented. A scheme of the overall
integration algorithm is provided in Algorithm 1.

5 IMBIBITION INTO A RIGID POROUS SKELETON

In this section a brief analysis of the imbibition process of water into a relatively dry silt layer, driven by gravity is presented.
The intention is to demonstrate the conditional stability of the imbibition front that results in fingering type instabilities.
This is done, following Ommi et al.14,15 by first resolving the traveling wave (TW) solutions of the imbibition boundary
value problem (BVP), followed by a linear stability analysis against transverse perturbations.

For the sake of simplicity the porous skeleton is assumed to be non-deformable (𝜙 = 𝜙0 = const). The sections that
follow will be devoted to the analysis of the coupled hydro-mechanical problem where such an assumption is not done
so that the influence of hydraulic instabilities on the mechanical response is revealed. Indeed, the current section serves
as a precursor to the one following by providing an indication on the morphology of the fingering instability that can be
expected for the given conditions.

5.1 One-dimensional TW-solutions

The imbibition fronts are assumed initially uniform along the transverse directions to direction of propagation and then
are perturbed by a transverse harmonic field. These uniform solutions are of TW-type on an infinite domain of propagation
with two uniform states of saturation degree connected by a diffused front that propagates with a constant speed, c,
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ZAÏM et al. 13

and thus are self-similar in nature. The rigorous proofs of existence and uniqueness of TW-solutions are out of scope
of the current work. Instead, we resolve these solutions numerically by first posing the TW-problem corresponding to
imbibition. This is done under the transformation,

Sr(x, t) = s(x − ct) = s(𝜉) ∀x ∈ R ; ∀t > 0, (48)

where 𝜉 = x − ct is the TW-coordinate moving with the speed of the front c. Introducing this transformation into the
one-dimensional version of Equation (31) with bf = 𝜌w𝜙Srg and g = ||g||ex gives,

−𝜙c ds
d𝜉
+ 𝜌w ∥ g ∥ 𝜘

𝜂

dk(s)
d𝜉

− 𝜘
𝜂

d
d𝜉

(
k(s)𝜇′pf (s)

ds
d𝜉

)
+ 𝜙Ck

𝜘

𝜂

d
d𝜉

(
k(s) d3s

d𝜉3

)
= 0, (49)

where (⋅)′ is used to denote derivative of the function (⋅) with respect to s. The appropriate boundary conditions
corresponding to imbibition fronts on an infinite domain are,

s|(𝜉=+∞) = s+,
ds
d𝜉

||||(𝜉=+∞) = 0, s|(𝜉=−∞) = s−,
ds
d𝜉

||||(𝜉=−∞) = 0, (50)

where s+ and s− represent the uniform saturation states on either side of the diffused front. s− is consistent with the
injection flux at the boundary x = 0 m of the physical domain through the relation,

Vf |(x=0) = 𝜌w ∥ g ∥ 𝜘
𝜂

k(S−)ex. (51)

Note that this is the same as the natural boundary condition derived in Equation (35) with∇𝜇eff vanishing, corresponding
to the boundary condition of the TW-solution. Since we are posing the problem on an infinite domain, the speed of the
front, c, is given by the Rankine–Hugoniot jump condition,

c = 𝜌w ∥ g ∥ 𝜘
𝜂

k(s+) − k(s−)
𝜙(s+ − s−)

. (52)

To resolve the TW-solutions we use a second-order accurate central difference scheme and with uniform discretization
on a sufficiently large finite domain 𝜉 ∈ [−L∕2,L∕2]. Further details regarding the above developments and numerical
approximation can be found in Ommi et al.14

Figure 3 shows these resolved TW-solutions for s+ = 0.446, for different values of s− with soil hydraulic properties
corresponding to loamy sand and L = 100 m. The values of the constitutive hydraulic model are reported in Table 1. As
one could notice, solutions with overshoot type non-monotonicities exist for certain values of the injection flux or s−.
The relation between the choice of fluid energy contributions and these non-monotonicities was analyzed in the case

F I G U R E 3 TW-solutions, representing imbibition, of Equation (49) with boundary conditions s+ = 0.446, s− = 0.95, 0.90, 0.85, 0.80.
Solutions are shown in a restricted range of 𝜉 and translated arbitrarily around 𝜉 = 0 m for clarity. Note that TW-solutions are self-similar and
so possess the property of translational invariance along 𝜉.
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14 ZAÏM et al.

