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A new category of critical point symmetries is introduced. It is suggested that an element of this category, associated with zeros of conformable fractional Bessel functions, be utilized to describe spectra of nuclei around the 𝐸(5) critical point. The exact eigenvalue and eigenfunction solutions of local fractional Bohr-Mottelson Hamiltonian (with infinite square well potential) are obtained. The evolution of the spectra of the fractional 𝐸(5) critical point in correspondence with the fractional derivative order is investigated. Using the fractional 𝐸(5) critical point, a satisfactory description of the energy levels is obtained in the 102 Pd and 104 Ru nuclei.

Introduction

In nuclear structure, critical point symmetries (CPSs) are still one of the hot topics in this field since the CPSs give freeparameter predictions about the structural properties of nuclei in the transitional regions. The typical CPSs include, for instance, the 𝐸(5) [1], 𝑋(5) [2], 𝑌(5) [3], 𝑍(5) [4], 𝑋(3) [5], 𝑇(5) [6], and 𝐸(5/4) [7], which have been widely confirmed in the experiment. Generally, these CPSs come exactly or approximately from the Bohr-Mottelson Hamiltonian (BMH) with suitable βand γ-potentials based on the physical situations studied.

The CPS of the phase transition between the 𝔲(5) and 𝔳(6) dynamic symmetries defines the 𝐸(5) CPS, and it was experimentally identified for the first time in 134 Ba [8]. It was found that there are many nuclei in the transitional region with the 𝐸(5) CPS, such as 102 Pd, 104 Ru, 106 Mo, 106 Cd, 108 Cd, 124 Te, and 128 Xe [9][10][11][12][13][14][15][16][17][18]. In the 𝐸(5) case, the potential was supposed to depend only on the collective variable 𝛽 and not on 𝛾. Then exact separation of variables was achieved, and the equation containing 𝛽 can be solved exactly for an infinite square well potential in 𝛽, the eigenfunctions being Bessel functions of the first kind. In the classical 𝐸(5) CPS, the predictions for nuclear spectra (normalized to the excitation energy of the first excited state) do not contain any free parameters, thus providing a valuable benchmark for nuclei in this critical region. A question that indeed arises is: Are there other more flexible models (provide exact solutions) that can closely reproduce the properties of the 𝐸(5) CPS (with infinite square well potential) that depend on very few parameters and at the same time present new features? The fractional calculus is a strong candidate. The applications of fractional differential equations increasingly get more attention nowadays in all branches of physics. It is regarded as a powerful tool for modeling a lot of physical phenomena.

Various definitions have been introduced for the fractional derivative. Popular definitions are Riemann-Liouville, Caputo, Grunwald-Letnikov, and Riesz definitions [START_REF] Miller | An Introduction to Fractional Calculus and Fractional Differential Equations[END_REF][START_REF] Podlubny | Fractional Differential Equations[END_REF]. These definitions, which are widely used in non-integer calculus literature, are defined globally utilizing fractional integral. Therefore, the fractional derivative operators behave as a non-local operator and do not satisfy familiar classical properties of standard (integer) derivatives such as chain, product, and quotient rules which allow us to achieve analytical solutions in the standard calculus. Since these basic rules cannot be used, algebraic operations in non-integer calculus have many difficulties and inconvenience in the mathematical handle. In 2014, a new definition of fractional derivative, namely conformable fractional derivative, which obeys basic classical properties and allows us to obtain analytical solutions of fractional order differential equations, have been introduced by Khalil et al. [START_REF] Khalil | [END_REF]. With such significant improvements, the conformable fractional derivative has soon appealed significant interest by the researchers in recent years, and many valuable new findings have been presented [22][23][24]. With the new formulation of conformable fractional derivative, many important differential equations have been redefined.

The present letter provides the first systematic application of the conformable fractional calculus in nuclear structure. The local fractional Bessel equation is used to describe the structural properties of nuclei around CPS 𝐸(5) using the conformable fractional derivative operator. Hence, the new class of transitional symmetry at and around the 𝐸(5) CPS is introduced. The theoretically obtained energy levels are in good agreement with the corresponding experimental data and point out the fractional 𝐸(5) CPS manifesting in the 102 Pd and 104 Ru nuclei.

In section 2 of the present letter, the classical 𝐸(5) CPS is briefly presented. In section 3, we introduce the conformable fractional 𝐸(5) CPS, and the evolution of the energy spectra and wave functions are given as a function of the fractional derivative order. In section 4, our results are summarized.

