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Introduction

Recent years have witnessed the advent of generative methodologies based on Generative Adversarial Networks (GANs, Goodfellow et al., 2014), with outstanding achievements in the fields of image [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF][START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF], video (Vondrick et al., 2016), and text generation [START_REF] Yu | SeqGAN: Sequence generative adversarial nets with policy gradient[END_REF], just to name a few. The surveys by Lucic et al. (2018) and [START_REF] Borji | Pros and cons of GAN evaluation measures[END_REF] cover the different GANs techniques together with a comparison of their performances. We are concerned with the Wasserstein GAN (WGAN) approach of [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF], which uses the 1-Wasserstein distance as an alternative to the Jensen-Shannon divergence implemented in traditional GANs. Over the years, WGANs and their derivatives have gained popularity in the machine learning community. They are today considered as one of the most successful generative techniques, achieving state-of-the art results in difficult problems [START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] while improving the stability and getting rid of unpleasant issues such as mode collapse (Gulrajani et al., 2017).

To get started, let us properly define WGANs. Assume that we are given a sample X 1 , . . . , X n of independent R d -valued random variables, identically distributed according to some unknown distribution µ. Throughout the manuscript, the space R d as well as all other spaces R k are equipped with the Euclidean norm ∥ • ∥, with no reference to d or k as the context is clear. The generative problem is to use the sample X 1 , . . . , X n to learn µ and, simultaneously, generate new "fake" data that look "similar" to the X i 's. In the WGAN framework, this problem is addressed by minimizing the 1-Wasserstein distance between a family of candidate distributions and the empirical measure of the sample. Recall here that for two probability measures π 1 and π 2 on R d , the 1-Wasserstein distance W 1 (π 1 , π 2 ) between π 1 and π 2 is defined by

W 1 (π 1 , π 2 ) = inf π∈Π(π 1 ,π 2 ) R d ×R d ∥x -y∥dπ(x, y),
where Π(π 1 , π 2 ) denotes the collection of all joint probability measures π on R d × R d with marginals π 1 and π 2 (e.g., [START_REF] Villani | Optimal Transport: Old and New[END_REF]. Notice that W 1 (•, •) is not a distance in the strict sense, because it may take the value +∞. We also recall that the empirical measure µ n based on X 1 , . . . , X n is defined, for any Borel set A ⊆ R d , by µ n (A) = 1 n n i=1 1{X i ∈ A}. Now, let U be a uniform random variable on [0, 1] p and, for K > 0, let Lip K (E, E ′ ) be the set of K-Lipschitz continuous functions from E ⊆ R k to E ′ ⊆ R k ′ , equipped with their respective Euclidean norms, that is

Lip K (E, E ′ ) = {G : E → E ′ : ∥G(x) -G(y)∥ ⩽ K∥x -y∥, (x, y) ∈ E 2 }.
For G ∈ Lip K ([0, 1] p , R d ), we denote by G ♯U the pushforward distribution of U by G, that is, for any Borel set A ⊆ R d , G ♯U (A) = λ p (G -1 (A)), where λ p is the Lebesgue measure on R p . In their abstract formulation, WGANs use the family of pushforward distributions {G ♯U : G ∈ Lip K ([0, 1] p , R d )} as candidate distributions to estimate µ, with the objective of finding the best function G that minimizes the 1-Wasserstein distance between G ♯U and the empirical measure µ n . In other words, one seeks to find an optimal

G K ∈ Lip K ([0, 1] p , R d ) such that W 1 ( G K♯U , µ n ) = inf G∈Lip K ([0,1] p ,R d ) W 1 (G ♯U , µ n ). ( 1 
)
Once a minimizer G K has been found, it is easy to generate "fake" observations, by simply taking a uniform i.i.d. sample U 1 , . . . , U m and computing G K (U 1 ), . . . , G K (U m ). In the GAN literature, the space [0, 1] p is called the latent space and the distribution of the random variable U the latent distribution. It should be stressed that assuming Lipschitz continuous candidate functions G is classical when defining WGANs (e.g., [START_REF] Zhou | Lipschitz generative adversarial nets[END_REF]. However, some authors have also considered smoother classes, such as for example functions with

Lipschitz partial derivatives up to some order (e.g., [START_REF] Luise | Generalization properties of optimal transport GANs with latent distribution learning[END_REF][START_REF] Schreuder | Statistical guarantees for generative models without domination[END_REF]. To keep things as simple as possible, we do not make further assumptions on the generative functions other than their Lipschitz property.