T A B L E 1 Data of the constitutive hydraulic model.

𝝓0 𝝒[m2] 𝜼[Pa.s] 𝜸lg[N∕m] C 𝝆w[Kg∕m3] 𝜶[m−1] Sres
r m Ck[N]

0.47 3E-13 8.9E-4 0.073 4.0 1000 1.25 0.15 0.3 5120

(A) (B)

(C) (D)

F I G U R E 4 The function of TW-solution 𝜇eff (s) represented as a connection between 𝜇eff (s−) and 𝜇eff (s+) over the graph of 𝜇pf (Sr).
Connections are shown with circle markers for different values of left-hand side boundary condition of the TW-problem,
s− = 0.95, 0.90, 0.85, 0.80.

of imbibition into dry sand by Ommi et al.14 In essence, the two iso-potential minima, (S1
c , S2

c ), of the pore fluid energy,
Ψpf (Sr), determine the range within which the saturation degrees when used as boundary conditions cause overshoot (in
the case of s−) and undershoot (in the case of s+) within the solution, respectively on the left and right- hand sides of
the diffused front. For instance, in Figure 3, for s− < S1

c an overshoot appears when the solution approaches the diffused
front from the left. The small oscillation on the other hand when the solution leaves the diffused front towards s+ is
due to the complex nature of the stability properties of the associated equilibrium of the dynamical system governed by
Equation (49).14

In Figure 4 the function 𝜇eff (Sr) is plotted for each TW-solution resolved earlier, along with the local part of the chem-
ical potential 𝜇pf (Sr). Since 𝜇eff (Sr) has a non-local contribution, see Equation (30), it does not follow exactly the graph
of 𝜇pf (Sr). Instead, it follows a corrected path governed by the spatial gradient of the saturation degree, which is quite
common in Cahn-Hilliard like fluid modeling.

5.2 Stability of solutions against transverse perturbations

In the work of Saffman and Taylor9 the stability of a horizontal interface between two viscous fluids within a Hele-Shaw
cell against transverse harmonic perturbations was studied. Stability of the said interface is understood as an exponential
decay in time of the imposed perturbation for every possible wave number. Following this approach numerical study of
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ZAÏM et al. 15

the relationship between the maximal growth rate of the imposed perturbation and its corresponding wave number, the
so-called dispersion relation, has been done in various works12,13,15,48,49 for specific models intending to describe such
fluid-fluid displacement in porous media.

In this sense, the one-dimensional TW-solutions resolved earlier form the two-dimensional base solutions when
extended uniformly along the transverse y-direction. These base solutions are represented s0(𝜉) which is by construc-
tion independent of y. Now, the solution of the Equation (31) in the moving coordinate system is assumed to be a
perturbed one, that is composed of the base solution at the leading order and superposed perturbations of decreasing
order,

s(𝜉, y, t) = s0(𝜉, t) + 𝜖s1(𝜉, y, t) + 𝜖2s2(𝜉, y, t) … , (53)

where 𝜖 represents the magnitude of the disturbance. Introducing such an expression into Equation (31) in the mov-
ing coordinate system results in a perturbed problem of order O(𝜖) which governs the perturbation s1(𝜉, y, t). Since the
imposed perturbation is assumed harmonic and we intend to study its exponential growth/decay in time, the following
form is assumed:

s1(𝜉, y, t) = eik̂y+�̂�t ŝ(𝜉), (54)

where k̂ is characteristic wave number of the disturbance in y-direction, �̂� is the exponential growth factor in time and ŝ(𝜉)
is the amplitude of the wave-like disturbance. Introducing Equation (54) into the perturbed problem for s1(𝜉, y, t) results
in a linear homogeneous ODE for ŝ(𝜉),

