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Size-Independent Reliable CNN
for RJCA Steganalysis

Jan Butora and Patrick Bas, Senior Member, IEEE

Abstract—Detection of image steganography is prin-
cipally implemented with supervised machine learn-
ing detectors. There are two main drawbacks to this
approach: the detectors are overly specific to a given
image source, and the performance guarantees are only
empirical. In this work, we further study a previously
proposed deep learning detector that exploits natural
image structure imposed by JPEG compression with
high quality. We show in a controlled environment that
for a fixed JPEG compressor, the soft outputs of a
deep learning classifier - the logits - follow a Gaussian
distribution. We prove a scaling law stating that the
variance of this distribution scales linearly with the
image size. By disabling padding in the convolutional
neural network, we demonstrate that the mean of
the logit distribution does not change, allowing us to
directly analyze images of different sizes. Focusing on
the logits, we show that we can prescribe a threshold
with a theoretical false positive rate for a wide range of
image sizes, which is then closely satisfied on real cover
images, even for small probabilities such as 10−4. More-
over, the detection power on steganographic images
still generalizes to non-adaptive and content-adaptive
steganography.

Index Terms—Steganalysis, false positive control,
JPEG, arbitrary size

I. Introduction
A lot of emphasis on privacy and security has been used

in today’s communication. Private communication tools
have been thus increasingly more important in society.
Steganography is one of these tools that allows the mod-
ification of a given digital image (cover image) to com-
municate a desired secret message. The only condition is
that the modifications are statistically untedetectable [22].
Two main branches of image steganography have existed
since the early beginning of the field: spatial steganog-
raphy using the pixel representation of the image, and
JPEG steganography using the DCT coefficients of the
compressed image.
On the other hand, steganalysis aims to detect the

mere presence of steganography. Many targeted attacks
against early steganography have been proposed [3], [18],
[19], [40], [41]. Unfortunately, with the development of
content-adaptive steganography [6], [14], [27], [36], [39],
the models targeted in the previous attacks no longer
hold and are thus unusable. Researchers have hence
started using machine learning classification approaches by
collecting steganography-specific features [23], [28], [33].
More recently, deep learning (DL) detectors have been
shown to be the most accurate detectors available [10],
[12], [46]–[48]. Despite their superior detection abilities,
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Figure 1: A diagram of the proposed method for size-
independent steganalysis. Contrary to classical steganal-
ysis, our system proposes also to control False Positive
(FP) rates.

their performance guarantees are only empirical due to
their supervised training. To make things worse, train-
ing convolutional neural networks (CNNs) on images of
variable sizes is practically unfeasible, which forces the
steganalyst to train their detector on images of fixed size.
This is a major drawback of this DL strategy since in
practice, we can encounter images of any possible size.
Additionally, it has been shown that the CNNs suffer from
the Cover-Source Mismatch (CSM) [32], [34] more than the
feature-based methods [26], [49], which further decreases
the quality of the empirical error rates of a given detector.
The recent Reverse JPEG Compatibility Attack

(RJCA) [8], [9], [11] is a steganalysis method exploiting
the structure of the JPEG images. This attack inspects
the rounding errors of the decompressed JPEG files and
it has been shown that steganography changes first-order
statistics of this signal, which can be very accurately
detected with a DL detector. Moreover, such a signal is
rather insensitive to image processing operations prior to
the JPEG compression, making it very robust against the
CSM. On the other hand, we showed in our previous work
that the attack could suffer from a JPEG compressor
mismatch [7].
For the steganalyst to decide if the test image is either

Cover or Stego, one minimal requirement is to control
the False Positive (FP) rate of the classifier1, that is
why metrics such as MD5 (miss detection rate for a FPR
of 5%) were also proposed to benchmark steganographic
schemes [12].

1Misclassifying cover image as a stego image.
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For a binary classifier, this means finding a decision
threshold corresponding to a desired FP rate. However,
with a DL detector, the only way, so far, is to empirically
compute the decision threshold from the data. Another
approach, without DL, uses Kolmogorov-Smirnov test [35]
on the decompression rounding errors [20], [21] (see Sec-
tion I-A2 for more details) but the detection power is in
this case greatly reduced.

In this work, we take the RJCA further by studying
the CNN detector’s logits coming from cover images. This
allows us to find an accurate model of the cover logit
distribution, which provides us with theoretical thresholds
for any desired FP rate. We also show how this distri-
bution changes with image size, giving us the ability to
steganalyze images of any size with a prescribed FP rate
without the need for retraining a CNN detector trained on
images of fixed size. Of course, one can always take crops of
bigger images to avoid dealing with different image sizes,
but this way the detector does not pool all the available
information and, as we will see in Section IV it is possible
to design a detector which gets more and more accurate
with increasing image size.

A. Prior Art
We recall that the two main goals of this work are (1)

deep learning steganalysis of arbitrarily sized images and
(2) control of the detector’s FP rate.

Even though both of these topics have been previously
studied, none of the proposed approaches is able to
achieve both goals at the same time.

