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Optimal rates for ranking a permuted isotonic matrix

in polynomial time

Emmanuel Pilliat, Alexandra Carpentier, and Nicolas Verzelen

Abstract: We consider a ranking problem where we have noisy observations from a
matrix with isotonic columns whose rows have been permuted by some permutation π∗.
This encompasses many models, including crowd-labeling and ranking in tournaments
by pair-wise comparisons. In this work, we provide an optimal and polynomial-time pro-
cedure for recovering π∗, settling an open problem in [7]. As a byproduct, our procedure
is used to improve the state-of-the art for ranking problems in the stochastically transi-
tive model (SST). Our approach is based on iterative pairwise comparisons by suitable
data-driven weighted means of the columns. These weights are built using a combination
of spectral methods with new dimension-reduction techniques. In order to deal with the
important case of missing data, we establish a new concentration inequality for sparse
and centered rectangular Wishart-type matrices.

1. Introduction

Ranking problems have recently spurred a lot of interest in the statistical and computer science
literature. This includes a variety of problems ranging from ranking experts/workers in crowd-
sourced data, ranking players in a tournament or equivalently sorting objects based on pairwise
comparisons.

To fix ideas, let us consider a problem where we have noisy partial observations from an
unknown matrix M ∈ [0,1]n×d. In crowdsourcing problems, n stands for the number of experts
(or workers), d stands for the number of questions (or tasks) and Mi,k for the probability
that expert i answers question k correctly. For tournament problems, we have n = d players
(or objects) and Mi,k stands for the probability that player i wins against player k. Based on
these noisy data, the general goal is to provide a full ranking of the experts or of the players.

Originally, these problems were tackled using parametric model for the matrix M . Notably,
this includes the noisy sorting model [5] or Bradley-Luce-Terry model [4]. Still, it has been
observed that these simple models are often unrealistic and do not tend to fit well.

This has spurred a recent line of literature where strong parametric assumptions are replaced
by non-parametric assumptions [17, 18, 19, 20, 10, 9, 8, 7, 3, 16]. In particular, for tournament
problems, the strong stochastically transitive (SST) model presumes that the square matrix
M is, up to a common permutation π∗ of the rows and of the columns, bi-isotonic and satisfies
the skew symmetry condition Mi,k +Mk,i = 1. Although optimal rates for estimation of the
permutation π∗ have been pinpointed in the earlier paper of Shah et al. [18], there remains a
large gap between these optimal rates and the best known performances of polynomial-time
algorithms. This has led to conjecture the existence of a statistical-computational gap [10, 8].

For crowdsourcing data, the counterpart of the SST model is the so-called bi-isotonic model,
where the rectangular matrix M is bi-isotonic, up to an unknown permutation π∗ of its rows
and an unknown permutation η∗ of its columns. This model turns out to be really similar to the
SST model and the existence of a statistical-computational gap has also been conjectured [10].

In this paper, we tackle a slightly different route and we consider the arguably more general
isotonic model [7]. The only assumption is that all the columns ofM are nondecreasing up to an
unknown permutation of the rows, making the isotonic model more flexible than the bi-isotonic
and SST models. It is in fact the most general model under which an unambiguous ranking
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of the experts is well-defined. In this model as well, there is a gap between the (statistical)
optimal rates, and the rate obtained by the (polynomial-time) algorithm in [7].

Our main contributions are as follows. For the isotonic model, we establish the optimal
rate for recovering the permutation, and we introduce a polynomial-time procedure achieving
this rate, thereby settling the absence of any computational gap in this model. Besides, our
procedure and results have important consequences when applied to the SST and bi-isotonic
model. More specifically, we achieve the best known guarantees in these two models [8, 9] and
even improve them in some regimes.

1.1. Problem formulation

Let us further introduce our model. A bounded matrix A ∈ [0,1]n×d is said to be isotonic if its
columns are nondecreasing, that is Ai,k ≤ Ai+1,k for any i ∈ [n − 1] and k ∈ [d]. Henceforth, we
write Ciso for the collection of all n × d isotonic matrices taking values in [0,1]. In our model,
we recall that we assume that the signal matrix M is isotonic up to an unknown permutation
of its rows. In other words, there exists a permutation π∗ of [n] such that the matrix Mπ∗−1

defined by (Mπ∗−1)i,k = (Mπ∗−1(i),k) has nondecreasing columns, that is

Mπ∗−1(i),k ≤Mπ∗−1(i+1),k , (1)

for any i ∈ {1, . . . , n − 1} and k ∈ {1, . . . , d}, or equivalently Mπ∗−1 ∈ Ciso. Henceforth, π∗ is
called an oracle permutation. Using the terminology of crowdsourcing, we refer to ith row of
M as expert i and to kth column as question k.

In this work, we have N partial and noisy observations of the matrix M of the form (xt, yt)
where

yt =Mxt + εt t = 1, . . . ,N . (2)

For each t, the position xt ∈ [n] × [d] is sampled uniformly. The noise variables εt’s are
independent and their distributions only depend on the position xt. We only assume that all
these distributions are centered and are subGaussian with a subGaussian norm of at most 1

– see e.g. [23]. In particular, this encompasses the typical case where the yt’s follow Bernoulli
distributions with parameters Mxt .

As usual in the literature e.g. [14, 8, 10], we use, for technical convenience, the Poissoniza-
tion trick which amounts to assuming that the number N of observations has been sampled
according to a Poisson distribution with parameter λnd. We refer to λ > 0 as the sampling
effort. When λ > 1, we have, in expectation, several independent observations per entry (i, j)
- and λ = 1 means that there is on average one observation per entry. In this paper, we are
especially interested in the sparse case where λ is much smaller than one, i.e. the case where
we have missing observations for some entries. We refer to λ = 1 as the full observation regime
at it bears some similarity to the case often considered in the literature –e.g. [18, 7], where we
have a full observation of the matrix,

Y =M +E′ ∈ Rn×d . (3)

The entries of the noise matrix E′ are independent, centered, and 1-subGaussian.
In this work, we are primarily interested in estimating the permutation π∗. Given an esti-

mator π̂, we use the square Frobenius norm ∥Mπ̂−1 −Mπ∗−1∥2F as the loss. This loss quantifies
the distance between the matrix M reordered according to the estimator π̂ and the matrix
M sorted according to the oracle permutation π∗. This loss is explicitly used in [8, 14] and is
implicit in earlier works –see e.g. [18].
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We define the associated optimal risk of permutation recovery as a function of the number
n of experts, the number d of question and the sampling effort λ,

R∗perm(n,d,λ) = inf
π̂

sup
π∗∈Πn

M ∶M
π∗−1∈Ciso

E(π∗,M)[∥Mπ̂−1 −Mπ∗−1∥2F ] , (4)

where the infimum is taken over all estimators. Here, Πn stands for the collection of all per-
mutations of [n]. If the main focus is not only to estimate π∗, but also to reconstruct the
unknown matrix M , we also consider the optimal reconstruction rate

R∗reco(n,d,λ) = inf
M̂

sup
π∗∈Πn

M ∶M
π∗−1∈Ciso

E [∥M̂ −M∥2F ] . (5)

It turns out that reconstructing the matrix M is more challenging than estimating the permu-
tation π∗. Considering both risks allows to disentangle the reconstruction of the matrix M :
looking at both enables to distinguish the error that is due to estimating the permutation,
from the error that comes from estimating an isotonic matrix.

1.2. Past results on the isotonic model and our contributions

In, the specific case where d = 1 (a single column), our model is equivalent to uncoupled
isotonic regression and is motivated by optimal transport. Rigollet and Niles-Weed [15] have

established that the reconstruction error of M is of the order of n( log log(n)
log(n) )2.

For the general case d ≥ 1, Flammarion et al. [7] have shown1 that the optimal reconstruction
error in the full observation model (3) is of the order of n1/3d+n. However, the corresponding
procedure is not efficient. They also introduce an efficient procedure that first estimates π∗

using a score based on row comparisons on Y . Unfortunately, this method only achieves a
reconstruction error of the order of n1/3d+n

√
d which is significantly slower than the optimal

one. Whether or not there is a statistical-computationnal gap was therefore an open problem.
We prove in this work that there is no computational statistical gap in this model. More

precisely, we introduce estimators that are both polynomial-time and minimax optimal up
to some polylog factors. To that end, we characterize the optimal risks R∗perm(n,d,λ) and
R∗reco(n,d,λ) of permutation estimation and matrix reconstruction, for all possible number of
experts n ≥ 1, number of questions d ≥ 1 and all sampling efforts λ, up to some polylog factors
in nd. Table 1 summarizes our findings in the arguably most interesting cases2 λ ∈ [1/(n∧d),1].

n ≤ d3/2
√
λ d3/2

√
λ ≤ n

R∗perm n2/3
√
dλ−5/6 n/λ

R∗reco n1/3dλ−2/3 n/λ
,

Table 1

Optimal rates in our model, for all possible values of n,d and λ ∈ [1/(n ∧ d),1], up to a polylogarithmic factor
in nd. These rates are achieved by polynomial-time estimators.

1The authors consider the isotonic model as a subcase of a seriation model, where each columns of Mπ∗−1

is only assumed to be unimodal.
2We are indeed mostly interested in the more realistic sparse observation regime (meaning λ ≤ 1). The case

λ ≤ 1/d leads to the trivial minimax bound of order nd for both reconstruction and estimation, as in this case
we have less than one observations per expert on average. As for the case λ > 1/d but λ ≤ 1/n, we have less

than one observation per question on average, and this leads to a minimax risk of order n
√
d/λ for permutation

estimation and of order nd for matrix recontruction.
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1.3. Implication for other models and connection to the literature

As discussed earlier, the isotonic model is quite general and encompasses both the bi-isotonic
model for crowdsourcing problems as well the SST model for tournament problems.

Let us first focus on the SST model which corresponds to the case where n = d together
with a bi-isotonicity and a skew-symmetry assumption. In the full observation scheme (related
to the case λ = 1) where one observes the noisy matrix n×n, Shah et al. [18] have established
that the optimal rates for estimating π∗ and reconstructing the matrix M are of the order of
n. In contrast, their efficient procedure which estimates π∗ according to the row sums of Y
only achieves the rate of n3/2. In more recent years, there has been a lot of effort dedicated
to improving this

√
n statistical-computational gap. The SST model was also generalized to

partial observations by [6], which corresponds to λ ≤ 1. They introduced an efficient procedure
that targets a specific sub-class of the SST model, and that achieves a rate of order n3/2λ−1/2

in the worst case for matrix reconstruction.
Recently, a few important contributions tackling both the bi-isotonic model and the SST

model made important steps towards better understanding the statistical-computational gap.
We first explain how their results translate in the SST model. Mao et al. [10, 9] introduced a
polynomial-time procedure handling partial observation, achieving a rate of order n5/4λ−3/4 for
matrix reconstruction. Nonetheless, [10] failed to exploit global information shared between
the players/experts – as they only compare players/experts two by two – as pointed out by [8].
Building upon this remark, [8] managed to get the better rate n7/6+o(1) with a polynomial-time
method in the case λ = no(1).

Let us turn to the more general bi-isotonic model. Here, the rectangular matrix M ∈ Rn×d

is bi-isotonic up an unknown permutation π∗ of the rows and an unknown permutation η∗ of
the columns. Since M is not necessarily square, this model can be used in more general crowd-
sourcing problems. The optimal rate for reconstruction in this model with partial observation
has been established in [10] to be of order ν(n,d,λ) ∶= (n ∨ d)/λ + √nd/λ ∧ n1/3dλ−2/3 ∧
d1/3nλ−2/3 up to polylog factors, in the non-trivial regime where λ ∈ [1/(n ∧ d),1]. However,
the polynomial-time estimator provided by Mao et al. [10] only achieves the rate n5/4λ−3/4 +
ν(λ,n, d). In a nutshell, Mao et al. first compute column sums to give a first estimator of
the permutation of the questions. Then, they compare the experts on aggregated blocks of
questions, and finally compare the questions on aggregated blocks of experts. As explained in
the previous paragraph for SST models, Liu and Moitra [8] improved this rate to n7/6+o(1) in
the square case (n = d), with a subpolynomial number of observations per entry (λ = no(1)).
Their estimators of the permutations π∗, η∗ were based on hierarchical clustering and on
local aggregation of high variation areas. Both [8, 10] made heavily use of the bi-isotonicity
structure of M by alternatively sorting the columns and rows. As mentioned for the SST
model, the order of magnitude n7/6+o(1) remains nevertheless suboptimal, and whether there
exists an efficient algorithm achieving the optimal rate in this bi-isotonic model remains an
open problem.

We now discuss the implications of our work concerning the bi-isotonic model and SST
model. First, in the full observation setting (λ = 1) and square case for the bi-isotonic model(n = d), we reach in polynomial-time the upper bound n7/6 up to polylog factors, for both
permutation estimation and matrix reconstruction. In particular, we improve the rate in [8]
by a subpolynomial factor in n, and we do not need a subpolynomial number of observation
per entry. Moreover, our procedure being primarily designed for the isotonic model, it does
not require any shape constraint on the rows in contrast to [8, 10]. Beyond the full observation
regimes, we provide guarantees on our estimator of π∗ for different values of λ. In particular,
in Corollary 2.5, we derive an estimator of the matrix M that achieves a maximum reconstruc-
tion risk supπ∗,η∗,M E [∥M̂ −Mπ∗−1η∗−1∥2F ] of order less than n7/6λ−5/6 up to polylogs, thereby
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improving the state-of-the-art polynomial-time methods in partial observation [10]. Lastly, we
perform our analysis in the general rectangular case, giving guarantees for general values of d.

The optimal risks and the known polynomial-time upper bounds for the isotonic, bi-isotonic
with two permutations and SST models are summarized in Table 2. For the sake of simplicity,
we focus in the table to the specific case case n = d and λ ∈ [1/n,1].

Different models, with
M ∈ Rn×n

Isotonic Bi-isotonic(π∗, η∗) SST
Mπ∗−1 has

nondecreasing
columns

Mπ∗−1η∗−1 has
nondecreasing columns

and rows

Mπ∗−1π∗−1 has
nondecreasing columns

and rows, and
Mik +Mki = 1

Permutation
estimation

Poly.
Time

n7/6λ−5/6 [Th 2.2]
n7/6+o(1) [8](λ = no(1))
n7/6λ−5/6 [Th 2.2]

n7/6+o(1) [8](λ = no(1))
n7/6λ−5/6 [Th 2.2]

optimal
rate

n7/6λ−5/6 [Th 2.1] n/λ [10] n/λ [10]

Matrix
reconstruction

Poly.
Time

n3/2 (λ = 1)[7]

n4/3λ−2/3 [Cor 2.5]

n7/6+o(1) [8](λ = no(1))
n5/4λ−3/4 [10]

n7/6λ−5/6 [Cor 2.5]

n7/6+o(1) [8](λ = no(1))
n5/4λ−3/4 [10]

n7/6λ−5/6 [Cor 2.5]

optimal
rate

n4/3λ−2/3 [7]
(also [Prop 2.3])

n/λ [10] n/λ [10]

Table 2

For the isotonic model, the optimal rate for permutation estimation (resp. matrix reconstruction) corresponds
to R∗perm (resp. R∗reco). For the two other columns, the optimal rates are similarly defined as minimax risk

over the corresponding models. The Poly. Time rows correspond to state-of-the art rates achieved by
polynomial-time methods. All the rates are given up to polylogarithmic factors in n.

Finally, we mention the even more specific model where the matrix M is bi-isotonic up to a
single permutation π∗ acting on the rows. This corresponds to the case where η∗ is known in
the previous paragraph [10, 14, 8]. Equivalently, this also corresponds to our isotonic model (2)
with the additional assumption that all the rows are nondecreasing, that is Mi,k ≤Mi,k+1. For
this model, it is possible to leverage the shape constrains on the rows to build efficient and
optimal estimators, this for all n, d, and λ – see [14].

1.4. Overview of our techniques

In this work, we introduce the iterative soft ranking (ISR) procedure, which gives an estimator
π̂ based on the observations. Informally, this method iteratively updates a weighted directed
graph between experts, where the weight between any two experts quantifies the significance
of their comparison. The procedure increases the weights at each step. After it stops, the final
estimator is an arbitrary permutation π̂ that agrees as well as possible with the final weighted
directed graph.

As mentioned in [8], it is hopeless to use only local information between pairs of experts to
obtain a rate of order n7/6 up to polylogs, and we must exploit global information. Still, we do
it in a completely different way of Liu and Moitra [8] who were building upon the bi-isotonicity
of the matrix.

One first main ingredient of our procedure is a new dimension reduction technique. At a
high level, suppose that we have partially ranked the rows in such a way that, for a given
triplet (P , O, I) of subsets of [n], we are already quite confident that experts in P are below
those in I and above those in O. Relying on the shape constraint of the matrix M , it is
therefore possible to build a high-probability confidence regions for rows in P based on the
rows in O and the rows in I. If, for a question j, the confidence region is really narrow, this
implies that all experts in P take almost the same value on this column. As a consequence,
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this question is almost irrelevant for further comparing the experts in P . In summary, our
dimension reduction technique selects the set of questions for which the confidence region of
P is wide enough, and in that way reduces the dimension of the problem while keeping most
of the relevant information.

The second main ingredient, once the dimension is reduced, is to use a spectral method to
capture some global information shared between experts. That is why our procedure makes
significant use of spectral methods to compute the updates of the weighted graph. Although
this spectral scheme already appears in recent works [14, 8], those are used here for updating
the weight of the comparison graph rather than performing a clustering as in [8]. Moreover,
the analysis of the spectral step in the partial observation regime (λ ≪ 1) leads to technical
difficulties – see the discussion in Section 3.5.

Related to the latter problem, we need to establish a new tail bound on sparse rectangular
matrices. More specifically, for a rectangular matrix X with centered independent entries that
satisfy a Bernstein type condition, we provide a high-probability control of the operator norm
of XXT − E[XXT ]. This result, based on non-commutative matrix Bernstein concentration
inequality, may be of independent interest e.g. for controlling the spectral properties of a sparse
bipartite random graph. We state it in Section 4, independently of the rest of the paper.

1.5. Notation

Given a vector u and p ∈ [1,∞], we write ∥u∥p for its lp norm. For a matrix A, ∥A∥F and∥A∥op stand for its Frobenius and its operator norm. We write ⌊x⌋ (resp. ⌈x⌉) for the largest
(resp. smallest) integer smaller than (resp. larger than) or equal to x. Although M stands for
an n×d matrix, we extend it sometimes in an infinite matrix defined for all i ∈ N, k ∈ {1, . . . , d}
by setting Mik = 0 when i ≤ 0 and Mik = 1 when i ≥ n + 1. The corresponding infinite matrix
Mπ∗(−1) which is obtained by permuting the n original rows is still isotonic and takes values
in [0,1]. We shall often work with submatrices M(P,Q) of M that are restricted to a subset
P ⊂ [n] and Q ⊂ [d] of rows and columns. If A is any matrix in R

P×Q, we write A for the
matrix whose rows are all equal to the average row of A, namely Aik =

1
∣P ∣ ∑j∈P Ajk.

2. Results

In this section, we first establish the statistical limit with a lower bound on R∗perm(n,d,λ).
Then, we state the existence of a polynomial-time estimator that is minimax optimal up to
polylog factors. More precisely, we prove that for all integers n,d and λ ∈ [1/d,8n2], the optimal
rate of permutation estimation R∗perm is of the order of

ρperm(n,d,λ) ∶= n2/3
√
d

λ5/6
⋀n

√
d

λ
+
n

λ
, (6)

up to some polylog factors. As a corollary, we then establish that the optimal rate of matrix
reconstruction R∗reco is of order

ρreco(n,d,λ) ∶= n1/3d
λ2/3

+
n

λ
, (7)

up to polylog factors. We therefore establish that these two problems do not exhibit a computational-
statistical gap.
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2.1. Minimax lower bound for permutation estimation

Assume that λ ∈ [1/d,8n2] is fixed and that we are given N = Poi(λnd) independent obser-
vations under model (2). Namely, we observe (xt, yt)t=1,...,N where xt is sampled uniformly in[n] × [d] and yt = Mxt + εt conditionally to xt. The following theorem states that ρperm is a
lower bound on the maximum risk of permutation estimation for all n,d,λ ∈ [1/d,8n2], up to
some numerical constant.