Classical E(5) critical point

Consider the BMH 𝐻 = - ℏ 2 2𝐵 [ 1 𝛽 4 𝜕 𝜕𝛽 𝛽 4 𝜕 𝜕𝛽 + 1 𝛽 2 𝑠𝑖𝑛 3𝛾 𝜕 𝜕𝛾 𝑠𝑖𝑛 3𝛾 𝜕 𝜕𝛾 - 1 4𝛽 2 ∑ 𝑄 𝜅 2 𝑠𝑖𝑛 2 (𝛾 -2𝜋𝜅/3) 𝜅=1,2,3 ] + 𝑉(𝛽, 𝛾), (1) 
where 𝐵 is the mass parameter, the two intrinsic variables 𝛽, 𝛾 are the collective coordinates, and 𝑄 𝑘 are the components of angular momentum. In the case of the potential depends only on 𝛽, i.e., 𝑉(𝛽, 𝛾) = 𝑈(𝛽), by writing Ψ(𝛽, 𝛾, 𝜃 𝑖 ) = 𝑓(𝛽)Φ(𝛾, 𝜃 𝑖 ),

(2) where 𝜃 𝑖 (𝑖 = 1,2,3) are the three Euler angles, one can separate variables in the standard way

[- 1 sin 3𝛾 𝜕 𝜕𝛾 sin 3𝛾 𝜕 𝜕𝛾 + 1 4 ∑ 𝑄 𝜅 2 sin 2 (𝛾 -2𝜋𝜅/3) 𝜅 ] Φ(𝛾, 𝜃 𝑖 ) = ΛΦ(𝛾, 𝜃 𝑖 ), Λ = 𝜏(𝜏 + 3), (3.1) 
[- ℏ 2 2𝐵 ( 1 𝛽 4 𝜕 𝜕𝛽 𝛽 4 𝜕 𝜕𝛽 - Λ 𝛽 2 ) + 𝑈(𝛽)] 𝑓(𝛽) = 𝐸𝑓(𝛽), (3.2) 
where 𝜏 = 0,1,2, ... is the quantum number characterizing the irreducible representations of 𝑆𝑂 (5). Using the reduced energies and potentials, 𝜀 = 2𝐵 ℏ 2 𝐸, 𝑢 = 2𝐵 ℏ 2 𝑈, one can simplify the radial equation in the 𝛽 variable as

[- 1 𝛽 4 𝜕 𝜕𝛽 𝛽 4 𝜕 𝜕𝛽 + Λ 𝛽 2 + 𝑢(𝛽)] 𝑓(𝛽) = 𝜀𝑓(𝛽). (4) 
Assuming 𝜑(𝛽) = 𝛽 3/2 𝑓(𝛽), leading to

𝜑 ′′ (𝛽) + 𝜑 ′ (𝛽) 𝛽 + {𝜀 -𝑢(𝛽) - (τ + 3/2) 2 𝛽 2 } 𝜑(𝛽) = 0. (5) 
Consider the case in which the potential 𝑢(𝛽) is a 5-D infinite well

𝑢(𝛽) = { 0 ∞ 𝛽 ≤ 𝛽 𝑤 , 𝛽 > 𝛽 𝑤 . (6) 
This problem is exactly solvable. In this case, ( 5) is transformed into the Bessel equation with 𝜈 = 𝜏 + 3/2.

𝜑 ′′ (𝑧) + 𝜑 ′ (𝑧) 𝑧 + {1 - (𝜏 + 3/2) 2 𝑧 2 } 𝜑(𝑧) = 0, 𝑧 = 𝛽𝑘, (7) 
with 𝑘 = 𝜀 1/2 . The eigenvalues are determined by the boundary condition 𝜑(𝛽 𝑤 ) = 0. We have

𝐸 𝜉,𝜏 = ℏ 2 2𝐵 𝑘 𝜉,𝜏 2 , 𝑘 𝜉,𝜏 = 𝑥 𝜉,𝜏 𝛽 𝑤 , (8) 
where 𝑥 𝜉,𝜏 is the 𝜉th zero of the 𝐽 𝜏+3/2 (𝑧) and the eigenfunctions 𝜑 𝜉,𝜏 (𝛽) = 𝑐 𝜉,𝜏 𝐽 𝜏+3/2 (𝑘 𝜉,𝜏 𝛽), (9.1) 𝑓 𝜉,𝜏 (𝛽) = 𝑐 𝜉,𝜏 𝛽 -3/2 𝐽 𝜏+3/2 (𝑘 𝜉,𝜏 𝛽).