1) Images of Arbitrary Size: While steganalysis of im-
ages of any size is straightforward to implement with the
feature-based methods (feature vector from any image is of
the same dimension), this changed with the development
of DL architectures [4], [38], [43], [45]. Due to the mini-
batch-driven supervised training of the CNNs, all images
in a given mini-batch must be of the same size. Despite
this, training the CNNs with differently sized mini-batches
is possible, but in practice would be rather cumbersome.
And even then, the mini-batches are limited by GPU
memory, meaning we cannot use non-trivial mini-batches
of images of large sizes. In the field of computer vision,
this is mitigated by simply resizing every image on the
input to a desired size [17]. However, such an approach
cannot be used for steganalysis for two obvious reasons:
(1) resizing of the image destroys the signal of interest (the
stego signal) and (2) it prevents pooling all the available
information [30].

A different, two-step approach has thus been proposed
in [24]. The authors first trained a slightly modified
YeNet [44] on images of a fixed size (tiles), as typically
done in the steganographic community. Moreover, the
following change was added to the CNN architecture to
better capture the information about the image size. In
the majority of cases, the last layers of a CNN detector
consist of a Global Average Pooling (GAP) across spatial

dimensions, providing a vector of size C,2 followed by
a fully-connected layer, resulting in two logits - one
for the cover class and one for the stego class. This is
then typically followed by a softmax activation. The
authors changed this structure and extracted not only
the average, but also variance, minimum, and maximum,
creating thus a vector of size 4C. After having trained
this so-called Tile Detector (TD), features of size 4C
were then extracted from every image of interest (with
potentially different sizes) and were used to train a
two-layer Multi-Layered Perceptron (MLP). Such MLP
then served as a steganalysis detector of arbitrarily sized
images. A similar approach was later applied to SRNet [4]
in [47] during the first ALASKA competition [12].

2) Control of the False Positive Rate: In a typical deep
steganalysis work, a CNN detector is trained to distinguish
between cover and stego classes by utilizing the cross-
entropy loss function. The detector’s performance is then
measured as the minimum probability of error under equal
priors

PE = min
PFA

PFA + PMD

2 , (1)

where PFA is the probability of False Alarm (FP rate),
and PMD is the probability of Missed Detection - misclas-
sifying stego image as a cover (false negative rate). This
value corresponds to a single point on the detector’s ROC
curve and does not inform us at all about its behavior
for different values of PFA, which is impractical in an
operational setting, where a steganalyst wants to set its
detector’s threshold to a very small value, such as 10−3 or
10−4. Of course, one can set up a threshold to achieve such
PFA empirically but practically this is unfeasible since we
have a limited amount of training samples (usually only
tens of thousands of images).
To mitigate this issue, we can see in the literature the

use of statistical tests [15] or p-values [29], [42]. In recent
works [20], [21], the decompression rounding errors from
cover images are split into 64 lattices (one per each pixel
position in an 8 × 8 block) and two-sample Kolmogorov-
Smirnov test is performed on each lattice. The p-values of
every test are corrected by the Bonferroni procedure [35]
to increase the power of the detector by aggregating
different observations. In this context, the desired (even
very low) PFA can be theoretically found, however, the
stego detection power of such a detector is greatly lacking
compared to a DL approach.
Note also that controlling the FPR can also be seen

as a calibration problem [25] in machine learning. These
methods are for example used in steganalysis to fuse com-
parable outputs of different classifiers [2], [47]. However,
calibration techniques are not designed to face very small
FPR.

2C denotes the number of channels after the last convolutional
layer in a given architecture.
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B. Our Contribution
The goal of this work is to develop a universal steganog-

raphy detector for JPEG images compressed at Quality
Factor 100 which can be used for analyzing images of
arbitrary size, detecting potentially any steganography,
and for which we have perfect control of its false positive
rate. The two main contributions can be summarized by
the following:
• We introduce a Gaussian model of a DL detector’s soft

outputs (logits), allowing us to control the detector’s
FP rate. We verify, that the theoretical Gaussian
threshold for any given FP rate corresponds to an
empirical FP rate given by the data.

• We show that by disabling padding in the CNN
architecture, the mean of the logit distribution is
independent of the image size and consequently, the
FP rate relies only on the variance of the distribution.

• We find the variance scaling law - an affine relation-
ship between the variance of the Gaussian distribution
and the reciprocal image size. We are thus able to
perfectly predict the Gaussian distribution for any
image size, without the need to retrain the detector
on images of other sizes. In other words, we are able
to control the FP rate for images of arbitrary size.

• By limiting ourselves only to Quality Factor 100
JPEG images, we are also able to reliably detect
previously unseen steganography in images of any
size.

C. Organization of the Paper
The rest of the paper is organized as follows: In the

next section, we introduce the basic concepts and nota-
tions. Section III introduces the dataset and detectors
used throughout the paper. In Section IV we describe
and evaluate the proposed methodology. We compare our
method to previous state-of-the-art in Section V and the
paper is then concluded in Section VI.

II. Preliminaries and Notation
In this Section, we introduce several concepts and nota-

tions that will be used throughout the paper.
Boldface symbols are reserved for matrices and vectors.

Rounding x respectively to the nearest integer and the
nearest higher integer will be denoted [x] and dxe. Denote
⊗ element-wise multiplication and � element-wise divi-
sion. Let DCT(·) denote the 2D type-II Discrete Cosine
Transform (DCT) used during the JPEG compression and
IDCT(·) its inverse (the 2D type-III DCT).
To compress a grayscale image using the JPEG format,

we take each 8 × 8 block of uncompressed pixels x and
transform them to DCT coefficients

c = [DCT(x− 128)� q] , (2)

where q is an 8 × 8 integer-valued quantization matrix
defined by the JPEG Quality Factor (QF). To decompress

the DCT coefficients back to pixel values, the steps are
reversed

y′ = [IDCT(c⊗ q) + 128] . (3)

Note that since JPEG is a lossy compression (due to
the rounding operation and numerical imprecisions in the
DCT), the uncompressed image x and the decompressed
image y′ are not necessarily the same.