Theorem 2.1. There exists a universal constant c > 0 such that, for any n ≥ 2, d ≥ 1, and
λ ∈ [1/d,8n2], we have

R∗perm(n,d,λ) ≥ cρperm(n,d,λ) . (8)

In the proof, we show a slightly stronger result that also covers the cases λ < 1/d and
λ > 8n2, where R∗perm(n,d,λ) is in fact respectively lower bounded by a quantity of order nd

and n
√
d/λ. For the sake of readability, we chose to omit these arguably less interesting cases

in the statement of Theorem 2.1 and of Theorem 2.2.

2.2. Optimal permutation estimation

Let us fix a quantity δ ∈ (0,1) that will correspond to a small probability. We need to introduce
some notation. We write

φL1
= 104 log (102nd

δ
) . (9)

Our procedure depends on a sequence of tuning parameters. For this reason, we introduce a
subset Γ ⊂ R+, henceforth called a grid. The grid Γ is said to be valid if it contains a sequence
γ0 ≥ ⋅ ⋅ ⋅ ≥ γ2⌊log2(n)⌋+2 of length 2 ⌊log2(n)⌋ + 3 such that that for all u,

γu − γu+1 ≥ γ2⌊log2(n)⌋+2 + φL1
and γ2⌊log2(n)⌋+2 ≥ φL1

. (10)

In light of this definition, we could simply choose the valid sequence Γ = {φL1
,2φL1

, . . . , (2 ⌊log2(n)⌋+
3)φL1

} with a corresponding γ0 that is polylogarithmic. Still, for practical purpose, we consider
general grids; examples of such gris are discussed in more details in Section 3.6.

For any valid subset Γ, we define γ̄ as the smallest possible value of γ0 over all sequences
that satisfy (10).

γ̄ =min{γ ∶ ∃(γu) satisfying (10) s.t. γ0 = γ} . (11)

Our main procedure ISR, for iterative soft ranking, will be described in detail in Section 3.
The only tuning parameters are the the number of steps T and the valid grid Γ.

Theorem 2.2. There exists C > 0 such that the following holds. Let λ ∈ [1/d,8n2] and δ > 0.
Assume that Γ is a valid grid and that T ≥ 4γ̄6 with γ̄ defined in (11). For any permutation
π∗ ∈ Πn and any matrix M such that Mπ∗−1 ∈ Ciso, the estimator π̂ from Algorithm ISR(T,Γ)
defined in the next section satisfies

∥Mπ̂−1 −Mπ∗−1∥2F ≤ CT γ̄6ρperm(n,d,λ) ,
with probability at least 1 − 10Tδ.

In particular, if we suitably choose Γ (as discussed above) and T = 4⌈γ̄6⌉ and δ = 1/(nd)2,
we deduce from Theorem 2.2 that

R∗perm(n,d,λ) ≤ C ′ logC′(nd)ρperm(n,d,λ) ,
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for some numerical constant C ′ > 0. In the case where λ = no(1) and n = d, this bound
achieves the order of magnitude n7/6, which aligns with the result presented in Theorem 2 of
Liu and Moitra [8]. However, it is important to note that the analysis made in [8] focuses on
the statistically easier bi-isotonic model, and their procedure heavily relies on the isotonicity
structure imposed on the questions.

2.3. Optimal reconstruction of the matrix M

We now turn to the problem of estimating the signal matrix M . Obviously, the reconstruction
of the matrix M from the observation of model in(2) is at least as hard as if we knew the
permutation π∗. In this favorable situation, estimating M amounts to estimating d isotonic
vectors from partial and noisy observations Yik =

1
λ ∑t yt1xt=(ik). The isotonic regression prob-

lem is already well understood, and we state the following lower bound without proof since it
directly follows from [10] (see in particular Theorem 3.1 therein). We recall that ρreco(n,d,λ)
is defined in (7).

Proposition 2.3. There exists a universal constant c > 0 such that, for any n ≥ 2, any d ≥ 1,
and any λ > 0, we have

R∗reco(n,d,λ) ≥ cρreco(n,d,λ) . (12)

In particular, since ρperm(n,d,λ)≪ ρreco(n,d,λ) in many regimes in n, d, λ, this proposition
implies that the reconstruction of a permuted isotonic matrix is harder than the estimation of
the permutation, namely that R∗perm ≪R

∗
reco.

To build an optimal estimator of M , we compute the estimated permutation π̂ of Theorem
2.2 and estimate an isotononic matrix based on this ordering. This approach is similar to what
is done in [10, 14], for related problems where a bi-isotonic assumption is done. For simplicity,
set the tuning parameters T , Γ for Algorithm 1 so that T = 4 ⌈γ6⌉ and γ̄6 ≤ C ′ logC

′(nd/δ). We

split the samples yt defined in (2) into two independent sequences of samples (y(1)t ), (y(2)t ).
First, we compute the estimator π̂ of π∗ with the first sub-samples (y(1)t ). Then, we define M̂iso

as the projection of Y
(2)
π̂

onto the convex set of isotonic matrices, where Y (2) is the matrix

defined by Y
(2)
ik
= 1

λ ∑t y
(2)
t 1

x
(2)
t =(i,k)

. More precisely, set

M̂iso = argmin
M̃∈Ciso

∥M̃ − Y (2)
π̂−1
∥22 .

The following corollary controls the risk of M̂iso.

Corollary 2.4. Assume that λ ∈ [1/d,8n2]. There exists a universal constant C ′′ such that
the following holds for any permutation π∗ ∈ Πn and any matrix M ∈ Ciso.

E[∥(M̂iso)π̂ −M∥2F ] ≤ C ′′ logC′′(nd)ρreco(n,d,λ) .
As a consequence, the polynomial-time estimator M̂iso achieves the optimal risk for all values

of n and d. For λ = 1, the optimal risk ρreco(n,d,1) is of the order of n1/3d + n. In particular,
our risk bound strictly improves over the one of Flammarion et al. [7] - e.g. their procedure
achieves the estimation error n

√
d for n ≥ d1/3. Their slower convergence rates are mainly due

to the fact that their estimator of the permutation π∗ is suboptimal in this regime.
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2.4. Polynomial-time reconstruction in the bi-isotonic model

We now turn our attention to the problem of estimating the matrix M when M satisfies the
additional assumption of being bi-isotonic up to unknown permutations π∗ and η∗ of its rows
and columns respectively. In other words, the matrix Mπ∗−1η∗−1 has non-decreasing entries. As
explained in the introduction, this model has attracted a lot of attention in the last decade
and encompasses the SST model for tournament problems.

To simplify the exposition, we focus in this section on the case n = d and λ ∈ [ 1
n
,1]. Since

the bi-isotonic model is a specific case of the isotonic model, we could rely on the estimator
M̂iso introduced in the previous subsection. In fact, we can improve this estimation rate by
relying on the bi-isotonicity of the matrix Mπ∗−1η∗−1 .

As previously, we choose the tuning parameters of Algorithm 1 in such a way that T = 4 ⌈γ6⌉
and γ̄6 ≤ C ′ logC

′(nd/δ). Then, we use the following procedure:

1. Subsample the data into 3 independent samples (y(1)t ), (y(2)t ), (y(3)t ).
2. Run our procedure Algorithm 1 to obtain an estimator π̂ of the permutation π∗ of the

rows, using the first sample.
3. Run again Algorithm 1 to obtain an estimator η̂ of the permutation η∗ of the columns,

using the second sample.

4. Compute the least-square estimator M̂biso = argminM̃∈Cbiso
∥M̃ − Y (3)

π̂−1η̂−1
∥22, where Cbiso

is the set of all bi-isotonic matrices with entries in [0,1] and Y
(3)
ik
= 1

λ ∑t y
(3)
t 1

x
(3)
t =(i,k)

.

The following corollary states that M̂biso achieves a reconstruction rate of order n7/6λ−5/6

in the bi-isotonic model.

Corollary 2.5. Assume that λ ∈ [1/n,8n2]. There exists a universal constant C ′′ such that

sup
π∗,η∗∈Πn

M ∶M
π∗−1η∗−1∈Cbiso

E [∥(M̂biso)π̂η̂ −M∥2F ] ≤ C ′′ logC′′(n)n7/6λ−5/6 .

Here, we have fixed n = d to simplify the exposition but we could extend the analysis to
general n and d. Our risk bound improves over the rate n5/4λ−3/4 of Mao et al. [10]. In [8],
Liu and Moitra have introduced a procedure achieving the rate n7/6 in the specific case where
λ = no(1). In some way, our procedure generalizes their results for general λ, while being
applicable to the more general isotonic models.

Still, we recall that the optimal risk (without computational constraints) for estimating the
matrix M is of the order n/λ – see e.g. [18, 10]. This remains an open problem to establish
the existence of a computational-statistical gap or to construct a polynomial-time procedure
achieving this risk on SST and bi-isotonic models.

3. Description of the ISR procedure

3.1. Weighted directed graph W and estimator π̂

Our approach involves the iterative construction of a weighted directed graph W, represented
by an antisymmetric matrix in R

n×n. More formally, for any experts i, j in [n], we have
W(i, j) = −W(j, i). In a nutshell, W(i, j) quantifies our evidence of the comparisons between
expert i and expert j. IfW(i, j) is large and positive (resp. negative), we are confident that the
expert i is above (below) the expert j. Most of the procedure is dedicated to the construction
of W. Before this, let us explain how we deduce our estimator π̂ from W.
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For a given weighted directed graph W, we define its corresponding directed graph at
threshold γ > 0 as

G(W, γ) = {(i, j) ∈ [n]2 ∶ W(i, j) > γ} . (13)

For any thresholds γ < γ′, it holds that G(W, γ) ⊂ G(W, γ′). In other words, the function
γ → G(W, γ) is nondecreasing. When γ ≥ maxi,j ∣W(i, j)∣, G(W, γ) = ∅ is the trivial graph
with no edges. Let γ̂ be the smallest threshold γ such that G(W, γ) is a directed acyclic
graph (DAG). By monotonicity, G(W, γ̂) is also the largest DAG among {G(W, γ), γ ≥ γ̂}.
We then build the estimator π̂ by picking any permutation that is consistent with the graph
Ĝ ∶= G(W, γ̂), that is if (i, j) ∈ Ĝ ∩ [n]2 then π̂(i) ≥ π̂(j). To put it another way, the general
idea of our procedure can be summarized into these three components:

1. Construct a weighted directed graph W between the experts.
2. Compute the largest directed acyclic graph Ĝ of W.
3. Take any arbitrary permutation π̂ that is consistent with Ĝ.

The construction of W is at the core of this paper, and the computation of Ĝ and π̂ will
be discussed in Section 3.7. Still, we already point out that the third point can be dealt in
polynomial time using Mirsky’s algorithm [12].

3.2. Construction of W with ISR

3.2.1. Description of the subsampling

Let us now describe the construction of the weighted directed graph W. Let T ≥ 1 be an
arbitrary integer, representing the number of steps of our procedure. In what follows, we explain
how we subsample the data from (2) into 5T independent matrices (Y (s))s=1...5T . Recall that
we are given N observations (xt, yt), where N follows a Poisson distribution P(λnd). Let us
divide the observations into 5T batches (N (s))s=0,...,5T−1, aggregated into matrices of averaged
observations Y (s). To that end, we let Su be i.i.d. uniform random variables in {0, . . . ,5T − 1}
representing a random batch for observation u and we define

N (s) = {u ∈ {1 . . . ,N} ∶ Su = s} and Y
(s)
ik
= ∑

t∈N(s)

yt

r
(s)
ik
∨1
1{xt = (i, k)} , (14)

where, for any (i, k) ∈ [n] × [d], r
(s)
ik
= ∑t∈N(s) 1{xt = (i, k)} is the number of times the

coefficient position (i, k) is observed in batch s. Y
(s)
ik

is equal to 0 if (i, k) is not observed in
batch s and it is equal to the average of the observations yt for which xt = (i, k) otherwise. We
also define the mask matrix B(s) as being equal to 0 at location (i, k) if the value is missing
from batch s, and to 1 otherwise.

B
(s)
ik
= 1{r(s)

ik
≥ 1} . (15)

Define λ0 = λ/5T . In our sampling scheme, where the data is divided into 5T samples, each

coefficient B
(s)
ik

has a probability of 1− e−λ0 of being equal to one. It is worth mentioning that
a different subsampling scheme was performed in [14], consisting in aggregating consecutive
columns. However, such a scheme is not applicable in our case as we do not assume the rows
of M to be nondecreasing, unlike in [14].

3.2.2. Neighborhoods in comparison graphs

At each step t = 0, . . . , T − 1 of the procedure, we aim to enrich our knowledge of the order
of the experts, which we formally do by nondecreasing the weights of W in absolute value.
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At T = 0, we start with the weights Wij all being equal to zero. A meaningful update of W
around a reference expert i can be done when we restrict ourselves to experts that are in a
neighborhood of i. Broadly speaking, a neighborhood of i is a set made of all the experts j
that are not comparable to i with respect to a given partial order.

More precisely, for any directed graph G and any experts i, j ∈ {1, . . . , n}, we say that i and
j are G-comparable if there is a path from i to j or from j to i in G. The neighborhood N (G, i)
of i in G can then naturally be defined as the set of experts j that are not G-comparable with
i. Equipped with the concept of neighborhood, our overall strategy involves iterating over all
possible thresholds γ ∈ Γ such that G(W, γ) is acyclic, as well as all possible experts i. At
each iteration, we apply the soft local ranking procedure Algorithm 2 described in the next
subsection. Algorithm 2 updates the weights between i and any expert j in the neighborhood
N (G(W, γ), i) of i. Our approach can be summarized as follows:

1. Subsample the data - see Section 3.2.1.
2. Initialize W to be the directed graph with all weights set to 0.
3. For all t = 0, . . . , T − 1 and γ ∈ Γ such that G(W, γ) is acyclic and all i ∈ [n], update W

with the soft local ranking procedure Algorithm 2.

Algorithm 1 ISR(T,Γ)
Require: N and observations (xt, yt)t=1,...,N according to (2), a number of steps T and a valid grid Γ as in

(10)
Ensure: A weighted graph W and an estimator π̂

1: Aggregate the observation into 5T matrices of observation (Y (s)) as in (14)
2: Initialize W(i, j) = 0 for all (i, j) ∈ [n]2, and γ̂ = 0

3: for t = 0, . . . , T − 1 do
4: for γ ∈ Γ ∩ [γ̂,+∞) do
5: Compute G = G(W, γ) the directed graph at threshold γ of W as in (13) and set P = N(G, i).
6: Take 5 samples Y = (Y (5t), . . . , Y (5t+4))
7: for i ∈ [n] do
8: Apply SLR(Y,W, γ, i,G, P ) to update W
9: end for

10: end for
11: Set γ̂ as the smallest γ such that G(W, γ) is acyclic
12: end for
13: Set Ĝ = G(W, γ̂) be the largest acyclic DAG (see (13))
14: Set π̂ to be any arbitrary permutation that is consistent with Ĝ
15: return W and π̂

The main Line 8 of Algorithm 1 aims to provide a soft ranking of the neighborhood P

of i by setting positive (resp. negative) weights Wij to experts j ∈ P that are significantly
below (resp. above) i. Line 11 together with restricting γ ≥ γ̂ simply guarantees that all the
considered graph G are acyclic. Finally, Lines 13 and 14 simply correspond to the construction
of the final permutation, described in the second and third points of Section 3.1.

3.3. Description of the updating procedure

3.3.1. Local weighted sums

Let us describe the process of updating a given weighted graph W, which will be used twice
at each call of the soft local ranking Algorithm 2. Let us fix a weighted graph W, an element
s ∈ {0, . . . ,5T − 1} and Y ∶= Y (s) the matrix defined in (14). We also let i ∈ [n] be an arbitrary
expert corresponding to Line 7 of Algorithm 1, and γ be any threshold in the grid Γ. We write
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P ∶= N (G(W, γ), i) ⊂ [n] for the neighborhood of i in G(W, γ), echoing the notation of the
sets that are trisected in [14].

Since the matrix M is, up to a row-permutation, a column-wise isotonic matrix, it follows
that, if the expert i is above j, then for any vector w ∈ Rd

+, we have ∑d
k=1wikMik ≥ ∑d

k=1wjkMjk.
As a consequence, the crux of the algorithm is to find suitable data-driven weights w that allow
to discriminate the experts. As explained in the introduction, earlier works focused on uniform
weights w = 1[d] [18] which, unfortunately leads to suboptimal results. Before discussing the
choice of the weights w in the following subsections, let us first formalize how we leverage on
w to compare the experts and update the graph W.

Given a subset Q ⊂ [d] of columns and a non-zero vector w ∈ RQ
+ , we first check whether

the following condition is satisfied:

λ0∥w∥22 ≥ ∥w∥2∞ , (16)

where we recall that λ0 = λ/5T . This condition is always verified when λ0 ≥ 1, and it is
equivalent to λ0∣Q∣ ≥ 1 when w = 1Q. Condition (16) ensures that w is not too sparse which
could be harmful when many observations are lacking (λ0 small).

If this condition is not satisfied, then we leave the weights of W unchanged. Otherwise, we
define the (Y,P,w)-updating weights U ∶= U(Y,P,w) around i as

Uij =
1√

1
λ0
∧ λ0 ⋅ ⟨Yi⋅ − Yj⋅,

w∥w∥2 ⟩ , (17)

where, for all w′ ∈ RQ and a ∈ Rd, we write ⟨a,w′⟩ = ∑k∈Q akw
′
k. We can then update the

weighted directed graph around i by setting, for all i ∈ P such that ∣Uij ∣ ≥ ∣Wij ∣,
Wij = Uij and Wji = −Uij . (18)

As explained above, if we replace Yi⋅ and Yj⋅ by Mi⋅ and Mj⋅ respectively in (17), then the
corresponding value of the statistic is non-negative if expert i is above j. Hence, a large value
for Uij provides evidence that i is above j.

Computing U(Y,P,w) for suitable directions w is the basic brick or our procedure, since it
is through the update (18) that we iteratively increase the weights of W. This update shares
some similarities to the pivoting algorithm introduced in [8] and also used in [14], in the sense
that while we are fixing an arbitrary reference expert i to compute pairwise comparisons, they
fix a set P and compute a pivot expert i0 that would correspond to a quantile of the set{⟨Yj⋅, w

∥w∥2 ⟩, j ∈ P} in the case λ0 = 1.

Note that the orientation of a given weighted edge (i, j) can change during the procedure
if it turns out that ∣Uij ∣ ≥ ∣Wij ∣ and that UijWij ≤ 0. This simply means that if the direction w
leads to a more significant weight between some experts i and j, then we are more confident
to use the vector w and to revise the order between i and j.

For Q ⊂ [d], choosing w = 1Q in (17) amounts to compute the average of the observations
over all questions in Q. We now explain in the main sections how we iteratively build adaptive
weights w that allow to improve over the naive global average given by w = 1[d].

