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Abstract

The mathematical forces at work behind Generative Adversarial Networks raise challenging
theoretical issues. Motivated by the important question of characterizing the geometrical
properties of the generated distributions, we provide a thorough analysis of Wasserstein
GANs (WGANs) in both the finite sample and asymptotic regimes. We study the specific
case where the latent space is univariate and derive results valid regardless of the dimen-
sion of the output space. We show in particular that for a fixed sample size, the optimal
WGANs are closely linked with connected paths minimizing the sum of the squared Eu-
clidean distances between the sample points. We also highlight the fact that WGANs are
able to approach (for the 1-Wasserstein distance) the target distribution as the sample size
tends to infinity, at a given convergence rate and provided the family of generative Lips-
chitz functions grows appropriately. We derive in passing new results on optimal transport
theory in the semi-discrete setting.

Keywords: Wasserstein Generative Adversarial Networks, Wasserstein distance, optimal
distribution, shortest path, rate of convergence, optimal transport theory

1. Introduction

Recent years have witnessed the advent of generative methodologies based on Generative
Adversarial Networks (GANs, Goodfellow et al., 2014), with outstanding achievements in
the fields of image (Radford et al., 2016; Karras et al., 2018), video (Vondrick et al., 2016),
and text generation (Yu et al., 2017), just to name a few. The surveys by Lucic et al.
(2018) and Borji (2019) cover the different GANs techniques together with a comparison
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of their performances. We are concerned with the Wasserstein GAN (WGAN) approach
of Arjovsky et al. (2017), which uses the 1-Wasserstein distance as an alternative to the
Jensen-Shannon divergence implemented in traditional GANs. Over the years, WGANs
and their derivatives have gained popularity in the machine learning community. They are
today considered as one of the most successful generative techniques, achieving state-of-the
art results in difficult problems (Karras et al., 2018, 2019) while improving the stability and
getting rid of unpleasant issues such as mode collapse (Gulrajani et al., 2017).

To get started, let us properly define WGANs. Assume that we are given a sample
X1, . . . , Xn of independent Rd-valued random variables, identically distributed according to
some unknown distribution µ. Throughout the manuscript, the space Rd as well as all other
spaces Rk are equipped with the Euclidean norm ∥ · ∥, with no reference to d or k as the
context is clear. The generative problem is to use the sample X1, . . . , Xn to learn µ and,
simultaneously, generate new “fake” data that look “similar” to the Xi’s. In the WGAN
framework, this problem is addressed by minimizing the 1-Wasserstein distance between
a family of candidate distributions and the empirical measure of the sample. Recall here
that for two probability measures π1 and π2 on Rd, the 1-Wasserstein distance W1(π1, π2)
between π1 and π2 is defined by

W1(π1, π2) = inf
π∈Π(π1,π2)

∫
Rd×Rd

∥x− y∥dπ(x, y),

where Π(π1, π2) denotes the collection of all joint probability measures π on Rd × Rd with
marginals π1 and π2 (e.g., Villani, 2008). Notice that W1(·, ·) is not a distance in the strict
sense, because it may take the value +∞. We also recall that the empirical measure µn
based on X1, . . . , Xn is defined, for any Borel set A ⊆ Rd, by µn(A) = 1

n

∑n
i=1 1{Xi ∈ A}.

Now, let U be a uniform random variable on [0, 1]p and, for K > 0, let LipK(E,E′) be
the set of K-Lipschitz continuous functions from E ⊆ Rk to E′ ⊆ Rk′ , equipped with their
respective Euclidean norms, that is

LipK(E,E′) = {G : E → E′ : ∥G(x)−G(y)∥ ⩽ K∥x− y∥, (x, y) ∈ E2}.

For G ∈ LipK([0, 1]p,Rd), we denote by G♯U the pushforward distribution of U by G, that
is, for any Borel set A ⊆ Rd, G♯U (A) = λp(G

−1(A)), where λp is the Lebesgue measure
on Rp. In their abstract formulation, WGANs use the family of pushforward distributions
{G♯U : G ∈ LipK([0, 1]p,Rd)} as candidate distributions to estimate µ, with the objective of
finding the best function G that minimizes the 1-Wasserstein distance between G♯U and the

empirical measure µn. In other words, one seeks to find an optimal ĜK ∈ LipK([0, 1]p,Rd)
such that

W1(ĜK♯U , µn) = inf
G∈LipK([0,1]p,Rd)

W1(G♯U , µn). (1)

Once a minimizer ĜK has been found, it is easy to generate “fake” observations, by simply
taking a uniform i.i.d. sample U1, . . . , Um and computing ĜK(U1), . . . , ĜK(Um). In the
GAN literature, the space [0, 1]p is called the latent space and the distribution of the random
variable U the latent distribution. It should be stressed that assuming Lipschitz continuous
candidate functions G is classical when defining WGANs (e.g., Zhou et al., 2019). However,
some authors have also considered smoother classes, such as for example functions with
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Lipschitz partial derivatives up to some order (e.g., Luise et al., 2020; Schreuder et al.,
2021). To keep things as simple as possible, we do not make further assumptions on the
generative functions other than their Lipschitz property.

The key to approach the infimum in (1) is to use the dual formulation of the 1-
Wasserstein distance (Kantorovich and Rubinstein, 1958). Indeed, one has

W1(G♯U , µn) = sup
f∈Lip1(Rd,R)

∫
Rd
fdG♯U −

∫
Rd
fdµn

= sup
f∈Lip1(Rd,R)

∫
[0,1]p

f(G(u))du− 1

n

n∑
i=1

f(Xi),

so that the WGAN optimization Problem (1) takes the min-max form

W1(ĜK♯U , µn) = inf
G∈LipK([0,1]p,Rd)

sup
f∈Lip1(Rd,R)

∫
[0,1]p

f(G(u))du− 1

n

n∑
i=1

f(Xi). (2)

Since the nonparametric classes LipK([0, 1]p,Rd) and Lip1(Rd,R) are too large to be imple-
mented, they are replaced in practice by parametric models, respectively called the generator
and the discriminator. In most applications, these parametric models take the form of mul-
tilayer neural networks, either feedforward or convolutional, hence the name WGANs. It is
also important to note that in practice the function G♯U in (1) is estimated by random sam-
ples G(U1), . . . , G(Um) drawn from U . In other words, there exists an estimation error—on
top of the approximation error by neural networks—between the optimum infGW1(G♯U , µn)
and any simulation. However, sampling from U is easy and one can take sufficiently largem.
From an optimization perspective, the training of (W)GANs is challenging. The min-max
optimum in (2) is usually found by using stochastic gradient descent, alternatively on the
generator’s and the discriminator’s parameters. Studying the convergence of the different
learning procedures is an interesting question, tackled for example by Kodali et al. (2017)
and Mescheder et al. (2018).

In addition to the numerous empirical research studies, several theoretical articles aimed
at understanding the mathematical and statistical properties of the adversarial problem (2)
and its extensions to integral probability metrics (IPM, Müller, 1997). For example, leverag-
ing the approximation properties of some family of neural networks, Biau et al. (2021) study
the convergence of the model as the sample size tends to infinity, and clarify the respec-
tive effects of the generator and the discriminator by underlining some trade-off properties.
Assuming smoothness properties on the generator and the discriminator, Liang (2021) and
Singh et al. (2018) exhibit rates of convergence under an IPM-based loss for estimating
densities that live in Sobolev spaces, while Uppal et al. (2019) explore the case of Besov
spaces. More recently, Schreuder et al. (2021) have stressed the properties of IPM losses de-
fined with smooth functions on a compact set. Remarkably, Liang (2021) discusses bounds
for the Kullback-Leibler divergence, the Hellinger distance, and the 1-Wasserstein distance.
Studying a different facet of the problem, Luise et al. (2020) analyze the interplay between
the latent distribution and the complexity of the pushforward map, and how it affects the
overall performance.

In this paper, we seek to describe the properties of the K-Lipschitz continuous functions
that achieve the infimum in (1). Our approach is motivated by an active line of experimental
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research, which aims at characterizing the distributions output by GANs, typically the
geometry of their supports. For example, when dealing with the learning of disconnected
manifolds, Tanielian et al. (2020) derived lower-bounds on the measure of the proposal
distribution that lies out of the target manifold. Another much-debated question is to
understand to what extent GANs memorize the dataset Vaishnavh et al. (2018). In this
regard, Gulrajani et al. (2019) stress their tendency to memorize, and, in turn, propose a
new evaluation protocol that enhances generalization. Yet, most of the conclusions on this
subject are of an experimental nature, without clear theoretical arguments regarding the
statistical properties of the distribution produced by GANs.

Motivated by the above, we provide in the present article a thorough analysis of Prob-
lem (1). Since this question is highly nontrivial, we deeply study the univariate latent
setting (p = 1). Beyond the technical aspects, the motivation to study the univariate case
is related to the so-called manifold hypothesis (Fefferman et al., 2016; Facco et al., 2017),
which states that high-dimensional datasets may lay on manifolds of lower dimensions. For
instance, YoonHaeng et al. (2021) show that using a latent dimension p = 2 is already
sufficient to generate high-quality images for the MNIST dataset. We later give intuitions
for the case p > 1.

Our contributions are the following:

1. To grasp how WGANs can approach the distribution µ, we start in Section 2 by an
asymptotic analysis of W1(ĜK♯U , µ) as the sample size n tends to infinity, assuming
that the Lipschitz constant K is kept fixed, independent of the data. We show in
particular that in most situations, and independently of the dimension d, one has
lim infn→∞W1(ĜK♯U , µ) > 0 a.s.

2. Next, we provide in Section 3 a thorough finite sample analysis of the case d = 1, that
is, whenever the output space is univariate. In this context, the Lipschitz constant
K is allowed to depend on the sample X1, . . . , Xn. We explicitly describe the (two)
functions achieving the infimum in (1), give the exact value of the infimum, and
show that the corresponding optimal distributions have atoms at the Xi’s. Finally,
taking an asymptotic point of view, we prove that limn→∞W1(ĜK♯U , µ) = 0 and offer
convergence rates.

3. We then discuss in Section 4 new existence results on transport maps in semi-discrete
optimal transport theory, for measures that are non necessarily absolutely continuous
with respect to the Lebesgue measure on Rd. This step is necessary before diving into
the analysis of Problem (1) for d > 1.

4. In Section 5, we move to the case where the observations are multivariate (d > 1)
and derive a finite sample bound on the infimum in (1). We show in particular,
provided K is allowed to depend on the sample, that the bound is achieved by a
distribution concentrated on a shortest-path-type graph constructed on the Xi’s. Up
to our knowledge, this is the first time that such bounds are available in the literature.
Taking neural networks for the generator and the discriminator classes, we illustrate
the results empirically. Similarly to Section 3, we also provide convergence rates for
limn→∞W1(ĜK♯U , µ).
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All the proofs are gathered in the Annex (Stéphanovitch et al., 2023), with the exception
of the proofs of Theorem 9 and Theorem 12.

2. Asymptotic analysis

The study begins with an asymptotic analysis of Problem (1), when the sample size n
tends to infinity and the Lipschitz constant K is assumed to be fixed. For more clarity, the
univariate case d = 1 is handled in Theorem 2 and the multivariate case d > 1 in Theorem 3.
Recall that the latent variable U is assumed to be uniformly distributed on [0, 1], and that
the data X1, . . . , Xn are i.i.d with unknown distribution µ. Throughout, we let

ĜK = argmin
G∈LipK([0,1],Rd)

W1(G♯U , µn)

be the set of minimizers of Problem (1), that is,

ĜK = {ĜK ∈ LipK([0, 1],Rd) :W1(ĜK♯U , µn) = inf
G∈LipK([0,1],Rd)

W1(G♯U , µn)}.

Observe that {ĜK♯U : ĜK ∈ ĜK} is the collection of optimal distribution(s). Whenever µ is
of order 1, i.e., E∥X1∥ =

∫
Rd ∥x∥µ(dx) <∞, it is convenient to consider GK , the population

version of ĜK defined by

GK = argmin
GK∈LipK([0,1],Rd)

W1(GK♯U , µ).