A. Reverse JPEG Compatibility Attack
We briefly recall the basic idea of the RJCA [8] as we will

use it to build our detector. The main constraint is limiting
ourselves only to QF 100, otherwise the variance of the
signal of interest is too big and the signal becomes useless.
While Eq. (3) is what many decompressing libraries would
provide a user with, we can avoid the rounding operation,
to prevent the extra information loss. We thus decompress
the DCT coefficients into non-integer pixel values

y = IDCT(c) + 128, (4)

where we left out the quantization table, as it is com-
posed of ones at the highest QF. It has been shown in
the original publication that the decompression rounding
errors, denoted by

e = y′ − y, (5)

when computed on cover images follow a Wrapped Gaus-
sian distribution. It then follows that steganography nec-
essarily increases the variances of this distribution, which
can be very reliably detected even for small embedding
payloads. The best performance is obtained with a CNN
detector, where the rounding errors e are provided as
inputs instead of the decompressed images. For more
information about the attack, we refer the reader to [8].

B. Convolutional Neural Networks
To analyze how CNN logits change w.r.t. the image size,

it is important to understand some inner mechanisms of
such architectures, namely the receptive field and padding
which combined lead to feature poisoning. We shall see
in Section IV that feature poisoning impacts the mean of
the logit distribution and that the receptive field induces
a subset of correlated features.
1) Receptive Field: The Receptive Field of a CNN is

the region of the input that contributes to the feature
after the last convolutional layer. Let ki and si represent
respectively the filter size and stride of the i-th convolution
and let L be the number of convolutions in a given CNN
architecture. It was shown [1] that the receptive field size
R at the input image can be computed as

R =
L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
+ 1. (6)
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Original image

Input to the global average pooling

Figure 2: Illustration of overlapping neighboring receptive
fields in a convolutional neural network.

The stride of the receptive field can be computed as a
product of all strides

S =
L∏
l=1

si. (7)

The overlap of the neighboring receptive fields can then
be computed as

O = R− S. (8)

Assuming no padding is applied in the CNN, it follows
that for an image of size N1 × N2, the feature size after
the last convolutional layer (or equivalently before the
global average pooling) is of size d(N1 −R+ 1)/Se ×
d(N2 −R+ 1)/Se, see Figure 2 for a graphical represen-
tation. As the feature size has to stay positive, this gives
a lower bound on the input image size: N1, N2 ≥ R. This
constraint can be effectively mitigated by using padding
in the network, but as we will see in Section IV, we do
not want to use padding for the detector as it changes
the distribution of the inputs. In computer vision tasks,
changing the distribution with padding is typically not
an issue as it can be countered by rather aggressive data
augmentations, such as resizing. These augmentations are,
however, not applicable in steganalysis because they would
destroy the weak stego signal of interest.

In our experiments, we use only the SRNet [4], for which
we found R = 179, S = 16, and O = 163. We want to point
out, that without padding, the size of the smallest JPEG
image we could analyze with this architecture is 184×184
(the sizes need to be multiples of 8). Note also, that the
size of the overlap of the neighboring receptive fields in
SRNet is 163 × 179. For EfficientNet [38] (EFN) B0 and
B4, we found R = 851, S = 32 and R = 1799, S = 32
respectively, which clearly shows why padding has to be
used in these architectures since otherwise, the minimum
image size would be too big.

Filter Poisoned featuresPadding Propagation of padding

1st convolutional layer 2nd convolutional layer 3rd convolutional layer

Figure 3: Propagation of the feature poisoning through
successive layers due to padding.

2) Feature Poisoning: In this Section, we explain the
need to discard padding with the concept of Feature
poisoning. Many3 CNN architectures implicitly use some
kind of padding during their convolution operations (e.g.
zero padding, mirror padding, etc.) in order to preserve
the feature dimensions and to avoid having the minimum
image size too big as we have just seen. While in computer
vision tasks, this might be justifiable, we are questioning
the usefulness of padding in steganalysis. We will see in
Section IV-A that padding, especially zero padding, is, in
fact, undesirable because convolution even with a small
3 × 3 kernel, creates features with different properties
than the rest of the image. We call these features poi-
soned. Figure 3 demonstrates this phenomenon with three
convolutional layers, each having a kernel of size 3 × 3.
Note that the stride does not have a serious effect on the
feature poisoning because the padding is usually applied
only on an outside layer of the image. Before the first
layer, there is only the outer padding (depicted in blue)
and no poisoned features. The first convolution creates a
layer of poisoned features (depicted in red). Consequently,
every subsequent convolution will create an extra layer of
poisoned features, which is why we can see two layers (two
pixels from each boundary) of poisoned features after the
second convolutional layer. We will refer to the number of
poisoned layers as the poisoned size.
Let us denote the poisoned size on the input to the i-th

convolutional layer as Pi. Next, it is rather straightforward
to realize that the poisoned size dependent on the kernel
stride si−1, padding size pi−1 (which is typically dependent
on the kernel size ki−1) and on the previous poisoned size
Pi−1. We can then find that