The key to approach the infimum in (1) is to use the dual formulation of the 1-Wasserstein distance [START_REF] Kantorovich | On a space of completely additive functions[END_REF]. Indeed, one has

W 1 (G ♯U , µ n ) = sup f ∈Lip 1 (R d ,R) R d f dG ♯U - R d f dµ n = sup f ∈Lip 1 (R d ,R) [0,1] p f (G(u))du - 1 n n i=1 f (X i ),
so that the WGAN optimization Problem (1) takes the min-max form

W 1 ( G K♯U , µ n ) = inf G∈Lip K ([0,1] p ,R d ) sup f ∈Lip 1 (R d ,R) [0,1] p f (G(u))du - 1 n n i=1 f (X i ). ( 2 
)
Since the nonparametric classes Lip K ([0, 1] p , R d ) and Lip 1 (R d , R) are too large to be implemented, they are replaced in practice by parametric models, respectively called the generator and the discriminator. In most applications, these parametric models take the form of multilayer neural networks, either feedforward or convolutional, hence the name WGANs. It is also important to note that in practice the function G ♯U in (1) is estimated by random samples G(U 1 ), . . . , G(U m ) drawn from U . In other words, there exists an estimation error-on top of the approximation error by neural networks-between the optimum inf G W 1 (G ♯U , µ n ) and any simulation. However, sampling from U is easy and one can take sufficiently large m.

From an optimization perspective, the training of (W)GANs is challenging. The min-max optimum in (2) is usually found by using stochastic gradient descent, alternatively on the generator's and the discriminator's parameters. Studying the convergence of the different learning procedures is an interesting question, tackled for example by [START_REF] Kodali | On convergence and stability of GANs[END_REF] and [START_REF] Mescheder | Which training methods for GANs do actually converge?[END_REF].

In addition to the numerous empirical research studies, several theoretical articles aimed at understanding the mathematical and statistical properties of the adversarial problem (2) and its extensions to integral probability metrics (IPM, [START_REF] Müller | Integral probability metrics and their generating classes of functions[END_REF]. For example, leveraging the approximation properties of some family of neural networks, [START_REF] Biau | Some theoretical insights into Wasserstein GANs[END_REF] study the convergence of the model as the sample size tends to infinity, and clarify the respective effects of the generator and the discriminator by underlining some trade-off properties. Assuming smoothness properties on the generator and the discriminator, [START_REF] Liang | How well generative adversarial networks learn distributions[END_REF] and Singh et al. (2018) exhibit rates of convergence under an IPM-based loss for estimating densities that live in Sobolev spaces, while Uppal et al. (2019) explore the case of Besov spaces. More recently, [START_REF] Schreuder | Statistical guarantees for generative models without domination[END_REF] have stressed the properties of IPM losses defined with smooth functions on a compact set. Remarkably, [START_REF] Liang | How well generative adversarial networks learn distributions[END_REF] discusses bounds for the Kullback-Leibler divergence, the Hellinger distance, and the 1-Wasserstein distance. Studying a different facet of the problem, [START_REF] Luise | Generalization properties of optimal transport GANs with latent distribution learning[END_REF] analyze the interplay between the latent distribution and the complexity of the pushforward map, and how it affects the overall performance.

In this paper, we seek to describe the properties of the K-Lipschitz continuous functions that achieve the infimum in (1). Our approach is motivated by an active line of experimental research, which aims at characterizing the distributions output by GANs, typically the geometry of their supports. For example, when dealing with the learning of disconnected manifolds, [START_REF] Tanielian | Learning disconnected manifolds: A no GAN's land[END_REF] derived lower-bounds on the measure of the proposal distribution that lies out of the target manifold. Another much-debated question is to understand to what extent GANs memorize the dataset [START_REF] Vaishnavh | Theoretical insights into memorization in GANs[END_REF]. In this regard, [START_REF] Gulrajani | Towards GAN benchmarks which require generalization[END_REF] stress their tendency to memorize, and, in turn, propose a new evaluation protocol that enhances generalization. Yet, most of the conclusions on this subject are of an experimental nature, without clear theoretical arguments regarding the statistical properties of the distribution produced by GANs.

Motivated by the above, we provide in the present article a thorough analysis of Problem (1). Since this question is highly nontrivial, we deeply study the univariate latent setting (p = 1). Beyond the technical aspects, the motivation to study the univariate case is related to the so-called manifold hypothesis [START_REF] Fefferman | Testing the manifold hypothesis[END_REF][START_REF] Facco | Estimating the intrinsic dimension of datasets by a minimal neighborhood information[END_REF], which states that high-dimensional datasets may lay on manifolds of lower dimensions. For instance, [START_REF] Yoonhaeng | Reversible Gromov-Monge sampler for simulationbased inference[END_REF] show that using a latent dimension p = 2 is already sufficient to generate high-quality images for the MNIST dataset. We later give intuitions for the case p > 1.

Our contributions are the following:

1. To grasp how WGANs can approach the distribution µ, we start in Section 2 by an asymptotic analysis of W 1 ( G K♯U , µ) as the sample size n tends to infinity, assuming that the Lipschitz constant K is kept fixed, independent of the data. We show in particular that in most situations, and independently of the dimension d, one has lim inf n→∞ W 1 ( G K♯U , µ) > 0 a.s.

2. Next, we provide in Section 3 a thorough finite sample analysis of the case d = 1, that is, whenever the output space is univariate. In this context, the Lipschitz constant K is allowed to depend on the sample X 1 , . . . , X n . We explicitly describe the (two) functions achieving the infimum in (1), give the exact value of the infimum, and show that the corresponding optimal distributions have atoms at the X i 's. Finally, taking an asymptotic point of view, we prove that lim n→∞ W 1 ( G K♯U , µ) = 0 and offer convergence rates.