(9.

2)

The normalization constants 𝑐 𝜉,𝜏 can be determined by using the condition ∫ 𝛽 4 𝑑𝛽𝑓 2 (𝛽)

∞ 0 = 1. The values of angular momentum 𝐿 contained in each irreducible representation of 𝑆𝑂(5) (i.e., for each value of 𝜏) are determined by the algorithm 𝜏 = 3𝜈 𝛥 + 𝜆, where 𝜈 𝛥 = 0,1, … is the missing quantum number in the reduction 𝑆𝑂(5) ⊃ 𝑆𝑂(3), and 𝐿 = 𝜆, 𝜆 + 1, . . . ,2𝜆 -2,2𝜆 (with 2𝜆 -1 missing).

Conformable Fractional 𝑬(𝟓) Critical Point

To introduce the conformable fractional 𝐸(5) CPS, the first step is to generalize equation ( 7) by replacing the classical derivatives with appropriate fractional derivatives. For physical problems with well-definable initial conditions, the conformable fractional derivative is the most natural fractional-order derivative, which provides the chain, product, and quotient rules and allows us to achieve analytical solutions of fractional differential equations. Let 𝑓: [𝑎, ∞) → ℝ be a function, then the left conformable fractional derivative of order 𝛼 is defined by

(𝐷 𝑎 𝛼 𝑓)(𝑥) = lim 𝜀→0 𝑓(𝑥 + 𝜀(𝑥 -𝑎) 1-𝛼 ) -𝑓(𝑥) 𝜀 , (10) 
for all 𝑥 > 𝑎, 𝛼 ∈ (0,1]. When 𝑎 = 0, it is written as 𝐷 𝛼 . The definition has given in (10) which is reduced to the classical definition of the first derivative for 𝛼 = 1, yields the following properties;

(1) 𝐷 𝛼 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝐷 𝛼 𝑓 + 𝑏𝐷 𝛼 𝑔, for all 𝑎, 𝑏 ∈ ℝ and 𝑓, 𝑔 be 𝛼-differentiable at a point 𝑥 > 0 (2) 𝐷 𝛼 𝑥 𝑝 = 𝑝𝑥 𝑝-𝛼 , for all 𝑝 ∈ ℝ (3) 𝐷 𝛼 𝜆 = 0, for all constant functions 𝑓(𝑥) = 𝜆 (4) 𝐷 𝛼 (𝑓𝑔) = 𝑓𝐷 𝛼 (𝑔) + 𝑔𝐷 𝛼 (𝑓) (5) 𝐷 𝛼 (𝑓/𝑔) = [𝑔𝐷 𝛼 (𝑓) -𝑓𝐷 𝛼 (𝑔)]/𝑔 2 The conformable fractional Bessel functions gradually approach the classical Bessel function results smoothly.

The basic equation of the 𝐸(5) model, (7), can be rewritten in fractional form by changing the orders of differentiations from integer to non-integer ones. Besides, the polynomial coefficients are replaced by their non-integer order functional form. This transformation is based on a strategy, which is given as a two-step procedure; Derive a rule which is valid for all 𝑛 ∈ ℕ, Replace 𝑛 by 𝛼. Using this strategy, the conformable fractional Bessel equation becomes 𝑧 2𝛼 𝐷 𝛼 𝐷 𝛼 𝜑(𝑧) + 𝛼𝑧 𝛼 𝐷 𝛼 𝜑(𝑧) + 𝛼 2 (𝑧 2𝛼 -𝑝 2 )𝜑(𝑧) = 0, (11) where 0 < 𝛼 ≤ 1 and 𝑝 = 𝜏 + 3/2. If 𝛼 = 1, then (11) will be reduced to the classical Bessel equation. 𝑧 = 0 is a 𝛼-regular singular point. In this case, for 𝑧 > 0, we seek the solution of ( 11) by a fractional Frobenius series as:

𝜑(𝑧) = 𝑧 𝑟𝛼 ∑ 𝑐 𝑛 𝑧 𝑛𝛼 ∞ 𝑛=0 . ( 12 
)
Substituting this power series into (11), we get