Pi+1 =
⌈
Pi + pi
si

⌉
, (9)

where P0 = 0 is the initial poisoned size.
Unfortunately, modern CNNs, such as EfficientNet [38]

or SRNet, contain many convolutions, each using padding,
and many of them having stride equal to 1. In Figure 4,
we show for several architectures a relative size of poisoned
features in the pre-GAP feature - the last feature before
the global average pooling. We can see that for image sizes
smaller than the receptive field size R, all the features are
poisoned. Moreover, as discussed in the previous section,

3We are not aware of an architecture that would implicitly not use
padding.
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Figure 4: Relative size of poisoned features for images of
size N ×N for different architectures with receptive field
size R.

we can see that the receptive field size R of the EfficientNet
is much larger, essentially forcing the use of padding.
Note that this larger value of R is due to larger filters
(most of the convolution kernels are of size 5 × 5, adding
two poisoned layers) and due to subsampling early in the
network, while SRNet tends to subsample only deeper in
the network.

III. Experimental Setup
Before studying the output of the trained detector, we

detail how the detector is trained in this section.

A. Training and testing dataset
The dataset used throughout this work is the ALASKA

2 [13] comprised of 80k uncompressed grayscale images
of size 2048 × 2048. Using ImageMagick’s convert, we
first JPEG compress the dataset with QF 100 to create
the cover set. We then split the dataset into training,
validation, and testing sets of sizes 35k, 5k, and 40k
respectively. For the stego images, we embed the cover set
by simulating optimally coded ternary Least Significant
Bit Matching (LSBM) at payloads 0.3, 0.05, and 0.01
bits per DCT coefficient (bpc). We chose a non-adaptive
steganographic scheme, as it was shown that constant em-
bedding costs provide the best security against the RJCA
due to the smaller number of embedding changes [5]. To
test the detector on unseen, adaptive steganography, we
also embedded the cover sets with UERD [27] at the
same payloads. To evaluate our methodology on images of
different sizes, we crop the cover set into smaller images
of size N ×N . We will be using two sets of image size N :
Strain = {184, 256, 512, 768, 1024, 1280, 1536, 1792, 2048}4

and Stest = {1000, 1200, 1400, 1600, 1800, 2000}.
Note that to prevent storing a huge amount of data,

we simply center crop the original images at resolution

4The smallest value corresponds to the smallest JPEG image size
bigger than SRNet’s receptive field size.

2048×2048 when needed. This applies also to stego images,
which should not create discrepancies for the non-adaptive
LSBM. For the UERD images, the resulting payload of the
cropped images could be potentially different due to its
adaptive nature, but we will consider this effect negligible.

B. Detectors
Based on the preliminary analysis in Section II, we

choose the SRNet [4], because of its small receptive field
size. We train this detector on cover and LSBM images
with 0.3 bpc payload, using only their rounding errors e
(see (5)) as inputs. For this reason, we will refer to this
detector as the eSRNet. Only crops of size 512 × 512 are
used during the training of this detector. The detector is
trained for 10 epochs with the rest of the hyperparameters
as explained in [7] (see Section 3.2). Additionally, we
disable the padding in every convolutional layer, as will
be explained in Section IV-A.
1) Variable Size Detector: We train another eSRNet

(also without padding) on images of variable size (VS) in
Strain. Note that such an approach is not unrealistic, we
simply need to provide images of the same dimension in
every mini-batch. We do this in practice by taking cover
and stego images of size 2048 × 2048 and simply center-
cropping the entire mini-batch into the desired size. Due
to increased memory requirements, we used batch norm
synchronization over 4 GPUs, each having a mini-batch
size of 8. We refer to this detector as VS-eSRNet.
2) Prior Art Detector: To implement the detector

from [47], we need to proceed in two steps, as previously
explained in Section I-A1. First, an eSRNet tile detector
(TD) is trained similarly as described in the previous
section on images of size 512 × 512. However, we modify
the SRNet structure to produce a feature vector f of
size 4 × 512 instead of 512 by extracting after the last
convolution the average (GAP), but also the variance,
minimum, and maximum over each channel. This vector
is then fed to the fully connected layer.

As mentioned in [47], the trained TD is then used as a
feature extractor. For image crops of every size in Strain,
we extract their features f . Note that for every image size,
f is of size 4×512. Using the same training, validation, and
testing split as in the TD training, we train an MLP with 1
hidden layer of size 8×512 on these features. The batch size
of the MLP is set to 100 and the other hyperparameters are
kept the same. To evaluate the MLP on images of unseen
sizes, that is of those in Stest, we use TD to extract their
features f and then feed these to the trained MLP.

IV. Studying the Logits

In this Section, we describe the proposed methodology
for finding the detector’s logit (soft output) distribution
and using it for the steganalysis of images of any size.
Note that all the detectors used in this section are fixed
and trained to detect LSBM with 0.3 bpc as described in
Section III-B.
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Figure 5: Effect of zero-padding on histogram of eSRNet’s logits for cover images of sizes N ×N .

To better understand the logits of our detector, we start
visually inspecting its response on cover images of different
sizes. For such inspection, we only use the testing images
from our database. We can observe two phenomena from
Figure 5 (left): with increasing image size, 1) the mean of
the distribution increases, and 2) the variance decreases.
While the decrease in variance is rather expected with
more data, the shift in the mean is quite surprising. During
our investigation, we found out that the only thing that
could cause the mean shift was the feature poisoning due
to padding.