3. We then discuss in Section 4 new existence results on transport maps in semi-discrete optimal transport theory, for measures that are non necessarily absolutely continuous with respect to the Lebesgue measure on R d . This step is necessary before diving into the analysis of Problem (1) for d > 1.

4. In Section 5, we move to the case where the observations are multivariate (d > 1) and derive a finite sample bound on the infimum in (1). We show in particular, provided K is allowed to depend on the sample, that the bound is achieved by a distribution concentrated on a shortest-path-type graph constructed on the X i 's. Up to our knowledge, this is the first time that such bounds are available in the literature.

Taking neural networks for the generator and the discriminator classes, we illustrate the results empirically. Similarly to Section 3, we also provide convergence rates for lim n→∞ W 1 ( G K♯U , µ).

All the proofs are gathered in the Annex [START_REF] Stéphanovitch | Supplement to "Optimal 1-Wasserstein distance for WGANs[END_REF], with the exception of the proofs of Theorem 9 and Theorem 12.

Asymptotic analysis

The study begins with an asymptotic analysis of Problem (1), when the sample size n tends to infinity and the Lipschitz constant K is assumed to be fixed. For more clarity, the univariate case d = 1 is handled in Theorem 2 and the multivariate case d > 1 in Theorem 3.

Recall that the latent variable U is assumed to be uniformly distributed on [0, 1], and that the data X 1 , . . . , X n are i.i.d with unknown distribution µ. Throughout, we let

G K = arg min G∈Lip K ([0,1],R d ) W 1 (G ♯U , µ n )
be the set of minimizers of Problem (1), that is,

G K = { G K ∈ Lip K ([0, 1], R d ) : W 1 ( G K♯U , µ n ) = inf G∈Lip K ([0,1],R d ) W 1 (G ♯U , µ n )}. Observe that { G K♯U : G K ∈ G K } is the collection of optimal distribution(s). Whenever µ is of order 1, i.e., E∥X 1 ∥ = R d ∥x∥µ(dx) < ∞, it is convenient to consider G K , the population version of G K defined by G K = arg min G K ∈Lip K ([0,1],R d ) W 1 (G K♯U , µ).
We start with the following simple but useful lemma.

Lemma 1 The set G K is not empty. In addition, assuming that µ is of order 1, the set G K is not empty.

In the sequel, we let S(µ) be the support of µ, i.e.,

S(µ) = {x ∈ R d : µ(B(x, ε)) > 0 for all ε > 0},
where B(x, ε) is the closed ball in R d centered at x of radius ε. We are now ready to state the first theorem, which reveals the different behaviors of the quantity W 1 ( G K♯U , µ) in dimension d = 1, provided G K is any minimizer in G K . Interestingly, we distinguish different cases depending on both the smoothness of the distribution function of µ and the boundedness of its support S(µ).

Theorem 2 (Case d = 1) Let G K ∈ G K . Assume that µ is of order 1, and let F -1 be the generalized inverse of the distribution function F of µ, i.e., for all u ∈ (0, 1),

F -1 (u) = inf{x ∈ R : F (x) ⩾ u}.
1. Assume that S(µ) is bounded.

(i) If F -1 ∈ Lip K 0 ([0, 1], R) for some K 0 > 0, then, for all K ⩾ K 0 , lim n→∞ W 1 ( G K♯U , µ) = 0 a.s. (ii) If F ∈ Lip K 1 (R, [0, 1]) for some K 1 > 0, then, for all K < 1/K 1 , lim inf n→∞ W 1 ( G K♯U , µ) > 0 a.s.
2. Assume that S(µ) is unbounded. Then, for all K > 0,

lim inf n→∞ W 1 ( G K♯U , µ) > 0 a.s.
A first remark could be that, in 1(i), the support S(µ) is necessarily bounded since F -1 is assumed to be a K 0 -Lipschitz function on [0, 1]. Next, note that both conditions in 1(i) and 1(ii) may be satisfied simultaneously or not. For example, when µ is the uniform distribution on [0, 1], they are both verified with K 0 = K 1 = 1. Also, observing that K 0 K 1 ⩾ 1 (since F • F -1 is the identity function), these two conditions focus in fact on different regimes.

The first one pertains to the case where the set of generative functions ought to be big while the second one claims that a smaller class cannot recover the target distribution µ.

In 2, we notice however that independently of the smoothness of µ and the magnitude of K, WGANs cannot recover the target distribution. This is for example the case when µ is a standard Gaussian distribution on the real line. The mechanism is illustrated in Figure 1, which shows the values of W 1 ( G K♯U , µ) as a function of both n and K, when the target distribution µ is either uniform (left) or Gaussian (right). In the uniform case, as predicted by Theorem 2, we see that W 1 ( G K♯U , µ) significantly decreases for K larger than 1 and stays rather constant for smaller K. In the Gaussian setting, 1-Wasserstein distances are far from zero, independently of the value of n and K. In the experiment, the generator is a 3-layer feedforward neural network while the discriminator is a 5-layer network. These results should of course be appreciated in the light of the specific case where both the latent space and the target distribution µ share the same dimension 1. In the case where µ lies on a space of dimension strictly larger than 1, then the minimizers in G K cannot reconstruct µ, as stated by the following theorem.