We start with the following simple but useful lemma.

Lemma 1 The set ĜK is not empty. In addition, assuming that µ is of order 1, the set GK
is not empty.

In the sequel, we let S(µ) be the support of µ, i.e.,

S(µ) = {x ∈ Rd : µ(B(x, ε)) > 0 for all ε > 0},

where B(x, ε) is the closed ball in Rd centered at x of radius ε. We are now ready to
state the first theorem, which reveals the different behaviors of the quantity W1(ĜK♯U , µ)

in dimension d = 1, provided ĜK is any minimizer in ĜK . Interestingly, we distinguish
different cases depending on both the smoothness of the distribution function of µ and the
boundedness of its support S(µ).

Theorem 2 (Case d = 1) Let ĜK ∈ ĜK . Assume that µ is of order 1, and let F−1 be the
generalized inverse of the distribution function F of µ, i.e., for all u ∈ (0, 1), F−1(u) =
inf{x ∈ R : F (x) ⩾ u}.

1. Assume that S(µ) is bounded.

(i) If F−1 ∈ LipK0
([0, 1],R) for some K0 > 0, then, for all K ⩾ K0,

lim
n→∞

W1(ĜK♯U , µ) = 0 a.s.
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(ii) If F ∈ LipK1
(R, [0, 1]) for some K1 > 0, then, for all K < 1/K1,

lim inf
n→∞

W1(ĜK♯U , µ) > 0 a.s.

2. Assume that S(µ) is unbounded. Then, for all K > 0,

lim inf
n→∞

W1(ĜK♯U , µ) > 0 a.s.

A first remark could be that, in 1(i), the support S(µ) is necessarily bounded since F−1 is
assumed to be a K0-Lipschitz function on [0, 1]. Next, note that both conditions in 1(i) and
1(ii) may be satisfied simultaneously or not. For example, when µ is the uniform distribution
on [0, 1], they are both verified with K0 = K1 = 1. Also, observing that K0K1 ⩾ 1 (since
F ◦ F−1 is the identity function), these two conditions focus in fact on different regimes.
The first one pertains to the case where the set of generative functions ought to be big
while the second one claims that a smaller class cannot recover the target distribution µ.
In 2, we notice however that independently of the smoothness of µ and the magnitude of
K, WGANs cannot recover the target distribution. This is for example the case when µ is
a standard Gaussian distribution on the real line. The mechanism is illustrated in Figure 1,
which shows the values of W1(ĜK♯U , µ) as a function of both n and K, when the target
distribution µ is either uniform (left) or Gaussian (right). In the uniform case, as predicted
by Theorem 2, we see that W1(ĜK♯U , µ) significantly decreases for K larger than 1 and
stays rather constant for smaller K. In the Gaussian setting, 1-Wasserstein distances are
far from zero, independently of the value of n and K. In the experiment, the generator is
a 3-layer feedforward neural network while the discriminator is a 5-layer network.

(a) The distribution µ is uniform. (b) The distribution µ is standard Gaussian.

Figure 1: 1-Wasserstein distanceW1(ĜK♯U , µ) as a function of n and K (the bluer the lower
and the redder the higher). Results are averaged over 2 runs.
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These results should of course be appreciated in the light of the specific case where
both the latent space and the target distribution µ share the same dimension 1. In the
case where µ lies on a space of dimension strictly larger than 1, then the minimizers in ĜK
cannot reconstruct µ, as stated by the following theorem.

Theorem 3 (Case d > 1) Let ĜK ∈ ĜK . Assume that µ is of order 1 and that λd(S(µ)) >
0, where λd denotes the Lebesgue measure on Rd. Then, for all K > 0,

lim inf
n→∞

W1(ĜK♯U , µ) > 0 a.s.

The condition on the support of µ states that µ is a “true” measure on Rd. We leave it as
an exercise to prove that the same result holds by assuming that the Hausdorff dimension
of S(µ) is strictly larger than 1.

3. Finite sample analysis in a univariate output space

The topic of the present section is to fully describe the set of minimizers ĜK (Lemma 1), in
the specific setting where both the output and the latent spaces are univariate. We denote
by X(1), . . . , X(n) the reordering of X1, . . . , Xn according to their increasing values, that
is X(1) ⩽ X(2) ⩽ · · · ⩽ X(n), where ties are broken arbitrarily. Importantly, the Lipschitz
constant K is now allowed to depend upon the sample and is chosen to satisfy the constraint
K ⩾ n max

i=1,...,n−1
(X(i+1) −X(i)).

The analysis starts by introducing the following function Ĝ⋆K : [0, 1] → R, which will
play a key role in solving Problem (1): for all u ∈ [0, 1],

Ĝ⋆K(u) =



X(1) if u ∈
[
0, 1n − X(2)−X(1)

2K

]
X(i) +K

(
u− ( in − X(i+1)−X(i)

2K )
)

if u ∈
[
i
n − X(i+1)−X(i)

2K , in +
X(i+1)−X(i)

2K

]
for 1 ⩽ i ⩽ n− 1

X(i+1) if u ∈
[
i
n +

X(i+1)−X(i)

2K , i+1
n − X(i+2)−X(i+1)

2K

]
for 1 ⩽ i ⩽ n− 2

X(n) if u ∈
[
n−1
n +

X(n)−X(n−1)

2K , 1
]
.

(3)
Observe that Ĝ⋆K is piecewise linear and that the condition K ⩾ n max

i=1,...,n−1
(X(i+1) −X(i))

ensures that this function is well-defined. We also note that Ĝ⋆K ∈ LipK([0, 1],R) and that
it visits each data point, going iteratively from X(i) to X(i+1). A typical example is shown
in Figure 2. Observe that, for each i ∈ {1, . . . , n},

λ1
(
{u ∈ [0, 1] : |Ĝ⋆K(u)−Xi| ⩽ |Ĝ⋆K(u)−Xj | : j = 1, . . . , n}

)
=

1

n
. (4)

This geometric feature has an interpretation in terms of Voronoi cells and will play an
important role in the multivariate extension of Ĝ⋆K , as we will see in Section 5.
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Figure 2: An example of function Ĝ⋆K , with n = 5 and K = 25.

Proposition 4 Assume that K ⩾ n max
i=1,...,n−1

(X(i+1) −X(i)), and let Ĝ⋆K ∈ LipK([0, 1],R)

be defined in (3). Then

W1(Ĝ
⋆
K♯U , µn) =

1

4K

n−1∑
i=1

(X(i+1) −X(i))
2.

The key message of Proposition 4 is that the 1-Wasserstein distance between Ĝ⋆K♯U and µn
depends on the sum of the squared distances (X(i+1) −X(i))

2. We are now in a position to
state the main result of the section.

Theorem 5 Assume that K ⩾ n max
i=1,...,n−1

(X(i+1) − X(i)), and let the function Ĝ⋆K ∈

LipK([0, 1],R) be defined in (3). Then

W1(Ĝ
⋆
K♯U , µn) = inf

G∈LipK([0,1],R)
W1(G♯U , µn) =

1

4K

n−1∑
i=1

(X(i+1) −X(i))
2.

Moreover, ĜK = {Ĝ⋆K , Ĝ⋆K ◦ S}, where S(u) = 1− u, u ∈ [0, 1].

Theorem 5 states that there are only two minimizers in ĜK . Moreover, the two distributions
Ĝ⋆K♯U and (Ĝ⋆K ◦ S)♯U are identical. We thus conclude that in the univariate setting, the
distribution output by the WGAN Problem (1) exists and is unique, provided K is large
enough. It is important to note that the distribution Ĝ⋆K♯U has atoms at the Xi’s, of
respective sizes

1

n
−
X(2) −X(1)

2K
for X(1),

1

n
−
X(n) −X(n−1)

2K
for X(n),

1

n
−
X(i+1) −X(i−1)

2K
for X(i), i = 2, . . . , n− 1, (5)

and that it is absolutely continuous with respect to the Lebesgue measure elsewhere.
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Being able to describe the minimizers of Problem (1) helps us to better understand the
overall objective of WGANs when playing with different parameters. For example, when the
dataset (and thus the sample size n) is kept fixed, the 1-Wasserstein distanceW1(Ĝ

⋆
K♯U , µn)

decreases towards 0 as the Lipschitz constant K gets bigger. This is easily explained by
the fact that when K increases, the class of generative distributions increases as well, and
the measure of the atoms in (5) of Ĝ⋆K♯U grows towards 1. In this regime, the optimal

distribution Ĝ⋆K♯U tends to memorize the data samples, that is the WGAN overfits the
data. On the opposite, the measures of the different atoms X(i), i ∈ {1, . . . , n}, decrease
with the distance X(i+1) − X(i−1). Consequently, any outlier data, far from its nearest
neighbors, will be less sampled by the optimal distribution.

In order to illustrate the result of Theorem 5, we consider a synthetic setting where
both the class of generative and discriminative functions are replaced by parametric neural
networks. The generator is composed of ReLU neural networks of respective depths 3
(Figure 3a and 3c) and 5 (Figure 3b and 3d), with a width 100, while the discriminator
is composed of ReLU neural networks of depth 5 and width 100. The true distribution
is assumed to be uniform on [0, 10]. We train a WGAN architecture in the setting of
both n = 5 and n = 9, with the choice K = 50 (we choose K big enough such that
K ⩾ n max

i=1,...,n−1
(X(i+1) −X(i))). The Lipschitz constraint on the generator is implemented

using a gradient penalty similar to the one used for the discriminator in Gulrajani et al.
(2017). The obtained results are depicted in Figure 3.

We see that the parametric WGANs (denoted by Gθ) get close to the optimal function
Ĝ⋆K while operating some smoothing. This smoothing is due to the fact that the networks
cannot replicate all Lipschitz functions. Therefore, the optimal parametric WGANs have a
higher 1-Wasserstein distance to the empirical distribution than Ĝ⋆K . Interestingly, as the
number of samples increases and the architecture remains fixed, it gets more complicated for
the generator to memorize the dataset. As expected, the results of the parametric WGANs
get better as the depth of the generator increases.

Changing a little bit the way of looking at the problem, one may take an asymptotic
point of view in the sample size n and analyze the asymptotic behavior of the 1-Wasserstein
distance W1(Ĝ

⋆
K♯U , µ), as done in Section 1. However, a major difference is that, in accor-

dance with Theorem 5, the Lipschitz constant K is now viewed as a data-dependent random
variable larger than K1, where

K1 := n max
i=1,...,n−1

(X(i+1) −X(i)).

Proposition 6 Assume that S(µ) = [A,B], where −∞ < A < B <∞.

1. If µ admits a strictly positive probability density on [A,B], continuously differentiable,
with a unique minimum on [A,B], then

1

K1

= O((log n)−1) a.s.

2. For all K ⩾ K1,
W1(Ĝ

⋆
K♯U , µ) = O(n−1/2) in probability.
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(a) Fitting n = 5 data points with a generator

depth equal to 3. W1(Ĝ
⋆
K♯U , µn) = 0.080 and

W1(G
θ
♯U , µn) = 0.501.

(b) Fitting n = 5 data points with a generator

depth equal to 5. W1(Ĝ
⋆
K♯U , µn) = 0.080 and

W1(G
θ
♯U , µn) = 0.165.

(c) Fitting n = 9 data points with a generator

depth equal to 3. W1(Ĝ
⋆
K♯U , µn) = 0.033 and

W1(G
θ
♯U , µn) = 0.280.

(d) Fitting n = 9 data points with a generator

depth equal to 5. W1(Ĝ
⋆
K♯U , µn) = 0.033 and

W1(G
θ
♯U , µn) = 0.210.

Figure 3: Output functions Gθ of the WGANs compared with the optimal Ĝ⋆K .