A d4ŝ
d𝜉4 + B d3ŝ

d𝜉3 + C d2ŝ
d𝜉2 + D dŝ

d𝜉
+ Eŝ − �̂�ŝ = 0, (55)

where the spatially varying coefficients have the following expressions:

A = −𝜘
𝜂

Ckk0, B = −𝜘
𝜂

Ck
dk0

d𝜉
, C = 1

𝜙

𝜘

𝜂

{
k0𝜇

′
pf 0 + 2𝜙Ckk̂

2
k0

}
,

D = − 1
𝜙

{
𝜘

𝜂
k′0 − 𝜙c − 𝜘

𝜂

(
d

d𝜉

(
k0𝜇

′
pf 0

)
+
(

k0𝜇
′
pf 0

)′ ds0

d𝜉

)
+ 𝜘
𝜂
𝜙Ck

(
k′0

d3s0

d𝜉3 − k̂
2 dk0

d𝜉

)}
,

E = − 1
𝜙

{
−𝜘
𝜂

(
d

d𝜉

((
k0𝜇

′
pf 0

)′ ds0

d𝜉

)
− k̂

2
k0𝜇

′
pf 0

)
+ 𝜘
𝜂
𝜙Ck

(
d

d𝜉

(
k′0

d3s0

d𝜉3

)
+ k̂

4
k0

)
+ 𝜘
𝜂

dk′0
d𝜉

}
, (56)

and k0 and 𝜇pf 0 are respectively the functions k(s) and 𝜇pf (s) evaluated at the base solution s0. For the order O(𝜖) perturbed
solution with the form assumed for s1(𝜉, y, t) to be admissible, ŝ(𝜉) needs to vanish uniformly at the boundaries in accor-
dance with the boundary conditions of the base solution, Equation (50). This gives the appropriate boundary conditions
that the solutions of the above ODE need to satisfy as,

ŝ|(𝜉=+∞) = 0, dŝ
d𝜉

|(𝜉=+∞) = 0, ŝ|(𝜉=−∞) = 0, dŝ
d𝜉

|(𝜉=−∞) = 0. (57)

Upon discretization employing, for instance, a finite difference scheme one can construct an eigen value problem
whose solution set for a given k̂ is the vector of growth-rates given by the spectrum, 𝜎A, of the finite difference matrix with
dimension determined by the discretization size. According to modal stability analysis for any k̂ ∈ R, if sup{ℜ(𝜎A)} > 0
then the corresponding perturbation grows exponentially in time according to Equation (54) and if sup{ℜ(𝜎A)} < 0 it
decays exponentially.

The physical domain used for resolution of this ODE is the same as the one used for obtaining the TW-solutions,
𝜉 ∈ [−L∕2,L∕2], and the corresponding dimensionless domain is 𝜉 ∈ [−0.5, 0.5] using a scaling equal to the length
of the physical domain, L. In the current study, the scaling used for rendering the problem dimensionless and the
numerical scheme for the resolution of the eigen value problem are adopted from Ommi et al.15 Accordingly, we use
a second order accurate finite difference scheme to discretize the derivatives in Equation (55) and a Krylov-Schur
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16 ZAÏM et al.

F I G U R E 5 Dimensionless dispersion curves corresponding to the imbibition solutions depicted in Figure 3. Critical wave numbers
that delimit the unstable wave number range are shown with circle markers on the curves with the respective wave number, k̃c, labeled.

(A) (B)

F I G U R E 6 (A) Initial imbibition front; (B) four fully developed fingers at time t ≈ 1.5 107s.

algorithm available in the MATLAB suite50 to resolve the eigen value problem. The dispersion curves can then be plot-
ted as the relation between k̃ ∈ R and sup{ℜ(�̃�A)}, where k̃, �̃�A represent the dimensionless counterparts of k̂, 𝜎A
respectively.