3.3.2. Definitions of a rank in a DAG

We first introduce a few definitions on directed acyclic graphs G, which we formally define
as a set of directed edges (i, j) ∈ [n]2 for which there is no cycle. We denote path(i, j) ={(k1, . . . , kL) ∶ L > 0 and (i, k1), . . . , (kL, j) ∈ G} as the set of all possible paths from i to
j, and we write ∣s∣ for the length of any path s. We say that i and j are G-comparable if
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path(i, j) ∪ path(j, i) ≠ ∅, and we write N (i,G) for the set of all experts that are not G-
comparable with i. If i, j are G-comparable, it either holds that path(i, j) = ∅ or path(j, i) =∅. We say in the first case that i is G-below j and that i is G-above j in the second case. we
also define the relative rank from i according to G as the length of the longest path in G from
i to j, or minus the longest past from j to i depending on wether i is G-above or G-below j:

rkG,i(j) =max{∣s∣ ∶ s ∈ path(i, j)} −max{∣s∣ ∶ s ∈ path(j, i)} . (19)

Here, we use the convention max∅ = 0. With this definition, the neighborhood of a given expert
i is equal to the set of experts whose relative rank is equal to 0, that is N (G, i) = rk−1G,i(0).
Moreover, an expert j ∈ [n] is G-above (resp. G-below) i if and only if rkG,i(j) ≥ 1 (resp.
rkG,i(j) ≤ −1). Although G stands for a finite set of edges with endpoints in [n], we extend
it to a set of edges with endpoints in Z

2 by putting in G every (i, j) ∈ Z2 such that i > j and
j ≤ 0 or i ≥ n + 1.
3.3.3. Description of the soft local ranking algorithm

To update the weighted directed graph W in Line 8 of Algorithm 1, we apply the soft local
ranking procedure SLR to all experts i ∈ [n] and all thresholds γ. To define our soft local
ranking procedure, let us fix W, an expert i and a threshold γ such that G(W, γ) is acyclic.
As a shorthand, we write G and P respectively for the thresholded graph G(W, γ) and the
neighborhood N (G, i) of i in G.

We write D for the set of all dyadic numbers: D = {2k ∶ k ∈ Z} and we define the
set H = D ∩ [ 1

nd
,1]. We denote y(P ) as the mean of the vectors Yj⋅ over all j ∈ P , that is

yk(P ) = 1
∣P ∣ ∑j∈P Yjk, for any k ∈ [d]. SLR relies on the following steps repeated over all height

h ∈H. It is also described in Algorithm 2.

1. Dimension reduction. Using the first sample Y (1), we first reduce the dimension by
selecting a subset Q̂h ⊂ [d] corresponding to wide confidence regions. Recall that rkG,i is
the relative rank to i defined in (19). For any a > 0, define the sets Na ∶=Na(G, i) (resp.
N−a ∶= N−a(G, i)) of experts j which are G-above (resp. G-below) all the experts of P
and whose relative rank to any i′ ∈ P is at most a in absolute value:

Na = ⋂
i′∈P

rk−1G,i′([1, a]) and N−a = ⋂
i′∈P

rk−1G,i′([−1,−a]) . (20)

Secondly, we define for any question k ∈ [d] and a ≥ 1 the width statistic ∆̂k as the
difference between the mean of the experts in Na and the mean of the experts in N−a.
Then, âk is set to be the first value of a ≥ 1 such that any a′ ≥ a has a corresponding
width statistic of at least (λ0 ∧ 1)h:
∆̂k(a) = yk(Na)− yk(N−a) and âk(h) =max{a ≥ 1 ∶ 1

λ0 ∧ 1∆̂k(a) < h}+ 1 . (21)

Finally, we define Q̂h ∶= Q̂h(G, i) as the set of indices k such that âk(h) is relatively
small.

Q̂h = {k ∈ [d] ∶ ∣Nâk(h)∣ ∧ ∣N−âk(h)∣ ≤ 1

λ0h2
} . (22)

Intuitively, if the experts above and below i vary by more than h on a specific question
k, then this question should belong to Q̂h. Conversely, if the experts below and above i
are nearly equal on the question k, than âk(h) will be large and k will not be selected
in Q̂h.
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2. Average-based weighted sums. Still using the first sample Y (1), we examine the
corresponding submatrix Y (1)(P, Q̂) restricted to questions in Q̂. If the row sums of
Y are larger than the current edges, we update the weighted edges. More formally, we
compute the (Y (1), P,1

Q̂
)-updating weighted edges (U

Q̂
) around i as defined in (17) and

update W as in (18). We then also update G = G(W, γ) and P =N (G, i).
3. PCA-based weighted sums. Relying on the samples Y (2), Y (3), Y (4), Y (5), we do a

slight abuse of notation and write Y (s) for the restriction of Y (s) to the subset P, Q̂h

for s = 2,3,4,5. Ideally, we would get an informative direction w from the largest right

singular vector of E[Y (2) − Y (2)] ∈ RP×Q̂h

. Indeed, it is known (see the proofs for more
details) that the entries of the first right singular vector of an isotonic matrix all share
the same sign and are most informative to compare the experts. However, computing

directly the empirical right-singular vector of Y (2) − Y (2) does not lead to the desired
bounds because (i) this matrix is perhaps highly rectangular (ii) the noise is possibly
heteroskedastic and (iii) this matrix is perhaps sparse because of the many missing
observations when λ0 is small. Here, we use a workaround which is reminiscent of that
of [14] and discussed later. First, we compute v̂ as a proxy for the first left singular vector

of E[Y (2) − Y (2)].
v̂ ∶= v̂(P, Q̂h) = argmax

v∈RP ∶ ∥v∥2≤1
[∥vT (Y (2)−Y (2))∥22− 1

2
∥vT (Y (2)−Y (2)−Y (3)+Y (3))∥22] . (23)

The right-hand side term in (23) deals with the heteroskedasticity of the noise matrix E
in (3). v̂ in (23) can be computed efficiently since it corresponds to the leading eigenvector
of a symetric matrix. For technical reasons occurring in the sparse observation regime
(i.e. when λ0 is small), we then threshold the largest absolute values of the coefficients of
v̂ at

√
λ0 and define (v̂−)i = v̂i1{∣v̂i∣ ≤ √λ0}. After having calculated v̂−, we consider as

in [14] the image ẑ = v̂T− (Y (4) − Y (4)) ∈ RQ̂ of v̂−. We then threshold the smallest values

of ẑ and take the absolute values of the components. Thus, we get ŵ+ ∈ RQ̂ defined by(ŵ+)l = ∣ẑl∣1{∣ẑl ∣ ≥ γ√λ0 ∧ 1
λ0
} for any l ∈ Q̂.

Finally, we consider the last submatrix Y (5) = Y (5)(P, Q̂). We apply these weights ŵ+

to compute the row-wise weighted sums of Y (5) and update the weighted edges. More
formally, we compute the (Y (5), P, ŵ+)-updating weighted edges U(Y (5), P, ŵ) around i
as defined in (17). We finally update the weighted directed graphW with U(Y (5), P, ŵ+)
as in (18).

Algorithm 2 SLR((Y (s))s=1,...,5,W, γ, i,G, P )
Require: 6 samples (Y (s))s=1,...,5, a weighted directed graph W, a threshold γ such that G(W, γ) is acyclic

and an expert i ∈ [n]. G and P are shorthands for the thresholded graph G(W, γ) and the neighborhood
N(G, i).

Ensure: An update of W

1: for h ∈H do
2: Compute Q̂h ∶= Q̂(G, i) as in (22) using sample Y (1)

3: Let UQ̂h be the (Y (1), P,1Q̂h )-updating weighted edges around i as in (17), using again sample Y (1)

4: Update W with U(Q̂h) as in (18) and update G = G(W, γ), P = N(G, i)
5: Restrict the samples (Y (s))s=2,...,5 to P, Q̂h in the following remaining steps
6: Compute the PCA-like direction v̂ ∶= v̂(P, Q̂h) as in (23) and define (v̂−)i = v̂i1{∣v̂i ∣ ≤

√
λ0}

7: Compute ẑ = v̂T− (Y (4) − Y
(4)) and define ŵ+ by (ŵ+)l = ∣ẑl∣1{∣ẑl∣ ≥ γ

√
λ0 ∧ 1

λ0

} for any l ∈ Q̂h

8: Let U(Y (5), ŵ+) be the (Y (5), P, ŵ+)-updating weighted edges around i as in (17)
9: Update W with U(Y (5), ŵ+) as in (18)

10: end for
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3.4. Toy example illustrating Algorithm 2

To understand why the steps described in Algorithm 2 are relevant, assume that π∗ = id and
consider the following simple example where n = 204, d = 10, and where the isotonic matrix
Mπ∗−1 can be decomposed into three blocks of rows as

Mπ∗−1 = α + h
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 1 1 0 1 1

0 0 0 1 0 1 0 0 1 1

0 0 0 1 0 1 0 0 1 1

0 0 0 −1 0 −1 0 0 −1 −1
0 0 0 −1 0 −1 0 0 −1 −1
0 0 −1 −1 0 −1 −1 0 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In the above matrix, α is any number in (h,1 − h), and 0,1 are the columns in R
100 whose

coefficients are respectively all equal to 0 and 1. Assume that the statistician already knows
that the first and the third blocks are made of experts that are respectively above and below the
second block. If W, P, γ are the parameters fixed in Algorithm 2, the three blocks correspond
respectively to the subsets N1 ∪N2, P and N−1 ∪N−2 in our example. Provided that N−2 and
N2 are large enough, the set Q̂h only keeps columns corresponding to indices k where ∆̂k(1)
is large – those are highlighted in blue.

Then, we can work on the reduced subset Q̂h of columns highlighted in blue. As one may
check, Q̂h contains all the relevant columns to decipher the experts in the block P . Besides,
the expected matrix of observations restricted to the block P and to Q̂h is of rank one:

E[Y − Y ] = h
2

⎛⎜⎜⎜⎝
0 1 1 0 1 1

0 1 1 0 1 1

0 −1 −1 0 −1 −1
0 −1 −1 0 −1 −1

⎞⎟⎟⎟⎠ .

In particular, the right singular vector of this matrix is of the form (0,1,1,0,1, 1) and provides
suitable weights to decipher the two largest experts from the two lowest experts in the above
matrix. The PCA-based weighted sums steps above precisely aims at estimating these weights.

3.5. Comments on the procedure and relation to the literature

Finding confidence regions Q̂ before computing weighted sums on the corresponding columns
is at the core of our procedure. This idea generalizes the RankScore procedure of [7] which
rather computes averages on the subsets [d] or on the singletons {1}, . . . ,{d}. As mentioned
in the introduction, only using the subsets of the RankScore method in [7] does not allow to
reach the optimal rate for permutation estimation or matrix reconstruction.

In Algorithm 2, the computation of subsets Q̂h is reminiscent of some aspects of the non
oblivious trisection procedure used in [14] for the bi-isotonic model. In fact, the statistic ∆̂k

corresponds to the statistic ∆̂
(ext)
k,1 in [14]. Apart from that, the selection of subsets of questions

was quite different in [14] as it mostly involved change-point detection ideas as introduced in [8].
However, those ideas are irrelevant in our setting because the rows do not exhibit any specific
structure in the isotonic model.

The high-level sorting method in [14] is based on a hierarchical sorting tree with memory.
In contrast, our new algorithm is based on an iterative refinement of a weighted comparison
graph. This new algorithm is more natural and benefits from the fact that it is almost free
of any tuning parameter. Indeed, at the end of Algorithm 1, we simply use the threshold
γ̂ corresponding to the largest acyclic Ĝ graph in W. No significant threshold needs to be
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chosen, since any permutation that is consistent with Ĝ is also necessarily consistent with W
thresholded at values larger than γ̂.

The spectral step in [14] is quite similar to the third step of our procedure described in sec-
tion 3.3.3, except for the first thresholding of v̂ to obtain v̂−. In [14], this workaround was not
needed mainly because in the bi-isotonic model, it is possible to aggregate sparse observations
by merging consecutive columns – see [14] for further details. This is however not possible
here.

As mentioned in the introduction, Liu and Moitra [8] obtain an upper bound of the per-
mutation loss of the order of n7/6 for the estimation of two unknown permutations in the case
where M ∈ Rn×n is bi-isotonic. Broadly speaking, their method involves iterating a clustering
method called block-sorting over groups of rows or columns that are close with each other.
Using this sorting method based on block-sorting, their whole approach alternates between
row sorting and column sorting for a subpolynomial number of time. Besides, their procedure
makes heavily use of bi-isotonicity of the matrix. It turns out that Algorithm 2 reaches the
same rate in this bi-isotonic model by running only once on the rows, and once on the columns,
as described in Section 2.4. Otherwise said, if the problem is to estimate only π∗ in the bi-
isotonic model, we proved that only the isotonicity of the columns is necessary to achieve the
state-of-the-art polynomial-time upper bound of order n7/6.

3.6. Examples of valid grids Γ

Remark that the simple set {(u+1)⋅φL1
, u ∈ {0, . . . ,2 ⌊log2(n)⌋+2}} is a valid grid of logarithmic

size with γ̄ ≤ (2 log2(n) + 3)φL1
. This set is the smallest valid grid achieving the smallest

possible value of γ̄. However, it depends on the quantity φL1
which is perhaps a bit pessimistic

in practice.
An other choice can be to take R

+ itself, albeit infinite. Indeed, the set {G(W, γ), γ ≥
0} is made of at most n2 possible directed graphs for any W during the whole procedure.
Choosing R

+ is convenient since it does not depend on the constants in φL1
that are likely

to be overestimated. The drawback of choosing R
+ though is that the number of tested γ in

Algorithm 2 becomes quadratic in n.
Finally, a good compromise is to take the set {(1 + 1

log2(n))u′ , u′ ∈ Z}. It is easy to check

that it contains a sequence satisfying (10) whose length is at least 2 ⌊log2(n)⌋ + 3 and whose
maximum γ̄ is a polylogarithmic function in nd/δ.
3.7. Discussion on the computation of Ĝ and π̂

Once we have suitable weighted graph W, it remains to construct the permutation π̂, as in
the second and third point of Section 3.1.

For the second point, checking that a given directed graph is acyclic can be done through
depth first search with a computational complexity less than n, so that computing γ̂ can be
done with less than ∣Γ∣n operations. As discussed in Section 3.3, it is possible to choose Γ to
be of size of order less than log(n). If Γ is bounded and is such that any different thresholds
γ, γ′ in Γ satisfy ∣γ − γ′∣ ≥ η for some η > 0, the computation of γ̂ can always be done with
complexity of order less than n log(max(Γ)/η).

Regarding the third point, a permutation π̂ can be computed in polynomial time from the
directed acyclic graph Ĝ using Mirsky’s algorithm [12] – see also [13]. It simply consists in
finding the minimal experts i in Ĝ, removing them and repeat this process. This construction
is in fact equivalent to ranking the experts according to the index rk

Ĝ,0
as defined in (19).
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4. Concentration inequality for rectangular matrices

In this section, we state a concentration inequality for rectangular random matrices with inde-
pendent entries satisfying a Bernstein-type condition. This section can be read independently
of the rest of the paper. Let p and q be two positive integers and X ∈ Rp×q be a random matrix
with independent and mean zero coefficients. Assume that there exists σ > 0 and K ≥ 1 such
that for any i = 1, . . . , p and k = 1, . . . , q,

∀u ≥ 1, E[(Xik)2u] ≤ 1

2
u!σ2K2(u−1) . (24)

This Bernstein-type condition (24) is exactly the same as Assumption 1 in [2] – see [2] for
a discussion. Let Λ ∈ Rp×p be any orthogonal projection matrix, i.e. Λ = ΛT and Λ2 = Λ. We
write rΛ for the rank of Λ.

Proposition 4.1. There exists a positive numerical constant κ such that the following holds
for any δ > 0.

∥Λ(XXT −E[XXT ])Λ∥op ≤ κ [√(σ4pq + σ2q) log(p/δ) + (σ2rΛ +K2 log(q)) log(p/δ)] . (25)

For the sake of the discussion, consider the particular case where Xik = BikEik, with Bik and
Eik being respectively independent Bernoulli random variable of parameter σ2 and centered
Gaussian random variable with variance 1. By a simple computation done e.g. in (77), Xik

satisfies condition (24) with K being of the order of a constant. Hence, if K2 log(q) ≤ σ2p,
applying Proposition 4.1 with the identity matrix Λ gives

∥XXT − E[XXT ]∥op ≤ 2κσ2 [√pq log(p/δ) + p log(p/δ)] , (26)

with probability at least 1 − δ.
Up to our knowledge, the inequality (26) is tighter than state-of-the-art result random

rectangular sparse matrices in the regime where q ≫ p and σ2 ≪ 1. In fact, most of the
results in the literature concerning random matrices state concentration inequalities for the
non centered operator norm ∥XXT ∥op – see the survey of Tropp [21].

More specifically, Bandeira and Van Handel [1] provide tight non-asymptotic bounds for the
spectral norm of a square symmetric random matrices with independent Gaussian entries, and
derive tail bounds for the operator norm of XXT . For instance, Corollary 3.11 in [1], implies
that, for some numerical constant c, E[∥XXT ∥2op] ≤ c(σ2(p ∨ q) + log(p ∨ q)). Together with

a triangular inequality, Bandeira and Van Handel imply ∥XXT − E[XXT ]∥2op ≤ cσ2((p ∨ q) +
log(p∨q

δ
)) with probability higher than 1 − δ.

While the order of magnitude σ2(p∨ q) is tight for controlling the operator norm ∥XXT ∥2op
of the non-centered Gram matrix with high probability, (26) implies that the right bound for∥XXT − E[XXT ]∥2op is rather σ2

√
pq which is significantly smaller in the regime p ≪ q and

σ2 ≪ 1.
In the proof of Theorem 2.2, we could have used those previous results for controlling the

matrices of the form ∥XXT −E[XXT ]∥2op. However, we would have then achieved a suboptimal
risk upper bound. Indeed, Proposition 4.1 plays critical role in the proof of Theorem 2.2, when
we need to handle matrices with partial observations that are possibly highly rectangular in
the spectal step of the procedure (23).

The proof of Proposition 4.1 relies on the observation that the matrix XXT − E[XXT ] is
the sum of q centered rank 1 random matrices. This allows us to apply Matrix Bernstein-type
concentration inequalities for controlling the operator norm of this sum – see [21] or Section 6
of [23].
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Appendix A: Proof of Theorem 2.2

A.1. Notation and signal-noise decomposition

We first introduce some notation, and in particular the noise matrices on which we will apply
concentration inequalities. In what follows, we define for any matrix A ∈ Rn×d, and any vector
w ∈ Rd:

⟨Ai⋅,w⟩ = d∑
k=1

Aikwk . (27)

If w belongs to R
Q where Q is some subset of [d], we also write < Ai⋅,w >= ∑d

k∈QAikwk.

The same notation stands for the scalar product on matrices, namely ⟨A,A′⟩ = Tr(ATA′) if
A′ ∈ Rn×d. If A and A′ are two matrices in R

n×d, then we write the coordinate-wise product(A ⊙ A′)ik = AikA
′
ik. In what follows, we assume that π∗ = id. We make this assumption

without loss of generality since we can reindex each expert i with i′ = π∗−1(i). Recalling that
B is defined in (15) we define

λ1 ∶= P(B(s)ik
= 1) = 1 − e−λ0 . (28)

If λ0 ≤ 1, we have λ0 ≥ λ1 ≥ (1 − 1
e
)λ0. We assume in what follows that λ0 ≤ 1, which

corresponds to the case where there are potentially many unobserved coefficients. The case
λ0 ≥ 1 will be treated in Appendix F. For an observation matrix Y (s) defined in (14), we make
the difference between E[Y (s)] = λ1M , which is the unconditional expectation of Y (s), and
E[Y (s)∣B(s)] = B(s) ⊙M , which is the expectation of Y (s) conditionally to the matrix B. We
write the noise matrix

E(s) = Y (s) − λ1M and Ẽ(s) = Y (s) −B(s) ⊙M . (29)

Recall that εt = yt −Mxt is the subGaussian noise part in model (2), and that Ns is defined

in (14). Each coefficient Ẽ
(s)
ik

can be rewritten as the average of the noise εt. that are present

in N (s) and that correspond to coefficient xt = (i, k).
Ẽ
(s)
ik
= ∑

t∈N(s)

εt

r
(s)
ik
∨1
1{xt = (i, k)} . (30)

From now on, we often omit the dependence in s. We will extensively use the decomposition
Y = λ1M +E, where λ1 is defined in (28) and E in (29). Recalling that Bik = 1{rik ≥ 1}, we
often rewrite E as the sum of two centered random variables:

Eik = (Bik − λ1)M +BikẼik .