Theorem 3 (Case d > 1) Let G K ∈ G K . Assume that µ is of order 1 and that λ d (S(µ)) > 0, where λ d denotes the Lebesgue measure on R d . Then, for all K > 0,

lim inf n→∞ W 1 ( G K♯U , µ) > 0 a.s.
The condition on the support of µ states that µ is a "true" measure on R d . We leave it as an exercise to prove that the same result holds by assuming that the Hausdorff dimension of S(µ) is strictly larger than 1.

Finite sample analysis in a univariate output space

The topic of the present section is to fully describe the set of minimizers G K (Lemma 1), in the specific setting where both the output and the latent spaces are univariate. We denote by X (1) , . . . , X (n) the reordering of X 1 , . . . , X n according to their increasing values, that is X

(1) ⩽ X (2) ⩽ • • • ⩽ X (n)
, where ties are broken arbitrarily. Importantly, the Lipschitz constant K is now allowed to depend upon the sample and is chosen to satisfy the constraint

K ⩾ n max i=1,...,n-1 (X (i+1) -X (i) ).
The analysis starts by introducing the following function G ⋆ K : [0, 1] → R, which will play a key role in solving Problem (1): for all u ∈ [0, 1],

G ⋆ K (u) =                          X (1) if u ∈ 0, 1 n - X (2) -X (1) 2K X (i) + K u -( i n - X (i+1) -X (i) 2K ) if u ∈ i n - X (i+1) -X (i) 2K , i n + X (i+1) -X (i) 2K for 1 ⩽ i ⩽ n -1 X (i+1) if u ∈ i n + X (i+1) -X (i) 2K , i+1 n - X (i+2) -X (i+1) 2K for 1 ⩽ i ⩽ n -2 X (n) if u ∈ n-1 n + X (n) -X (n-1) 2K , 1 . (3) Observe that G ⋆ K is piecewise linear and that the condition K ⩾ n max i=1,...,n-1 (X (i+1) -X (i) )
ensures that this function is well-defined. We also note that

G ⋆ K ∈ Lip K ([0, 1], R)
and that it visits each data point, going iteratively from X (i) to X (i+1) . A typical example is shown in Figure 2. Observe that, for each i ∈ {1, . . . , n},

λ 1 {u ∈ [0, 1] : | G ⋆ K (u) -X i | ⩽ | G ⋆ K (u) -X j | : j = 1, . . . , n} = 1 n . (4) 
This geometric feature has an interpretation in terms of Voronoi cells and will play an important role in the multivariate extension of G ⋆ K , as we will see in Section 5. 1

X (1) X (2) X (3) X (4) X (5) Figure 2: An example of function G ⋆ K , with n = 5 and K = 25. Proposition 4 Assume that K ⩾ n max i=1,...,n-1 (X (i+1) -X (i) ), and let G ⋆ K ∈ Lip K ([0, 1], R) be defined in (3). Then W 1 ( G ⋆ K♯U , µ n ) = 1 4K n-1 i=1 (X (i+1) -X (i) ) 2 .
The key message of Proposition 4 is that the 1-Wasserstein distance between G ⋆ K♯U and µ n depends on the sum of the squared distances (X (i+1) -X (i) ) 2 . We are now in a position to state the main result of the section.

Theorem 5 Assume that K ⩾ n max i=1,...,n-1 (X (i+1) -X (i) ), and let the function

G ⋆ K ∈ Lip K ([0, 1], R) be defined in (3). Then W 1 ( G ⋆ K♯U , µ n ) = inf G∈Lip K ([0,1],R) W 1 (G ♯U , µ n ) = 1 4K n-1 i=1 (X (i+1) -X (i) ) 2 . Moreover, G K = { G ⋆ K , G ⋆ K • S}, where S(u) = 1 -u, u ∈ [0, 1].
Theorem 5 states that there are only two minimizers in G K . Moreover, the two distributions G ⋆ K♯U and ( G ⋆ K • S) ♯U are identical. We thus conclude that in the univariate setting, the distribution output by the WGAN Problem (1) exists and is unique, provided K is large enough. It is important to note that the distribution G ⋆ K♯U has atoms at the X i 's, of respective sizes

1 n - X (2) -X (1) 2K for X (1) , 1 n - X (n) -X (n-1) 2K for X (n) , 1 n - X (i+1) -X (i-1) 2K for X (i) , i = 2, . . . , n -1, (5) 
and that it is absolutely continuous with respect to the Lebesgue measure elsewhere.