Figure 5 shows these curves for each base solution corresponding to the TW-solutions resolved in Section 5.1. As one
can notice, base solutions for which the one-dimensional solution structure has an overshoot correspond to a dispersion
relation with a range of wave numbers having a positive maximal growth rate. This indicates that for certain injection
fluxes the fluid displacement is conditionally stable and the morphology of the ensuing fingering pattern is dependent
on the range of unstable wave numbers. The critical wave number, k̃c, determines the unstable wave number range,
(0, k̃c), and the corresponding range of dimensionless wavelengths, (2𝜋∕k̃c,∞). So within a physical domain of transverse
dimension larger than the critical wavelength, 2𝜋L∕k̃c, one would be able to excite unstable perturbations and observe
their non-linear growth. These critical wavelengths for injection fluxes corresponding to s− = 0.85 and 0.80 are 10.46 and
5.23 m respectively.

In order to confirm the results of the linear stability analysis a two dimensional simulation over the same rectangular
domain as the one used in Section 6, with the same hydraulic boundary conditions as those described in Figure 7, has been
developed starting from an initial imbibition front perturbed by a transversal oscillation whose wavelength is consistent
with the value of k̃ corresponding to the peak of sup{ℜ(�̃�A)} in Figure 5. The corresponding wavelength is consistent
with four oscillations throughout the transversal section of the domain. In Figure 6 the initial imbibition front and the
fully developed four fingers at the final stage of the simulation are depicted.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7261 by C
ochraneItalia, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ZAÏM et al. 17

F I G U R E 7 Schematic representation of the considered pre-stressed rectangular domain with an initial saturation S+. Boundary
condition of the incremental hydraulic problem are also explicitly indicated.

6 WATER INFILTRATION INTO A DEFORMABLE SOIL

Starting from the weak formulation provided by Equations (37)–(39) and the corresponding numerical implementation
given by Equation (47), the coupled problem is solved here, within a rectangular domain (width = 7.5 m, height = 20 m),
for a pre-stressed loamy soil characterized by a non-vanishing initial water saturation, perturbing the reference state by a
water injection through the top basis of the rectangle, see Figure 7.

The considered boundary conditions of the perturbed problem are therefore the following: (i) on the bottom basis of
the rectangle the vertical displacement vanishes and the chemical potential of the fluid is assumed to constantly remain
equal to its initial value 𝜇+ = 𝜇pf (S+), the normal derivative of the saturation degree is assumed zero; (ii) on the two lateral
sides of the rectangle no traction increase with respect to the reference stateΔ𝜎.n is applied, the fluid flux and the normal
derivative of the saturation are zero as well; finally (iii) on the top basis on the rectangle zero traction is imposed and
water is injected, again the the normal derivative of the saturation is assumed to vanish. Which means:

u2(x1, h, t) = 0, 𝜇
eff (x1, h, t) = 𝜇+ = 𝜇pf (S+), Sr,2(x1, h, t) = 0, (58)

Δ𝜎.e1(0, x2, t) = 0, 𝜘

𝜂
k(Sr(0, x2, t))(𝜇eff

,1 (0, x2, t) = 0, Sr,1(0, x2, t) = 0, (59)

Δ𝜎.e1(L, x2, t) = 0, 𝜘

𝜂
k(Sr(L, x2, t))(𝜇eff

,1 (L, x2, t) = 0, Sr,1(L, x2, t) = 0, (60)

Δ𝜎.e2(x1, 0, t) = 0, −𝜘
𝜂

k(Sr(x1, 0, t))(𝜇eff
,2 (x1, 0, t) − 𝜌w ∥ g ∥) =∥ qw ∥∶= 𝜌w ∥ g ∥ 𝜘

𝜂
k(S−), Sr,2(x1, 0, t) = 0. (61)
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18 ZAÏM et al.

T A B L E 2 Data of the constitutive mechanical model, boundary and initial conditions.

𝜿 𝝀 e M E[Pa] 𝝂 𝝈
lo
11[Pa] 𝝈

lo
22[Pa] 𝝈

ho
11 [Pa] 𝝈

ho
22 [Pa] S+ S−

0.0278 0.2766 1.68 0.8182 15E06 0.33 -3.5E05 -3.5E05 -40E03 -220E03 0.446 0.8

Two different reference configurations which correspond to a heavily overconsolidated (ho) and to a lightly over-
consolidated (lo) loamy soil are considered, depending on the value of the initial stress, assumed homogeneous all
over the rectangular sample. The two initial states have been chosen so as to describe the different possible fabric
changes of fine-grained sediments which can be associated to swelling and the contractant conditions, as discussed in the
introduction.