The proof of Proposition 6 reveals thatW1(Ĝ
⋆
K♯U , µn) = O(n−1) in probability, which should

be compared with the rate W1(µ, µn) = O(n−1/2) (Fournier and Guillin, 2015, Theorem 1).
Therefore, the speed of convergence to 0 of W1(Ĝ

⋆
K♯U , µ) is significantly slowed down by

the term W1(µ, µn). Besides, the assumptions on µ are made here for simplicity, and many
other cases may be handled similarly by connecting K1 to statistical results regarding the
analysis of maximal spacings. For example, built on results from Extreme Values Theory,
Deheuvels (1986, Theorem 1 or Example 1) entails that when µ is standard Gaussian, then,
in probability,

1

K1

= O
(√log n

n

)
and W1(Ĝ

⋆
K♯U , µ) = O(n−1/2).

Similar results, yet with different rates, may be obtained for the Cauchy and Gamma
distributions (Deheuvels, 1986, Example 2 and Example 3). The general message is that,
provided the class of candidate distributions grows with the sample size n, then the WGANs
can asymptotically recover the target distribution µ.
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4. A general result in semi-discrete optimal transport

We now turn to the multivariate case, assuming that the observations X1, . . . , Xn are
i.i.d. according to an unknown distribution µ on Rd, d > 1. As we will see below, character-
izing the optimal transport problem is much more complicated in the multivariate setting,
and requires a more involved analysis. The key is to better describe the optimal transport
function between G♯U and µn, keeping in mind that for d > 1, G♯U is never absolutely
continuous with respect to the Lebesgue measure λd on Rd. Therefore, we need to extend
existing results to larger classes of distributions.

Recall, as we saw in the introduction, that for two probability measures π1 and π2 on
Rd,

W1(π1, π2) = inf
π∈Π(π1,π2)

∫
Rd×Rd

∥x− y∥dπ(x, y),

where Π(π1, π2) denotes the collection of all transport plans between π1 and π2, that is, the
joint probability measures π on Rd×Rd with marginals π1 and π2. When π1 is nonatomic,
then, according to Pratelli (2007, Theorem B),

W1(π1, π2) = inf
T

∫
Rd

∥x− T (x)∥dπ1(x), (6)

where the infimum is taken over all measurable functions T : Rd → Rd satisfying T♯π1 = π2.
Such a function T is called a transport map from π1 to π2, and (6) is referred to as the
Monge formulation of the 1-Wasserstein distance. Providing existence and unicity results
for transport maps is, in general, a difficult question. It turns out however that in the so-
called semi-discrete setting, where π1 is absolutely continuous with respect to the Lebesgue
measure and π2 =

∑n
i=1 αiδxi is discrete (αi ⩾ 0,

∑n
i=1 αi = 1), the Monge problem has

a simple and elegant solution in terms of additively weighted Voronoi diagram of Rd (e.g.,
Aurenhammer et al., 1998) around the atoms {x1, . . . , xn} of π2. Recall that for a vector
w = (w1, . . . , wn) ∈ Rn that assigns to each xi a weight wi, the additively weighted Voronoi
tessellation is the set of cells

Vorw(i) =
{
x ∈ Rd : ∥x− xi∥ − wi ⩽ ∥x− xj∥ − wj for all j ̸= i

}
, i = 1, . . . , n.

Now, according to Hartmann and Schuhmacher (2020, Theorem 2 and Theorem 3) (see
also Geiß et al., 2013), there exists in this semi-discrete setting a π1-almost surely unique
transport map T ⋆ such that W1(π1, π2) =

∫
Rd ∥x− T ⋆(x)∥dπ1(x). Noting that the intersec-

tion of two boundaries has Lebesgue measure zero (and thus π1-measure zero by absolute
continuity), this optimal function T ⋆ is defined λd-almost surely and has the form

T ⋆(x) =

n∑
i=1

xi1{x ∈ Vorw
⋆
(i)}, (7)

where the weight vector w⋆ is adapted to (π1, π2) in the sense that π1(Vor
w⋆(i)) = αi for

all i ∈ {1, . . . , n}. The existence of such an adapted vector is guaranteed by Theorem 3 of
Hartmann and Schuhmacher, 2020, who also provide an algorithm to compute it.

Returning to the WGAN problem, it seems natural to consider the semi-discrete setting
with π1 = G♯U and π2 = µn, and to describe the optimal transport maps between these
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two distributions in order to gain information on W1(G♯U , µn). Unfortunately, there is
no reason for G♯U to be nonatomic and, even if this is the case, it is impossible for this
distribution to be absolutely continuous with respect to the Lebesgue measure as soon as
d > 1. We therefore conclude that none of the above results can be used to characterize
the infimum in (1) and that some extensions are needed. In the rest of this section, we
address this issue and offer a solution in two steps. First, we prove in Proposition 7 that
the WGAN optimization in Problem (1) can be safely restricted to distributions G♯U that
are nonatomic. Second, we provide in Theorem 9 a solution to the Monge problem under
the sole assumption that π1 is nonatomic with compact support, getting rid of the absolute
continuity requirement. To the extent of our knowledge, this is the first time that such a
theorem has been proved, and it therefore provides a new resource in the toolbox of optimal
transport theory.

Proposition 7 Let Lip−K([0, 1],Rd) = {G ∈ LipK([0, 1],Rd) : G♯U is nonatomic}. Then

inf
G∈LipK([0,1],Rd)

W1(G♯U , µn) = inf
G∈Lip−K([0,1],Rd)

W1(G♯U , µn).

In the following, for w ∈ Rn and i ∈ {1, . . . , n}, we let Vorw(i) be the i-th weighted Voronoi
cell associated with the sampleX1, . . . , Xn. We denote by ∂Vorw(i) the boundary of Vorw(i)
and let Vorw(i)◦ = Vorw(i) \ ∂Vorw(i) be its interior. For any p ∈ {1, . . . , n} and any set
{j1, . . . , jp} where the jk’s are all different and in {1, . . . , n}p, we let

Γwj1...jp =

p⋂
k=1

Vorw(jk) \
( ⋃
ℓ/∈{j1,...,jp}

Vorw(ℓ)
)
. (8)

Observe that each set Γwj1...jp above is the subset of the common boundary of the Voronoi
cells Vorw(j1), . . . ,Vor

w(jp) that has no intersection with any other cell Vorw(l), for all l /∈
{j1, . . . , jp}. Note also that together, the Γwj1...jp (for all p and all different sets {j1, . . . , jp})
form a partition of the set of the boundaries of the Voronoi cells. For a given w, we will be
interested in the class H w of functions taking values in the sample X1, . . . , Xn defined by

H w =
{
T : Rd → {X1, . . . , Xn} : ∀x ∈ Vorw(i)◦, T (x) = Xi

and ∀x ∈ Γwj1...jp , T (x) ∈ {Xj1 , . . . , Xjp}
}
. (9)

The following result states under which assumptions we can find an optimal transport map
from a nonatomic probability measure ν to the empirical measure µn.

Proposition 8 Let ν be a probability measure on Rd with finite first moment. If there
exists w⋆ ∈ Rn and T ⋆ ∈ H w⋆ such that T ⋆♯ν = µn, then T ⋆ is an optimal transport map
from ν to µn.

We deduce from Proposition 8 that in order to state the existence of an optimal transport
map, it is enough to show that there exist w⋆ ∈ Rn and T ⋆ ∈ H w⋆ such that T ⋆♯ν = µn. This
result plays a key role in the proof of the next theorem, which guarantees the existence of an
optimal transport map between any nonatomic probability measure ν (so, non necessarily
absolutely continuous with respect to the Lebesgue measure) and the empirical measure
µn. It should be stressed that Theorem 9 also holds if the empirical measure µn is replaced
by a more general discrete measure, with a finite number of atoms. The adaptation is easy
and is left to the reader.
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Theorem 9 Let ν be a nonatomic probability measure on Rd with compact support. Then
there exists an optimal transport map from ν to µn, which is defined λd-almost everywhere
by

T ⋆(x) =
n∑
i=1

Xi1{x ∈ Vorw
⋆
(i)},

for some w⋆ ∈ Rn.

Proof Let K ⊆ Rd be the compact support of ν. For ε ∈ (0, 1], we let νε be the probability
measure on Rd defined for any Borel subset A by

νε(A) =

∫
Rd

λd(A ∩B(x, ε))

λd(B(x, ε))
dν(x),

where B(x, ε) stands for the closed ball centered at x of radius ε. Observe that νε has
compact support Kε, where

Kε = {x ∈ Rd : ∃z ∈ K such that ∥x− z∥ ⩽ ε}.

Since, for any Borel subset A such that λd(A) = 0 one has νε(A) = 0, we see that νε is
absolutely continuous with respect to the Lebesgue measure. Thus, according to Hartmann
and Schuhmacher (2020), there exists wε = (wε1 , . . . , wεn) ∈ Rn solution to the Monge
problem between νε and µn. In particular, for each i ∈ {1, . . . , n}, νε(Vorwε(i)) = 1

n .

Clearly, adding a constant to each wεi does not change the definition of the cells. Thus,
in the sequel, it is assumed that wε1 = 0. Let C = max

i=1,...,n
max
z∈Kε

∥Xi − z∥. If there exists

i ∈ {2, . . . , n} such that wεi > C, then Vorwε(1) ∩ Kε = ∅. This is not possible since
νε(Vor

wε(1)) = 1
n . Likewise, if wεi < −C, then Vorwε(i) ∩Kε = ∅. Therefore, we may only

consider wε’s such that ∥wε∥∞ ⩽ C, where ∥ · ∥∞ stands for the supremum norm on Rn.
Consider now the sequence (w1/m)m∈N⋆ , which, as we have seen, takes its values in

a compact set. Thus, there exists a subsequence (w1/φ(m))m∈N⋆ that converges to some
w⋆ ∈ Rn. As for now, to lighten the notation, we let ψ(m) = 1/φ(m) for all m ∈ N⋆.
Clearly, we have

νψ(m)(Vor
wψ(m)(i)) =

∫
Rd
1{x ∈ Vorw

⋆
(i)c}

λd
(
Vorwψ(m)(i) ∩B(x, ψ(m))

)
λd

(
B(x, ψ(m))

) dν(x)

+

∫
Rd
1{x ∈ Vorw

⋆
(i)◦}

λd
(
Vorwψ(m)(i) ∩B(x, ψ(m))

)
λd

(
B(x, ψ(m))

) dν(x)

+

∫
Rd
1{x ∈ ∂Vorw

⋆
(i)}

λd
(
Vorwψ(m)(i) ∩B(x, ψ(m))

)
λd

(
B(x, ψ(m))

) dν(x). (10)

For x ∈ Vorw
⋆
(i)c and all m large enough,

λd
(
Vorwψ(m)(i) ∩B(x, ψ(m))

)
λd

(
B(x, ψ(m))

) = 0.
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Therefore, by dominated convergence, the first integral in identity (10) tends to 0 as m
tends to infinity. Similarly, for x ∈ Vorw

⋆
(i)◦ and all m large enough,

λd
(
Vorwψ(m)(i) ∩B(x, ψ(m))

)
λd

(
B(x, ψ(m))

) = 1.

Thus, by dominated convergence, the second integral tends to ν(Vorw
⋆
(i)◦). The analysis

of the third integral in (10) is more delicate and is done by carefully studying each part of
the boundary ∂Vorw

⋆
(i). For any p ∈ {1, . . . , n} and j1, . . . , jp all different, let

Γw
⋆

j1...jp =

p⋂
k=1

Vorw
⋆
(jk) \

( ⋃
ℓ/∈{j1,...,jp}

Vorw
⋆
(ℓ)

)
.

Using the notation

αj1...jp(i)ψ(m) :=

∫
Rd
1{x ∈ Γw

⋆

j1...jp}
λd

(
Vorwψ(m)(i) ∩B(x, ψ(m))

)
λd

(
B(x, ψ(m))

) dν(x),

we see that

ν(Γw
⋆

j1...jp) =

n∑
i=1

αj1...jp(i)ψ(m).