Being able to describe the minimizers of Problem (1) helps us to better understand the overall objective of WGANs when playing with different parameters. For example, when the dataset (and thus the sample size n) is kept fixed, the 1-Wasserstein distance W 1 ( G ⋆ K♯U , µ n ) decreases towards 0 as the Lipschitz constant K gets bigger. This is easily explained by the fact that when K increases, the class of generative distributions increases as well, and the measure of the atoms in (5) of G ⋆ K♯U grows towards 1. In this regime, the optimal distribution G ⋆ K♯U tends to memorize the data samples, that is the WGAN overfits the data. On the opposite, the measures of the different atoms X (i) , i ∈ {1, . . . , n}, decrease with the distance X (i+1) -X (i-1) . Consequently, any outlier data, far from its nearest neighbors, will be less sampled by the optimal distribution.

In order to illustrate the result of Theorem 5, we consider a synthetic setting where both the class of generative and discriminative functions are replaced by parametric neural networks. The generator is composed of ReLU neural networks of respective depths 3 (Figure 3a and3c) and 5 (Figure 3b and3d), with a width 100, while the discriminator is composed of ReLU neural networks of depth 5 and width 100. The true distribution is assumed to be uniform on [0, 10]. We train a WGAN architecture in the setting of both n = 5 and n = 9, with the choice K = 50 (we choose K big enough such that

K ⩾ n max i=1,...,n-1 (X (i+1) -X (i) )
). The Lipschitz constraint on the generator is implemented using a gradient penalty similar to the one used for the discriminator in Gulrajani et al. (2017). The obtained results are depicted in Figure 3.

We see that the parametric WGANs (denoted by G θ ) get close to the optimal function G ⋆ K while operating some smoothing. This smoothing is due to the fact that the networks cannot replicate all Lipschitz functions. Therefore, the optimal parametric WGANs have a higher 1-Wasserstein distance to the empirical distribution than G ⋆ K . Interestingly, as the number of samples increases and the architecture remains fixed, it gets more complicated for the generator to memorize the dataset. As expected, the results of the parametric WGANs get better as the depth of the generator increases.

Changing a little bit the way of looking at the problem, one may take an asymptotic point of view in the sample size n and analyze the asymptotic behavior of the 1-Wasserstein distance W 1 ( G ⋆ K♯U , µ), as done in Section 1. However, a major difference is that, in accordance with Theorem 5, the Lipschitz constant K is now viewed as a data-dependent random variable larger than K 1 , where

K 1 := n max i=1,...,n-1 (X (i+1) -X (i) ). Proposition 6 Assume that S(µ) = [A, B], where -∞ < A < B < ∞.
1. If µ admits a strictly positive probability density on [A, B], continuously differentiable, with a unique minimum on [A, B], then The proof of Proposition 6 reveals that W 1 ( G ⋆ K♯U , µ n ) = O(n -1 ) in probability, which should be compared with the rate W 1 (µ, µ n ) = O(n -1/2 ) (Fournier and Guillin, 2015, Theorem 1). Therefore, the speed of convergence to 0 of W 1 ( G ⋆ K♯U , µ) is significantly slowed down by the term W 1 (µ, µ n ). Besides, the assumptions on µ are made here for simplicity, and many other cases may be handled similarly by connecting K 1 to statistical results regarding the analysis of maximal spacings. For example, built on results from Extreme Values Theory, Deheuvels (1986, Theorem 1 or Example 1) entails that when µ is standard Gaussian, then, in probability,

1 K 1 = O((log n) -1 ) a.s. 2. For all K ⩾ K 1 , W 1 ( G ⋆ K♯U , µ) = O(n -1/2 ) in probability.
1 K 1 = O √ log n n and W 1 ( G ⋆ K♯U , µ) = O(n -1/2 ).
Similar results, yet with different rates, may be obtained for the Cauchy and Gamma distributions [START_REF] Deheuvels | On the influence of the extremes of an i.i.d. sequence on the maximal spacings[END_REF], Example 2 and Example 3). The general message is that, provided the class of candidate distributions grows with the sample size n, then the WGANs can asymptotically recover the target distribution µ.

A general result in semi-discrete optimal transport

We now turn to the multivariate case, assuming that the observations X 1 , . . . , X n are i.i.d. according to an unknown distribution µ on R d , d > 1. As we will see below, characterizing the optimal transport problem is much more complicated in the multivariate setting, and requires a more involved analysis. The key is to better describe the optimal transport function between G ♯U and µ n , keeping in mind that for d > 1, G ♯U is never absolutely continuous with respect to the Lebesgue measure λ d on R d . Therefore, we need to extend existing results to larger classes of distributions.

Recall, as we saw in the introduction, that for two probability measures π 1 and π 2 on

R d , W 1 (π 1 , π 2 ) = inf π∈Π(π 1 ,π 2 ) R d ×R d ∥x -y∥dπ(x, y),
where Π(π 1 , π 2 ) denotes the collection of all transport plans between π 1 and π 2 , that is, the joint probability measures π on R d × R d with marginals π 1 and π 2 . When π 1 is nonatomic, then, according to Pratelli (2007, Theorem B),

W 1 (π 1 , π 2 ) = inf T R d ∥x -T (x)∥dπ 1 (x), (6) 
where the infimum is taken over all measurable functions T :