A. Feature Poisoning Effect
We experimented with several different ways of padding

in the CNN, such as mirror padding, zero padding, cir-
cular padding, and for every one we trained one eSRNet.
Through an inspection of its logits across image sizes, we
observed that while some methods were causing the mean-
shift in the logit distributions to be smaller, it was always
present.

We thus decided to disable the padding completely in
the network. To preserve the flow in the residual layers of
the network with skip connections, we crop appropriately
the features in the skip connections. One could argue that
this leads to information loss, however, we believe that
the necessary information would be preserved in the main
branch of the layer. The effect of disabling the padding on
the logit histogram can be seen in Figure 5 (right). As we
can see, for the network trained this way, we cannot see
any mean-shift anymore, even at a price of higher variance
for the smaller sizes. We explain this fact by reducing the
feature size before the GAP. Indeed for an image of size
184× 184 (256× 256), the pre-GAP feature size is 12× 12
(16× 16) with padding and 1× 1 (5× 5) without padding.

While the shift in the mean can be estimated from
controlled images, we find this rather impractical. For
a given image under investigation, one would have to
generate a dataset of images of the same size, which could
be computationally very costly, especially for large images

with millions of pixels. For the rest of the paper, we will
only use the eSRNet trained without padding to evaluate
our proposed methodology.
Note that the prior work using the MLP [47] did not

consider different padding strategies so we kept the TD’s
implicit zero padding.

B. Scaling of Variance
Now that we see that the logit distribution mean re-

mains unchanged across different image sizes, it is time to
investigate the behavior of its variance. To this end, we
state the following theorem.

Theorem 1 (Variance Scaling Law). Assume a fixed
JPEG compressor compressing images with QF 100, a con-
volutional neural network without padding, with receptive
field size R and stride S, trained on rounding errors e of
cover images and non-adaptive stego images. Let φ be the
detector’s logit from a cover image withN = N1×N2 pixels.
Denote NG = n

(G)
1 ×n(G)

2 the pre-GAP feature size, where
n

(G)
1 = d(N1 −R+ 1)/Se and n(G)

2 = d(N2 −R+ 1)/Se.
Then φ ∼ N (µ, σ2

N ), where µ ∈ R is a constant and σ2
N

decreases with N . Specifically,
if N1, N2 ≥ 2R, then there exist a > 0, b ≥ 0 such that

σ2
N = a

NG
+ b. (10)

Otherwise, for N1 ≤ N2, there exist a, c > 0, b ≥ 0

σ2
N = a

NG
+ b+ cn1

NG

(
1 + ψ

(
n2 + 1

2

)
− ψ

(
n1 + 1

2

))
,

(11)
where n1 = min{n(G)

1 ,
[
R
S

]
}, n2 = min{n(G)

2 ,
[
R
S

]
}, and

ψ(z) = Γ′(z)
Γ(z) is the digamma function.

Moreover, the absolute term b depends on the over-
parametrization of the given architecture.

We refer the reader for the proof of Theorem 1 to the
Appendix. We want to point out that the value µ is linked
to the detectability of a given steganographic scheme,
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Figure 6: Top: Correlation matrix of pre-GAP features
across 1000 images from a single channel. Images of size
256×256 (left) and 512×512 (right). Bottom: Correlation
matrix between GAP features across 1000 images of size
512×512. The values are cropped for better visualization.

especially the embedded payload, however, a more detailed
investigation is beyond the scope of this work. While the
assumptions in Theorem 1 are tailored to our specific
steganalysis scenario, the results hold for any imaging
problem where the two classes carry the same distribution
everywhere, independently of the location in the image
(see observations 2) and 3) in the proof). Consequently,
we find the limiting behavior of the logit variance.

Corollary 2. For N →∞, there exists b ≥ 0 such that

σ2
N → b. (12)

To experimentally verify Theorem 1, we computed the
logits from all the training sizes Strain and computed
their respective empirical variances σ̄2

N . We then found the
parameters a0, b0 and a1, b1, c1 by minimizing the mean
relative absolute difference for the training image sizes

a0, b0 = arg min
∑

√
N∈Strain√
N≥2R

∣∣σ̄2
N − σ2

N

∣∣
σ̄2
N

, (13)

a1, b1, c1 = arg min
∑

√
N∈Strain√
N≤2R

∣∣σ̄2
N − σ2

N

∣∣
σ̄2
N

. (14)

Since for SRNet 2R = 358, we added images of size
360 × 360 to the training sizes Strain as it is the closest
size of a valid JPEG image.

Solving equations (13),(14) with our dataset gives a0 ≈
36.5, b0 ≈ 2 × 10−4, a1 ≈ −4, b1 ≈ −0.26, c ≈ 5.9. We
show in Figure 7 the estimated and empirical reciprocal
variances w.r.t. the number of pixels N .

36
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76
8

2

10
24

2

12
80

2

15
36

2

17
92

2

20
48

2

N

4.9
13.6

38.9

76.8

128.8

191.8

265.4

352.7

1/
σ

2 N

N1, N2 > 2R

N1, N2 ≤ 2R

Figure 7: Logit variance as a function of the number of
pixels N .