Observe that for i /∈ {j1, . . . , jp}, αj1...jp(i)ψ(m) → 0 as m tends to infinity, since for all

x ∈ Γw
⋆

j1...jp
,

Vorwψ(m)(i) ∩B(x, ψ(m)) = ∅

for all m large enough. Moreover, αj1...jp(j1)ψ(m) ∈ [0, 1/n]. Thus, we can extract a subse-
quence (ψ1(m))m∈N⋆ such that αj1...jp(j1)ψ1(m) converges to some αj1...jp(j1) as m tends to
infinity. Likewise, we can extract a subsequence ψ12(m) such that αj1...jp(j2)ψ12(m) converges
to some αj1...jp(j2). Repeating the same procedure, we obtain a subsequence ψ1...p(m) such
that each αj1...jp(jk)ψ1...p(m), k ∈ {1, . . . , p}, converges to αj1...jp(jk) as m tends to infinity.
In particular,

ν(Γw⋆j1...jp) =

p∑
k=1

αj1...jp(jk).

Starting from the subsequence ψ1...p(m), we may repeat the previous exercise for all sets
Γw

⋆

j1...jp
, where p ∈ {1, . . . , n}, j1, . . . , jp are all different, and the subsequence Ψ(m) is such

that any αj1...jp(jk)Ψ(m) converges to some αj1...jp(jk), for all j1, . . . , jp. We conclude that

there exists a subsequence of the third integral in (10) that converges to
n∑
p=1

∑
j1,...,jp

αj1...jp(i).

Since, for i ∈ {1, . . . , n}, νΨ(m)(Vor
wΨ(m)(i)) = 1

n for all m, we have, letting m→ ∞,

ν(Vorw
⋆
(i)◦) +

n∑
p=1

∑
j1,...,jp

αj1...jp(i) =
1

n
. (11)
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Now, cut each Γw
⋆

j1...jp
into arbitrarily p disjoints parts Aj1...jp(jk) such that ν(Aj1...jp(jk)) =

αj1...jp(jk) (this is always possible since ν is nonatomic). Let T ⋆ : Rd → {X1, . . . , Xn} be
defined by

T ⋆(x) =

{
Xi for x ∈ Vorw

⋆
(i)◦

Xjk for x ∈ Aj1...jp(jk).

Then T ⋆ ∈ H w⋆ and, by identity (11), T ⋆♯ν = µn. This, together with Proposition 8, con-
cludes the proof of the theorem.

While the expression of the optimal transport map as given in Theorem 9 (for nonatomic
source measure) and the one from Hartmann and Schuhmacher (2020), as recalled in equa-
tion (7) (for absolutely continuous source measure), are the same, there is a significant
difference in their definition at the boundaries of the cells. Indeed, these boundaries have
Lebesgue measure zero. Therefore, when the source measure is absolutely continuous, the
optimal mapping can take any values at the boundaries. However, when the source is
assumed to be only nonatomic, the boundaries may have strictly positive measure. Conse-
quently, the choice of values for an optimal mapping at the boundaries should be made with
care. In the proof of Theorem 9, we show that for each set Γw

⋆

j1...jp
and each i ∈ {1, . . . n},

there exist weights αj1...jp(i) ≥ 0 such that

ν(Γw⋆j1...jp) =

p∑
k=1

αj1...jp(jk)

and

ν(Vorw
⋆
(i)◦) +

n∑
p=1

∑
j1,...,jp

αj1...jp(i) =
1

n
.

Then, cutting each subset Γw
⋆

j1...jp
into p arbitrarily disjoint parts Aj1...jp(jk) such that

ν(Aj1...jp(jk)) = αj1...jp(jk) and defining T ⋆ : Rd → {X1, . . . , Xn} by

T ⋆(x) =

{
Xi for x ∈ Vorw

⋆
(i)◦

Xjk for x ∈ Aj1...jp(jk),

we obtain that T ⋆ is an optimal transport map.
Combining the result of Proposition 7 with Theorem 9, we can now properly char-

acterize the 1-Wasserstein distance between the optimal distribution G♯U derived from
LipK([0, 1],Rd) and the empirical measure µn.

5. Finite sample analysis in a multivariate output space

We are now ready to analyze Problem (1) in the more realistic multivariate setting. In
the remainder of the section, it is therefore assumed that the observations X1, . . . , Xn take
their values in Rd with d > 1, while the latent space still has dimension 1. Following the
schema of Section 3, we first define a candidate function Ĝ⋆K ∈ LipK([0, 1],Rd), compute

W1(Ĝ
⋆
K♯U , µn) in Proposition 10, and finally show in Theorem 9 that Ĝ⋆K solves Problem (1)

in a large subset of LipK([0, 1],Rd). Finally, similarly to Section 3, we conclude with an
asymptotic analysis of W1(Ĝ

⋆
K♯U , µn) when K is a function of the sample size n.
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5.1 Construction of Ĝ⋆K

In the multivariate setting, the shortest path among the n data samples Xi, i ∈ {1, . . . , n},
plays an essential role in the definition of the optimal Ĝ⋆K . The set of paths connecting all
data points X1, . . . , Xn, while minimizing the sum of the squared Euclidean distances, is
defined as follows:

(k, σ) ∈ argmin
{ n+k′−1∑

i=1

∥Xσ′(i+1) −Xσ′(i)∥2 : k′ ∈ N, σ′ ∈ Sk′

}
, (12)

where Sk′ denotes the set of all discrete functions σ′ : {1, . . . , n + k′} → {1, . . . , n} such
that σ′({1, . . . , n+k′}) = {1, . . . , n} and σ′(j) ̸= σ′(j+1). Note that such a pair (k, σ) may
not be unique and keep in mind that σ depends on k.

An important remark is that any shortest path (with a squared norm) is allowed to visit
several times the same point (i.e., k > 0). This is a consequence of the fact that the squared
Euclidean distance does not verify the triangle inequality. Note also that the number of
visits to the point Xi is equal to |σ−1(i)|. An illustration of four shortest paths in dimension
2 is provided in Figure 4. On the top, every single data point is visited once (i.e., k = 0 in
formula (12)), contrary to the two examples in the bottom, where a point is visited twice
(i.e., k = 1).

(a) Shortest path with n = 4, k = 0 in (12). (b) Shortest path with n = 7, k = 0 in (12).

(c) Shortest path with n = 6, k = 1 in (12). (d) Shortest path with n = 15, k = 1 in (12).

Figure 4: Examples of shortest paths in dimension 2, with the squared Euclidean distance.
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Let us now provide some intuition on the way the optimal function Ĝ⋆K : [0, 1] → Rd is
obtained. In a nutshell, this function strictly follows σ, one of the optimal paths in (12).
Thus, there exist some 0 ⩽ t1 < · · · < tn+k ⩽ 1 such that Ĝ⋆K(tj) = Xσ(j), j ∈ {1, . . . , n+k}.
Since the optimal path (and therefore Ĝ⋆K) can visit several times each sample point Xi, we

need to take into account how long Ĝ⋆K stays constant at Xi, whenever it visits this data
point. This period of time is denoted by φ(i) and chosen to be equal to

φ(i) =
1

|σ−1(i)|

( 1

n
−

∑
j∈σ−1(i)

1

2K
(∥Xσ(j−1) −Xi∥+ ∥Xσ(j+1) −Xi∥)

)

(by convention, Xσ(0) = Xσ(1) and Xσ(n+k+1) = Xσ(n+k)). The quantity |σ−1(i)|×φ(i) thus
corresponds to the total measure of the atoms Xi under the distribution Ĝ

⋆
K♯U . Finally, for

any j ∈ {1, . . . , n+ k}, we let

Vj =

j−1∑
ℓ=1

(
φ(σ(ℓ)) +

∥Xσ(ℓ+1) −Xσ(ℓ)∥
K

)
= Vj−1 + φ(σ(j − 1)) +

∥Xσ(j) −Xσ(j−1)∥
K

.

This quantity Vj is more complicated to grasp, but intuitively, it corresponds to the time

steps where the function Ĝ⋆K has arrived on a sample point Xσ(j) and will pause at Xσ(j)

for a time equal to φ(σ(j)).

A visual explanation of the construction mechanism of Ĝ⋆K is depicted in Figure 5. The

top shows the trajectory of Ĝ⋆K following an optimal path σ in (12). The bottom shows the

succession of time steps at which Ĝ⋆K passes from one point to another.

Figure 5: Ĝ⋆K explained. For each data point Xσ(j) (embedded by a specific color), the bold

part of the interval symbolizes the time Ĝ⋆K is equal to Xσ(j), while the light part refers to

the jump from Xσ(j) to Xσ(j+1). Note that Ĝ⋆K follows the optimal path under the squared
Euclidean norm.
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Equipped with this notation, we may now properly define the function Ĝ⋆K : [0, 1] → Rd,
as follows:

Ĝ⋆K(u) =



Xσ(j) if u ∈ [Vj , Vj + φ(σ(j))]

for 1 ⩽ j ⩽ n+ k

Xσ(j) +
(
u− (Vj + φ(σ(j)))

)
K

Xσ(j+1)−Xσ(j)
∥Xσ(j+1)−Xσ(j)∥

if u ∈ [Vj + φ(σ(j)), Vj+1]

for 1 ⩽ j ⩽ n+ k − 1.
(13)

Observe that the function Ĝ⋆K is well-defined as soon as

K ⩾ n max
i=1,...,n

∑
j∈σ−1(i)

1

2
(∥Xσ(j−1) −Xi∥+ ∥Xσ(j+1) −Xi∥),

and that it belongs to LipK([0, 1],Rd). Making the connection with the univariate case of
Section 3, we have that if d = 1, then each point is visited only once, so that k = 0 and,
for each i ∈ {1, . . . , n}, Xσ(i) = X(i) (or Xσ(i) = X(n−i+1)). Besides, |σ−1(i)| = 1 and
φ(i) = 1/n − (X(i+1) − X(i−1))/(2K). We thus recover the univariate function defined in
(3).

5.2 Optimality properties

In this subsection, we first compute the 1-Wasserstein distance between Ĝ⋆K♯U and µn, and
then prove that this value minimizes Problem (1) in the multivariate setting, under a mild
assumption.

Proposition 10 Assume that

K ⩾ n max
i=1,...,n

∑
j∈σ−1(i)

1

2
(∥Xσ(j−1) −Xi∥+ ∥Xσ(j+1) −Xi∥),

and let Ĝ⋆K ∈ LipK([0, 1],Rd) be defined in (13). Then

W1(Ĝ
⋆
K♯U , µn) =

1

4K

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2.

By construction, it is clear that Ĝ⋆K visits each data point, following the optimal path σ.

The proof of Proposition 10 reveals that Ĝ⋆K spends a time 1/n (in terms of Lebesgue
measure) in each “standard” Voronoi cell Vor(i), that is

Vor(i) =
{
x ∈ Rd : ∥x−Xi∥ ⩽ ∥x−Xj∥ for all j ̸= i

}
, i = 1, . . . , n.

These cells correspond to additively weighted Voronoi cells with weight w = (0, . . . , 0). We
define in the same way Γ0

j1...jp
and H 0 as in (8) and (9), respectively.

In the remainder of the subsection, we prove the optimality of Ĝ⋆K on a subset smaller
than LipK([0, 1],Rd). This subset is denoted by Lip◦K([0, 1],Rd) and is defined below. Recall

18



that for any G ∈ LipK([0, 1],Rd) such that G♯U is nonatomic, there exists according to
Theorem 9 a weight w ∈ Rn and an optimal transport map Tw from G♯U to µn such that

W1(G♯U , µn) =

∫
Rd

∥x− Tw(x)∥dG♯U (x) =
∫ 1

0
∥G(u)− Tw(G(u))∥du.

Definition 11 Let G ∈ LipK([0, 1],Rd). We say that G is in Lip◦K([0, 1],Rd) if G♯U is
nonatomic and, for all u ∈ [0, 1] and all i ∈ {1, . . . , n} such that Tw(G(u)) = Xi, there
exists v ∈ [0, 1] such that G(v) = Xi and ∀x ∈ [u, v] (or [v, u]), Tw(G(x)) = Xi.