In Table 2 the values of the constitutive parameters of the soil and those of the initial stress are reported, together
with the initial saturation S+ and the saturation which characterize the inflow at the top of the rectangular sample S−,
according to Equation (51). The size of the rectangular domain has been chosen according with the results of the stability
analysis conducted in Section 5.2. A perturbation of the initial condition characterized by a wavelength belonging to the
unstable region has been introduced so that a single finger is expected to show up in the domain.

In the following the response of the considered loamy soil submitted to an imbibition process starting from the two
above mentioned configurations is analyzed following the stress path of two characteristic points fixed in the rectangular
domain.

Calculations are carried out using a finite element code derived by the research team from the one, implemented
within a Matlab framework.51 Mesh generation and post-treatment of the results are realized via Gmsh.52

6.1 Imbibition of a heavily overconsolidated loamy soil

Consider the case when the homogeneous initial stress is on the left hand side of the critical state line q = Mp′ in the
(p′, q) plane, which means that the initial state of the material is heavily overconsolidated. From this initial configuration
and assuming the above mentioned boundary conditions to hold true, the imbibition process is started with a transversal
perturbation of the initial condition as the one reported in Figure 8A, as previously mentioned the wavelength of the pro-
file belongs to the unstable range identified in Figure 5. We consider first of all the contour plots of the saturation degree,
the volumetric plastic strain and the deviatoric plastic strain at three characteristic time steps, say t = 0, t = 40Δt and
t = 60Δt. The unit time step used in the numerical simulations and also reported in Figures 8 and 10 is Δt = 104s. Being
the initial state of stress on the left hand side of the critical state line, a softening response is expected, which is responsi-
ble for the showing up, at the level of the sample, of a bifurcated solution of the mechanical problem corresponding to a
couple of crossed shear bands which form beyond the front. As it is evident from Figure 8D–F the fluid fingering works
as a trigger of the mechanical bifurcation. However, due to water accumulation at the top of the sample, a switch from
a dilatant into a contractant behavior occurs which is evident in Figure 8E,H: the shear band initially accompanied by
positive volumetric strains is progressively absorbed by the contractant zone appearing behind the front.

To better analyse this transition from dilatant to contractant behavior the stress path which characterizes the response
of the material at the point P ≡ (3.75, 5)m has been drawn in Figure 9, the zero of the x2 coordinate having been taken at
the top basis of the rectangle. Apparently four different phases can be identified between the initial and the final state of
the analysis.

– Phase 1 (running from 𝜎
′
0 to 𝜎′1, Figure 9, from time step 0 to time step 30): this first phase of the stress path is

purely elastic and not affected by the saturation which remains constant, see Figure 10A,B. It is characterized
by a decrease of the effective pressure p′ and a slight decrease of the deviator stress q, see Figure 10I,F. From
the observation of the plastic strain charts, see Figure 8, one can observe that the decrease of the effective
pressure and the corresponding elastic swelling (positive volumetric strain) in P are essentially consistent with
the plastic dilatancy occurring beyond the front, this last being behind the monitoring point. At the same
time the deviator stress decreases, this behavior being mainly due to that of the axial stresses in particular 𝜎11
and 𝜎22 which approach each other, see Figure 10K. During Phase 1 the elastic swelling, therefore, is not a
straightforward consequence of the variation of the saturation degree, which indeed is still zero at point P, but
it is due to the progressive plastification of the neighboring regions accompanied by their plastic dilatancy.
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ZAÏM et al. 19

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 8 Contourplots of the saturation degree Sr , the volumetric plastic strain 𝜀p
v and the deviatoric plastic strain 𝜀p

d of a heavily
overconsolidated loamy soil under imbibition. Rows correspond to different time steps: 0, 40 and 60.
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20 ZAÏM et al.

F I G U R E 9 Stress path due to imbibition at P ≡ (3.75, 5) m of a rectangular sample of heavily overconsolidated loamy soil. The gray
scale corresponds to the variation of the degree of saturation. The solid curve corresponds to the initial yield surface.