Although, the absolute term b in Eq. (12) can be
unexpected at first, it is not that surprising. Since the
eSRNet has more than 4.5M parameters, it is extremely
over-parametrized for the given task. We performed the
Principal Component Analysis of the GAP features5 and
found that 98% of information can be contained in only 2
channels out of 512. We conclude that many of the con-
volutional kernels in different channels (within the same
layer) are almost identical. As a result, the features deep in
the network are greatly correlated across channels giving
rise to the absolute term. See Figure 6 (bottom) for the
correlation matrix of the 512-dimensional GAP feature. If
the network offered no redundancy, we expect the features
to not be correlated across channels, which would result
in b = 0. This observation is also supported in the proof
of the theorem (see Eq. (19)). However, compressing the
architecture to avoid redundancy on a given task is out
of the scope of this work and we plan to address this
phenomenon in the future.
As explained in the Appendix, the terms a arises from

the spatial partial correlation among the pre-GAP features
(and their variance), which is, in turn, caused by overlap-
ping receptive fields. In general, the closest odd multiple
of [R/S] features are correlated in every direction. The
partial correlations in a single channel are shown in the
correlation matrices in Figure 6 (top). Finally, for images
where one of the sizes is smaller than 2R, all the pre-GAP
features are horizontally correlated if the image width is
smaller than 2R and/or vertically correlated if the image
height is smaller than 2R, which leads to the term c.
Based on the above discussion, we can conclude that

to reduce the logit variance as much as possible (leading
to better class separation), the CNN architecture should
1) have a small ratio R/S to reduce the spatial partial
correlations among neighboring pre-GAP features, 2) have
a small receptive field size R to prevent spatial correlations
among all pre-GAP features for images of size smaller

5The feature vector resulting from the Global Average Pooling.
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Figure 8: Comparisons between prescribed and practical FPR for the different schemes. for images of sizes N ×N .
The MLP’s αemp is shown as a function of the FP rate on training images of the closest size in Strain.

than 2R, and 3) be pruned to avoid any redundancy in
order to eliminate the absolute term b. While the pruning
can always be performed as a last step of the detector
development, the other two points depend on the specific
requirements of a steganalyst. For instance, if we only
aim to steganalyze images of size at least 512 × 512, it
is sufficient to consider architectures with R < 256.

C. Gaussianity of Logits and FPR control
The last step of our logit investigation deals with the

gaussianity of the distribution. Indeed, having the mean
and variance of the distribution would be rather useless,
unless we know which type of distribution we are dealing
with since ultimately we aim to use this distribution
to prescribe a threshold for a given FP rate. Although
there are various ways of verifying gaussianity, we use
the following approach. For a given testing image size
in Stest, we compute the mean µ as the average mean
of the logit distributions for image sizes in Strain and
the logit variance σ2

N using Eq. (10) with a, b from the
previous section. For a prescribed (Gaussian) FP rate α,
we compute the Gaussian threshold as

Tα = µ+ σNQ
−1(α), (15)

where Q−1 is the inverse Q-function.
We then use the same threshold to compute the empiri-

cal FP rate αemp from the logits. The eSRNet’s comparison
of α and αemp is shown in Figure 8. For all the testing
sizes in Stest, we can see a very clear match between
the prescribed Gaussian FP rates and the empirical ones
even for the values close to 10−4. Not only does this
strategy verify the gaussianity of the distribution, but it

also immediately demonstrates the adequation between
the prescribed FP rates and the practical ones for different
image sizes that do not belong to the training set. We
cannot experimentally verify the relation for smaller FP
rates due to the limited testing dataset.

V. Results and comparisons
We compare here three methods that perform steganal-

ysis for different image sizes:
• eSRNet, where the training is performed only on

512 × 512 images but the distributions of the logits
(see section IV-B) are derived from the different sizes
provided in the training set.

• VS-eSRNet, where both the training and the estima-
tion of the logit distributions are performed with the
variable image sizes provided in the training set.

• the MPL (see I-A, [24]), which links the decision
threshold to the FPR by resorting to Monte-Carlo
methods. Note that one drawback of this methodology
is that the prescribed FPR relies on the size of the
training set, e.g. for a FPR of 10−n as a rule of thumb
10n+1 images are necessary to obtain an accurate
estimate of the FPR.

To compare these methods, we consider two criteria: the
quality of the prescribed FP rate and the probability of
error (1) on unseen steganography. First, we focus on the
the VS-eSRNet. Figure 9 (left) shows the logits coming
from this detector and we can see that even in this case,
the mean of the distribution is independent of the image
size. However, we see that even in this case, the variance
of the logits changes w.r.t. the image size. We thus used
the same methodology as for eSRNet, proposed in the
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Figure 9: Histograms of the VS-eSRNet’s and MLP’s logits for cover images of size N ×N .