Definition 11 means that as soon as the function G enters a weighted Voronoi cell, then it
must passes through its center. Even though Ĝ⋆K♯U has atoms, the following theorem shows

that W1(Ĝ
⋆
K♯U , µn) achieves the infimum of Problem (1) over Lip◦K([0, 1],Rd).

Theorem 12 Assume that K ⩾ n max
i=1,...,n

∑
j∈σ−1(i)

1
2(∥Xσ(j−1) −Xi∥+ ∥Xσ(j+1) −Xi∥), and

let the function Ĝ⋆K ∈ LipK([0, 1],Rd) be defined in (13). Then

W1(Ĝ
⋆
K♯U , µn) = inf

G∈Lip◦K([0,1],Rd)
W1(G♯U , µn) =

1

4K

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2.

Proof Let G ∈ Lip◦K([0, 1],Rd). According to Theorem 9, there exists a weight w ∈ Rn and
an optimal transport map Tw from G♯U to µn. We denote by [a1, a2], [a2, a3], . . . , [ap−1, ap]
the intervals such that a1 = 0, ap = 1, and, for all j ∈ {1, . . . , p − 1}, there exists τ(j) ∈
{1, . . . , n} such that u ∈ [aj , aj+1] implies that Tw(G(u)) = Xτ(j) (with τ(j) ̸= τ(j + 1)).

Using the fact that G is K-Lipschitz and satisfies Definition 11, it is easy to see that

aj+1 − aj ⩾
1

K

(
∥G(aj)−Xτ(j)∥+ ∥G(aj+1)−Xτ(j)∥

)
.

Observe that

W1(G♯U , µn) =

∫
Rd

∥x− Tw(x)∥dG♯U (x) =
∫ 1

0
∥G(u)− Tw(G(u))∥du

=

p−1∑
j=1

∫ aj+1

aj

∥G(u)−Xτ(j)∥du.

Therefore,

W1(G♯U , µn) ⩾
p−1∑
j=1

∫ aj+
∥G(aj)−Xτ(j)∥

K

aj

(∥G(aj)−Xτ(j)∥ −K(u− aj))du

+

∫ aj+1

aj+1−
∥G(aj+1)−Xτ(j)∥

K

K
(
u−

(
aj+1 −

∥G(aj+1)−Xτ(j)∥
K

))
du

=
1

2K

p−1∑
j=1

(
∥G(aj)−Xτ(j)∥2 + ∥G(aj+1)−Xτ(j)∥2

)
.
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Observe that, by the triangle inequality,

∥G(aj)−Xτ(j−1)∥+ ∥G(aj)−Xτ(j)∥ ⩾ ∥Xτ(j−1) −Xτ(j)∥.

So,

∥G(aj)−Xτ(j−1)∥2 + ∥G(aj)−Xτ(j)∥2 ⩾
1

2
∥Xτ(j−1) −Xτ(j)∥2.

Using (12) (Main Document), we conclude that

W1(G♯U , µn) ⩾
1

4K

p−1∑
j=1

∥Xτ(j−1) −Xτ(j)∥2 ⩾W1(Ĝ
⋆
K♯U , µn).

Therefore,
inf

G∈Lip◦K([0,1],Rd)
W1(G♯U , µn) ⩾W1(Ĝ

⋆
K♯U , µn).

Finally, a slight adaptation of Proposition 7 shows that

W1(Ĝ
⋆
K♯U , µn) ⩾ inf

G∈Lip◦K([0,1],Rd)
W1(G♯U , µn),

and the theorem is proved.

Note that we could not show the optimality of Ĝ⋆K on LipK([0, 1],Rd). However, all the
numerical experiments indicate that the generative functions Gθ output by WGANs satisfy
W1(Ĝ

⋆
K♯U , µn) < W1(G

θ
♯U , µn). Consequently, restricting the set of Lipschitz continuous

functions to Lip◦K([0, 1],Rd) might not be necessary. We leave it as an open problem to
prove that Ĝ⋆K is indeed the infimum over the whole set LipK([0, 1],Rd). Similarly to

the univariate case, the distribution Ĝ⋆K♯U has atoms located at the sample points Xi, with

respective mass |σ−1(i)|×φ(i). It is also noteworthy that the minimizer Ĝ⋆K is not necessarily
unique, because there may be different paths σ minimizing the sum of the squared Euclidean
distances in (12). Furthermore, if |σ−1(i)| ⩾ 2, one can arbitrarily choose how to split the
time period |σ−1(i)| × φ(i) = Ĝ⋆K♯U ({Xi}) according to the different moments Ĝ⋆K passes
by Xi.

In order to illustrate Theorem 12, we propose in Figure 6 a 2-dimensional experiment
that compares the 1-Wasserstein distance W1(Ĝ

⋆
K♯U , µn) with the results of parametric

WGANs. The generator is composed of ReLU neural networks of depth 3 and 6, and width
100, while the discriminator is composed of ReLU neural networks of depth 5 and width
100. We train a WGAN architecture on two different configurations, n = 5 for the first and
n = 10 for the second, both with the choice K = 50 (compatible with the assumption on K
in Theorem 12). We see, as expected, that the parametric WGAN (denoted by Gθ♯U ) gets

close to the optimal function Ĝ⋆K . However, since neural networks lack capacity and cannot
replicate all Lipschitz functions, they operate some smoothing. Finally, observe that as n
grows, mimicking the optimal function Ĝ⋆K is harder, while increasing the depth can help.

Theorem 12 is valid under the condition K ⩾ K2, where

K2 := n max
i=1,...,n

∑
j∈σ−1(i)

1

2
(∥Xσ(j−1) −Xi∥+ ∥Xσ(j+1) −Xi∥).
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(a) The sample size is n = 5 and the depth of
the generator is equal to 3. The WGAN misses
the shortest path leading to a deteriorated 1-
Wasserstein distance: W1(Ĝ

⋆
K♯U , µn) = 0.030

and W1(G
θ
♯U , µn) = 0.286.

(b) The sample size is n = 5 and the depth of the
generator is equal to 6. The WGAN is closer to
the shortest path: W1(Ĝ

⋆
K♯U , µn) = 0.018 and

W1(G
θ
♯U , µn) = 0.174.

(c) The sample size is n = 10 and the depth
of the generator is equal to 3. The WGAN
misses the shortest path, with a worsened 1-
Wasserstein distance: W1(Ĝ

⋆
K♯U , µn) = 0.025

and W1(G
θ
♯U , µn) = 0.321.

(d) The sample size is n = 10 and the depth of
the generator is equal to 6. The WGAN is closer
to the shortest path: W1(Ĝ

⋆
K♯U , µn) = 0.025

and W1(G
θ
♯U , µn) = 0.160.

Figure 6: Fitting 2-dimensional data points with a univariate latent space. The blue curves
are the ones reached after optimization with WGANs Gθ♯U and the red curves are the
constructed ones G⋆K♯U

.

As K2 (and thus K) is a function of n, it is therefore natural to understand the behavior
of W1(Ĝ

⋆
K♯U , µ) when n tends to infinity.

Proposition 13 Assume that µ has a probability density with respect to the Lebesgue mea-
sure on Rd and that S(µ) is bounded.

1. We have

1

K2

= O(n−1+1/d) a.s.
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2. If, in addition, the density of µ is bounded away from 0 on S(µ), then, for all K ⩾ K2,
in probability,

W1(Ĝ
⋆
K♯U , µ) =

{
O( logn√

n
) for d = 2

O(n−1/d) for d ⩾ 3.

The proof of Proposition 13 reveals that, for d ⩾ 2,W1(Ĝ
⋆
K♯U , µn) = O(n−1/d) in probability,

which coincides with the rate of W1(µ, µn) for d ⩾ 3 (Fournier and Guillin, 2015, Theorem
1). However, for d = 2, W1(µ, µn) = O( logn√

n
), and the speed of convergence to 0 of

W1(Ĝ
⋆
K♯U , µ) is therefore slightly slowed down by the term W1(µ, µn). In essence, this

proposition states that while K ⩾ K2 tends to infinity as n grows, the infimum is taken over
a larger collection of functions, which enables Ĝ⋆K♯U to get closer to the target distribution
µ for the 1-Wasserstein distance. Liang (2021) derived minimax-type results for classes of
absolutely continuous distributions defined with Sobolev constraints.

6. Conclusion

We provided in this paper a thorough analysis of the properties of WGANs, in both the finite
sample and asymptotic regimes. Although the dimension of the latent space is assumed to
be equal to 1, the results are valid regardless of the dimension d of the output space. In
this setting, we showed that for a fixed sample size n, optimal WGANs are closely linked
with connected paths minimizing the sum of the squared Euclidean distances between the
sample points. We also highlighted the fact that WGANs are able to approach (for the
1-Wasserstein distance) the target distribution as n tends to infinity, at a given convergence
rate and provided the family of Lipschitz functions grows with K. We derived in passing
new results on optimal transport theory in the semi-discrete setting. In a nutshell, the
main message is that WGANs generate data that lie on very specific regions of the ambient
space—thus showing some limited “creativity”— while being able to asymptotically recover
the unknown distribution of the observations under appropriate assumptions.

Nevertheless, many questions remain open and should, in our eyes, be given special
attention. First, the current approach is based on a somewhat ideal definition of WGANs,
in the sense that we use LipK([0, 1],Rd) and Lip1(Rd,R) for, respectively, the generator and
the discriminator. However, one should keep in mind that in practice both the generator
and the discriminator are implemented by deep neural networks. It follows that the results
of the paper have to be appreciated in light of the approximation capabilities of neural
networks. In particular, larger datasets will require deeper and more expressive networks to
reconstruct the optimal functions Ĝ⋆K . Also, using neural networks, the sample points in the
dataset are less likely to be overfitted, thus getting closer to the true purpose of generative
models, which is to mimic the observations without resampling from the learning database.
We believe that studying the potential benefits of this regularization effect is an interesting
problem. Next, it was assumed throughout that the latent random variable U is uniform.
The extension to latent variables with unbounded support, such as Gaussian distributions,
is not straightforward and requires careful investigation.

Finally, an interesting research direction is to understand and analyze the mechanisms of
WGANs when the dimension p of the latent space is strictly larger than 1. In this context,
the univariate shortest paths will be replaced by surfaces, and the interesting question
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(a) W1(Ĝ
⋆
K♯U , µn) = 0.27. (b) W1(Ḡ

⋆
K♯U , µn) = 0.15. (c) Latent space heatmap. (d) Supp. green points.

(e) W1(Ĝ
⋆
K♯U , µn) = 0.16. (f) W1(Ḡ

⋆
K♯U , µn) = 0.10. (g) Latent space heatmap. (h) Supp. green points.

(i) W1(Ĝ
⋆
K♯U , µn) = 0.42. (j) W1(Ḡ

⋆
K♯U , µn) = 0.13. (k) Latent space heatmap. (l) Supp. green points.

Figure 7: Influence of the dimension p of the latent space. In the left column, we use a
uniform latent distribution on [0, 1] (target points in red, sampled points in blue). In the
second column, we use a uniform latent distribution on [0, 1]2 (the optimal generator is
denoted by Ḡ⋆K). The third column shows heatmaps of the gradients’ norm of the optimal
generator (the bluer the lower and the redder the higher). Finally, the last column shows
supplementary points sampled close to (12 ,

1
2) (in the latent space).

will then be to understand the driving forces of WGANs when p < d and p = d. As a
teaser, we show in Figure 7 the impact of increasing the dimension of the latent space
from p = 1 to p = 2, in the case where data (in red) lie in dimension d = 2. We note
that when p = 1, the WGAN is able to find the shortest paths for the squared Euclidean
distance, as predicted by the theory. For p = 2, the situation is quite intriguing since the
1-Wasserstein distance between the empirical measure and the pushforward distribution of
U by the optimal function G is decreasing. Besides, the generated distributions seem to be
concentrated with positive mass on the data points and, with decreasing probabilities, on a
path—theoretically undetermined—linking them. Note however that it seems also possible
to generate samples anywhere in the convex hull of the data points. This is illustrated in the
fourth column of the figure, where we voluntarily sample latent vectors close to the center
(12 ,

1
2). We visualize on the heatmaps in the third column the appearance of areas with high

gradients of the optimal generator, dividing the latent space. Analyzing the geometrical
properties of these latent configurations is a very exciting avenue for future research.
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A. Stéphanovitch, U. Tanielian, B. Cadre, N. Klutchnikoff, and G. Biau. Supplement to
“Optimal 1-Wasserstein distance for WGANs”. 2023.