R d → R d satisfying T ♯π 1 = π 2 .
Such a function T is called a transport map from π 1 to π 2 , and ( 6) is referred to as the Monge formulation of the 1-Wasserstein distance. Providing existence and unicity results for transport maps is, in general, a difficult question. It turns out however that in the socalled semi-discrete setting, where π 1 is absolutely continuous with respect to the Lebesgue measure and π 2 = n i=1 α i δ x i is discrete (α i ⩾ 0, n i=1 α i = 1), the Monge problem has a simple and elegant solution in terms of additively weighted Voronoi diagram of R d (e.g., [START_REF] Aurenhammer | Minkowski-type theorems and least-squares clustering[END_REF] around the atoms {x 1 , . . . , x n } of π 2 . Recall that for a vector w = (w 1 , . . . , w n ) ∈ R n that assigns to each x i a weight w i , the additively weighted Voronoi tessellation is the set of cells

Vor w (i) = x ∈ R d : ∥x -x i ∥ -w i ⩽ ∥x -x j ∥ -w j for all j ̸ = i , i = 1, . . . , n.
Now, according to Hartmann and Schuhmacher (2020, Theorem 2 and Theorem 3) (see also [START_REF] Geiß | Optimally solving a transportation problem using Voronoi diagrams[END_REF], there exists in this semi-discrete setting a π 1 -almost surely unique transport map

T ⋆ such that W 1 (π 1 , π 2 ) = R d ∥x -T ⋆ (x)∥dπ 1 (x).
Noting that the intersection of two boundaries has Lebesgue measure zero (and thus π 1 -measure zero by absolute continuity), this optimal function T ⋆ is defined λ d -almost surely and has the form

T ⋆ (x) = n i=1 x i 1{x ∈ Vor w ⋆ (i)}, ( 7 
)
where the weight vector w ⋆ is adapted to (π 1 , π 2 ) in the sense that π 1 (Vor w ⋆ (i)) = α i for all i ∈ {1, . . . , n}. The existence of such an adapted vector is guaranteed by Theorem 3 of Hartmann and Schuhmacher, 2020, who also provide an algorithm to compute it.

Returning to the WGAN problem, it seems natural to consider the semi-discrete setting with π 1 = G ♯U and π 2 = µ n , and to describe the optimal transport maps between these two distributions in order to gain information on W 1 (G ♯U , µ n ). Unfortunately, there is no reason for G ♯U to be nonatomic and, even if this is the case, it is impossible for this distribution to be absolutely continuous with respect to the Lebesgue measure as soon as d > 1. We therefore conclude that none of the above results can be used to characterize the infimum in (1) and that some extensions are needed. In the rest of this section, we address this issue and offer a solution in two steps. First, we prove in Proposition 7 that the WGAN optimization in Problem (1) can be safely restricted to distributions G ♯U that are nonatomic. Second, we provide in Theorem 9 a solution to the Monge problem under the sole assumption that π 1 is nonatomic with compact support, getting rid of the absolute continuity requirement. To the extent of our knowledge, this is the first time that such a theorem has been proved, and it therefore provides a new resource in the toolbox of optimal transport theory.

Proposition 7 Let Lip - K ([0, 1], R d ) = {G ∈ Lip K ([0, 1], R d ) : G ♯U is nonatomic}. Then inf G∈Lip K ([0,1],R d ) W 1 (G ♯U , µ n ) = inf G∈Lip - K ([0,1],R d ) W 1 (G ♯U , µ n ).
In the following, for w ∈ R n and i ∈ {1, . . . , n}, we let Vor w (i) be the i-th weighted Voronoi cell associated with the sample X 1 , . . . , X n . We denote by ∂Vor w (i) the boundary of Vor w (i) and let Vor w (i) • = Vor w (i) \ ∂Vor w (i) be its interior. For any p ∈ {1, . . . , n} and any set {j 1 , . . . , j p } where the j k 's are all different and in {1, . . . , n} p , we let

Γ w j 1 ...jp = p k=1 Vor w (j k ) \ ℓ / ∈{j 1 ,...,jp}
Vor w (ℓ) .

Observe that each set Γ w j 1 ...jp above is the subset of the common boundary of the Voronoi cells Vor w (j 1 ), . . . , Vor w (j p ) that has no intersection with any other cell Vor w (l), for all l / ∈ {j 1 , . . . , j p }. Note also that together, the Γ w j 1 ...jp (for all p and all different sets {j 1 , . . . , j p }) form a partition of the set of the boundaries of the Voronoi cells. For a given w, we will be interested in the class H w of functions taking values in the sample X 1 , . . . , X n defined by

H w = T : R d → {X 1 , . . . , X n } : ∀x ∈ Vor w (i) • , T (x) = X i and ∀x ∈ Γ w j 1 ...jp , T (x) ∈ {X j 1 , . . . , X jp } . (9) 
The following result states under which assumptions we can find an optimal transport map from a nonatomic probability measure ν to the empirical measure µ n .

Proposition 8 Let ν be a probability measure on R d with finite first moment. If there exists w ⋆ ∈ R n and T ⋆ ∈ H w ⋆ such that T ⋆ ♯ν = µ n , then T ⋆ is an optimal transport map from ν to µ n .