– Phase 2 (running from 𝜎
′
1 to 𝜎′2, Figure 9, from time step 30 to time step 50): at the beginning of this phase

the state of stress at P attains the yield surface and the volumetric plastic strain starts to grow in the positive
domain. As the saturation profile is characterized by a slight undershoot, see Figure 10A, the unvaried shape
of the yield surface is therefore due to the countercurrent effects of the desaturation and of the increase of the
volumetric plastic strain, see Equation (22). Between time steps 30 and 40, p′ changes from locally decreasing to
locally increasing, the opposite occurs to q. The decrease of p′ is associated to a positive volumetric elastic strain
which sums up with the positive plastic strain, vice-versa the increase of p′ is associated to a negative volumetric
elastic strain as can be observed comparing Figure 10G,H, the growth of the volumetric plastic strain being
more important than the one of the total volumetric strain. The behavior of q is still a consequence of that of
the axial stresses. When the saturation starts to grow significantly, after the time step 40, two concurrent effects
drive the shrinkage of the yield surface, softening accompanied by plastic dilatancy and negative hardening
due to saturation, see Equation (22). This implies a strong increase of p′ and a strong reduction of q. The last
time step of the Phase 2 corresponds to the peak of the volumetric plastic strain and to the transition of the
effective stress through the critical state line. It is worth to notice that, contrarily to what happens in purely
mechanical problems, here the state of effective stress is allowed to cross the critical state line as the loading is
driven by a different physical process, in this case the hydraulic imbibition. Finally one can also observe that
the peak of the volumetric strain is anticipated with respect to that of the plastic strain because of the above
mentioned increase of p′ which induces an increase of the negative volumetric elastic strain (elastic shrinkage).

– Phase 3 (running from 𝜎
′
2 to 𝜎′3, Figure 9, from time step 50 to time step 58): this third part of the stress path

is a straightforward continuation of the previous Phase 2, with p′ progressively increasing and q decreasing;
however here the rate of the volumetric plastic strain becomes negative, which means that the effect of the
plastic strain rate and that of the progressive saturation are countercurrent: the first tending to induce swelling
of the yield surface, the second its shrinkage. The rate of the total volumetric strain is already negative since
the last time steps of Phase 2. As p′ continues increasing from the previous Phase 2, a more and more negative
volumetric elastic strain shows up, as a consequence the total volumetric strain passes from positive to negative
before the plastic one. At the end of this Phase 3 the saturation degree has mainly attained its final value so that
from now on any change of the preconsolidation pressure and consequently of the yield surface is just driven
by the value of the plastic strain rate. The deviatoric plastic strain, as well as the total one, grow because of
stress localization within the shear band. It is worth to notice that during imbibition, say during the transition
from the initial saturation S+ = 0.44 to the one corresponding to the imposed inflow S− = 0.8 the equivalent
pore pressure 𝜋 decreases. This is a straightforward consequence of the non-monotonic profile of the pore fluid
chemical potential, see Figures 2 and 4. On the other hand, the profile of the effective chemical potential is
characterized by a kind of double well profile in the same time interval, which can be also followed along the
curve of the pore fluid chemical potential of Figure 4.

– Phase 4 (running from 𝜎
′
3 to 𝜎′4, Figure 9, from time step 58 to time step 86): this fourth part of the stress path is

just driven by the increase of the effective stress; the saturation, and consequently the equivalent pore pressure
𝜋, have already attained their target values induced by the injected flow according to Equation (61). A two
step growth of the deviator stress q reflects into a corresponding increment of the deviatoric plastic strain, see
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ZAÏM et al. 21

(A) (B) (C)

(D) (E) (F)

(G) (H)

(J) (K)

(I)

F I G U R E 10 Time evolution of: Sr , 𝜋, 𝜇eff , 𝜀d, 𝜀p
d, q, 𝜀v, 𝜀p

v , p′, p and 𝜎11, 𝜎22 and 𝜎33 in the point P ≡ (3.75, 5) m in heavily over
consolidated loamy soil.
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22 ZAÏM et al.