Handling the concentration of the noise is more challenging in the case λ0 ≤ 1 than in the full
observation regime λ0 ≥ 1 discussed in Appendix F. Indeed, while subGaussian concentration
inequalities are effective in the full observation regime λ0 ≥ 1, they lead to slower estimation
rate in the case λ0 ≤ 1, for instance in Lemma A.1. Indeed, it turns out that the variance of a
coefficient εik is of order λ0 ≤ 1, while the hoeffding inequality only implies that Bik −λ1, and
in particular εik are c-subGaussian for some numerical constant c. To overcome this issue, one
of the main ideas is to use Bernstein-type bounds on the coefficients of E and on the random
matrix EET − E[EET ]- see Lemma B.1 and Proposition 4.1.
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A.2. General property on W

Recall that we assume that λ0 ≤ 1, so that 1
λ0
∧λ0 = λ0 in (18), and that φL1

is defined in (9) by

φL1
∶= 104 log(102nd/δ). In the following, we let ξ be the event on which the noise concentrates

well for all the pairs (Q,w) considered during the whole procedure. More precisely, we say
that we are under event ξ, if for any s = 0, . . . ,5T − 1 and for any pair (Q,w) that is used to
compute a refinement as in (17) we have

∣⟨E(s)i⋅ −E(s)j⋅ ,w⟩∣ ≤ 1
3
φL1

√
λ0 for any (i, j) ∈ [n]2 . (31)

Lemma A.1. The event ξ holds true with probability at least 1 − 2Tδ.
The idea of Lemma A.1 is to apply a bernstein-type inequality and a union bound on all the

possible dot products ⟨E(s)i⋅ ,w⟩, for all the 5T possible s and the at most 2T possible w. The
upper bound is of the order of the square of the variance of Eik up to the polylogarithm factor

φL1
. The crucial point is that if ⟨E(s)i⋅ ,w⟩ is not λ0-subGaussian, it satisfies the Bernstein’s

Condition [ 2.15 of [11]] with variance ν = λ0 and scaling factor b = ∥w∥∞. We then obtain
an upper bound of order

√
λ0 since any w considered in the update step (18) must satisfy

(16).Recall that γ̄ is defined in (11). We fix in what follows a sequence γ = γ0 > γ1 > γ2 > ⋅ ⋅ ⋅ >
γ⌊2 log2(n)⌋ = γmin in Γ satisfying property (10). We say that u is the level of the corresponding
threshold γu. We say W and (γu) satisfies the property C(W, (γu)) if the following holds

1. consistency: For any (i, j) ∈ G(W, γmin) it holds that π∗(i) > π∗(j).
2. weak-transitivity: Fix any u ∈ {0, . . . , ⌊2 log2(n)⌋ − 1}. For any experts i, j, k, if i is
G(W, γu)-above j and k ∈ N (G(W, γu+1), j), then any i′ ≥ i is also G(W, γmin)-above k.

The first point of the above property means that at threshold γmin, there is no mistake in
the directed graph G(W, γmin), meaning that if there is an edge from i to j in G(W, γmin), then
i is truly above j. Moreover, we only state the consistency property of the graph G(W, γmin),
but this property also implies that, for any more conservative threshold γ ≥ γmin, any (i, j) ∈
G(W, γ) satisfies π∗(i) > π∗(j). This is due to the fact that G(W, γ) ⊂ G(W, γmin). The
weak transitivity property states in particular that if there is a path from i to j in the more
conservative graph G(W, γu), then there is a path from i to any k in the neighborhood of j
at the less conservative threshold γmin. The following lemma states that the above property
remains true for the weighted graph W ′, after any update (18) of the whole procedure.

Lemma A.2. Under ξ, the property C(W ′, (γu)) holds true for any directed weighted graph
W ′ obtained at any stage of Algorithm 1 and Algorithm 2.

We denote in the following Wt for the directed weighted graph at the begining of step t.
For any u ∈ [0, ⌊2 log2(n)⌋], we also write as a short hand Gt,u = G(Wt, γu) for the directed
graph at begining of step t and level u and Pt,u(i) = N (Gt,u, i) for the set of experts that
are not comparable with i according to Gt,u. For any sequence of experts I, we write Pt,u(I)
for the sequence of subsets (Pt,u(i))i∈I . Let us now divide the T steps of the algorithm into
τmax = ⌊log2(n)⌋ + 1 epochs of K = ⌊T /τmax⌋ steps. For any τ ∈ [0, τmax], we also write GKτ,u =

GτK,u, P
K
τ,u(i) = PτK,u(i) and PK

τ,u(I) = PK
τ,u(I). Now we consider for each epoch τ a sequence

of experts I(τ) = (i1(τ), . . . , iLτ (τ)) defined by induction:

• I(0) is the empty sequence
• For τ ≥ 0, let (i1, . . . , iL) be the sequence ordered according to π∗ and corresponding to

the union of the already constructed sequences ⋃τ ′≤τ I(τ ′) , and i = 0, iL+1 = n + 1. For
any l ∈ [0,L], let Al be the set of experts that are GKτ+1,2τ+1-below il+1 but GKτ+1,2τ+1-
above il. For all l such that Al is not empty, we define i′l as the expert of Al which is
any expert closest to the median ⌊(il + il+1)/2⌋, and the new sequence I(τ + 1) ∶= (i′l).
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By definition, remark that I(1) is equal to (⌊(n + 1)/2⌋). The induction step aims at building
a sequence I(τ + 1) that is disjoint from ∪τ ′≤τI(τ ′), and that cuts each set Al of experts that
are above il and below il+1 according to the graph at epoch τ + 1 and level 2τ + 1. Given the
already constructed collections of perfectly ordered experts I(τ ′) for τ ′ ≤ τ , the idea of I(τ +1)
is that it tends to fill the gaps between the neighborhoods in Gτ+1,2τ+1 of any two successive
experts in ∪τ ′≤τI(τ ′).

By monotonicity, it holds that for any expert i, epoch τ and level u that PK
τ+1,u+1(i) ⊂

PK
τ+1,u(i) ⊂ PK

τ,u(i). We say that the sets PK
τ,2τ(i) and PK

τ,2τ+1(i) are the neighborhoods of i at

the beginning of epoch τ and that the sets PK
τ+1,2τ (i), PK

τ+1,2τ+1(i) are the neighborhood of i
at the end of epoch τ . The neighborhoods at the end of a given epoch τ are obtained from the
neighborhoods at the beginning the of epoch τ after K steps of the Algorithm 1. On the other
hand, we say that the sets PK

τ,2τ , P
K
τ+1,2τ are the conservative subsets at epoch τ , since they

correspond to a more conservative directed graph with threshold γ2τ ≥ γ2τ+1. The following
lemma states that, at any epoch τ , the conservative subsets at the beginning of epoch τ are
well separated according to the true order π∗ = id:

Lemma A.3. Under event ξ, for any τ ∈ [0, τmax], letting (i1, . . . , iL) = I(τ), we have

PK
τ,2τ (i1) < ⋅ ⋅ ⋅ < PK

τ,2τ(iL).
In other words, Lemma A.3 implies that, for any l < l′, any expert in PK

τ,2τ (il) is π∗-below

any expert in PK
τ,2τ (il′). As a consequence, it holds that for any l ∈ [1,Lτ − 2],

PK
τ,2τ (il) GKτ,2τ≺ PK

τ,2τ (il+2) . (32)

Namely, any expert in PK
τ,2τ (il) is GKτ,2τ -below any expert in PK

τ,2τ (il+2). Indeed, Lemma A.3

and first point of event ξ imply that any expert j in PK
τ,2τ (il) is GKτ,2τ -below il+1, since j cannot

be in PK
τ,2τ (il). On the other hand, il+1 is itself GKτ,2τ -below any expert of PK

τ,2τ(il+2) for the
same reason. The following lemma states that the ending less conservative subsets are covering
the set of all experts.

Lemma A.4. Under event ξ, it holds that

[n] = τmax−1⋃
τ=0

⋃
i∈I(τ)

PK
τ+1,2τ+1(i) .

Let π̂ be the estimator obtained from the final weighted directed graph W at the end of the
procedure, that is any permutation on [n] that is consistent with the largest acyclic graph of
the form G(W, γ) for all γ > 0. For any sequence of subsets P = (P1, . . . , PL) we define

SN(P) = ∑
P ∈P

∥M(P ) −M(P )∥2F . (33)

The following proposition that we can control the L2 error of π̂ by the maximum over all epoch
τ of the sum over τ of the square norms of the groups in PK

τ+1,2τ+1.

Proposition A.5. Under event ξ, it holds that

∥Mπ̂−1 −M∥2F ≤ 4 τmax−1∑
τ=0

SN(PK
τ+1,2(τ+1)) . (34)
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Recall that γ̄ is defined in (11), and that Γ can be taken to be a valid grid with γ̄ smaller
than a polylogarithm in n,d, δ. The final proposition states that at any level u and any step
t, any sequence of subset that can be ordered according to the already constructed graph Gt,u
as in (32) will either have a square norm smaller than the minimax rate ρperm, defined in (6)
or almost exponentially decrease its square norm with high probability.

Proposition A.6. Fix any u ∈ [0,2τmax] and step t < T , and assume that I = (i1, . . . , iL) is a

sequence of experts that satisfies Pt,u(i1) Gt,u≺ . . .
Gt,u
≺ Pt,u(iL). Then on the intersection of the

event ξ (defined in (31)) and an event of probability higher than 1 − 5δ, it holds that

SN(Pt+1,u(I)) ≤ [Cγ̄6ρperm(n,d,λ0)] ∨ [(1 − 1

4γ̄2
)SN(Pt,u(I))] ,

for some numerical constant C.

Let us fix τ ∈ {0, . . . , τmax − 1}. Applying Proposition A.6 for each t = Kτ, . . . ,Kτ +K − 1
and u = 2(τ + 1) -the hypothesis of Proposition A.6 being satisfied by (32), we obtain with
probability 1 − 5(K + T )δ that

SN(Pτ+1,2(τ+1)) ≤ [Cγ̄6ρperm(n,d,λ0)] ∨ e− T

4τmaxγ̄4 nd

≤ CT γ̄6ρperm(n,d,λ) ,
if T is larger than 4γ̄6 ≥ 4 log2(nd)γ̄4. We conclude the proof of Theorem 2.2 with Proposi-

tion A.5, using that 4τmax ≤ γ̄:

∥Mπ̂−1 −M∥2F ≤ 4 τmax−1∑
τ=0

SN(PK
τ+1,2(τ+1)) ≤ CT γ̄7ρperm(n,d,λ) .

Appendix B: Proofs of the lemmas of Appendix A and of Proposition A.5

B.1. Proof of Proposition A.5

Let π̂ be any arbitrary permutation that is consistent with the largest DAG G(W, γ̄), as
defined in Section 3.1. Recall that we assume in this proof that π∗ = id. By Lemma A.4, for
any i ∈ [n] there exists τ ∈ [0, τmax − 1] and i0 ∈ I(τ) such that i ∈ PK

τ+1,2τ+1(i0).
Let us define the interval [a, b] as the maximal interval containing i0 and that is included

in the more conservative set PK
τ+1,2τ . Now, if j > b, then by definition there exists j′ such that

j ≥ j′ > b and j′ /∈ PK
τ+1,2τ . Summarizing the properties, we have j ≥ j′

Gτ+1,2τ
≻ i0, and that i is in

the neighborhood of i0 in the graph Gτ+1,2τ+1. Hence, applying the weak-transitivity property
(first in C), holding true on event ξ - see Lemma A.2, we obtain that j is G(WK(τ+1), γmin)-
above i. By the consistency property (second point in C), j is also necessarily G(W, γmin)-above
i, and this proves that all the n− b experts j satisfying j > b are G(W, γmin) above i. Hence it
holds that π̂(i) ≤ b. By symmetry, we also prove that π̂(i) ≥ a, so that

π̂(i) ∈ [a, b] ⊂ PK
τ+1,2τ (i0). (35)

Finally, we have
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∥Mπ̂−1 −M∥2F = n∑
i=1

∥Mπ̂(i)⋅ −Mi⋅∥2F
≤

τmax∑
τ=0

∑
i0∈I(τ)

∑
i∈PK

τ+1,2τ+1(i0)
∥Mπ̂(i)⋅ −Mi⋅∥2

≤ 2
τmax∑
τ=0

∑
i0∈I(τ)

∑
i∈PK

τ+1,2τ+1(i0)
∥Mi⋅ −m(PK

τ+1,2τ (i0))∥2 + ∥Mπ̂(i)⋅ −m(PK
τ+1,2τ (i0))∥2

≤ 4
τmax∑
τ=0

∑
i0∈I(τ)

∑
i∈PK

τ+1,2τ (i0)
∥Mi⋅ −m(PK

τ+1,2τ (i0))∥2 ,

where we used Lemma A.4 for the first inequality and (35) for the last inequality.

B.2. Proof of the lemmas of Appendix A

We postpone the proof of Lemma A.1 to the next subsection.

Proof of Lemma A.2. Recall that we consider the case λ0 ≤ 1, so that λ0 ∧ 1/λ0 = λ0 in (18).
Consider any substep of the whole procedure where the current directed weighted graph is

W ′. For the first point, remark that i is G(W ′, γmin)-above j only if there exists a previous
substep during which we find out that ⟨Yi⋅ − Yj⋅,w⟩ ≥ γmin on some direction w ∈ RQ, where Y
is the sample used to refine the edges (17). Since γmin > φL1

, then decomposing Y = λ1M +E
as in (29), we have

λ1⟨Mi⋅ −Mj⋅,w⟩ ≥ ⟨Yi⋅ − Yj⋅,w⟩ − ⟨Ei⋅ −Ej⋅,w⟩ > 0 , (36)

where the last inequality comes from (31), using the notation (27). Since the coefficients
of w are nonegative, we have proven that i is above j. For the second point, assume that
i is G(W, γu)-above j, and take i′ ≥ i. As before, there exists a direction w used during the
procedure such that ⟨Yi⋅−Yj⋅,w⟩ ≥ γu. Now consider any k ∈ N (G(W, γu+1), j). On the direction
w, we have under the event ξ defined in (31) that

⟨Yi′⋅ − Yk⋅,w⟩ ≥ λ1⟨Mi′ ⋅ −Mk⋅,w⟩ − 1
3
φL1

√
λ0

≥ λ1⟨Mi⋅ −Mk⋅,w⟩ − 1
3
φL1

√
λ0

≥ ⟨Yi⋅ − Yj⋅,w⟩ − ⟨Yk⋅ − Yj⋅,w⟩ − φL1

√
λ0

≥ (γu − γu+1 − φL1
)√λ0 ≥ γmin

√
λ0 ,

where the last inequality comes from the assumption (10). We conclude that i′ is G(W ′, γmin)-
above k.

Proof of Lemma A.3. We proceed by induction over τ ≥ 0. The lemma is trivial for τ = 0,1

since I(0) is empty and I(1) = (⌊(n + 1)/2⌋). Let τ ≥ 1 and i1, i2, i3 be three experts in
I(τ) ∪ {0, n + 1} such that i1 < i2 < i3. Let A be the set of experts that are GKτ+1,2τ+1-above i1
and GKτ+1,2τ+1-below i2, and A′ be the set of experts that are GKτ+1,2τ+1-above i2 and GKτ+1,2τ+1-
below i3. Assume that both sets A and A′ are nonempty, and let j ∈ A and j′ ∈ A′. Let us apply
the weak-transitivity of W, (γu) in Property C - which holds true under ξ from Lemma A.2 -
with u = 2τ+1. Since j is GKτ+1,2τ+1-below i2, any k ∈ PK

τ+1,2(τ+1)(j) is π∗-below i2. We also prove

that any k′ ∈ PK
τ+1,2(τ+1)(j′) is π∗-above i2. We conclude that PK

τ+1,2(τ+1)(j) < PK
τ+1,2(τ+1)(j′),

and the proof of the lemma follows.



Pilliat et al./Optimal ranking 23

Proof of Lemma A.4. We prove that, by construction, any expert i ∈ [n] is at distance less than(n + 1)/2τ+1 of ⋃τ
τ ′=0⋃i∈I(τ) P

K
τ+1,2τ+1(i) ∪ {0, n + 1}. This is obvious for τ = 0 since any expert

is at distance less than (n + 1)/2 of 0 or n + 1. Let (i1, . . . , iL) = ⋃τ ′≤τ I(τ ′) be the collection
of experts in the union of all possible I(τ ′) that is ordered according to π∗. If j is any expert
in [n], then we let l ∈ [0,L] be such that il ≤ j ≤ il+1. We can assume that j /∈ PK

τ+1,2τ+1(il)
and j /∈ PK

τ+1,2τ+1(il+1) because otherwise the distance of j to ⋃τ
τ ′=0⋃L

i∈I(τ) P
K
τ+1,2τ+1(i) is 0.

Using property C holding true from Lemma A.2, it holds that the set A of experts that are
GKτ+1,2τ+1-above il but GKτ+1,2τ+1-below il+1 contains j and therefore is nonempty. Now, let
m = ⌊(il + il+1)/2⌋ and i′ be any expert closest to m in A, as defined in the construction of
I(τ + 1), and assume without loss of generality that m ≤ i′. We consider the following cases:

• m ≤ i′ ≤ j: In that case, j is at distance less than (il+1 −m)/2 of i′ or il+1.
• m ≤ j < i′: This case is not possible since i′ is the closest expert to m in A.
• j < m < i′: In that case, since i′ minimizes the distance to m, we necessarily have that
m ∈ PK

τ+1,2τ+1(il) ∪PK
τ+1,2τ+1(il+1). Hence j is at distance less than (m − il)/2 of m or il.

We have proved that the distance of any j to ⋃τ+1
τ ′=0⋃L

i∈I(τ) P
K
τ+1,2τ+1(i) ∪ {0, n + 1} is at most(m− il)/2 or (il+1 −m)/2. Using the induction hypothese, we have that m− il and il+1 −m are

both less than n/2τ+1, which concludes the induction.
Finally, applying this property with τmax − 1 = ⌊log2(n)⌋ gives a distance strictly smaller

than 1, which proves the result.

B.3. Proof of Lemma A.1

Let us start with the following lemma, which gives a concentration bound when λ0 ≤ 1:

Lemma B.1. For any δ′ > 0 and for any matrix W ∈ Rn×d, the following inequality holds with
probability at least 1 − δ′:

∣⟨E,W ⟩∣ ≤
√

4e2∥W ∥2Fλ0 log ( 2δ′ ) + ∥W ∥∞ log ( 2
δ′
) . (37)

Now we apply Lemma B.1 with the matrix W with 0 coefficients except at line i where it
is equal to the vector w

∥w∥2 as defined in (17) and we deduce that

∣⟨Ei,⋅,
w∥w∥2 ⟩∣ ≤

√
4e2λ0 log ( 2

δ′
) + ∥w∥∞∥w∥2 log ( 2

δ′
) ≤ 11√λ0 log(2/δ′) , (38)

where the last inequality comes from Condition (16) on w. Now choosing δ′ = δ/(4Tn6), a
union bound over the at most 2n2T ∣H∣(∣Γ∣∧n2) pairs (Q,w) considered during the procedure,
we deduce the bound of Lemma A.1 for all λ0 ≤ 1.