Table I: PE for LSBM images of different size N ×N .

bpc Method N
1000 1200 1400 1600 1800 2000

0.01
eSRNet 0.17 0.12 0.08 0.05 0.03 0.02

VS-eSRNet 0.10 0.06 0.04 0.02 0.02 0.01
MLP [47] 0.43 0.43 0.42 0.41 0.41 0.41

0.05
eSRNet 0.00 0.00 0.00 0.00 0.00 0.00

VS-eSRNet 0.00 0.00 0.00 0.00 0.00 0.00
MLP [47] 0.08 0.06 0.04 0.03 0.03 0.02

previous section. In particular, we estimated the scaling
parameters a, b according to equation (13). Furthermore,
by comparing with Figure 5, we can notice that the mean
is larger than that of eSRNet, but the variance also seems
to be bigger. We attribute this to the more diverse training
cover set but also the stego set, because we did not adjust
the embedding payload to maintain the same detectability
according to the Square Root Law [31]. Consequently,
we can see in Table I that the probability of error on
LSBM images is much smaller on the smaller payload
for this detector that has seen a wider variety of LSBM-
embedded images during training. However, results in
Table II show that the performance of these two detectors
is very comparable on previously unseen, content-adaptive
steganography. Yet another difference is shown in Figure 8
in which we see that the prescribed FP rates start to
deviate for values below 10−3, suggesting that the left
tail of the distribution does not have a perfectly gaussian
shape. Overall, the VS-eSRNet only provides better per-
formance on seen steganography, but the prescribed FP
rates are not as reliable as those of e-SRNet. Moreover,
the computational cost increases rapidly, requiring the use
of 4 GPUs during its training.

By inspecting the logits of the MLP detector (see Fig-
ure 9 (right)), we see that the distribution changes its
mean across image sizes because of the implicit padding in
the tile detector, therefore we cannot prescribe a theoreti-
cal FP rate since that would require creating a dataset for
every image size under investigation in order to estimate
the distribution mean. Instead, for a given testing image,
we take the logits of training images of the closest size in

Table II: PE for unseen UERD images of different sizes
N ×N (bold/minimum scores take into account the value
before rounding).

bpc Method N
1000 1200 1400 1600 1800 2000

0.01
eSRNet 0.15 0.11 0.07 0.04 0.02 0.01

VS-eSRNet 0.14 0.10 0.06 0.04 0.02 0.01
MLP [47] 0.29 0.25 0.22 0.19 0.17 0.15

0.05
eSRNet 0.01 0.00 0.00 0.00 0.00 0.00

VS-eSRNet 0.01 0.01 0.00 0.00 0.00 0.00
MLP [47] 0.02 0.01 0.00 0.00 0.00 0.00

Strain. With these training logits, we then empirically find
a threshold that corresponds to a prescribed FP rate and
use it to compute the empirical FP rate αemp on the testing
images. The comparison in Figure 8 indicates that this
works quite well, however, there is one major drawback.
For images of size bigger than 2048 × 2048, we would
have to use the largest images in the training database to
prescribe a decision threshold, which could lead to severe
underperformance. A similar problem would arise if we
were to test an image of a size smaller than in the training
data. To demonstrate this issue, we show in Figure 10 αemp
for images of size 1000 and 2000 if the training data was
not optimal, e.g. S(1)

train = {1280, 1536, 1792, 2048}, and
S(2)
train = {184, 256, 512, 768, 1024} respectively.
Finally, Tables I and II show that the performance of

the MLP detector is inferior to the other two proposed
methods, by up to 40% in terms of PE for the largest
LSBM images at the smallest payload 0.01 bpc. We believe
this is due to the MLP overfitting on the larger training
payload 0.3 bpc.
Note that while the probability of error is generally

smaller on UERD images for eSRNet and MLP detectors
than on LSBM images, it is the opposite for the VS-
eSRNet. We attribute this to the more diverse stego
training set of the VS-eSRNet, which causes it to overspe-
cialize on the LSBM images. Furthermore, since the UERD
algorithm is content-adaptive, it creates more embedding
changes than the non-adaptive LSBM, which makes it
more detectable in the RJCA setup.
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Figure 10: The MLP’s αemp as a function of the FP rate
on insufficient training images of the closest size in S(1)

train

and S(2)
train.

VI. Conclusions
In this work, we introduced, for the first time, the

concept of size-independent steganalysis with control over
the false positive rate of a deep learning detector based on
the RJCA. We achieve this by modeling a deep learning
detector’s cover class soft outputs (logits) with a Gaussian
distribution.
First, we showed that padding inside the convolutional

layers of a CNN detector negatively affects the distribution
of the input image which causes a mean-shift of the logit
distribution. With the padding disabled, we proved a
theorem stating that the variance of the logit distribution
can be expressed as an affine function of the reciprocal
number of pixels. With a detector trained on images of
a fixed size, the e-SRNet, we estimated the parameters
of this affine relation from several predefined datasets of
images of different sizes and were able to theoretically
prescribe a decision threshold for a desired false alarm rate
for images of any size. We then experimentally verified
that the empirical false alarm rate closely matches the
prescribed one. Finally, we also showed that the method
generalizes well to detect other unseen steganography
with much smaller embedding payloads than those used
during the detector training, a fact we explain by modeling
reliably the cover class distribution.
By relying solely on a deep learning approach - providing

images of different sizes during the training, we have seen
that the logits even from this detector, the VS-eSRNet,
follow the same trend as if trained on fixed-size images
only. Using the proposed methodology for this detector
revealed that the performance of the two detectors is
rather similar. However training the VS-eSRNet requires
more computational resources and the resulting logit dis-
tributions have a thicker left tail, causing discrepancies for
false positive rates below 10−3.
While we limited ourselves only to JPEG images com-

pressed with the highest quality, in order to exploit the
decompression rounding errors, we believe that the same
methodology can be applied to more classical spatial deep
learning steganalysis that works on image pixels. While the
padding will have a similar, perhaps even smaller, effect
on the logit distribution in such a scenario, the image
content and content-adaptive steganography will have a
much stronger impact on the distribution.
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Appendix
Proof of Theorem 1

Let φ be the logits of the cover class coming from a
CNN with receptive field R and stride S and without
any padding. Let Xc,i be the vectorized pre-GAP feature
entering the Global Average Pooling (GAP) at spatial
position i ∈ {1, . . . , NG} in a channel c ∈ {1, . . . , C},
where NG is the number of features before GAP and C is
the number of filters (channels) in the last convolutional
layer (C = 512 is for SRNet, C = 1280 for EfficientNet-
B0). Let us recall from Section II-B1 that

NG = n
(G)
1 × n(G)

2 .