F I G U R E 11 Stress path due to imbibition at Q ≡ (0.5, 8) m of a rectangular sample of heavily overconsolidated loamy soil. The gray
scale corresponds to the variation of the degree of saturation. The solid curve corresponds to the initial yield surface.

Figure 10E, and of the deviatoric total strain, see Figure 10D; on the other hand the effective pressure p′ first
remains almost constant and then starts growing which implies the slope of the volumetric plastic strain to
first remain constant and then to increase. The behavior of the total pressure clearly reflects that of the effective
one, see Figure 10J.

In a similar way the stress path at point Q ≡ (0.5, 8)m is reported in Figure 11. It is worth to underline that within the
interval of considered time steps this point has not yet been reached by the saturation front but conversely it is affected by
deviatoric and volumetric plastic strains which arise within the shear band which nucleates beyond the saturation front.
In this case the elastic phase (between 𝜎′0 and 𝜎′1) corresponds to an increase of the effective pressure p′ and consequently
to a negative (contractant) elastic volumetric strain, due to the contractant behavior of the layers above the monitoring
point. Once plastic strains are attained p′ increases and the stress path approaches the critical state (between 𝜎′1 and 𝜎′2),
asymptotically tending to it with a decreasing deviator stress q (between 𝜎′2 and 𝜎′3). This behavior is definitely due to the
shrinkage of the yield surface and the constraint for stress to remain on the left hand side of the critical state line.

6.2 Imbibition of a lightly overconsolidated loamy soil

Consider now the case when the homogeneous initial stress is on the right hand side of the critical state line q = Mp′
in the (p′, q) plane, which means that the initial state of the material is lightly overconsolidated. In a similar way as
previously done in Section 6.1, the imbibition process is started with a transversal perturbation of the initial condition,
still characterized by a cosinusoidal profile whose wavelength belongs to the unstable range identified in Figure 5. We
consider first of all the contour plots of the saturation degree, the volumetric plastic strain and the deviatoric plastic strain
at three characteristic time steps, say t = 0, t = 40Δt and t = 60Δt, still with Δt = 104s, see Figure 12. Being the initial
state of stress on the right hand side of the critical state line, the two effects of negative hardening induced by saturation
and mechanical hardening act in two opposite directions. In this case no bifurcation in the solution of the mechanical
problem is expected and the fluid fingering instability just induces a localization of (plastic) strains within the finger itself.
The mechanical response is always contractant.

As in Section 6.1 the stress path which characterizes the response of the material at the point P ≡ (3.75, 5) m has
been drawn in Figure 13. Apparently three different phases can be identified between the initial and the final state of our
analysis.

– Phase 1 (running from 𝜎
′
0 to 𝜎′1, Figure 13, from time step 0 to time step 32): as already seen in the case of

heavily overconsolidated soils discussed in Section 6.1, Phase 1 is characterized by a purely elastic response, as
the saturation degree remains almost unaltered with respect to initial conditions, see Figure 14A, exhibiting
even a weak undershoot between time step 28 and time step 32. p and p′ increase, a slight elastic compression
is observed together with an elastic deviatoric strain, see Figure 14H,E. This behavior is driven by the plastic
contraction that is occurring in the layers above the monitoring point which have been already saturated while
the point P still maintains its initial saturation. The deviator stress q increases mainly because of the increase of
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(A) (B) (C)
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(G) (H) (I)

F I G U R E 12 Contourplots of the saturation degree Sr , the volumetric plastic strain 𝜀p
v and the deviatoric plastic strain 𝜀p

d of a lightly
overconsolidated loamy soil under imbibition. Rows correspond to different time steps: 0, 40 and 60.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7261 by C
ochraneItalia, W

iley O
nline L

ibrary on [20/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 ZAÏM et al.

F I G U R E 13 Stress path due to imbibition at P ≡ (3.75, 5) m of a rectangular sample of lightly overconsolidated loamy soil. The gray
scale corresponds to the variation of the degree of saturation.

the axial stress along the x1 direction which is the direction of maximal shrinkage of the sample. The last point
of this Phase 1 corresponds to the showing up of plastic strains and the beginning of the saturation process.
This means that the state of stress progressively moves towards the yield surface, this last starting to shrink
mostly at the same time as plastic strains are triggered.