U. Tanielian, T. Issenhuth, E. Dohmatob, and J. Mary. Learning disconnected manifolds:
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Appendix A. Proof of Lemma 1

We only focus on the first statement since the proof of the second one is similar. Let
G,G′ ∈ LipK([0, 1],Rd). Observe that by the triangle inequality and the primal definition
of the 1-Wasserstein distance, we have

|W1(G♯U , µn)−W1(G
′
♯U , µn)| ⩽W1(G♯U , G

′
♯U )

⩽
∫
Rd×Rd

∥x− y∥dγ(x, y),

where γ is the pushforward distribution of U by the pair (G,G′), with marginals G♯U and
G′
♯U . Thus,

|W1(G♯U , µn)−W1(G
′
♯U , µn)| ⩽

∫
[0,1]

∥G(u)−G′(u)∥du

⩽ ∥G−G′∥∞,

where ∥ · ∥∞ denotes the supremum norm of functions, i.e., for f : [0, 1] → Rd, ∥f∥∞ =
sup{∥f(x)∥ : x ∈ [0, 1]}. Hence the map LipK([0, 1],Rd) ∋ G 7→ W1(G♯U , µn) is continuous
with respect to the uniform norm.

Now let G0 ≡ X1 be a constant function on [0, 1]. Then, clearly, W1(G
0
♯U , µn) < ∞.

Next, let G be any function in LipK([0, 1],Rd) such that

∥G∥∞ ⩾W1(G
0
♯U , µn) +K + max

i=1,...,n
∥Xi∥.

Then, upon observing that there exists u0 ∈ [0, 1] such that ∥G(u0)∥ = ∥G∥∞ and using
the fact that G is K-Lipschitz continuous on [0, 1], we deduce that for all u ∈ [0, 1] and any
i ∈ {1, . . . , n}, one has

∥G(u)−Xi∥ ⩾ ∥G∥∞ −K − ∥Xi∥ ⩾ ∥G∥∞ −K − max
i=1,...,n

∥Xi∥.

Hence, ∥G(u)−Xi∥ ⩾W1(G
0
♯U , µn), which implies thatW1(G♯U , µn) ⩾W1(G

0
♯U , µn). There-

fore, letting

HK = {G ∈ LipK([0, 1],Rd) : ∥G∥∞ ⩽W1(G
0
♯U , µn) +K + max

i=1,...,n
∥Xi∥},

we see that
inf

G∈LipK([0,1],Rd)
W1(G♯U , µn) = inf

G∈HK

W1(G♯U , µn).
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Endowed with the uniform norm, HK is closed and relatively compact by the Arzelà-
Ascoli theorem. It is thus a compact subset of LipK([0, 1],Rd). Consequently, by continuity
and the above equality, LipK([0, 1],Rd) ∋ G 7→ W1(G♯U , µn) attains its minimum on HK .

Therefore, ĜK is not empty.

Appendix B. Proof of Theorem 2

Proof of 1(i)

Since µ is of order 1, one has limn→∞W1(µ, µn) = 0 a.s. according to Villani (2008, Theorem
6.8). Hence, by the triangle inequality and because ĜK ∈ ĜK , we only need to prove that

lim
n→∞

inf
G∈LipK([0,1],R)

W1(G♯U , µn) = 0 a.s.

If K ⩾ K0, then LipK0
([0, 1],R) ⊆ LipK([0, 1],R). Therefore,

0 ⩽ inf
G∈LipK([0,1],R)

W1(G♯U , µn) ⩽ inf
G∈LipK0

([0,1],R)
W1(G♯U , µn) ⩽W1(F

−1
♯U , µn),

since, by assumption, F−1 ∈ LipK0
([0, 1],R). But F−1(U) has distribution µ, and thus one

has limn→∞W1(F
−1
♯U , µn) = 0. This proves the result.

Proof of (2)

The result is proved by contradiction. Fix K > 0 and assume that on an event of strictly
positive probability

lim inf
n→∞

W1(ĜK♯U , µ) = 0.

Since limn→∞W1(µ, µn) = 0 a.s. and ĜK ∈ ĜK , we see that

inf
G∈LipK([0,1],R)

W1(G♯U , µ) = 0.

Now, by Lemma 1, there exists GK ∈ LipK([0, 1],R) such that

W1(GK♯U , µ) = inf
G∈LipK([0,1],R)

W1(G♯U , µ).

So, W1(GK♯U , µ) = 0 and therefore, since F−1(U) has distribution µ, we have

GK(U)
L∼ F−1(U). (14)

Next, by continuity of GK , there exists a compact set C ⊆ R such that P(GK(U) ∈ C) = 1.
But, since S(µ) is unbounded, P(F−1(U) ∈ C) = µ(C) < 1, which contradicts (14).

Proof of 1(ii)

We show the result by contradiction, assuming as in the proof of statement (2) that for
K < 1/K1, on an event of strictly positive probability,

lim inf
n→∞

W1(ĜK♯U , µ) = 0.
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Arguing as in the previous proof, we have that GK(U)
L∼ F−1(U). Then, it is a classical

exercise to deduce from (14), since F−1(u) > −∞ for all u ∈ (0, 1) and F is continuous,

that F ◦GK(U)
L∼ U . Iterating this relation leads to

(F ◦GK)ℓ(U)
L∼ U, ∀ℓ ⩾ 0. (15)

Moreover, both assumptions F ∈ LipK1
(R, [0, 1]) and GK ∈ LipK([0, 1],R) imply

|F ◦GK(u)− F ◦GK(v)| ⩽ KK1|u− v| ⩽ KK1, ∀(u, v) ∈ [0, 1]2.

Repeating this inequality entails, for all ℓ ⩾ 0,

|(F ◦GK)ℓ(u)− (F ◦GK)ℓ(v)| ⩽ (KK1)
ℓ, ∀(u, v) ∈ [0, 1]2.

But, for all u ∈ [0, 1], the sequence ((F ◦ GK)ℓ(u))ℓ⩾1 is bounded by 1. In addition,
KK1 < 1 by assumption. Thus, there exist a ∈ [0, 1] and a subsequence (ℓq)q⩾1 such that,
for all u ∈ [0, 1],

lim
q→∞

(F ◦GK)ℓq(u) = a.

Hence, as q → ∞, (F ◦GK)ℓq(U) almost surely converges to a, which contradicts (15).

Appendix C. Proof of Theorem 3

Looking for a contradiction, we start as in the proof of Theorem 2, cases (1ii) and (2), by
assuming that on an event of strictly positive probability,

lim inf
n→∞

W1(ĜK♯U , µ) = 0.

As we have seen, this implies W1(GK♯U , µ) = 0 and, in turn, since the support of GK♯U
is included in GK([0, 1]), S(µ) ⊆ GK([0, 1]). By our assumption on S(µ), we therefore
conclude that λd(GK([0, 1])) > 0. Moreover, since GK ∈ LipK([0, 1],Rd), we have that 0 <
λd(GK([0, 1])) = Hd(GK([0, 1])) ⩽ KdHd([0, 1]), where Hd is the d-dimensional Hausdorff
measure (see, e.g., Evans and Gariepy, 2015, Theorem 2.8). But this is impossible since
Hd([0, 1]) = 0 as soon as d > 1.

Appendix D. Proof of Proposition 4

To lighten the notation, it is assumed throughout the proof that the Xi’s are ordered by
increasing values, i.e., X1 ⩽ X2 ⩽ · · · ⩽ Xn. According to Santambrogio (2015, Proposition
2.17), the 1-Wasserstein distance between two probability measures π1 and π2 on the real
line, with respective generalized inverses F−1

1 and F−1
2 , is such that

W1(π1, π2) =

∫ 1

0
|F−1

1 (u)− F−1
2 (u)|du.

Since Ĝ⋆K is monotone and continuous, the generalized inverse of Ĝ⋆K♯U is Ĝ⋆K . Also, denoting

by F−1
µn the generalized inverse of µn, we have F−1

µn (u) =
∑n

i=1Xi1{u ∈ ((i− 1)/n, i/n]}.
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Therefore,

W1(Ĝ
⋆
K♯U , µn) =

∫ 1

0
|Ĝ⋆K(u)− F−1

µn (u)|du

=
n−1∑
i=1

∫ i/n

i/n−Xi+1−Xi
2K

∣∣∣Xi +K
(
u− (

i

n
− Xi+1 −Xi

2K
)
)
−Xi

∣∣∣du
+
n−1∑
i=1

∫ i/n+
Xi+1−Xi

2K

i/n

∣∣∣Xi+1 −Xi

2K
+K(u− i

n
)−Xi+1

∣∣∣du
=

n−1∑
i=1

1

2
K
((Xi+1 −Xi)

2

4K2
+

(Xi+1 −Xi)
2

4K2

)
=

1

4K

n−1∑
i=1

(Xi+1 −Xi)
2,

as desired.

Appendix E. Proof of Theorem 5

As in the proof of Proposition 4, it is assumed without loss of generality that the Xi’s are
ordered by increasing values, i.e., X1 ⩽ X2 ⩽ · · · ⩽ Xn. Let G : [0, 1] → R be an arbitrary
K-Lipschitz continuous function in ĜK , with K ⩾ n max

i=1,...,n−1
(Xi+1 − Xi). According to

Proposition 4, the first statement will be proven if we show that for such a function G,

W1(G♯U , µn) ⩾
n−1∑
i=1

(Xi+1 −Xi)
2

4K
.

Let Π(π1, π2) be the set of couplings between two probability measures π1 and π2.
According to Ambrosio and Gigli (2013, Lemma 2.12), for any π ∈ Π(G♯U , µn), there exists
a coupling γ ∈ Π(λ1, µn) such that π = (G, Id)#γ , where λ1 stands for the Lebesgue measure
on the interval [0, 1] and Id is the identity function. Therefore,

W1(G♯U , µn) = inf
π∈Π(G♯U ,µn)

∫
R×R

|x− y|dπ(x, y)

≥ inf
γ∈Π(λ1,µn)

∫
[0,1]×R

|G(u)− y|dγ(u, y).

Since the function (u, y) 7→ |G(u) − y| is continuous, then, according to Pratelli (2007,
Theorem B), we have

inf
γ∈Π(λ1,µn)

∫
[0,1]×R

|G(u)− y|dγ(u, y) = inf
T

∫ 1

0
|G(u)− T (u)|du,

where the infimum is taken over all measurable functions T : [0, 1] → {X1, . . . , Xn} such
that T♯U = µn. Any such transport map T takes the form T (u) =

∑n
i=1Xi1{u ∈ Ci},
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where C1, . . . , Cn are Borel subsets of [0, 1] such that λ1(Ci) =
1
n . We conclude that

W1(G♯U , µn) ⩾ inf
C1,...,Cn

n∑
i=1

∫
Ci

|G(u)−Xi|du, (16)

where the infimum is taken over all disjoint Borel sets C1, . . . , Cn ⊆ [0, 1] such that λ1(Ci) =
1
n . To prove the first statement of the theorem, it is therefore sufficient to lower bound the
infimum above.

The case n = 1 is clear since the function G(u) ≡ X1 satisfies W1(G♯U , µ1) = 0. Thus,
in the sequel, it is assumed that n ⩾ 2. We let a = inf

[0,1]
G, b = sup

[0,1]
G, and ℓ1 ⩽ ℓ2 so that

Xℓ1 = min
Xi⩾a

Xi and Xℓ2 = max
Xi⩽b

Xi. Note that we can safely assume that ℓ1 and ℓ2 are well-

defined, since for Ĝ(u) := G(u)1{G(u) ∈ [X1, Xn]}+X11{G(u) < X1}+Xn1{G(u) > Xn},
we have

inf
C1,...,Cn

n∑
i=1

∫
Ci

|G(u)−Xi|du ⩾ inf
C1,...,Cn

n∑
i=1

∫
Ci

|Ĝ(u)−Xi|du.