Proof of Lemma B.1. Recall that E, Ẽ are defined in (29) and that we have in particular

Eik = (Bik − λ1)Mik + Ẽik .

Let x > 0. By Cauchy-Schwarz inequality, we have

E[exEik] ≤√E[e2x(Bik−λ1)Mik]√E[e2xẼik] ,
where we recall that λ1 = 1 − e−λ0 ≤ λ0. We have

E[e2x(Bik−λ1)Mik] ≤ e−2λ1xMik(λ1(e2xMik − 1) + 1) ≤ eλ1e
2x2

,
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and

E[e2xẼik] ≤ λ1(e2x2 − 1) + 1 ≤ eλ1e
2x2

,

where we used the inequalities e2x
2 − 1 ≤ e2x2 and e2x − 1 − 2x ≤ e2x2 for any x ∈ [−1,1].

In particular, if t > 0, a Chernoff bound with x = t
2∥W ∥2

F
λ0e2
∧ 1 gives

P(⟨W,E⟩ ≥ t) ≤ exp(−( t2

4∥W ∥2
F
λ0e2
∧ t)) ,

so that with probability at least 1 − δ′:
∣⟨W,E⟩∣ ≤

√
4e2∥W ∥2

F
λ0 log ( 2

δ′
) + log ( 2

δ′
) .

Appendix C: Proof of Proposition A.6

Step 0 : general definitions

In this proof, we fix u ∈ {0, . . . ,2 ⌊log2(n)⌋ + 2} and a corresponding threshold γu in the
sequence in Γ satisfying γu ≥ φL1

- see (10) - and a step t < T . We assume that I = (i1, . . . , iL)
is a fixed sequence of experts that satisfies Pt,u(i1) Gt,u≺ . . .

Gt,u
≺ Pt,u(iL).

From now on, we ease the notation by omitting the dependence in t, u, γu and we write
G = Gt,u, G′ = Gt+1,u, P = (P1, . . . , PL) for Pt,u and P ′ for Pt+1,u. We denote G̃h for the
directed graph at threshold γu of the directed weighted graph W̃h obtained at the end the
first update Line 3 of Algorithm 2. We also write P̃ h

l = N (G̃h, il) and P̃h = (P̃ h
1 , . . . , P̃

h
L) for

the corresponding sequence of subsets at height h ∈H. By monotonicity, it holds for any h ∈H
that

P ′l ⊂ P̃
h
l ⊂ Pl .

C.1. Step 1: Analysis of the selected set Q̂

Recall the definition of the neighborhoods (20) of the set Pl in the graph G:

Na(l) = ⋂
i∈Pl

rk−1G,il([1, a]) and N−a(l) = ⋂
i∈Pl

rk−1G,il([−1,−a]) ,
Define for κ > 0 and l ∈ [1,L] the population version ∆∗k of the width statistic ∆̂k - see (21) -
as the the difference of the best and worst expert of P (il) if a = 0 and as the difference of the
average of the experts in Na(l) and the average of the expert in N−a(l):
∆∗k(0, l) = max

i,j∈P (il)
∣Mi,k −Mj,k∣ and ∆∗k(a, l) =mk(Na(l)) −mk(N−a(l)) if a ≥ 1. (39)

We also define a∗(h, l) as the minimum a ≥ 1 such that there are at least 1
λ0h2 experts in

Na(l) and in N−a(l):
a∗(h, l) =min{a ≥ 1 ∶ ∣Na(l)∣ ∧ ∣N−a(l)∣ ≥ 1

λ0h2
} . (40)
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Now, define for φ ≥ 1:

Q∗hl (φ) ∶= {k ∈ [d] ∶ ∆∗k(0, l) ∈ [φh,2φh]}
Q
∗h

l (φ) ∶= {k ∈ [d] ∶ ∆∗k(a∗(φ−1h, l), l) ≥ h/2} . (41)

The following lemma states that, for φ of order log(nd/δ), we can sandwich Q̂h
l between the

two fixed sets Q∗hl and Q
∗h

l :

Lemma C.1. Let l be a fixed index in {1, . . . ,L} and h a fixed height in H. There exists a
numerical constant κ0 > 0 such that, with probability at least 1 − δ/(L∣H∣), we have

Q∗hl (κ0 log(nd/δ)) ⊂ Q̂h
l ⊂ Q

∗h

l (κ0 log(nd/δ)) . (42)

C.2. Step 2 : l1-control of the intermediary sets P̃h

Recall that γu is a threshold corresponding to a sequence in Γ as defined in (10). For any sets
P ⊂ [n],Q ⊂ [d], we say that M(P,Q) is indistinguishable in L1-norm if it satisfies

max
i,j∈P
∥Mi⋅(P,Q) −Mj⋅(P,Q)∥1 ≤ 3γu

√∣Q∣
λ0

. (43)

For a fixed l ∈ {1, . . . ,L}, let ξL1
(l, h) be the event under which M(P̃ h

l , Q̂
h
l ) is indistinguish-

able in L1-norm.

Lemma C.2. Let l be a fixed index in {1, . . . ,L} and h ∈ H such that λ0∣Q∗hl ∣ ≥ 1. The event
ξL1
(l, h) holds true with probability at least 1 − δ/(L∣H∣).
Let κ0 be a numerical constant given by Lemma C.1 and let φ0 = κ0 log(nd/δ). In what

follows, we write for simplicity (Q∗hl , Q̂h
l ,Q

h

l ) = (Q∗hl (φ0), Q̂h
l (φ0),Qh

l (φ0)). Lemma C.2 pro-
vides an upper bound only on the L1 distance between rows of M restricted to the subsets P̃ h

l

and Q̂h
l , while the square norm of a group (33) is defined with the L2 distance. with (43). The

idea is that for any k in Q∗h, and for any i ∈ P̃ h, we have that ∣Mik −mk∣2 ≤ 2φ0h∣Mik −mk ∣.
In particular, ∥Mi⋅(P̃ h

l ,Q
∗h
l )−m⋅(P̃ h

l ,Q
∗h
l )∥22 ≤ 2φ0h∥Mi⋅(P̃ h

l ,Q
∗h
l )−m⋅(P̃ h

l ,Q
∗h
l )∥1. Hence, it

holds from Lemma C.1, Lemma C.2 and a union bound over all l ∈ {1, . . . ,L} and all h ∈ H
satisfying λ0∣Q∗hl ∣ ≥ 1 that with probability at least 1 − 2δ,

∑
i∈P̃h

l

∥Mi⋅(P̃ h
l ,Q

∗h
l ) −m⋅(P̃ h

l ,Q
∗h
l )∥22 ≤ 6φ0γu

⎡⎢⎢⎢⎢⎢⎣
h∣P̃ h

l ∣
¿ÁÁÀ∣Q∗hl ∣

λ0

⎤⎥⎥⎥⎥⎥⎦
, (44)

simultaneously for all l ∈ {1, . . . ,L} and h ∈H satisfying λ0∣Q∗hl ∣ ≥ 1.
Proof of Lemma C.2. Let l be a fixed index in {1, . . . ,L} and h be a fixed height in H. If a ≥ 1,
the subset Pl is disjoint from the sets Na(l) ∪N−a(l) so that Q̂h

l is independent of Y (1)(Pl).
Remark also that condition (16) is satisfied since λ0∣Q∗hl ∣ ≥ 1 and Q∗hl ⊂ Q̂

h
l .

Recall that we assume that λ0 ≤ 1. We write w = 1Q̂h
l

and we recall that B = (Bik) is

the matrix defined in (15). Let i, j ∈ P̃ h
l so that, by definition, we have that ∣⟨Yi⋅ − Yj⋅,w⟩∣ ≤

γu

√
λ0∣Q̂h

l
∣. With probability at least 1 − δ/L, for all i, j in Pl we have that

λ1 ∣⟨Mi⋅ −Mj⋅,w⟩∣ ≤ ∣⟨Yi⋅ − Yj⋅,w⟩∣ + ∣⟨Ei⋅ −Ej⋅,w⟩∣ ≤ (γu + φL1
/2)√λ0∣Q̂h

l
∣ . (45)

where the last inequality comes from Lemma B.1 applied with δ′ = δ/n3 and from the definition
of φL1

(9). Recalling the two inequalities λ1 = 1 − e−λ0 ≥ λ0/2 and φL1
≤ γu, we obtain the

result.
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C.3. Step 3 : Local square norm reduction

Henceforth we condition to the sample Y (1) of Algorithm 2 which allows us to assume that,
for any h ∈H, the two sequences of sets P̃h and Q̂h are fixed.

For κ1 > 0, let ξloc(l, h, κ1) be the event holding true if the local square norm of M(Pl, Q̂
h
l )

has decreased at the end of Algorithm 2, that is

∥M(P ′l , Q̂h
l ) −M(P ′l , Q̂h

l )∥2F ≤ κ1γ4u [ 1λ0
√∣Pl∣∣Q̂h

l
∣ + ∣Pl∣

λ0
]

∨ (1 − 1

4γ2u
) ∥M(Pl, Q̂

h
l ) −M(Pl, Q̂

h
l )∥2F .

(46)

The following proposition states that given the fact that the experts in P̃ h
l are indistin-

guishable in L1-norm and λ0(∣P̃ h
l ∣ ∧ ∣Q∗hl ∣) ≥ 1, the event ξloc holds true simultaneously for all

l and h with high probability.

Proposition C.3. There exists a numerical constant κ1 such that the following holds, for any
fixed index l in {1, . . . ,L}, and fixed height h in H. Conditionally to Y (1), the event ξL1

(l) and
λ0(∣P̃ h

l ∣ ∧ ∣Q∗hl ∣) ≥ 1, the event ξloc(l, h, κ1) holds true with probability at least 1 − 3δ/(L∣H∣).
Proposition C.3 is at the core of the analysis, and its proof contains a significant part of the

arguments. This proposition and its proof are similar to Proposition D.5 in [14], but the main
difficulty with respect to [14] is that we do not achieve the optimal rate in λ0 ≤ 1 using only
the subgaussianity of the coefficients of the noise E. A key step in the proof of Proposition
C.3 is Proposition 4.1, which implies Lemma E.2 and gives a concentration inequality of the
operator norm of EET −E[EET ]. Proposition 4.1 is effective in that case since the coefficients
of E will be proven to satisfy (24).

Then, the idea is that when a group P ′l has a square norm of order at least 1
λ0

√∣Pl∣∣Q̂h
l
∣+ ∣Pl∣

λ0
,

the PCA-based procedure defined as in (23) will output a vector v̂ that is well aligned with
the first left singular vector of M(P̃ h

l , Q̂
h
l ) −M(P̃ h

l , Q̂
h
l ). Moreover, the isotonic structure of

M(P̃ h
l , Q̂

h
l )−M(P̃ h

l , Q̂
h
l ) implies in fact that its operator norm is greater than a polylogarithmic

fraction of its Frobenius norm (see Lemma E.1 or Lemma E.4 in [14]], so that ∥v̂T (M(P̃ h
l , Q̂

h
l )−

M(P̃ h
l , Q̂

h
l ))∥22 is of the same order as the square Frobenius norm. Hence after updating the

edges, we can prove that the experts in P̃ h
l ∖P ′l were contributing significantly to the Frobenius

norm, which enforces the contraction part in the second term of the maximum in (46). All the
details of the proof can be found in Appendix E.

C.4. Step 4 : Control of the size of the sets Q
∗h

l

For any p ∈ [n]∩{2k ∶ k ∈ Z+}, let L(p) be the sets of indices l = 1, . . . ,L whose corresponding
group size ∣Pl∣ belongs to [p,2p). The two upper bounds implied by (44) and (46) both depend

on the selected subset of columns, which is included in Q
∗h

l under the event of Lemma C.1.
The following lemma provides an upper bound on the sum over l ∈ L(p) of the size of the sets

Q
∗h

l (φ) defined in (41), for any φ > 0.

Lemma C.4. For any φ ≥ 1 and any h ∈H, it holds that

∑
l∈L(p)

∣Q∗h(φ)∣ ≤ 12φ2 ( 1

pλ0h2
∨ 1) d

h
.

The proof of Lemma C.4 is mainly implied by the fact that the coefficients of M are bounded
by 1. Then, the idea is that in the case where all the sets Pl are of size p, it is enough to take
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a number of group a of order at most 1
pλ0h2 ∨ 1 above and below each Pl to ensure that the

corresponding neighborhood of Pl has size ∣Na(l)∣ ∧ ∣N−a(l)∣ ≥ 1
λ0h2 .

C.5. Step 5 : Conclusion of the previous steps

We first decompose the square norm SN(P) as defined in (33) into two terms. Assume that
the event of Lemma C.1, ξL1

(l) and ξloc(l, h, κ1) - see Lemma C.2 and Proposition C.3 - hold
true. Define L− as the sequence of indices l such that the corresponding reduced subsets P ′l
have low local square norm for all h ∈H. More precisely, we say that l ∈ L− if for all h ∈H we
have

∥M(P ′l , Q̂h
l ) −M(P ′l , Q̂h

l )∥2F ≤ κ1γ4u [ 1λ0
√∣Pl∣∣Q̂h

l
∣ + ∣Pl∣

λ0
]

∨ 1

2∣H∣ ∥M(Pl) −M(Pl)∥2F .

(47)

We also define the complementary L+ = [1,L] ∖L− and their corresponding subsets P ′+,P
′
− in

P ′. We have the following decomposition:

SN(P ′) = SN(P ′+) + SN(P ′−) . (48)

Let us now give an upper bound of SN(P ′+). For any l ∈ L+, there exists by defini-

tion an element hl ∈ H such that ∥M(P ′l , Q̂hl

l
) −M(P ′l , Q̂h

l )∥2F > κ1γ4u [ 1
λ0

√∣Pl∣∣Q̂h
l
∣ + ∣Pl∣

λ0
] ∨

1
2∣H∣∥M(Pl, Q̂

h
l )−M(Pl, Q̂

h
l )∥2F . Hence applying (46) with h = hl, we have that, for any l ∈ L+,

∥M(P ′l ) −M(P ′l )∥2F = ∥M(P ′l , Q̂hl

l
) −M(P ′l , Q̂hl

l
)∥2F + ∥M(P ′l , [d] ∖ Q̂hl

l
) −M(P ′l , [d] ∖ Q̂hl

l
)∥2F

≤ ∥M(Pl) −M(Pl)∥2F − 1

4γ2u
∥M(Pl, Q̂

hl

l
) −M(Pl, Q̂

hl

l
)∥2F

≤ (1 − 1

γ3u
)∥M(Pl) −M(Pl)∥2F ,

where the third inequality comes from the second term of (47) together with P ′l ⊂ Pl and
γu ≥ φL1

≥ 8∣H∣, with φL1
defined in (9). Hence we obtain that

SN(P ′+) ≤ (1 − 1

γ3u
)SN(P+) . (49)

Finally, we give an upper bound of SN(P ′−). Let us write Dn = {2k ∶ k ∈ Z+} ∩ [n] for the
set of dyadic integer smaller than n. Given p ∈ Dn, we write L−(p) = L(p) ∩ L− for the set
of indices in L− such that ∣Pl∣ ∈ [p,2p), and P ′−(p) for the corresponding sequence of subsets
in P ′−(p). Let φ0 = κ0 log(nd/δ), where κ0 is a numerical constant given by Lemma C.1. By
definition of Q∗hl , the square norm of a group P ′l restricted to questions that do not belong
the set ∪h∈HQ∗hl is smaller than φ0nd ⋅min(H) ≤ φ0. Hence we have that

SN(P ′−) = ∑
p∈Dn

SN(P ′−(p)) ≤ φ0 + ∑
(p,h)∈Dn×H

∑
l∈L−(p)

∥M(P ′l ,Q∗hl ) −M(P ′l ,Q∗hl )∥2F . (50)

If λ0∣Q∗hl ∣ ≤ 1 then we use the trivial inequality ∥M(P ′l ,Q∗hl ) −M(P ′l ,Q∗hl )∥2F ≤ ∣P ′l ∣∣Q∗hl ∣ ≤∣P h
l ∣/λ0,since the entries of M are bounded by one.
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If λ0∣Q∗hl ∣ ≥ 1 and ∣P̃ h
l ∣λ0 ≤ 1, we have that h∣P̃ h

l ∣
√
∣Q∗hl ∣
λ0
≤

√
∣P̃h

l
∣∣Q∗hl ∣
λ2
0

, using the fact that

h ≤ 1. Hence, since the experts in P ′l ⊂ P̃
h are indistinguishable in L1 norm by Lemma C.2,

(44) holds true and we have

∥M(P ′l ,Q∗hl ) −M(P ′l ,Q∗hl )∥2F ≤ 6φ0γu
⎡⎢⎢⎢⎢⎢⎣
h∣P̃ h

l ∣
¿ÁÁÀ∣Q∗hl ∣

λ0

⎤⎥⎥⎥⎥⎥⎦
≤ 6φ0γu

⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÀ
h2∣P̃ h

l
∣2 ∣Q∗hl ∣

λ0
∧
¿ÁÁÁÀ∣P̃ h

l
∣∣Q∗hl ∣
λ20

⎤⎥⎥⎥⎥⎥⎥⎦
≤ 12φ0γu

⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÁÀ(h2pλ0 ∧ 1)p∣Q∗hl ∣
λ20

+ p

λ0

⎤⎥⎥⎥⎥⎥⎥⎦
.

Finally, if λ0(∣Q∗hl ∣ ∨ ∣P̃ h
l ∣) ≥ 1, we are in position to apply Proposition C.3. For all l ∈ L−(p)

and h ∈H that ∥M(P ′l ,Q∗hl )−M(P ′l ,Q∗hl )∥2F is either smaller than 1
2∣H∣∥M(Pl)−M(Pl)∥2F , or it

is smaller than κ1γ
4
u [ 1

λ0

√∣Pl∣∣Q̂h
l
∣ + ∣Pl∣

λ0
]. From (44), it is also smaller than 6φ0γuh∣P̃ h

l ∣
√
∣Q∗hl ∣
λ0

.

As a consequence, we obtain the following upper bound:

∥M(P ′l ,Q∗hl ) −M(P ′l ,Q∗hl )∥2F ≤κ2γ4u
⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÁÀ(h2pλ0 ∧ 1)p∣Q∗hl ∣
λ20

+ p

λ0

⎤⎥⎥⎥⎥⎥⎥⎦
∨ 1

2∣H∣ ∥M(Pl) −M(Pl)∥2F ,

(51)

with κ2 = 12(κ0 ∨ κ1), and using that φ0 ≤ κ0γu and ∣P̃ h
l ∣ ≤ ∣Pl∣ ≤ 2p.