(𝑟(𝑟 -1)𝛼 2 + 𝑟𝛼 2 -𝛼 2 𝑝 2 )𝑐 0 𝑧 𝑟𝛼 + (𝑟(𝑟 + 1)𝛼 2 + (𝑟 + 1)𝛼 2 -𝛼 2 𝑝 2 )𝑐 1 𝑧 (𝑟+1)𝛼 + ∑([𝛼 2 (𝑛 + 𝑟)(𝑛 + 𝑟 -1) + (𝑛 + 𝑟)𝛼 2 -𝛼 2 𝑝 2 ]𝑐 𝑛 + 𝛼 2 𝑐 𝑛-2 )𝑧 (𝑛+𝑟)𝛼 ∞ 𝑛=0 = 0. (13) 
Assuming 𝐼(𝑟) = 𝑟(𝑟 -1)𝛼 2 + 𝑟𝛼 2 -𝛼 2 𝑝 2 , (14) equation ( 13) can be rewritten as follow:

𝐼(𝑟)𝑐 0 𝑧 𝑟𝛼 + 𝐼(𝑟 + 1)𝑐 1 𝑧 (𝑟+1)𝛼 + ∑[𝐼(𝑟 + 𝑛)𝑐 𝑛 + 𝛼 2 𝑐 𝑛-2 ]𝑧 (𝑛+𝑟)𝛼 ∞ 𝑛=0 = 0. (15) 
From (15), we must take 𝑐 0 or 𝑐 1 equal to zero, and we choose 𝑐 0 ≠ 0 analogously as in the classical case, we have 𝐼(𝑟) = (𝑟(𝑟 -1) + 𝑟 -𝑝 2 )𝛼 2 = 0. Since 𝛼 2 ≠ 0, we can write 𝑟(𝑟 -1) + 𝑟 -𝑝 2 = 0. Then there are two solutions, given by: 𝑟 1 = 𝑝, 𝑟 2 = -𝑝. Now, for 𝑝 ≠ 0, let us investigate solutions of the fractional Bessel equation of order 𝑝. In this case, for 𝑝 > 0 and 𝑟 1 = 𝑝, we have 𝐼(𝑟 1 + 1)𝑐 1 = [𝛼 2 𝑝(𝑝 + 1) + (𝑝 + 1)𝛼 2 -𝛼 2 𝑝 2 ]𝑐 1 = 0 or (2𝑝 + 1)𝑐 1 = 0 (16) Because of 𝑝 > 0, it follows that 𝑐 1 = 0. Finally, the recurrence relation is

𝑐 𝑛 = - 𝑐 𝑛-2 𝑛(𝑛 + 2𝑝) . (17) 
From 𝑐 1 = 0 and using recurrence relation, (17), we have all odd-numbered coefficients vanishing, 𝑐 3 = 𝑐 5 = ⋯ = 0, and

𝑐 2𝑛 = (-1) 𝑛 𝑐 0 2 2𝑛 𝑛! (𝑝 + 1)(𝑝 + 2) … (𝑝 + 𝑛) . ( 18 
)
We also have to choose 𝑐 0 to be consistent with the classical case, we choose 𝑐 0 = 𝑐 2 𝑝 Γ(𝑝+1)

. Taking into account (18), we obtain the first solution of fractional Bessel equation of order 𝑝: 𝜑

1 (𝑧) = 𝑐 ∑ (-1) 𝑛 𝑛!Γ(𝑛+𝑝+1) ( 𝑧 𝛼 2 ) 2𝑛+𝑝 ∞ 𝑛=0
. Consequently, the conformable fractional Bessel functions of the first kind of order 𝑝 are defined as:

(𝐽 𝛼 ) 𝑝 (𝑧) = ∑ (-1) 𝑛 𝑛! Γ(𝑛 + 𝑝 + 1) ( 𝑧 𝛼 2 ) 2𝑛+𝑝 ∞ 𝑛=0 . (19) 
It is essential to highlight that the classical Bessel functions 𝐽 𝑝 (𝑧) are a particular case of these conformable fractional Bessel functions (with 𝛼 = 1) that can be observed clearly from series representation [START_REF] Miller | An Introduction to Fractional Calculus and Fractional Differential Equations[END_REF]. The evolution of the conformable fractional Bessel functions (𝐽 𝛼 ) 𝑝=3/2 (𝑧) for 𝛼 = 0.8, 0.9, 1.0 and (𝐽 0.9 ) 𝑝 (𝑧) with 𝑝 = 3/2, 5/2, and 7/2 is presented in figure 1.