We also suppose that n > ℓ2 ⩾ ℓ1 + 1 > 1 and leave the other cases as straightforward
adaptations. Since G is continuous, for each i ∈ {ℓ1, . . . , ℓ2−1}, there exists ui ∈ [0, 1] such

that G(ui) =
Xi+Xi+1

2 . We let A−
i = [ui − Xi+1−Xi

2K , ui], A
+
i = [ui, ui +

Xi+1−Xi
2K ], and write

T (u) =
n∑
j=1

Xj1{u ∈ Cj}. With this notation,

∫
A−
i

|G(u)− T (u)|du =

i∑
j=1

∫
A−
i

(G(u)−Xi +Xi −Xj)1{u ∈ Cj}du

+

n∑
j=i+1

∫
A−
i

(Xi+1 −G(u) +Xj −Xi+1)1{u ∈ Cj}du

=

i∑
j=1

[ ∫
A−
i

(G(u)−Xi)1{u ∈ Cj}du+ λ1(Cj ∩A−
i )(Xi −Xj)

]
+

n∑
j=i+1

[ ∫
A−
i

(Xi+1 −G(u))1{u ∈ Cj}du+ λ1(Cj ∩A−
i )(Xj −Xi+1)

]
.

(17)
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Exploiting the fact that the function G is K-Lipschitz continuous and G(ui) =
Xi+Xi+1

2 , we

have that for u ∈ A−
i ∪A+

i ,
Xi+Xi+1

2 −K|ui − u| ⩽ G(u) ⩽ Xi+Xi+1

2 +K|ui − u|. Thus,

i∑
j=1

∫
A−
i

(G(u)−Xi)1{u ∈ Cj}du+
n∑

j=i+1

∫
A−
i

(Xi+1 −G(u))1{u ∈ Cj}du

⩾
i∑

j=1

∫
A−
i

(Xi +Xi+1

2
−K(ui − u)−Xi

)
1{u ∈ Cj}du

+
n∑

j=i+1

∫
A−
i

(
Xi+1 −

(Xi +Xi+1

2
+K(ui − u)

))
1{u ∈ Cj}du

=
n∑
j=1

∫
A−
i

(Xi+1 −Xi

2
−K(ui − u)

)
1{u ∈ Cj}du

=

∫
A−
i

(Xi+1 −Xi

2
−K(ui − u)

)
du

=
(Xi+1 −Xi)

2

4K
− 1

2

(Xi+1 −Xi)
2

4K

=
(Xi+1 −Xi)

2

8K
. (18)

Combining this inequality with (17) yields∫
A−
i

|G(u)− T (u)|du ⩾
(Xi+1 −Xi)

2

8K

+
i−1∑
j=1

λ1(Cj ∩A−
i )(Xi −Xj) +

n∑
j=i+1

λ1(Cj ∩A−
i )(Xj −Xi+1).

Employing the same technique for A+
i , we obtain∫

A+
i

|G(u)− T (u)|du ⩾
(Xi+1 −Xi)

2

8K

+

i−1∑
j=1

λ1(Cj ∩A+
i )(Xi −Xj) +

n∑
j=i+1

λ1(Cj ∩A+
i )(Xj −Xi+1).

So, letting Ai = A−
i ∪A+

i and using the fact that Xℓ+1 ⩾ Xℓ for all ℓ ⩽ n− 1, we are led to∫
Ai

|G(u)− T (u)|du ⩾
(Xi+1 −Xi)

2

4K

+
i−1∑
j=1

λ1(Cj ∩Ai)(Xj+1 −Xj) +
n∑

j=i+2

λ1(Cj ∩Ai)(Xj −Xj−1).

(19)
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Now, let uℓ1−1 ∈ [0, 1] be such that G(uℓ1−1) =
a+Xℓ1

2 . With a slight abuse of notation,

define A−
ℓ1−1 = [uℓ1−1 −

Xℓ1−a
2K , uℓ1−1] and A

+
ℓ1−1 = [uℓ1−1, uℓ1−1 +

Xℓ1−a
2K ]. Then, using the

same method as above, one easily shows that, for Aℓ1−1 = A−
ℓ1−1 ∪A

+
ℓ1−1,∫

Aℓ1−1

|G(u)− T (u)|du ⩾
(Xℓ1 − a)2

4K

+

ℓ1−1∑
j=1

λ1(Cj ∩Aℓ1−1)(a−Xj) +
n∑

j=ℓ1+1

λ1(Cj ∩Aℓ1−1)(Xj −Xℓ1).

In a similar fashion, for uℓ2 ∈ [0, 1] such that G(uℓ2) =
Xℓ2+b

2 and, with a slight abuse of

notation, letting Aℓ2 = [uℓ2 −
b−Xℓ2+1

2K , uℓ2 +
b−Xℓ2+1

2K ], we obtain

∫
Aℓ2

|G(u)− T (u)|du ⩾
(b−Xℓ2)

2

4K

+

ℓ2−1∑
j=1

λ1(Cj ∩Aℓ2)(Xℓ2 −Xj) +

n∑
j=ℓ2+1

λ1(Cj ∩Aℓ2)(Xj − b).

Accordingly,∫
Aℓ1−1∪Aℓ2

|G(u)− T (u)|du ⩾
(Xℓ1 − a)2

4K
+

(b−Xℓ2)
2

4K

+

ℓ1−2∑
j=1

λ1(Cj ∩Aℓ1−1)(Xj+1 −Xj)

+ λ1(Cℓ1−1 ∩Aℓ1−1)(a−Xℓ1−1)

+

n∑
j=ℓ1+1

λ1(Cj ∩Aℓ1−1)(Xj −Xj−1)

+

ℓ2−1∑
j=1

λ1(Cj ∩Aℓ2)(Xj+1 −Xj)

+ λ1(Cℓ2+1 ∩Aℓ2)(Xℓ2+1 − b)

+

n∑
j=ℓ2+2

λ1(Cj ∩Aℓ2)(Xj −Xj−1). (20)

Let B =
⋃ℓ2
i=ℓ1−1Ai, and observe that the target integral can be decomposed in the

following way:∫ 1

0
|G(u)− T (u)|du =

∫
B
|G(u)− T (u)|du+

∫
Bc

|G(u)− T (u)|du. (21)
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Inequalities (19) and (20) provide a lower bound on the first term on the right-hand side
of (21). Let us now work out the second term. To this aim, observe that

∫
Bc

|G(u)− T (u)|du ⩾
ℓ1−1∑
j=1

∫
Bc

|G(u)−Xj |1{u ∈ Cj}du

+

n∑
j=ℓ2+1

∫
Bc

|G(u)−Xj |1{u ∈ Cj}du

⩾
ℓ1−2∑
j=1

∫
Bc

(Xℓ1−1 −Xj)1{u ∈ Cj}du

+

∫
Bc

(a−Xℓ1−1)1{u ∈ Cℓ1−1}du

+

∫
Bc

(Xℓ2+1 − b)1{u ∈ Cℓ2+1}du

+
n∑

j=ℓ2+2

∫
Bc

(Xj −Xℓ2+1)1{u ∈ Cj}du.

Exploiting λ1(Cj) =
1
n for j ∈ {1, . . . , n}, we see that

∫
Bc

|G(u)− T (u)|du ⩾
ℓ1−2∑
j=1

( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cj ∩Ai)
)
(Xj+1 −Xj)

+
( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cℓ1−1 ∩Ai)
)
(a−Xℓ1−1)

+
( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cℓ2+1 ∩Ai)
)
(Xℓ2+1 − b)

+
n∑

j=ℓ2+2

( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cj ∩Ai)
)
(Xj −Xj−1). (22)
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Thus, using identity (21) together with inequalities (19), (20), and (22), we are led to∫ 1

0
|G(u)− T (u)|du ⩾

(Xℓ1 − a)2

4K
+

(b−Xℓ2)
2

4K

+

ℓ1−2∑
j=1

( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cj ∩Ai) +
ℓ2∑

i=ℓ1−1

λ1(Cj ∩Ai)
)
(Xj+1 −Xj)

+
( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cℓ1−1 ∩Ai) +
ℓ2∑

i=ℓ1−1

λ1(Cℓ1−1 ∩Ai)
)
(a−Xℓ1−1)

+

ℓ2−1∑
i=ℓ1

(Xi+1 −Xi)
2

4K

+
( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cℓ2+1 ∩Ai) +
ℓ2∑

i=ℓ1−1

λ1(Cℓ2+1 ∩Ai)
)
(Xℓ2+1 − b)

+

n∑
j=ℓ2+2

( 1

n
−

ℓ2∑
i=ℓ1−1

λ1(Cj ∩Ai) +
ℓ2∑

i=ℓ1−1

λ1(Cj ∩Ai)
)
(Xj −Xj−1).

So, ∫ 1

0
|G(u)− T (u)|du ⩾

(Xℓ1 − a)2

4K
+

ℓ2−1∑
i=ℓ1

(Xi+1 −Xi)
2

4K
+

(b−Xℓ2)
2

4K

+
∑

j∈{1,...,ℓ1−2}∪{ℓ2+1,...,n−1}

Xj+1 −Xj

n
+

1

n
(a−Xℓ1−1)

+
1

n
(Xℓ2+1 − b).

Since K ⩾ n max
i=1,...,n−1

(Xi+1 −Xi), we have
Xj+1−Xj

n ⩾ (Xj+1−Xj)2
K , and thus

(Xℓ1 − a)2

4K
+

1

n
(a−Xℓ1−1) ⩾

1

4K

(
(Xℓ1 − a)2 + 4(a−Xℓ1−1)(Xℓ1 −Xℓ1−1)

)
=

1

4K

(
(Xℓ1 − a)2 + 4(a−Xℓ1−1)(Xℓ1 − a

)
+ 4(a−Xℓ1−1)

2
)

⩾
(Xℓ1 −Xℓ1−1)

2

4K
. (23)

Similarly,
(Xℓ2 − b)2

4K
+

1

n
(Xℓ2+1 − b) ⩾

(Xℓ2+1 −Xℓ2)
2

4K
.

Using once again the assumption on K, we conclude that∫ 1

0
|G(u)− T (u)|du ⩾

n−1∑
i=1

(Xi+1 −Xi)
2

4K
.
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To complete the proof, it remains to show that Ĝ⋆K and Ĝ⋆K ◦S are the only minimizers
of (1) (Main Document). Returning to inequality (23), we see that if the function G does
not visit each data points, then∫ 1

0
|G(u)− T (u)|du >

n−1∑
i=1

(Xi+1 −Xi)
2

4K
.

Also, according to (18), for the function G to be optimal it needs to go at speed K between
each observation. Finally, with equation (16), we have that an optimal G must be such that

λ1
(
{u ∈ [0, 1] : |G(u)−Xi| ⩽ |G(u)−Xj |, j = 1, . . . , n}

)
=

1

n
,

a property satisfied by Ĝ⋆K and Ĝ⋆K ◦ S according to (4) (Main Document). We conclude

that Ĝ⋆K and Ĝ⋆K ◦ S are the unique minimizers of Problem (1) (Main Document) as they
are the only functions satisfying these three conditions.

Appendix F. Proof of Proposition 6

The first statement is a straightforward consequence of Deheuvels (1984, Theorem 2). Re-
garding the second statement, we know from Theorem 5 that, for all K ⩾ K1,

W1(Ĝ
⋆
K♯U , µn) = inf

G∈LipK([0,1],R)
W1(G♯U , µn) =

1

4K

n−1∑
i=1

(X(i+1) −X(i))
2.