By the two previous cases on l, the inequality (51) is valid for any l ∈ L−(p). Now, we
decompose (50) into two terms, corresponding to the maximum in (51). First, since each Pl is
in at most one P−(p) for p ∈ Dn, we have

∑
(p,h)∈Dn×H

∑
l∈L−(p)

1

2∣H∣ ∥M(Pl) −M(Pl)∥2F ≤ 1

2
SN(P−) . (52)
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Secondly, we have that

κ2γ
4
u ∑
(p,h)∈Dn×H

∑
l∈L−(p)

⎡⎢⎢⎢⎢⎢⎢⎣

¿ÁÁÁÀ(h2pλ0 ∧ 1)p∣Q∗hl ∣
λ20

+ p

λ0

⎤⎥⎥⎥⎥⎥⎥⎦
≤ κ2γ

6
u

⎡⎢⎢⎢⎢⎢⎢⎣
max
p,h

∑
l∈L−(p)

¿ÁÁÁÀ(h2pλ0 ∧ 1)p∣Qh∗

l ∣
λ20

+ p

λ0

⎤⎥⎥⎥⎥⎥⎥⎦
(a)
≤ 2κ2γ

6
umax

p,h

⎡⎢⎢⎢⎢⎢⎢⎣
n

λ0
+
¿ÁÁÁÀ(h2pλ0 ∧ 1)p∣L(p)∣∑l∈L(p) ∣Qh∗

l ∣
λ20

⎤⎥⎥⎥⎥⎥⎥⎦
(b)
≤ 4κ22γ

7
umax

p,h

⎡⎢⎢⎢⎢⎣
n

λ0
+
¿ÁÁÀ(h2pλ0 ∧ 1)(n2d

λ20p
∧ ( nd

pλ30h
3
∨ nd

λ20h
))⎤⎥⎥⎥⎥⎦

≤ 4κ22γ
7
umax

p,h

⎡⎢⎢⎢⎢⎣
n

λ0
+ nh
√

d

λ0
∧
¿ÁÁÀn2dh2

λ0
∧ nd

λ20h

⎤⎥⎥⎥⎥⎦
(c)
≤ 4κ22γ

7
u

⎡⎢⎢⎢⎢⎣
n

λ0
+ n
√

d

λ0
∧ n2/3√d

λ
5/6
0

⎤⎥⎥⎥⎥⎦ .

where in (a) we used the Jensen inequality, in (b) we used Lemma C.4 with φ = φ0 together

with the trivial inequality ∑l∈L(p) ∣Qh∗

l ∣ ≤ nd/p and in (c) the fact that x ∧ y ≤ x2/3y1/3 and
h ≤ 1.

Finally, combining this last inequality with (48), (49) and (52),
we obtain

SN(P ′) = SN(P ′+) + SN(P ′−)
≤ (1 − 1

γ3u
)SN(P+) + 4κ22γ7u

⎡⎢⎢⎢⎢⎣
n

λ0
+ n
√

d

λ0
∧ n2/3√d

λ
5/6
0

⎤⎥⎥⎥⎥⎦ ∨ [
1

2
SN(P−)]

≤
⎡⎢⎢⎢⎢⎣Cγ̄

7 ⎛⎝ nλ0 + n
√

d

λ0
∧ n2/3√d

λ
5/6
0

⎞⎠
⎤⎥⎥⎥⎥⎦ ∨ [(1 −

1

γ̄3
)SN(P)] ,

where we recall that γ̄ is defined in (11) and satisfies γ̄ ≥ γu. This concludes the proof of
Proposition A.6.

Appendix D: Proof of the lemmas of Appendix C

Recall that we can write
E = (B − E[B])⊙M +B ⊙ Ẽ . (53)

where we recall that Ẽ = Y − E[Y ∣B] and that B is a matrix of Bernoulli random variables
with parameter λ1.

Proof of Lemma C.1. Assume first that λ0 ≤ 1. Let us fix l ∈ {1, . . . ,L} and h ∈ H. We omit
the dependence in l in this proof to ease the notation and we write P for Pl. Let us define

E′k(a) ∶= 1∣Na∣ ∑i∈Na

Eik − 1∣N−a∣ ∑i∈N−aEik and ν(a) ∶= ∣Na∣ ∧ ∣N−a∣ . (54)
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Using Lemma B.1 with a column matrix W with coefficient in {0, 1
∣Na∣ ,− 1

∣N−a∣} and a union

bound over all k ∈ [d] and a ∈ [n], we have with probability at least 1 − δ/L that:

1

λ0
∣E′k(a)∣ ≤ κ′0 log(nd/δ)[

√
1

λ0ν(a) +
1

λ0ν(a)] , (55)

for some numerical constant κ′0. In what follows, we work under that (55) holds true for all
a ∈ [n] and k ∈ [d].

First inclusion. Let k ∈ Q∗(κ0 log(nd/δ)h) with numerical constant κ0 to be fixed later.
Let a′ ≥ 1 be any integer such that ν(a′) ≥ 1/(λ0h2). We have

1

λ0
∣E′k(a′)∣ ≤ 2κ′0 log(nd/δ)h , (56)

since we work under the event defined by (55) and since h2 ≤ h. Then by consistency of
the already constructed graph Gt,u at the beginning of step t, Na′ (resp. N−a′) contains by
definition (20) only experts that are π∗-above (resp. below) all the experts of P . Since by
assumption k is in Q∗h, it holds that ∆∗k(a′) ≥∆∗k(0) ≥ κ0 log(nd/δ)h - see the definition (41)
of Q∗h. Hence, recalling the signal-noise decomposition (53), we have that

1

λ0
∆̂k(a′) = λ1

λ0
∆∗k(a′) + 1

λ0
E′k(a′) ≥ log(nd/δ)((1 − 1/e)κ0 − 2κ′0)h . (57)

Choosing κ0 ≥ 10κ′0 + 1, we obtain by definition (21) that ν(âk(h)) ≤ 1
λ0h2 so that k ∈ Q̂h.

Second inclusion. Let k ∈ Q̂h, and a′ = a∗((κ0 log(nd/δ))−1h) be as defined in (40). By
definition, it holds that ν(a′) ≥ κ0 log(nd/δ)/(λ0h2) ≥ 1

λ0h2 . Hence, since k ∈ Q̂h, we have by

definition (22) that ν(âk(h)) ≤ 1
λ0h2 ≤ ν(a′), which implies in particular that âk(h) ≤ a′. Then,

by definition (21) of âk(h) we have that 1
λ0
∆̂k(a′) ≥ h. Using the concentration inequality (55)

with h′ = (κ0 log(nd/δ))−1h and the fact that λ0 ≥ λ1 we obtain

∆∗k(a′) ≥ h − 2κ′0
κ0

h , (58)

and we get the second inclusion by also choosing κ0 ≥ 4(κ′0 + 1).
Proof of Lemma C.4. For simplicity, we renumber L(p) = (1,2, . . . ,L′ ∶= ∣L(p)∣). Let us write

ν(a, l) = ∣Na(l)∣∧ ∣N−a(l)∣ and Λ = ⌊ φ2

pλ0h2 ⌋+ 1. We let a∗ ∶= a∗(φ−1h, l) be as defined in (40) so

that for any l, ν(a∗, l) ≥ φ2

λ0h2 .

By assumption of Proposition A.6, it holds that P1
G
≺ P2

G
≺ . . .

G
≺ P∣L(p)∣ where we recall

G = Gt,u is the already constructed graph - see Appendix C.1. Hence it holds that rkG,i(j) ≥ Λ
for any i ∈ Pl and j ∈ Pl+Λ - see (19) for the definition of rk. Since there are at least pΛ ≥ φ2

λ0h2

experts in the union Pl+1 ∪ ⋅ ⋅ ⋅ ∪ Pl+Λ, we conclude that a∗ ≤ Λ, and that any expert in Na∗

(resp. N−a∗) is below the maximal expert of Pl+Γ (resp. above) the minimal expert of Pl−Λ.

This implies that, upon writing ∆
∗

k(l) for the difference of these maximal and minimal experts,

we have by definition (41) of Q
∗h

that ∆
∗

k(l) > h/2 for all k in Q
∗h

. This implies in particular
that

∑
l∈L(p)

∣Q∗hl (h,φ)∣ ≤ d∑
k=1
∑

l∈L(p)
1{∆∗k(l) ≥ h/2} ≤ 2

h

d∑
k=1
∑

l∈L(p)
∆
∗

k(l) ≤ (2Λ + 1)2dh ≤ 6Λdh , (59)

where in the last inequality we used the fact thatMi,k ∈ [0,1] and that the sequence Pl−Λ, . . . , Pl+Λ

is of length 2Λ + 1, for any l ∈ L(p).



Pilliat et al./Optimal ranking 31

Appendix E: Proof of Proposition C.3

Let us fix any l ∈ {1, . . . ,L} and h ∈H. Since l, h and Q̂h
l are fixed in this proof, we simplify the

notation and we write (P ′, P̃ ,Q) = (P ′l , P̃ h
l , Q̂

h
l ) and M ∶=M(P̃ ,Q) and M(P ′) ∶=M(P ′,Q).

We also fix δ′ = δ/(L∣H∣), where we recall that L ≤ n is the number of groups.
Let us assume that

∥M(P ′) −M(P ′)∥2F ≥ κ1γ
4
u [ 1λ0

√∣P̃ ∣∣Q∣ + ∣P̃ ∣
λ0
] , (60)

for some constant κ1 to be fixed later. In what follows, we show that under assumption (60)
for some large enough numerical constant κ1, we necessarily have that the square norm of P ′

is a contraction of the square norm of P , that is

∥M(P ′) −M(P ′)∥2F ≤ (1 − 1

4γ2u
) ∥M −M∥2F . (61)

Step 1: control of the vector v̂

First, the following lemma states that the first singular value of (M −M) is, up to polylog-
arithmic terms, of the same order as its Frobenius norm. This is mainly due to the fact that
the entries of M lie in [0,1] and that M −M is an isotonic matrix.

Lemma E.1 (Lemma E.4 in [14]). Assume that ∥M −M∥F ≥ 2. For any sets P̃ and Q, we
have ∥M −M∥2op ≥ 4

γ2u
∥M −M∥2F .

This lemma was already stated and proved as Lemma E.4 in [14], recalling that γu > φL1
≥

8 log(nd) – see (9) and (10).

Now, write v̂ = argmax∥v∥2≤1 [∥vT (Y (2)−Y (2))∥22− 1
2
∥vT (Y (2)−Y (2)−Y (3)+Y (3))∥22], where

the argmax is taken over all v in P̃ .

Lemma E.2. Assume that λ0∣P̃ ∣ ≥ 1. There exists a numerical constant κ′0 such that if

∥M −M∥2op ≥ κ′0 log2(nd/δ′)( 1

λ0

√∣Q∣∣P̃ ∣ + ∣P̃ ∣
λ0
) , (62)

then, with probability higher than 1 − δ′, we have

∥v̂T (M −M) ∥22 ≥ 1

2
∥M −M∥2op .

In light of Lemma E.1 and Condition (60), the Condition (62) in Lemma E.2 is valid if
we choose κ1 in Proposition C.3 such that κ1 ≥ 16κ′0. Consequently, there exists an event of
probability higher than 1 − δ′ such that

∥v̂T (M −M) ∥22 ≥ 2

γ2u
∥M −M∥2F . (63)

Step 2: control of the vector v̂−
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Now remark that since ∥v̂i∥2 = 1, there are at most 1
λ0

of experts i such that v̂i >
√
λ0. Hence

we have that

∥v̂T− (M −M) ∥22 ≥ 2

γ2u
∥M −M∥2F − ∑

i∈P̃

1v̂i>
√
λ0
∥Mi⋅ −m∥22

(a)
≥

2

γ2u
∥M −M∥2F − 3γu

λ0

¿ÁÁÀ∣Q̂∣
λ0

(b)
≥

1

γ2u
∥M −M∥2F .

(a) comes from the fact that any expert in P̃ satisfies (43) under the event of Lemma C.2. (b)
comes from Condition (60) and the assumption that λ0∣P̃ ∣ ≥ 1.

Step 3: control of the vector ŵ

Next, we show that a thresholded version of ẑ = (Y (4) − Y (4))T v̂− is almost aligned with
z∗ = λ1(M −M)T v̂−. We define the sets S∗ ⊂ Q and Ŝ ⊂ Q of questions by

S∗ = {k ∈ Q ∶ ∣z∗k ∣ ≥ 2γu√λ0} ; Ŝ = {k ∈ Q ∶ ∣ẑk ∣ ≥ γu√λ0} . (64)

S∗ stands for the collection of questions k such that z∗k is large whereas Ŝ is the collection
questions k with large ẑk. Finally, we consider the vectors w∗ and ŵ defined as theresholded
versions of z∗ and ẑ respectively, that is w∗k = z

∗
k1k∈S∗ and ŵk = ẑk1k∈Ŝ. Note that, up to the

sign, ŵ stands for the active coordinates computed in SLR, Line 7 of Algorithm 2.

Recall that we assume that λ0 ≤ 1. We write v for any unit vector in R
∣P̃ ∣. Let us apply

Lemma B.1 for each column k ∈ Q of the noise matrix E with the matrix W equal to v −( 1

∣P̃ ∣ ∑i∈P̃ vi)1P̃ at column k and 0 elsewhere. We deduce that, for any fixed matrix M , any

subsets P̃ and Q, and any unit vector v ∈ RP̃ such that ∥v∥∞ ≤ 2√λ0, we have

P [max
k∈Q
∣(vT (E(3) −E(3)))k∣ ≤ 100 log(2∣Q∣/δ′)√λ0] ≥ 1 − δ′ . (65)

Observe that ẑ = z∗ + (E(3) − E(3))T v̂−. Conditioning on v̂−, we deduce that, on an event of
probability higher than 1 − δ′, we have

∥ẑ − z∗∥∞ ≤ 100 log(2∣Q∣/δ′)√λ0 ≤ γu
2

√
λ0 , (66)

where the last inequality comes from γu > φL1
. Hence it holds that S∗ ⊂ Ŝ and for k ∈ Ŝ,

we have z∗k/ẑk ∈ [1/2,2]. Next, we shall prove that, under this event, λ1v̂
T
− (M −M)ŵ/∥ŵ∥2 is

large (in absolute value):

λ1 ∣v̂T− (M −M)ŵ∣ = ∣(z∗)T ŵ∣ = ∑
k∈Ŝ

z∗k ẑl ≥
2

5
∑
k∈Ŝ

(z∗k)2 + (ẑl)2 ≥ 2

5
[∥w∗∥22 + ∥ŵ∥22] ≥ 4

5
∥ŵ∥2∥w∗∥2 ,

where we used in the first inequality that z∗k/ẑk ∈ [1/2,2] and in the second inequality that

S∗ ⊂ Ŝ. Thus, it holds that

λ21 ∣v̂T− (M −M) ŵ∥ŵ∥2 ∣
2

≥
16

25
∥w∗∥22 . (67)
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It remains to prove that ∥w∗∥2 is large enough. Writing S∗c for the complementary of S∗ in
Q, it holds that ∥w∗∥22 = ∥z∗∥22 − ∑

k∈S∗c
(z∗k)2 , (68)

so that we need to upper bound the latter quantity. Write z∗S∗c = z
∗ −w∗. Coming back to the

definition of z∗,

[ ∑
k∈S∗c
(z∗k)2]2 = [ ∑

k∈S∗c
λ1[v̂T− (M −M)]kz∗k]2

≤ ∥λ1 (M −M) z∗S∗c∥22 =∑
i∈P̃

( ∑
k∈S∗c

λ1(Mik −mk)z∗k)2

(a)
≤

4γ2u∣P̃ ∣2λ0∑
i∈P̃

⎛⎜⎝ ∑k∈S∗c∑j∈P̃ λ1∣Mik −Mjk∣⎞⎟⎠
2

≤
4γ2u∣P̃ ∣2λ0∑

i∈P̃

⎛⎜⎝∑j∈P̃ λ1∥Mi⋅ −Mj⋅∥1⎞⎟⎠
2

(b)
≤ 40γ4uλ

2
0∣P̃ ∣∣Q∣

≤ [7γ2uλ0√∣P̃ ∣∣Q∣]2 ≤ [ 1

2γ2u
λ20∥M −M∥2F ]2 .

In (a), we used the definition of S∗. In (b), we used (43) that holds true since we are under
the event Lemma C.1 and λ0∣Q∣ ≥ 1. The last inequality comes from Condition (60), choosing
κ1 ≥ 14.

Recall that z∗ = v̂T− (M −M). Combining (63) and (68), we deduce that

∥w∗∥22 ≥ 1

2γ2u
λ20∥M −M∥2F , (69)

which, together with (67) and λ0 ≥ λ1, yields

∥(M −M) ŵ∥ŵ∥2 ∥
2

2

≥ ∣v̂T− (M −M) ŵ∥ŵ∥2 ∣
2

≥
1

2γ2u
∥M −M∥2F . (70)

Write ŵ(1) and ŵ(2) the positive and negative parts of ŵ respectively so that ŵ = ŵ(1)−ŵ(2)
and ŵ+ = ŵ(1) + ŵ(2). We obviously have ∥ŵ∥2 = ∥ŵ+∥2. Besides, if the rows of M are ordered
according to the oracle permutation, then (M −M)ŵ(1) and (M −M)ŵ(2) are nondecreasing
vectors with mean zero. It then follows from Harris’ inequality that these two vectors have a
nonegative inner product. We have proved that

∥(M −M) ŵ+∥ŵ+∥2 ∥
2

2

≥ ∥(M −M) ŵ∥ŵ∥2 ∥
2

2

≥
1

2γ2u
∥M −M∥2F . (71)

Step 4: Showing that ŵ satisfies Condition (16)
Recall that we assume for simplicity that λ0 ≤ 1. First we upper bound ∥w∥2∞ by using (a)

that ẑ is close to z∗ with (66), (b) that for any k ∈ Q, vTM⋅k ≤ ∥v∥1 and (c) that λ0∣P̃ ∣ ≥ 1:
∥ŵ∥2∞ (a)≤ 2∥z∗∥2∞ + γ2uλ0 (b)≤ 2λ20∥v̂∥21 + γ2uλ0 (c)≤ 3γ2uλ

2
0∣P̃ ∣ . (72)
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Secondly, we lower bound ∥w∥22 by using (a) that S∗ ⊂ Ŝ and that z∗k/ẑk ∈ [1/2,2], (b) that∥w∗∥22 captures a significant part of the L2 norm -see (69), and (c) the Condition (60) with
κ1 ≥ 24:

∥ŵ∥22 (a)≥ 1

4
∥w∗∥22 (b)≥ 1

8γ2u
λ20∥M −M∥2F (c)≥ 3γ2uλ0∣P̃ ∣ . (73)

We deduce that ∥ŵ∥2∞ ≤ λ0∥ŵ∥22, which is exactly Condition (16). This shows that ŵ+ is
considered for the update (18) in the final step of the procedure Line 9 of Algorithm 2.

Step 5: upper bound of the Frobenius-norm restricted to P ′

Equipped with this bound, we are now in position to show that the set P ′ of experts obtained
from P̃ when applying the pivoting algorithm with ŵ+/∥ŵ+∥2 has a much smaller square norm.
By Lemma B.1 used with the matrix W equal to 0 except at line i where it is equal to the
vector ŵ+/∥ŵ+∥2, there exists an event of probability higher than 1 − δ′ such that

max
i,j∈P ′

∣⟨Ei⋅ −Ej⋅,
ŵ+∥ŵ+∥2 ⟩∣ ≤ φL1

√
λ0 ≤ γu

√
λ0 ,

where we recall that φl1 is defined in (9). Hence, since the vector ŵ is considered in the update

(18), we have maxi,j∈P ′ ∣⟨Yi⋅ − Yj⋅, ŵ+

∥ŵ+∥2 ⟩∣ ≤ γu√λ0 and

max
i,j∈P ′

∣⟨Mi⋅ −Mj⋅,
ŵ+∥ŵ+∥2 ⟩∣ ≤ 2γu

√
1

λ0
. (74)

By convexity, it follows that

∥(M(P ′) −M(P ′)) ŵ+

∥ŵ+∥2 ∥22 ≤ 4γ2u 1

λ0
∣P ′∣ ≤ 4γ2u 1

λ0
∣P̃ ∣ .

In light of Condition (60), this quantity is small compared to ∥M −M∥2F :

∥(M(P ′) −M(P ′)) ŵ+

∥ŵ+∥2 ∥22 ≤ 1

4γ2u
∥M −M∥2F , (75)

which together with (71) leads to

∥(M −M) ŵ+

∥ŵ+∥2 ∥22 − ∥(M(P ′) −M(P ′)) ŵ+

∥ŵ+∥2 ∥22 ≥ 1

4γ2u
∥M −M∥2F . (76)

Since P ′ ⊂ P̃ , we deduce that, for any vector w′ ∈ Rq, we have ∥(M −M)w′∥22 ≥ ∥(M(P ′) −
M(P ′))w′∥2. It then follows from the Pythagorean theorem that

∥M −M∥2F − ∥M(P ′) −M(P ′)∥2F ≥ ∥(M −M) ŵ+

∥ŵ+∥2 ∥22 − ∥(M(P ′) −M(P ′)) ŵ+

∥ŵ+∥2 ∥22 .