We deduce from Proposition 8 that in order to state the existence of an optimal transport map, it is enough to show that there exist w ⋆ ∈ R n and T ⋆ ∈ H w ⋆ such that T ⋆ ♯ν = µ n . This result plays a key role in the proof of the next theorem, which guarantees the existence of an optimal transport map between any nonatomic probability measure ν (so, non necessarily absolutely continuous with respect to the Lebesgue measure) and the empirical measure µ n . It should be stressed that Theorem 9 also holds if the empirical measure µ n is replaced by a more general discrete measure, with a finite number of atoms. The adaptation is easy and is left to the reader.

Theorem 9 Let ν be a nonatomic probability measure on R d with compact support. Then there exists an optimal transport map from ν to µ n , which is defined λ d -almost everywhere by

T ⋆ (x) = n i=1 X i 1{x ∈ Vor w ⋆ (i)}, for some w ⋆ ∈ R n .
Proof Let K ⊆ R d be the compact support of ν. For ε ∈ (0, 1], we let ν ε be the probability measure on R d defined for any Borel subset A by

ν ε (A) = R d λ d (A ∩ B(x, ε)) λ d (B(x, ε)) dν(x),
where B(x, ε) stands for the closed ball centered at x of radius ε. Observe that ν ε has compact support K ε , where

K ε = {x ∈ R d : ∃z ∈ K such that ∥x -z∥ ⩽ ε}.
Since, for any Borel subset A such that λ d (A) = 0 one has ν ε (A) = 0, we see that ν ε is absolutely continuous with respect to the Lebesgue measure. Thus, according to Hartmann and Schuhmacher (2020), there exists w ε = (w ε 1 , . . . , w εn ) ∈ R n solution to the Monge problem between ν ε and µ n . In particular, for each i ∈ {1, . . . , n}, ν ε (Vor wε (i)) = 1 n . Clearly, adding a constant to each w ε i does not change the definition of the cells. Thus, in the sequel, it is assumed that w ε 1 = 0. Let C = max i=1,...,n max z∈Kε ∥X i -z∥. If there exists i ∈ {2, . . . , n} such that w ε i > C, then Vor wε (1) ∩ K ε = ∅. This is not possible since ν ε (Vor wε (1)) = 1 n . Likewise, if w ε i < -C, then Vor wε (i) ∩ K ε = ∅. Therefore, we may only consider w ε 's such that ∥w ε ∥ ∞ ⩽ C, where ∥ • ∥ ∞ stands for the supremum norm on R n .

Consider now the sequence (w 1/m ) m∈N ⋆ , which, as we have seen, takes its values in a compact set. Thus, there exists a subsequence (w 1/φ(m) ) m∈N ⋆ that converges to some w ⋆ ∈ R n . As for now, to lighten the notation, we let ψ(m) = 1/φ(m) for all m ∈ N ⋆ . Clearly, we have

ν ψ(m) (Vor w ψ(m) (i)) = R d 1{x ∈ Vor w ⋆ (i) c } λ d Vor w ψ(m) (i) ∩ B(x, ψ(m)) λ d B(x, ψ(m)) dν(x) + R d 1{x ∈ Vor w ⋆ (i) • } λ d Vor w ψ(m) (i) ∩ B(x, ψ(m)) λ d B(x, ψ(m)) dν(x) + R d 1{x ∈ ∂Vor w ⋆ (i)} λ d Vor w ψ(m) (i) ∩ B(x, ψ(m)) λ d B(x, ψ(m)) dν(x). ( 10 
)
For x ∈ Vor w ⋆ (i) c and all m large enough,

λ d Vor w ψ(m) (i) ∩ B(x, ψ(m)) λ d B(x, ψ(m)) = 0.
Therefore, by dominated convergence, the first integral in identity (10) tends to 0 as m tends to infinity. Similarly, for x ∈ Vor w ⋆ (i) • and all m large enough,

λ d Vor w ψ(m) (i) ∩ B(x, ψ(m)) λ d B(x, ψ(m)) = 1.
Thus, by dominated convergence, the second integral tends to ν(Vor w ⋆ (i) • ). The analysis of the third integral in ( 10) is more delicate and is done by carefully studying each part of the boundary ∂Vor w ⋆ (i). For any p ∈ {1, . . . , n} and j 1 , . . . , j p all different, let

Γ w ⋆ j 1 ...jp = p k=1 Vor w ⋆ (j k ) \ ℓ / ∈{j 1 ,...,jp}
Vor w ⋆ (ℓ) .