– Phase 2 (running from 𝜎
′
1 to 𝜎′2, Figure 13, from time step 32 to time step 50): contractant plastic strains appear

and progressively overwhelm the elastic ones which are an order of magnitude smaller than them and remain
still contractant, see Figure 14I. A similar behavior can therefore observed for the total and the plastic volu-
metric strain, see Figure 14G,H. A different behavior is observed for the deviator strain: the plastic component
increases while the total one decreases, see Figure 14E,D. This can be interpreted considering the correspond-
ing decrease of the deviator stress which reflecting the reduction of the deviatoric stress implies the deviatoric
strains to be negative. The decrease of q, see Figure 14F is mainly due to the evolution of the axial stresses in
particular those along the x1 and the x2 directions, which approach one to the other, see Figure 14K. During
this Phase 2 the saturation grows from its initial value to a value slightly larger than the one imposed at the
boundary and a small overshoot is detected, see Figure 14A.

– Phase 3 (running from 𝜎
′
2 to 𝜎′3, Figure 13, from time step 50 to time step 86): now the saturation has attained

its target value and only small strains variations are observed: p and p′ slightly increase while q remains almost
constant as the difference between the longitudinal stresses 𝜎11 and 𝜎33, which mainly affect its evolution, is
also constant.

In Figure 15 the stress path at point R ≡ (2, 5) m is reported which is definitely similar to the one at P. As a matter
of fact in this case no perturbation of stresses and strains can be detected beyond the front, therefore the only difference
resides in the time step which corresponds to the different transitions already discussed for point P.

7 CONCLUSIONS

In this paper, we present the first results in modeling the effects of hydraulic instabilities, in the form of fingering, on
the mechanical response of a fine-grained soil. The analysis has been conducted in the particular case of the imbibi-
tion problem, thinking of possible applications to soil remediation from pollution, in particular from NAPLs. It has been
proven that fingering instabilities, even in the absence of any heterogeneity of the permeability and the retention prop-
erties of the porous medium, are capable to trigger plastic strain localization, in particular dilatant shear bands, when
the soil is heavily overconsolidated, and contractant regions reproducing similar patterns as those of saturation when
the soil is lightly overconsolidated. To develop this analysis a generalized version of the Darcy law has been adopted
deduced from a phase field description of partial saturation and incorporating a gradient regularizing contribution which
introduced additional non-linearity but also a higher order diffusion term. The corresponding coupled problem has been
implemented for the first time within a finite element code, adopting a mixed approach.

Even if the numerical implementation is in some aspects quite elementary, we refer in particular to the choice of
linear Lagrange elements for the whole set of nodal variables, which did not allow to account for the effects of porosity
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F I G U R E 14 Time evolution of: Sr , 𝜋, 𝜇eff , 𝜀d, 𝜀p
d, q, 𝜀v, 𝜀p

v , p′, p and 𝜎11, 𝜎22 and 𝜎33 in the point P ≡ (3.75, 5) m in lightly over
consolidated loamy soil.
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26 ZAÏM et al.

F I G U R E 15 Stress path due to imbibition at R ≡ (2, 5) m of a rectangular sample of lightly overconsolidated loamy soil. The gray scale
corresponds to the variation of the degree of saturation.

gradients, interesting characteristics of coupled hydro-mechanical instabilities have been observed that deserve on the
one hand further investigations from the numerical point of view and on the other one experimental validation. From
the numerical point of view, in particular, the introduction of a strain gradient model will for sure be beneficial to model
the showing up of shear band instabilities induced by saturation and to compare the regularizing effect of the porosity
gradient with that of the strain gradient.

Moreover having in mind applications of this approach to the simulation of the drainage process that typically occurs
at the interface between an aquifer rock, hosting stored hydrocarbons, and the tight caprock saturated by brine or the
infiltration of hydrogen produced by corrosion of the canister hosting radioactive wastes against engineered barriers, an
extended formulation of the model and a modified numerical implementation should be introduced in order to account
for the compressibility of the gas, that up to now has just been considered as a passive phase.
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