Then, together with (76), we arrive at

∥M(P ′) −M(P ′)∥2F ≤ (1 − 1

4γ2u
) ∥M −M∥2F .

We have shown that if (60) is satisfied, then there is a contraction in the sense of (61). This
in turn gives the upper bound (46) and it concludes the proof of Proposition C.3.
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Proof of Lemma E.2. Recall that we consider the case λ0 ≤ 1 and that the case λ0 ≥ 1 is
discussed in Appendix F. We start with the two following lemmas. To ease the notation, we
assume in this proof that P̃ = {1, . . . , p}, that Q = {1, . . . q}. We only consider the matrices
restricted to the sets P̃ ,Q and we write E ∶= E(P̃ ,Q). Let us define J = 11T ∈ Rp×p the matrix
with constant coefficients equals to 1 and A = (Ip− 1

p
J) be the projector on the orthogonal of 1,

so that E −E = AE ∈ Rp×q. The two following lemmas are direct consequences of Proposition
4.1, and a discussion of the corresponding concenration inequality on random rectangular
matrices can be found in Section 4. We state weaker concentration inequalities than what is
proven in Proposition 4.1 in order to factorize the polylogarithmic factors and to ease the
reading of the proof.

Lemma E.3. Assume that λ0 ≤ 1 and that λ0(p ∨ q) ≥ 1. It holds with probability larger than
1 − δ′/4 that ∥EET −E[EET ]∥op ≤ κ′′0 log2(pq/δ′) [λ0√pq + λ0p] .
Lemma E.4. Assume that λ0 ≤ 1 and that λ0(p∨ q) ≥ 1. With probability larger than 1− δ′/4,
one has for any orthogonal projection Λ ∈ Rq×q satisfying rank(Λ) ≤ p that

∥ΛETEΛ∥op ≤ κ′′1 log2(pq/δ′) [λ0√pq + λ0p] ,
Proofs of Lemma E.3 and Lemma E.4. First, we recall that for any i, k, we have that Eik =(Bik−λ1)Mik+ Ẽik, and that Ẽ is an average of 1-subGaussian random variables, as described
in (30) For any u ≥ 0 we have

E[E2u
ik ] ≤ 3uE [Bik + λ2u0 + Ẽ2u

ik ] ≤ 3u (2λ0 + u!E[eẼ2
ik]) ≤ 1

2
u!λ01000

u , (77)

where for the last inequality we used the following inequalities:

E[eẼ2
ik] ≤ ∑

u≥1

e−λ0
λu0
u!
e1/u ≤ λ0e .

Hence condition (24) is satisfied with K = 1000 and σ2 = λ0 for the coefficients of E. We
just apply Proposition 4.1 with X = E for Lemma E.3. For Lemma E.4, we apply Proposition
4.1 with X = ET and we remark that ∥ΛETEΛ∥2op ≤ 2∥ΛETE − E[ETE]Λ∥2op + 2∥E[ETE]∥2op
together with the fact that ∥E[ETE]∥2op ≤ c′λ0p for some numerical constant c′.

Remark that since we assume in Lemma E.2 that λ0p ≥ 1, it holds that
√
λ0p ≤ λ0p and√

λ0q ≤ λ20
√
pq, so that both upper bounds of Lemma E.3 and Lemma E.4 reduce - up to

logarithmic factors - to λ0
√
pq + λ0p. We write for short in the following

F ∶= F (p, q, λ0, δ′) = log2(pq/δ′)[λ0√pq + λ0p] , (78)

and κ′′2 = 8(κ′′0 ∨ κ′′1).
Now let us write

AY = λ1AM +AE ,

so that, for any v ∈ Rp, recalling that AY = Y − Y ,

∥vTAY ∥22 = λ21∥vTAM∥22 + ∥vTAE∥22 + 2λ1⟨vTAE,vTAM⟩ ,
which, in turn, implies that

∣∥vTAY ∥22 − λ21∥vTAM∥22 −E [∥vTAE∥22]∣ ≤ ∣∥vTAE∥22 − E [∥vTAE∥22]∣ + 2λ1∣vTAMET (Av)∣
(a)
≤ ∥A(EET −E[EET ])A∥op + 2λ1∥AMETE(AM)T ∥1/2op

≤ ∥EET −E[EET ]∥op + 2λ1∥AM∥op∥ΛETEΛ∥1/2op ,
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Where we define Λ ∈ Rd×d as the orthogonal projector on the image of ker(AM)⊥ which is
of rank less than p. For (a), we used the fact that A is contracting the operator norm as an
orthogonal projector so that ∥Av∥2 ≤ 1. We now apply Lemma E.3 and Lemma E.4 together
with the fact that λ1 ≤ λ0, and we obtain with probability at least 1 − δ′/2 that

sup
v∈Rp,∥v∥=1

∣∥vTAY ∥22 − λ21∥vTAM∥22 − E [∥vTAE∥22]∣ ≤ κ′′2F + λ1∥AM∥op√κ′′2F . (79)

where F is defined in (78). In the same way, we have that, with probability larger than 1−δ′/2,
sup

v∈Rp∶ ∥v∥2≤1
∣1
2
∥vTA(Y − Y ′)∥22 −E [∥vTAE∥22]∣ = 1

2
sup

v∈Rp∶ ∥v∥2≤1
∣∥vTA(Y − Y ′)∥22 − E∥vTA(Y − Y ′)∥22∣

≤ κ′′3F ,

for some numerical constant κ′′3 . Putting everything together we conclude that, on an event of
probability higher than 1 − δ′, we have simultaneously for all v ∈ Rp with ∥v∥2 ≤ 1 that

∣∥vTAY ∥22 − ∥vTAM∥22 − 1

2
∥vTA(Y − Y ′)∥22∣ ≤ κ′′4F + λ1∥AM∥op√κ′′4F ,

with κ′′4 = κ
′′
2 ∨κ′′3 . Choosing the numerical constant κ′0 of Lemma E.2 such that κ′0 ≥ 4 ⋅ 16(1−

1/e)−1κ′′4 we have
λ21∥AM∥2op ≥ 4 ⋅ 16κ′′4F ,

since it holds that λ1 ≥ (1 − 1/e)λ0. We deduce that on the same event:

sup
v∈Rp∶ ∥v∥2≤1

∣∥vTAY ∥22 − ∥vTAM∥22 − 1

2
∥vTA(Y − Y ′)∥22∣ ≤ 1

4
∥AM∥2op .

Writing ψ(v) = ∣∥vT (Y −Y )∥22− 1
2
∥vTA(Y −Y ′)∥22∣, we deduce that, for v such that ∥vTAM∥22 =∥AM∥2op, we have Ψ(v) ≥ 3

4
∥AM∥2op, whereas, for v such that ∥vTAM∥22 < 1

2
∥AM∥2op, we have

Ψ(v) < 3
4
∥AM∥2op. We conclude that v̂ satisfies ∥v̂TAM∥22 > 1

2
∥AM∥2op with probability at least

1 − δ′.

Appendix F: Proof of Theorem 2.2 when λ0 ≥ 1

The aim of this section is to provide an extension of the proof of Theorem 2.2 to the case
λ0 ≥ 1. Recall that we fix δ to be a small probability the proof of Theorem 2.2, and that E
and Ẽ are the matrices defined in (29) and (30) by

Ẽ
(s)
ik
= ∑

t∈N(s)

εt

r
(s)
ik
∨1
1{xt = (i, k)} and E

(s)
ik
= (B(s)

ik
− λ1)M +B(s)ik

Ẽ
(s)
ik

.

In what follows, we consider the two subcases where λ0 > 16 log(5nd/δ) or λ0 ≤ 16 log(5nd/δ),
which essentialy rely on the two following ideas:

• If λ0 ≤ 16 log(5nd/δ), we use the fact that the coefficients of E defined in (29) are
5-subGaussian together with the same signal-noise decomposition Y = λ1M + E as in
the proofs when λ0 ≤ 1. The difference from the case λ0 ≤ 1 lies in the application of
subGaussian inequalities of Eik instead of Bernstein inequalities as in (37).
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• If λ0 > 16 log(5nd/δ), we show that the event {r(s)
ik
≥ λ0/2} holds true for all i, k, s

with high probability. Working conditionally to this event, we use the decomposition
Y =M + Ẽ and we show that the noise Ẽ has 2

λ0
-subGaussian independent coefficients.

The rationale behind using Ẽ when λ0 is large is that Ẽik takes advantage of the mean
of 2/λ0 subGaussian variables with high probability.

Let r
(s)
min = mini,k r

(s)
ik

be the minimum number of observation at positions (i, k) in Ns - see
(14). In the case λ0 > 16 log(5nd/δ), the following lemma states that with high probability, we
observe all the coefficients for all sample s in the full observation regime.

Lemma F.1. Assume that λ0 ≥ 16 log(5nd/δ). The event {r(s)min ≥ λ0/2} holds simultaneously
for all sample s with probability at least 1 − 5Tδ.
Proof of Lemma F.1. We apply Chernoff’s inequality - see e.g. section 2.2 of [11] - to derive
that for any i, k

P(r(s)
ik
≤ λ0/2) ≤ exp(−1

8
λ0) ≤ δ/(nd) , (80)

where we use the inequality (1 − log(2))/2 ≥ 1/8. We conclude with a union bound over all
coefficients in [n] × [d] and all 5T samples.

Let us now omit the dependence of E and Ẽ in the sample s. In what follows, use that
the coefficients of E are 5-subGaussian, which is a consequence of the fact that Eik is the
sum of a centered variable bounded by 1 and a 1-subgaussian random variable Ẽik, so that by
Cauchy-Schwarz and the Hoeffding inequality we have

E[exp(xEik)] ≤√exp(4x2/8)√exp(4x2/2) = exp(5/4x2) . (81)

Under the event of Lemma F.1, we use that Ẽik is λ0/2-subGaussian, as an average of at
least 2/λ0 random variables that are 1-subGaussians:

E[exp(xẼik)] ≤ exp( 1
λ0
x2) , (82)

F.1. Adjustements for the general analysis

We first make the changes that should be done in Appendix A to have a proper proof in the
case λ0 ≥ 1.

If λ0 ∈ [1,16 log(5nd/δ)], we simply replace λ0 by 1/λ0 in the upper bound of (31) for the
event ξ in Lemma A.1. In the proof of the restated Lemma A.1, we can replace the inequality
(37) by

∣⟨E,W ⟩∣ ≤
√

10∥W ∥2
F
log ( 2

δ′
) , (83)

for any matrix W ∈ Rn×d, with probability at least 1 − δ′. We can then obtain 1/λ0 instead of
λ0 simply by using that φL1

/√λ0 ≥√φL1
, recalling that φL1

is defined in (9).
If λ0 > 16 log(5nd/δ), we say that we are under event ξ if the event of Lemma F.1 holds

and (31) holds for all pairs (Q,w), replacing E by Ẽ, and λ0 by 1/λ0. The proof of the new
version of Lemma A.1 lies in the Hoeffding inequality applied to Ẽ under the event of Lemma
F.1, leading to the subsequent equation:

∣⟨Ẽ,W ⟩∣ ≤
¿ÁÁÀ4∥W ∥2F

λ0
log ( 2

δ′
) , (84)

for any matrix W ∈ Rn×d, with probability at least 1 − δ′. This equation then replaces (37).
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F.2. Adjustments to the proofs of Proposition A.6

We now adapt the proofs in Appendix C of Proposition A.6 to the case λ0 ≥ 1.
All the lemmas of Appendix C can be stated as is for any λ0 ≥ 1, and the only adjustments

concern the proofs of Lemma C.1, Lemma C.2 and Proposition C.3.

F.2.1. Adjustments in the proofs of Lemma C.1 and Lemma C.2

Consider the proof of Lemma C.1. First, if λ0 ≥ 16 log(5nd/δ), we place ourselves under the
event Lemma F.1 and replace λ1 by 1 and all the E by Ẽ. Instead of inequality (55), we use
the fact that the coefficients of Ẽ are 2/λ0-subGaussian - see (82) - leading to the following
inequality with probability at least 1 − δ:

∣Ẽk(a)∣ ∶= RRRRRRRRRRR
1∣Na∣ ∑i∈Na

Ẽik − 1∣N−a∣ ∑i∈N−a Ẽik

RRRRRRRRRRR ≤ κ
′
0 log(nd/δ)

√
1

λ0ν(a) , (85)

for some numerical constant κ′0. The rest of the proof remains unchanged.

If λ0 ∈ [1,16 log(5nd/δ)], we use the fact that E has 5-subGaussians coefficients - see (81)
and we do not divide by λ0 in (57) - see the definition of ∆̂ (21).

Concerning Lemma C.2, the adjustments are the same as for Lemma A.1, namely working
under the event of Lemma F.1 and we replacing E by Ẽ, λ0 by 1/λ0 and λ1 by 1 if λ0 ≥
16 log(5nd/δ), and using the fact that the coefficient of E are 5-subGaussians - see (81) if
λ0 ∈ [1,16 log(5nd/δ)].
F.2.2. Adjustments in the proof of Proposition C.3

We now adapt the proofs in Appendix E of Proposition C.3 to the case λ0 ≥ 1. First, Lemma
E.2 can be stated as is, and its proof when λ0 ≥ 1 is directly implied by Lemma E.5 in [14]
with Θ ∶= M either conditionally on Lemma F.1 with noise N ∶= Ẽ and ζ2 ∶= 2/λ0 when
λ0 ≥ 16 log(5nd/δ) or with noise N ∶= E and ζ2 ∶= 5 when λ0 ≤ 16 log(5nd/δ).

Secondly, remark that if λ0 ≥ 1, it holds that v̂− = v̂ and that Condition (16) on ŵ is
automatically satisfied, so that step 2 and step 4 can be removed from the proof in that case.
For Step 3 and 5, we do the following adjustments:

If λ0 ∈ [1,16 log(5nd/δ)], the proof remains unchanged except that we use that the coeffi-
cients of E are 5-subGaussian -see (81).

If λ0 ≥ 16 log(5nd/δ), we work conditionnally on the event of Lemma F.1 and we replace λ1
by 1 and E by Ẽ. The subgaussian concentration bound on Ẽ (84) allows us to replace λ0 by
1
λ0

in the equations from (64) to (69).

Appendix G: Proof of Corollaries 2.4 and 2.5

Proof of Corollary 2.4. Assume that π∗ = id for simplicity. Let Piso be the projector on the

set of isotonic matrices, and E′ = Y (2)
π̂−1
−Mπ̂−1 so that M̂iso = Piso(Mπ̂−1 +E′). Remark that the

loss can be decomposed as

∥(M̂iso)π̂ −M∥2F = ∥PisoMπ̂−1 −PisoM +Piso(M +E′) −M +M −Mπ̂−1∥2F .

Using the non-expansiveness of Piso and the triangular inequality as in the proof of proposition
3.3 of [10], we deduce that

∥M̂iso −M∥2F ≤ 4∥Mπ̂−1 −M∥2F + 2∥Piso(M +E′) −M∥2F . (86)
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Since the projection of M +E′ on isotonic matrices is equal to the columnwise projection on
isotonic vectors, it holds that supM∈Ciso(n,d)E∥Piso(M +E′)−M∥2F = d supM∈C(n,1)E∥Piso(M⋅1+
E′⋅1)−M⋅1∥2F , where we also use the notation Piso for the projector on isotonic vectors. The rate
of estimation in L2 norm of an isotonic vector with bounded total variation partial observation
can be found in [24], with V ∶= 1 and σ2 ∶= 1/λ. Hence, we obtain that supM∈C(n,1)E∥Piso(M⋅1+
E′⋅1) −M⋅1∥2F ≤ C1n

1/3/λ2/3. Upper bounding the first term in (86) with a quantity of order
ρperm ≤ 2ρreco by Theorem 2.2 concludes the proof.

Proof of Corollary 2.5. We follow the same steps as in Corollary 2.4. Assume that π∗ = η∗ = id,

E′ = Y (3)
π̂−1η̂−1

−M , and let Pbiso be the projector on bi-isotonic matrices. We have that

∥(M̂biso)π̂η̂ −M∥2F ≤ 4∥Mπ̂−1 η̂−1 −M∥2F + 2∥Pbiso(M +E′) −M∥2F . (87)

M is isotonic in both directions so that we can apply Theorem 2.2 in rows and columns. After
the first two steps of the above procedure, we obtain two estimator π̂, η̂ that satisfy

sup
π∗,η∗∈Πn

M ∶M
π∗−1η∗−1∈Cbiso

E [∥Mπ̂−1η̂−1 −Mπ∗−1η∗−1∥2F ] ≤ C ′′ logC′′(n)n7/6λ−5/6 . (88)

The second term of (87) is the risk of a bi-isotonic regression by least square, and is smaller
than n/λ ≤ n7/6λ−5/6 - see e.g. [10].

Appendix H: Proof of the minimax lower bound

Proof of Theorem 2.1. Since ρperm(n,d,λ) is nondecreasing with n and d, we can assume with-
out loss of generality that both n and d express as a power of 2.

The following proof is strongly related to the proof of Theorem 4.1 in [14]. While a worst case
distribution is defined on the set of matrices that have nondecreasing rows and nondecreasing
columns in [14], we aim here at defining a worst case distribution on matrices only have
nondecreasing columns. Since the isotonic model is less constrained than the bi-isotonic model
studied in [14], the permutation estimation problem is statistically harder, and the lower bound
has a greater order of magnitude.

As in [14], the general idea is first to build a collection of prior νG indexed by some G ∈ G
on M , then to reduce the problem to smaller problems and finally to specify the prior in
function of the regime in n,d and λ. By assumption, the data yt is distributed as a normal
random variable with mean Mxt and variance 1, conditionally on M and xt. We write as in

[14] P
(full)
G

and E
(full)
G

the corresponding marginal probability distributions and expectations
on the data (xt, yt). Our starting point is the fact that the minimax risk (4) is higher than
the worst Bayesian risk:

R∗perm(n,d,λ) ≥ inf
π̂

sup
G∈G

Efull

G
[∥Mπ̂−1 −Mπ∗−1∥2F ] . (89)

Step 1: Construction of the prior distribution on M

Let p ∈ {2, . . . , n} and q ∈ [d] be two powers of 2 to be fixed later, and G
(ι) ∶= [(ι−1)p+1, ιp],

for ι ∈ {1, . . . , n/p}. The general idea is to build a simple prior distribution on isotonic matrices

in R
G
(ι)
×d, and to derive a prior distribution on isotonic matrices in R

n×d by combining n/p
independent simple prior distributions defined on each strip R

G
(ι)
×d.
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Let w ∈ Rn be a vector that is constant on each group G
(ι)
= [(ι − 1)p + 1, ιp] and that has

linearly nondecreasing steps:

wi = ⌊ i
p
⌋ p
4n
∈ [0,1/4] . (90)

Letting 1[d] be constant equal to 1 in R
d, we define

M = w1T[d] + υ√
pλ
B(full) , (91)

where the random matrix B(full) ∈ {0,1}n×d is defined as in [14]. We recall the definition of its
distribution in what follows for the sake of completeness.

Consider a collection G of subsets of [p] with size p/2 that are well-separated in symmetric
difference as defined by the following lemma.

Lemma H.1. There exists a numerical constant c0 such that the following holds for any even
integer p. There exists a collection G of subsets of [p] with size p/2 which satisfies log(∣G∣) ≥ c0∣p∣
and whose elements are p/4-separated, that is ∣G1∆G2∣ ≥ p/4 for any G1 ≠ G2.