Table 1. Spectra of the fractional 𝐸(5) critical point models, 𝛼 = 0.7, 0.8, 0.9, 0.95, 0.99, and 1, compared to the predictions of the 𝐸( 5 

and 𝑥 𝜉,𝜏 𝛼 is the 𝜉th zero of (𝐽 𝛼 ) 𝜏+3/2 (𝑧). Once one has the zeros of conformable fractional Bessel functions, one can evaluate all observables. The spectra based on [START_REF] Podlubny | Fractional Differential Equations[END_REF] are listed in table 1 for different values of 𝛼. The levels in the fractional 𝐸(5) CPS, 𝐸 𝛼 (5), can be assigned explicit quantum numbers that characterize a nucleus at the CPS. 𝜉 labels the major families of 𝐸 𝛼 ( 5) levels (𝜉 = 1,2, 3, . ..) and, 𝜏 labels the phonon-like levels within a 𝜉 family (𝜏 = 0,1,2, . ..). For each value of 𝛼, we label the energy levels by (𝐿, 𝜉, 𝜏) quantum numbers. For example, the 2 1 + , 4 1 + , and 2 2 + states are labeled 2

"band-head" of the first excited 𝜉 family of levels is 0 2,0 + . The energy spectrum is normalized to 2 1,1 + state of the ground state band such that,

𝜖 𝐿 𝜉,𝜏 + 𝛼 = 𝐸 𝐿 𝜉,𝜏 + 𝛼 -𝐸 0 1,0 + 𝛼 𝐸 2 1,1 + 𝛼 -𝐸 0 1,0 + 𝛼 . (21) 
In table 1, the labels 𝜖 𝐿 𝜉,𝜏 + 𝛼 has been used for the energy levels of the conformable fractional CPSs 𝐸 𝛼 (5). In this notation 𝐸 𝛼 (5) with 𝛼 = 1 is simply the original 𝐸(5) model. From table 1, with increasing of 𝛼, it is obvious that in all bands and for all values of the angular momentum, 𝐿, the spectra gradually approach the original 𝐸(5) CPS, results smoothly. The same result is presented in figure 2(a), where several levels of the ground state band of each model (with 𝛼 = 0.6, 0.7, 0.8, 0.9, and 1) are shown as a function of the angular momentum 𝐿, as well as from figure 2(b), where the band-heads of several excited bands are shown for each model as a function of the index 𝜉. The evolution of the lowest four levels in the first four bands normalized to the 2 1,1 + state, [START_REF] Khalil | [END_REF], of conformable fractional 𝐸 𝛼 (5) CPSs with 𝛼 = 0.7-1.0 are depicted in figure 3. One can observe that for the values of 𝛼 closed to 1, the energy spectra correspond to the original 𝐸(5) model. On the other hand, for small values of 𝛼, the energy difference between the states increases rapidly; however, the states do not change their order. It is essential to check if there is experimental evidence supporting the 𝐸 𝛼 (5) CPS predictions. Indeed, the first regions to be considered are the ones that have been identified as good candidates for 𝐸(5), i.e., 102 Pd and 104 Ru. Existing experimental data for the different bands of these nuclei are compared to the theoretical predictions in table 2. For each nucleus, the quality of the fits is determined by the root mean absolute error ∆, which is defined by

∆= √ ∑ |𝜖 𝐿 𝜉,𝜏 + exp -𝜖 𝐿 𝜉,𝜏 + 𝛼 | 𝑖 /𝑛 𝑙 , (22) 
where 𝜖 𝐿 𝜉,𝜏 Finally, in nuclear structure, particularly challenging are nuclei at the critical point of a phase transition where the structure changes most dramatically. Of course, developing an exactly solvable analytic fractional model for CPSs (including classical CPS) would be a significant advance for nuclear structure. The conformable fractional 𝐸 𝛼 (5) CPS not only provided us with several models giving predictions directly comparable to the experiment (through changing of 𝛼) but also the present model shows the way for approaching the classical 𝐸(5) CPS. The interesting here is that we use just one potential, the infinite square well potential, the eigenvalues of Hamiltonian are given in terms of zeros of a conformable fractional special function, and the solutions are analytic. Hence, this problem is exactly solvable and consequently of dynamic symmetry, which is called "representation symmetry". Symmetries based on zeros of special functions can also be used to discuss the 𝑈(5)-𝑆𝑈(3) shape phase transition in nuclei. A systematic study of extended these symmetries using conformable fractional calculus will be the topic of future research.
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 1 Figure 1. (Color online) (a) The evolution of the conformable fractional Bessel functions (𝐽 𝛼 ) 𝑝=3/2 (𝑧) with 𝛼 = 0.8, 0.9, and 1.0. (b) The evolution of the conformable fractional Bessel functions (𝐽 0.9 ) 𝑝 (𝑧) with 𝑝 = 3/2, 5/2, and 7/2.