Therefore,

W1(Ĝ
⋆
K♯U , µn) ⩽

∑n−1
i=1 (X(i+1) −X(i))

2

nmaxi=1,...,n−1(X(i+1) −X(i))

⩽
1

n

n−1∑
i=1

(X(i+1) −X(i))

=
1

n
(X(n) −X(1))

⩽
B −A

n
.

Recalling that W1(µ, µn) = O(n−1/2) in probability (Fournier and Guillin, 2015, Theorem
1), the conclusion follows from the triangle inequality.

Appendix G. Proof of Proposition 7

The result is a consequence of the following lemma:

Lemma 14 For each G ∈ LipK([0, 1],Rd), there exists a sequence of functions (Gm)m∈N
in LipK([0, 1],Rd) such that each Gm♯U is nonatomic and W1(Gm♯U , µn) →W1(G♯U , µn) as
m→ ∞.
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Proof Let G ∈ LipK([0, 1],Rd) and m ∈ N. We define Gm by slightly modifying G on
each interval where it is constant. More precisely, let I be the set of all non degenerated
connected components of G−1({y ∈ Rd : λ1(G

−1(y)) > 0}). This set is at most countable
and, since G is continuous, it contains only disjoint closed intervals, i.e.,

I = {[aℓ, bℓ] : ℓ ∈ L},

where L ⊂ N and 0 ⩽ aℓ < bℓ ⩽ 1. Let Km = min(K, 1/m), e1 = (1, 0, . . . , 0) ∈ Rd, and

Gm(u) =

{
G(aℓ) +Km

(
bℓ−aℓ

2 −
∣∣aℓ+bℓ

2 − u
∣∣)e1 if u ∈ [aℓ, bℓ] for some ℓ ∈ L

G(u) otherwise.

It is easy to see that Gm ∈ LipK([0, 1],Rd). Moreover, Gm is not constant over any non
degenerated interval. Thus, the distribution Gm♯U is nonatomic. In addition, ∥Gm −
G∥∞ → 0 as m → ∞. In particular, for any continuous bounded function f : Rd → R,
∥f(Gm)− f(G)∥∞ → 0, so that Gm♯U → G♯U weakly, as m tends to infinity. As the Gm♯U ’s
have supports included in the same compact set, we conclude by Villani (2008, Theorem
6.9) that limm→∞W1(Gm♯U , G♯U ) = 0. But, by the triangle inequality,∣∣W1(Gm♯U , µn)−W1(G♯U , µn)

∣∣ ⩽W1(Gm♯U , G♯U ),

from which limm→∞W1(Gm♯U , µn) =W1(G♯U , µn) follows, as desired.

Appendix H. Proof of Proposition 8

Assuming that such a transport map T ⋆ ∈ H w⋆ exists, we write w⋆T ⋆(x) instead of w⋆i
whenever T ⋆(x) = Xi, i ∈ {1, . . . , n}. Let φ : Rd → R be the 1-Lipschitz map defined by

φ(x) = ∥x− T ⋆(x)∥ − w⋆T ⋆(x).

Since T ⋆(Xi) = Xi for all i ∈ {1, . . . , n}, we have in particular that φ(x) − φ(T ⋆(x)) =
∥x− T ⋆(x)∥. Then, denoting by

∂φ := {(x, y) ∈ Rd × Rd : φ(x)− φ(y) = ∥x− y∥}

the superdifferential of φ (Villani, 2008, Definition 5.7), the graph of T ⋆ is included in ∂φ.
Therefore, ∫

Rd×Rd
∥x− T ⋆(x)∥dν(x) =

∫
Rd×Rd

(φ(x)− φ(T ⋆(x)))dν(x)

=

∫
Rd
φ(x)dν(x)−

∫
Rd
φ(y)dµn(y)

≤W1(ν, µn).

We conclude that T ⋆ is an optimal transport map.
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Appendix I. Proof of Proposition 10

Let us first show that, for all i ∈ {1, . . . , n+ k − 1} and j /∈ {σ(i), σ(i+ 1)},

[Vi + φ(σ(i)), Vi+1] ∩ Ĝ⋆−1
K (Vor(j)◦) = ∅.

Suppose on the contrary that there exists t ∈ (0, 1) such that Yi := Xσ(i) + t(Xσ(i+1) −
Xσ(i)) ∈ Vor(j)◦. Then

Xj ∈ B◦(Yi, ∥Xσ(i) − Yi∥) ∩B◦(Yi, ∥Xσ(i+1) − Yi∥),

where B◦(x, ε) stands for the open ball centered at x of radius ε. Observe that for t ⩽ 1/2,

B◦(Yi, ∥Xσ(i) − Yi∥) ⊆ B◦
(Xσ(i) +Xσ(i+1)

2
,
∥Xσ(i+1) −Xσ(i)∥

2

)
,

whereas for t ⩾ 1/2,

B◦(Yi, ∥Xσ(i+1) − Yi∥) ⊆ B◦
(Xσ(i) +Xσ(i+1)

2
,
∥Xσ(i+1) −Xσ(i)∥

2

)
.

Consequently,

Xj ∈ B◦
(Xσ(i) +Xσ(i+1)

2
,
∥Xσ(i+1) −Xσ(i)∥

2

)
.

We deduce that ⟨Xσ(i) −Xj , Xσ(i+1) −Xj⟩ < 0 (notation ⟨·, ·⟩ means the scalar product),
and so

∥Xσ(i+1) −Xσ(i)∥2 > ∥Xσ(i+1) −Xj∥2 + ∥Xσ(i) −Xj∥2.

However, such an inequality is impossible by definition of σ. We conclude that, for all
t ∈ [0, 1/2],

Xσ(i) + t(Xσ(i+1) −Xσ(i)) ∈ Vor(σ(i))

and, for all t ∈ [1/2, 1],

Xσ(i) + t(Xσ(i+1) −Xσ(i)) ∈ Vor(σ(i+ 1)).

Let us now turn to the computation of W1(Ĝ
⋆
K♯U , µn). First, by definition of φ(i), for

i ∈ {1, . . . , n}, we have

∑
j∈σ−1(i)

λ1

([
Vj , Vj + φ(i) +

∥Xσ(j+1) −Xi∥
2K

])
+ λ1

([
Vj−1 + φ(σ(j − 1)) +

∥Xσ(j−1) −Xi∥
2K

,Vj−1 + φ(σ(j − 1)) + ∥Xσ(j−1) −Xi∥
])

=
∑

j∈σ−1(i)

(
φ(i) +

∥Xσ(j+1) −Xi∥
2K

+
∥Xσ(j−1) −Xi∥

2K

)
=

1

n
.

38



This shows that λ1(Ĝ
⋆−1
K (Vor(i))) = 1

n , i ∈ {1, . . . , n}—or, said differently, that the function

Ĝ⋆K spends a total time 1/n in each Voronoi cell. Now, introduce T ⋆ : Rd → {X1, . . . , Xn}
defined ĜK♯U -almost everywhere by T ⋆(x) = Xi if x ∈ Vor(i). Then, clearly, T ⋆ ∈ H 0,
where we recall that

H 0 =
{
T : Rd → {X1, . . . , Xn} : ∀x ∈ Vor(i), T (x) = Xi

and ∀x ∈ Γ0
j1...jp , T (x) ∈ {Xj1 , . . . , Xjp}

}
.

Arguing as in the proof of Lemma 14, one shows that there exists a sequence of func-
tions (G⋆m)m∈N ⊂ LipK([0, 1],Rd) such that each G⋆m♯U is nonatomic, W1(G

⋆
m♯U , µn) →

W1(Ĝ
⋆
K♯U , µn) asm→ ∞, and, for allm large enough, λ1(G

⋆−1
m (Vor(i))) = 1

n , i ∈ {1, . . . , n}.
According to Proposition 8, we have

W1(G
⋆
m♯U , µn) =

∫ 1

0
∥G⋆m(u)− T ⋆(G⋆m(u))∥du.

By dominated convergence, we obtainW1(Ĝ
⋆
K♯U , µn) =

∫ 1
0 ∥Ĝ⋆K(u)−T ⋆(Ĝ⋆K(u))∥du, so that

T ⋆ is an optimal transport map from Ĝ⋆K to µn. Finally,

W1(Ĝ
⋆
K♯U , µn) =

∫ 1

0
∥Ĝ⋆K(u)− T ⋆(Ĝ⋆K(u))∥du

=

n+k−1∑
j=1

∫ Vj+φ(σ(j))+
∥Xσ(j+1)−Xσ(j)∥

2K

Vj

∥Xσ(j) − Ĝ⋆K(u)∥du

+

∫ Vj+φ(σ(j))+∥Xσ(j+1)−Xσ(j)∥

Vj+φ(σ(j))+
∥Xσ(j+1)−Xσ(j)∥

2K

∥Xσ(j+1) − Ĝ⋆K(u)∥du

=

n+k−1∑
j=1

∫ Vj+φ(σ(j))+
∥Xσ(j+1)−Xσ(j)∥

2K

Vj+φ(σ(j))
K
(
u− (Vj + φ(σ(j)))

)
du

+

∫ Vj+φ(σ(j))+∥Xσ(j+1)−Xσ(j)∥

Vj+φ(σ(j))+
∥Xσ(j+1)−Xσ(j)∥

2K

K(Vj + φ(σ(j)) + ∥Xσ(j+1) −Xσ(j)∥ − u)du

=
n+k−1∑
j=1

1

8K
∥Xσ(j+1) −Xσ(j)∥2 +

1

8K
∥Xσ(j+1) −Xσ(j)∥2

=
1

4K

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2.
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Appendix J. Proof of Proposition 13

First note, since σ is a path with points that may be visited several times, that

K2 ⩾
n∑
i=1

∑
j∈σ−1(i)

1

2
(∥Xσ(j−1) −Xi∥+ ∥Xσ(j+1) −Xi∥)

⩾ inf
τ∈Pn

n−1∑
j=1

∥Xτ(j) −Xτ(j+1)∥, (24)

where Pn stands for the set of permutations of {1, . . . , n}. But, according to Steele (1988),
under the conditions of the theorem, there exists a constant C > 0 satisfying

lim
n→∞

n−1+1/d inf
τ∈Pn

n−1∑
j=1

∥Xτ(j) −Xτ(j+1)∥ = C a.s.

This shows the first statement of the proposition.
We start the proof of the second statement by recalling that, according to Fournier and

Guillin (2015, Theorem 1), one has, in probability,

W1(µ, µn) =

{
O( logn√

n
) for d = 2

O(n−1/d) for d ⩾ 3.

Therefore, by the triangle inequality, it is enough to show that, for d ⩾ 2, in probability,

W1(Ĝ
⋆
K♯U , µn) = O(n−1/d).

According to Theorem 12, we only need to show that, in probability,

1

4K

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2 = O(n−1/d),

whenever K ⩾ K2. But, by the very definition (12) (Main Document) of the pair (k, σ),
we have

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2 ⩽
n−1∑
j=1

∥Xτ(j+1) −Xτ(j)∥2,

where τ ∈ Pn is a permutation that minimizes the length among the whole set of paths
that visit only once each data, i.e.,

n−1∑
j=1

∥Xτ(j+1) −Xτ(j)∥ ⩽
n−1∑
j=1

∥Xτ ′(j+1) −Xτ ′(j)∥, for all τ ′ ∈ Pn.

Therefore, since K ⩾ K2, we have by inequality (24) ,

1

K

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2 ⩽
∑n−1

j=1 ∥Xτ(j+1) −Xτ(j)∥2∑n−1
j=1 ∥Xτ(j+1) −Xτ(j)∥

.

40



Now, under the additional condition on the density of µ, we know by Yukich (2000, Theorem
1.3) that, for each 0 ⩽ ℓ ⩽ d, there exists C(ℓ) > 0 such that

lim
n→∞

n−1+ℓ/d
n−1∑
j=1

∥Xτ(j+1) −Xτ(j)∥ℓ = C(ℓ) a.s.

By the above, we conclude that

1

4K

n+k−1∑
j=1

∥Xσ(j+1) −Xσ(j)∥2 = O(n−1/d) a.s.
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