The above result is stated as is in [14] and is a consequence of Varshamov-Gilbert’s lemma
- see e.g. [22].

For each ι ∈ [n/p], we fix a subset G(ι) from G, and its translation Gt(ι) = {(ι − 1)p + x ∶
x ∈ G(ι)} ⊂ G(ι). The experts of Gt(ι) will correspond the p/2 experts in G

(ι)
that are above

the p/2 experts in G
(ι) ∖ Gt(ι). We write G = (Gt(1), . . . ,Gt(n/p)) and G the corresponding

collection of all possible G. Given any such G, we shall define a distribution νG of B(full),
and equivalently of M by (91).

For ι ∈ [n/p], we sample uniformly a subset Q(ι) of q questions among the d columns. In
each of these q columns, the corresponding rows of B(full) are equal to one. More formally, we
have

B(full) =
n/p∑
ι=1

1Gt(ι)1Q(ι) . (92)

As mentioned above, the definition of B(full) is the same as in [14], if d̃ is set to be equal
to d. They define a block constant constant matrix when d̃ < d to get an appropriate prior
distribution for bi-isotonic matrices, but we do not need to do that here since we do not put
any constraint on the rows of M .

The matrix M defined in (92) is isotonic up to a permutation of its rows and has coefficients
in [0,1], if the following inequality is satisfied.

υ√
pλ
≤
p

8n
. (93)

This constraint is strictly weaker than its counterpart (149) in [14], and this is precisely what
makes the lower bound in the isotonic setting larger than the lower bound in the bi-isotonic
setting of [14]. Our purpose will be to wisely choose parameters p, q and υ > 0 to maximize
the Bayesian risk (89) with νG.

Step 2: Problem Reduction

In what follows, we use the same reduction arguments as in [14]. Using the notation of [14],

we write P
(full)
G

and E
(full)
G

for the probability distribution and corresponding expectation of
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the data (xt, yt), when M is sampled according to νG. Since the distribution of the rows of M

in G
t(ι)

only depend on Gt(ι), we write νGt(ι) for the distribution of these rows. We also write

P
(full)
Gt(ι) and E

(full)
Gt(ι) for the corresponding marginal distribution and corresponding expectation

of the observations (xt, yt) such that (xt)1 ∈ Gt(ι)
. By the poissonization trick, the distribution

P
(full)
G

is a product measure of P
(full)
Gt(ι) for ι = 1, . . . , n/p.

Let π̃ be any estimator of π∗. Let us provide more details than [14] to prove that π̃ can

be modified into an estimator π̂ satisfying π̂(G(ι)) = G(ι) for all ι = 1, . . . , n/p, and reducing
the loss ∥Mπ̂−1 −Mπ∗−1∥2F ≤ ∥Mπ̃−1 −Mπ∗−1∥2F almost surely, for all possible prior νG. For that
purpose, we introduce

N(π) = n/p∑
ι=1
∑

i∈G
(ι)

1{i /∈ G(ι)} .
If N(π̃) > 0, then there exists ι0 and i0 ∈ G

(ι0)
such that π̃(i0) ∈ G(ι1) with ι1 ≠ ι0. Then,

π̃ being a permutation, we consider its associated cycle containing i0, which we denote by(i1, . . . , iK). Let (i′1, i′2, . . . , i′L) be the elements of this cycle such that π̃(i′l) /∈ G(ιl), where ιl

satisfies i′l ∈ G
(ιl)

. Then it holds that for any l = 1, . . . ,L − 1, π̃(i′l) ∈ G(ιl+1), and π̃(i′L) ∈ G(ι1).
We now define π̃′(i) = π̃(i) for all i, except on the cycle (i′1, . . . , i′L) where we set π̃′(i′l) =
π̃(i′l−1). Then, we easily check that N(π̃′) = N(π̃) − L < N(π̃), and that ∥Mπ̃′−1 −Mπ∗−1∥2F ≤∥Mπ̃−1 −Mπ∗−1∥2F if condition (93) is satisfied.

We can therefore restrict ourselves to estimators π̂ such that π̂(G(ι)) = G(ι) for all ι. There
is however still another catch to obtain the same lines as in [14]. Indeed, the restriction π̂(ι)

of π̂ to G
(ι)

is measurable with respect to the observation Y , but not necessarily to Y (G(ι)).
Still, this restriction can be writen as π̂(ι) = π̂(ι)(Y (G(ι)), Y ([n] ∖G(ι))), and, for any α > 0,
there exists y∗(ι)(α) such that

E
(full)
G

[∥Mπ̂(ι)−1 −Mπ∗−1∥2F ] ≥ E(full)G
[∥Mπ̄(ι)−1(α) −Mπ∗−1∥2F ] −α ,

where π̄(ι) ∶= π̂(ι)(Y (G(ι)), y∗(ι)(α)) is measurable with respect to Y (G(ι)). Since it is possible
such a stable estimator for any α > 0, we finally obtain the inequality

R∗perm(n,d,λ) ≥ inf
π̂∶ π̂(G(ι))=G(ι)

sup
G∈G

n/p∑
ι=1

E
(full)
G

[∥(Mπ̂−1 −Mπ∗−1)G(ι)∥2F ]
≥

n/p∑
ι=1

inf
π̂(ι)

sup
Gt(ι)

E
(full)
Gt(ι) [∥(Mπ̂(ι)−1 −Mπ∗−1)G(ι)∥2F ] .

The problem of estimating the permutation π∗ is now broken down into the n/p smaller

problems of estimating the subsets Gt(ι) ⊂ G
(ι)

. The square Euclidean distance between to

experts in G
(ι)

of experts is 0 is they are both either in or not in Gt(ι) and it is equal to qυ2

pλ

otherwise. Let us focus on the easier problem of estimating the subsets Gt(ι) and define Ĝt(ι)

the set of the p/2 experts that are ranked above according π̂(ι). Then, we have that

∥(Mπ̂(ι)−1 −Mπ∗−1)G(ι)∥2F = qυ
2

pλ
∣Ĝ(ι)∆Gt(ι)∣ ≥ qυ2

4λ
1{Ĝ(ι) ≠ Gt(ι)} ,

where the last inequality comes from the construction of the sets Gt(ι) by Lemma H.1. Hence,
we deduce that



Pilliat et al./Optimal ranking 42

R∗perm(n,d,λ) ≥ qυ2
4λ

n/p∑
ι=1

inf
π̂(ι)

sup
Gt(ι)

P
(full)
Gt(ι) [Ĝ(ι) ≠ Gt(ι)] , (94)

so that by symmetry,

R∗perm(n,d,λ) ≥ nqυ2
4pλ

inf
Ĝ(1)

sup
Gt(1)

P
(full)
Gt(1) [Ĝ(1) ≠ Gt(1)] .

Consider the p × d matrices N and Y ↓ defined by

Nik =∑
t

1xt=(i,k) ; Y ↓
ik
=∑

t

1xt=(i,k)(yt −wi) ,
where w is defined in (90). To simplify the notation, we write henceforth G and Ĝ for Gt(1)

and Ĝ(1) respectively. Letting PG for the corresponding marginal distribution of N and Y ↓,
the same sufficiency argument as in [14] gives that

inf
Ĝ

sup
G

P
(full)
G

[Ĝ ≠ G] = inf
Ĝ

sup
G

PG [Ĝ ≠ G] .
We finally obtain the following inequality:

R∗perm(n,d,λ) ≥ nqυ2
4pλ

inf
Ĝ

sup
G

PG [Ĝ ≠ G] . (95)

Let P0 be the distribution on N and Y ↓ corresponding to the case υ = 0. The entries of N
of are independent and follow a poisson distribution of parameter λ. Conditionally to Nik, we
have Y ↓

ik
is a gaussian variable with mean 0 and variance Nik. Then, we deduce from Fano’s

inequality [22] that

inf
Ĝ

sup
G∈G

PG(Ĝ ≠ G) ≥ 1 − 1 +maxG∈G KL(PG∣∣P0)
log(∣G∣) , (96)

where KL(.∣∣.) stands for the Kullback-Leibler divergence. The following lemma gives an upper
bound of these Kullback-Leibler divergences. It can be found in [14], with the slightly stronger
assumption that pλ ≥ 1.

Lemma H.2 (Lemma J.2 of [14]). There exists a numerical constant c1 such that the following
holds true. If υ2 ≤ 1 ∧ pλ, then for any G ∈ G, we have

KL(PG∣∣P0) ≤ c1υ2q2
d

.

The proof of Lemma H.2 can be found in [14], with ñ ∶= p and d̃ = d. The slighlty stronger
assumption that pλ ≥ 1 made in Lemma J.2 in [14] is in fact not necessary. Indeed, it is only

used to prove that I ∶= λp(eυ2/(λp) − 1) ≤ c′1υ2 in the proof of Lemma J.2 in [14], and this
inequality remains valid under the assumption of Lemma H.2, that is u2 ∶= υ2/(λp) ≤ 1.

Step 3: Choice of suitable parameters p, q and υ

By combining (95), (96), with Lemma H.2 and the different constraints on the parameters
(93), we directly obtain the following proposition.
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Proposition H.3. There exists a numerical constant c such that if p ∈ {2, . . . , n}, q ∈ {1, . . . , d}
are dyadic integers, and υ satisfy the following condition:

υ ≤ c[1 ∧√pλ ∧ √pd
q
∧√λp3/2

n
] , (97)

then we have

R∗perm(n,d,λ) ≥ cnqυ2pλ
. (98)

The above proposition being a direct consequence of what preceeds it, we consider that it
does not require a proof. Let us now apply Proposition H.3 for different parameters p, q and
υ to conclude the proof of Theorem 2.1.

First, using the lower bound in the bi-isotonic case – see Theorem 4.1 of [14], we have for
some constant c′ that

R∗perm(n,d,λ) ≥ c′(n/λ ∧ nd) . (99)

In what follows, we write ⌊x⌋dya for the greatest integer that is a power of two and smaller
than x. Let us consider the following inequality:

λ ≥ 1/d ∨ n2/d3 . (100)

In the case where (100) is not satisfied, then n
√
d/λ ∧ n2/3√dλ−5/6 ≤ n/λ ∧ nd and the lower

bound of Theorem 2.1 is proven by (99).
We subsequently assume that (100) is satisfied.

Case 1: λn ≤ 1. In this case, we choose q = ⌊√ d
λ
⌋
dya

and p = n/2. We have that q ∈ {1, . . . , d}
since λ ≤ 1 in that case and by assumption (100), λ ≥ 1/d. We deduce from Proposition H.3
applied with v/c =√pλ =√pd/q that

R∗perm(n,d,λ) ≥ c′′n√ d
λ
.

Case 2: λ ∈ [ 1
n
,8n2]. In this case, we choose q = ⌊n1/3

√
d

λ1/6 ⌋
dya

and p = ⌊n2/3

λ1/3 ⌋
dya

. We deduce

from (100) that q ≤ d. Since λ ∈ [ 1
n
,8n2], we also necessarily have that that q ≥ 1, p ≥ 2 and

p ≤ n. Applying the above proposition with υ/c = 1 =√pd/q =√λp3/2/n, we deduce that

R∗perm(n,d,λ) ≥ c′′ n2/3
√
d

λ5/6 .

Case 3: λ ≥ 8n2. When λ satisfies this condition that is out of the scope of Theorem 2.1 but
discussed below Theorem 2.1, we choose q = ⌊√d⌋

dya
and p = 2. Applying the above proposition

with υ/c = 1, we deduce that

R∗perm(n,d,λ) ≥ c′′ n√d
λ

.

We have proved that for any n,d and λ, we have the lower bound

R∗perm(n,d,λ) ≥ c′′ [n√ d
λ
∧ n2/3

√
d

λ5/6 ∧ n
√
d

λ
+ n/λ] ∧ nd .

This concludes in particular the proof of Theorem 2.1, stated for λ ∈ [1/d,8n2].
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Appendix I: Proof of Proposition 4.1

Let us introduce Pk = Λ(X⋅kXT
⋅k − E[X⋅kXT

⋅k])Λ ∈ Rp×p, so that

Λ(XXT −E[XXT ])Λ = q∑
k=1

Pk . (101)

Lemma I.1. There exists a numerical constant κ′′′3 such that for any
x ∈ [0, (κ′′′3 (σ2rΛ +K2 log(q)))−1], we have

∥E[exPk]∥op ≤ exp(κ′′′3 x2(σ2 + σ4p)) + 1

q
.

Moreover, applying the Matrix Chernoff techniques for the independent matrices Pk (see
lemma 6.12 and 6.13 of [23]), we have for any t > 0 that

log(P(∥ q∑
k=1

Pk∥op ≥ t)) ≤ log(tr [E[ex∑q

k=1
Pk]]) − xt

≤ log (tr [exp( q∑
k=1

log(E[exPk ]))]) − xt
≤ log(p) + q∑

k=1

∥ log(E[exPk])∥op − xt
= log(p) + q∑

k=1

log(∥E[exPk ]∥op) − xt .

Applying Lemma I.1, it holds for any x ∈ [0, (κ′′′3 (σ2rΛ +K2 log(q)))−1] that

q∑
k=1

log(∥E[exPk ]∥op) ≤ q log (exp (κ′′′3 x2(σ2 + σ4p)) + 1

q
)

≤ κ′′′3 x
2(σ2q + σ4pq) + 1 .

where in the last inequality we used the fact that for any a ≥ 1 and u > 0, log(a + u) ≤
log(a) + u/a.

Hence we obtain

log(P(∥ q∑
k=1

Pk∥op ≥ t)) ≤ log(ep) + κ′′′3 x2(σ2q + σ4pq) − xt .
Hence if t ≤ 2

σ2q+σ4pq
σ2rΛ+K2 log(q) , we choose x = t

2κ′′′
3
(σ2q+σ4pq) and if t > 2

σ2q+σ4pq
σ2rΛ+K2 log(q) we choose

x = 1
κ′′′3 (σ2rΛ+K2 log(q)) , which gives

P(∥ q∑
k=1

Pk∥op ≥ t) ≤ epmax [exp(− 1

κ3
( t2

4(σ2q + σ4pq) ∨ t

2(σ2rΛ +K2 log(q))))] .

We deduce that with probability at least 1 − δ, it holds that

∥ q∑
k=1

Pk∥op ≤ κ [√(σ4pq + σ2q) log(p/δ′′) + (σ2rΛ +K2 log(q)) log(p/δ′′)] ,

for some numerical constant κ.
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Proof of Lemma I.1. Since ∥ΛX⋅kXT
⋅kΛ∥op = ∥ΛX⋅k∥22, we state the following lemma controlling

the moment generating function of the L2 norm of the projection ΛX⋅k:

Lemma I.2. There exists a numerical constant κ′′′0 such that for any x ≤ 1
κ′′′
0
K2 we have

E[ex∥ΛX⋅k∥22] ≤ eκ′′′0 σ2rΛx .

Now we define the event ξop ∶= {maxk=1,...,d ∥ΛX⋅k∥22 ≤ κ′′′0 (σ2rΛ +K2 log(q3))}, where κ′′′0
is the numerical constant given by Lemma I.2. Applying the same lemma together with the
Chernoff bound, a union bound over all k = 1 . . . d gives

P(ξcop) ≤ 1
q2

.

We consider in what follows the relation order ⪯ induced by the cone of nonegative symetric
matrices S

+
n, namely X ′ ⪯ X ′′ if and only if X ′′ −X ′ ∈ S+n. Under the event ξop, it holds that

for any u ≥ 2,

Pu
k ⪯ ∥Pk∥u−2op P2

k

⪯ ∥Λ(XT
⋅kX⋅k − E[XT

⋅kX⋅k])Λ∥u−2op P2
k

⪯ (κ′′′1 (σ2rΛ +K2 log(q)))u−2P2
k ,

for some numerical constant κ′′′1 (depending on κ′′′0 ). In the third inequality we used the
definition of ξop the fact that E[∥ΛX⋅k∥22] ≤ κ′′′0 σ2rΛ.

We now give an upper bound of ∥E[P2
k]∥op, which is the operator norm of the variance of Pk

as defined in section 6 in [23]. Remark that since any matrix U ∈ Rq×q satisfies UΛUT ⪯ UUT ,
we have that Pk ⪯ Λ(XT

⋅kX⋅k − E[XT
⋅kX⋅k])2Λ.

Let us compute the expectation of (XT
⋅kX⋅k − E[XT

⋅kX⋅k])2:
E[(XT

⋅kX⋅k − E[XT
⋅kX⋅k])2]ij =∑

l∈P

E[(XikXlk − E[XikXlk])(XlkXjk −E[XlkXjk])] .
The off diagonal terms are zero, and the ith diagonal element satisfies:

E[(XT
⋅kX⋅k −E[XT

⋅kX⋅k])2]ii = E[(X2
ik −E[X2

ik])2] +∑
j≠i

E[X2
ik]E[X2

jk] . (102)

By assumption (24), the first term of (102) satisfies

E[(X2
ik −E[X2

ik])2] ≤ 4E[(X4
ik)] ≤ 48σ2K2 .

The second term of (102) is smaller than σ4p, still by assumption (24). Hence we have some
numerical constant κ′′′2 that

∥E[P2
k]∥op ≤ ∥E[(X2

ik −E[X2
ik])2]∥op ≤ κ′′′2 (σ2 + σ4p) .

Now, by the definition of the exponential of matrices, the triangular inequality and the fact
that Pk is centered, we have

∥E[exp(xPk)]∥op = 1 + ∑
u≥2

xu

u!
∥E[Pu

k1ξop]∥op + ∑
u≥2

xu

u!
∥E[Pu

k1ξcop]∥op . (103)

By definition of ξop together with the upper bound of the variance of P2
k1ξop ⪯ P

2
k, it holds

for any x ∈ [0, (κ′′′1 (σ2rΛ +K2 log(q)))−1] that
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∑
u≥2

xu∥E[Pu
k1ξop]∥op ≤ x2∥E[P2

k]∥op∑
u≥2

xu−2

u!
(κ′′′1 (σ2rΛ +K2 log(q)))u−2

≤ x2κ′′′2 (σ2 + σ4p)∑
u≥0

xu(u + 2)!(κ′′′1 (σ2rΛ +K2 log(q)))u
≤ exp(κ′′′3 x2(σ2 + σ4p)) − 1 ,

for some numerical constant κ′′′3 . We now control the second term of (103) under the comple-
mentary event ξop, for any x ∈ [0, (2κ′′′0 (σ2rΛ +K2 log(q)))−1]:

∑
u≥2

xu

u!
∥E[Pu

k1ξcop] ≤ E[exp(x∥Pk∥op1ξcop]]
(a)
≤

√
1

q2

√
E[exp(2x∥Pk∥op)]

(b)
≤

1

q
exp(xκ′′′0 σ2rΛ)

≤
1

q
,

where in (a) we used the cauchy-schwarz inequality for real random variables and in (b) we
applied Lemma I.2.

Proof of Lemma I.2. We use the result of [2] which is a generalization of the Hanson-Wright
inequality to random variables with coefficients with bernstein’s moments.

[Assumption 1 of [2]] is satisfied with parameters σ2 and K, and we have the following upper
bound on the moment generating function of the quadratic form ∥ΛXT

⋅k∥22 = ∣X⋅kΛXT
⋅k ∣:

E[ex∥ΛXT
⋅k
∥22] ≤ exE[∥ΛXT

⋅k
∥22]eκ

′′′

0 x2K2σ2∥Λ∥2
F ≤ eκ

′′′

1 xσ2rΛ , (104)

for any x satisfying condition (6) of [2], that is 128x∥Λ∥opK2 ≤ 1. For the last inequality, we
used the fact that ∥Λ∥2F = rank(Λ). We obtain the result by choosing κ′′′2 = κ

′′′
1 ∨ 128.
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