+

  exp and 𝜖 𝐿 𝜉,𝜏 + 𝛼 are the experimental and theoretical energies of the 𝑖th level and 𝑛 𝑙 is the number of fitted levels. Once one has the zeros of conformable fractional Bessel functions for all angular momenta, one obtains a spectrum and can define the function ∆. Hence, the model parameter α can be modified to give the best description of experimental data. It is quite clear that the model accurately reproduces the structure of the low energy spectra of 102 Pd and 104 Ru. The results of the fractional 𝐸 𝛼 (5) CPSs suggest more exact outcomes, i.e., minimum of the root mean absolute error in fractional CPSs (∆ 𝐹 value), in comparison with the corresponding value in classical 𝐸(5) model (∆ 𝐶 value).

Figure 2 .

 2 Figure 2. (Color online) (a) Levels of the ground state bands of the fractional 𝐸(5) CPSs with 𝛼 = 0.6, 0.7, 0.8, 0.9, and classical 𝐸(5) CPS with 𝛼 = 1, as a function of the angular momentum 𝐿. For each model, the energy spectrum is normalized to the energy of the 2 1,1 + state (21). (b) Band-head energies of excited bands with 𝛼 = 0.6, 0.7, 0.8, 0.9, and 1, as a function of the band index 𝜉.

Figure 3 .

 3 Figure 3. (Color online) (a) The evolution of the 16 energy levels (the lowest four levels in the first four bands) of conformable fractional CPSs with 𝛼 = 0.7-1.0 with step 0.02. The maximum value of 𝐿 existing for a specific value of 𝜏 is indicated. The rest of the allowed values of 𝐿 that having the same energy can be determined using table1. The spectra of the conformable fractional CPSs gradually approach the classical CPS (at 𝛼 = 1.0) results smoothly.

Table 2 .

 2 Low energy theoretical and experimental spectra of 102 Pd[25] and 104 Ru[26] normalized to the energy of the 2 1,1 + state, see[START_REF] Khalil | [END_REF]. The theoretical values are the results from(22).

			102 Pd		104 Ru	E(5)
	𝐿 𝜉,𝜏 +	𝜖 𝐿 𝜉,𝜏 + exp	𝜖 𝐿 𝜉,𝜏 + 𝛼=0.9772	𝜖 𝐿 𝜉,𝜏 + exp	𝜖 𝐿 𝜉,𝜏 + 𝛼=0.8643	𝜖 𝐿 𝜉,𝜏 + 𝛼=1
	+ 0 1,0 2 1,1 +	0.00000 1.00000	0.00000 1.00000	0.00000 1.00000	0.00000 1.00000	0.00000 1.00000
	+ 4 1,2 + 6 1,3 8 1,4 +	2.29299 3.79450 5.41501	2.21077 3.62753 5.24702	2.48165 4.34724 6.48120	2.28285 3.85503 5.72303	2.19859 3.58982 5.16941
	+ 10 1,5 + 12 1,6 14 1,7 +	7.17558 9.08484 11.0321	7.06686 9.08524 11.3008	8.69197 10.3720 12.3993	7.89317 10.3715 13.1639	6.93412 8.88140 11.0092
	+ 2 1,2 + 4 1,3 3 1,3 +	2.75767 3.84234 3.79495	2.21077 3.62753 3.62753	2.49455 4.19697 3.47009	2.28285 3.85503 3.85503	2.19859 3.58982 3.58982
	∆ 𝐹		0.41522		0.62862	
	∆ 𝐶		0.45046		0.89519	

Conclusions

We have suggested a generalization of the notion of 𝐸(5) CPS, associated with zeros of conformable fractional special functions, and shown how these symmetries can be used to describe the properties of nuclei around the classical 𝐸(5) CPS. We discussed the empirical situation concerning the conformable fractional 𝐸(5) CPS, citing, in particular, the evidence from 102 Pd and 104 Ru. This experimental evidence, proving that 102 Pd and 104 Ru follow the predictions of the 𝐸 𝛼 (5) CPS, provides more than just another fit (in the present case, analytic): it changes our vision of the CPS from just a point to an entire region. This new class of structure can now be sought, tested, and exploited elsewhere.