Let further G ∈ R be the vector of GAP features and
w ∈ RC×1 be the (cover) weight vector from the fully-
connected layer. We can express the cover logit as

φ = G ·w

=
C∑
c=1

wcGc

= 1
NG

C∑
c=1

wc

NG∑
i=1

Xc,i

Let us now make three key observations:
1) Convolutional neural networks are shift equivari-

ant [16], [37],
2) For a given JPEG compressor, the image content

under scrutiny (the rounding errors eij) follows the same
distribution independently of the position in the image
(with some exceptions in constant blocks [8]),
3) Non-adaptive steganography changes the stego dis-

tribution in the same way, independently of the position
in the image.
These three observations allow us to make the following

conclusions. For any channel c ∈ {1, . . . , C}, all the pre-
GAP features have the same mean and variance

Var (Xc,i) = σ2
c , (16)

E [Xc,i] = E [Xc] , ∀i = 1, . . . , NG. (17)

In the following, we will be dropping the channel index
for better readability. We note that due to the overlap
of the receptive fields in the network, each row (column)
of the covariance matrix of [X1, . . . , XNG

] contains nR,S
positive correlations and NG − nR,S features that are
uncorrelated, where nR,S is the number of overlapping
receptive fields on a single pixel: nR,S = n1 × n2.6 The

6In our experiments with SRNet and images of size N × N , N >
2R = 358, we observed that nR,S = 11 × 11, which corresponds to
the value [R/S]2.
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above formula dictates that if the image is too small,
all the features will be correlated. In other words, if
n1, n2 ≤ R

S , which is equivalent to N1, N2 ≤ 2R − 1, we
obtain nR,S = NG. We now consider different situations,
depending on the values n1, n2.
First, let n1 ≤ n2 ≤ R

S . We will model the covariance
between neighboring features as

Cov (Xi, Xj) = b

d1(Xi, Xj)
,

where d1(Xi, Xj) is the `1 distance between the spatial
position of Xi and Xj because the overlap between neigh-
boring receptive fields decreases linearly in both directions.
As such, summing the covariances of correlated features
can be expressed as summing the radii of 4r points on
concentric circles with radii r ∈ {1, . . . , n1

2 }. Additionally,
we have to consider the points on ‘circles’ having one of
the axes longer than the other, if n1 < n2. To sum a single
(any) row of the covariance matrix, we compute∑
j

Cov(Xi, Xj) = σ2 + b

(n1−1)/2∑
r=1

4r
r

+ b

(n2−1)/2∑
r=(n1+1)/2

4(n1−1
2 + 1)− 2

r

= σ2 + 2b(n1 − 1)

+ 2n1b

(
ψ

(
n2 + 1

2

)
− ψ

(
n1 + 1

2

))
,

where ψ(z) ∼ ln(z)− 1
2z is the digamma function. After

some simplifications, we can write

∑
j

Cov(Xi, Xj) =

a+ bn1

(
1 + ψ

(
n2 + 1

2

)
− ψ

(
n1 + 1

2

))
. (18)

In the case of n1 ≤ R
S ≤ n2, we simply substitute n2

with R
S in Eq. (18).

Let us assume for the rest of the proof that n1, n2 ≥ R
S

(N1, N2 ≥ 2R). Note that this is equivalent to substituting
both n1 and n2 with R

S in Eq. (18). The rest of the proof
for the other cases considered above would proceed in the
same manner.

Since nR,S =
[
R
S

]2, the partial correlations are constant
w.r.t. the image size, and thus we can write

Var
(∑

i

Xi

)
=
∑
i,j

Cov (Xi, Xj)

= NG
(
σ2 + b (nR,S − 1)

)
= a0NG.

It follows that

Var (G) = 1
N2
G

Var
(∑

i

Xi

)
= a0

NG
.

The variance of the logit is

σ2
N = Var

(
C∑
c=1

wcGc

)

=
C∑

c,d=1
wcwdCov (Gc,Gd)

= ‖w‖
2a0

NG
+

C∑
c=1

∑
d6=c

wcwdCov (Gc, Gd)

= a

NG
+ b, (19)

where the constant b ∈ R depends on the correlations
across channels caused by over-parametrization of the
architecture on a given task. Note that we were able to
simplify the expression since Cov(Gc, Gd) does not depend
on NG for c 6= d.
It remains to prove that the mean of the logit does not

change across different image sizes. We now express the
mean as

µ = 1
NG

C∑
c=1

wc

NG∑
i=1

E [Xc,i] ,

and remind the reader that the mean in a channel is the
same for every spatial position (see Eq. (17)). It follows
that

µ =
C∑
c=1

wcE [Xc] ,

which is independent of the image size.
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