Using the notation

α j 1 ...jp (i) ψ(m) := R d 1{x ∈ Γ w ⋆ j 1 ...jp } λ d Vor w ψ(m) (i) ∩ B(x, ψ(m)) λ d B(x, ψ(m)) dν(x),
we see that

ν(Γ w ⋆ j 1 ...jp ) = n i=1 α j 1 ...jp (i) ψ(m) .
Observe that for i / ∈ {j 1 , . . . , j p }, α j 1 ...jp (i) ψ(m) → 0 as m tends to infinity, since for all x ∈ Γ w ⋆ j 1 ...jp , Vor w ψ(m) (i) ∩ B(x, ψ(m)) = ∅ for all m large enough. Moreover, α j 1 ...jp (j 1 ) ψ(m) ∈ [0, 1/n]. Thus, we can extract a subsequence (ψ 1 (m)) m∈N ⋆ such that α j 1 ...jp (j 1 ) ψ 1 (m) converges to some α j 1 ...jp (j 1 ) as m tends to infinity. Likewise, we can extract a subsequence ψ 12 (m) such that α j 1 ...jp (j 2 ) ψ 12 (m) converges to some α j 1 ...jp (j 2 ). Repeating the same procedure, we obtain a subsequence ψ 1...p (m) such that each α j 1 ...jp (j k ) ψ 1...p (m) , k ∈ {1, . . . , p}, converges to α j 1 ...jp (j k ) as m tends to infinity. In particular,

ν(Γ w⋆ j 1 ...jp ) = p k=1 α j 1 ...jp (j k ).
Starting from the subsequence ψ 1...p (m), we may repeat the previous exercise for all sets Γ w ⋆ j 1 ...jp , where p ∈ {1, . . . , n}, j 1 , . . . , j p are all different, and the subsequence Ψ(m) is such that any α j 1 ...jp (j k ) Ψ(m) converges to some α j 1 ...jp (j k ), for all j 1 , . . . , j p . We conclude that there exists a subsequence of the third integral in (10) that converges to n p=1 j 1 ,...,jp α j 1 ...jp (i).

Since, for i ∈ {1, . . . , n}, ν Ψ(m) (Vor w Ψ(m) (i)) = 1 n for all m, we have, letting m → ∞,

ν(Vor w ⋆ (i) • ) + n p=1 j 1 ,...,jp α j 1 ...jp (i) = 1 n . (11) 
Now, cut each Γ w ⋆ j 1 ...jp into arbitrarily p disjoints parts A j 1 ...jp (j k ) such that ν(A j 1 ...jp (j k )) = α j 1 ...jp (j k ) (this is always possible since ν is nonatomic). Let T ⋆ : R d → {X 1 , . . . , X n } be defined by

T ⋆ (x) = X i for x ∈ Vor w ⋆ (i) • X j k for x ∈ A j 1 ...jp (j k ).
Then T ⋆ ∈ H w ⋆ and, by identity (11), T ⋆ ♯ν = µ n . This, together with Proposition 8, concludes the proof of the theorem.

While the expression of the optimal transport map as given in Theorem 9 (for nonatomic source measure) and the one from Hartmann and Schuhmacher (2020), as recalled in equation (7) (for absolutely continuous source measure), are the same, there is a significant difference in their definition at the boundaries of the cells. Indeed, these boundaries have Lebesgue measure zero. Therefore, when the source measure is absolutely continuous, the optimal mapping can take any values at the boundaries. However, when the source is assumed to be only nonatomic, the boundaries may have strictly positive measure. Consequently, the choice of values for an optimal mapping at the boundaries should be made with care. In the proof of Theorem 9, we show that for each set Γ w ⋆ j 1 ...jp and each i ∈ {1, . . . n}, there exist weights α j 1 ...jp (i) ≥ 0 such that

ν(Γ w⋆ j 1 ...jp ) = p k=1 α j 1 ...jp (j k ) and ν(Vor w ⋆ (i) • ) + n p=1 j 1 ,...,jp α j 1 ...jp (i) = 1 n .
Then, cutting each subset Γ w ⋆ j 1 ...jp into p arbitrarily disjoint parts A j 1 ...jp (j k ) such that ν(A j 1 ...jp (j k )) = α j 1 ...jp (j k ) and defining T ⋆ : R d → {X 1 , . . . , X n } by

T ⋆ (x) = X i for x ∈ Vor w ⋆ (i) • X j k for x ∈ A j 1 ...jp (j k ),
we obtain that T ⋆ is an optimal transport map.

Combining the result of Proposition 7 with Theorem 9, we can now properly characterize the 1-Wasserstein distance between the optimal distribution G ♯U derived from Lip K ([0, 1], R d ) and the empirical measure µ n .

Finite sample analysis in a multivariate output space

We are now ready to analyze Problem (1) in the more realistic multivariate setting. In the remainder of the section, it is therefore assumed that the observations X 1 , . . . , X n take their values in R d with d > 1, while the latent space still has dimension 1. Following the schema of Section 3, we first define a candidate function

G ⋆ K ∈ Lip K ([0, 1], R d ), compute W 1 ( G ⋆
K♯U , µ n ) in Proposition 10, and finally show in Theorem 9 that G ⋆ K solves Problem (1) in a large subset of Lip K ([0, 1], R d ). Finally, similarly to Section 3, we conclude with an asymptotic analysis of W 1 ( G ⋆ K♯U , µ n ) when K is a function of the sample size n.

Construction of G ⋆ K

In the multivariate setting, the shortest path among the n data samples X i , i ∈ {1, . . . , n}, plays an essential role in the definition of the optimal G ⋆ K . The set of paths connecting all data points X 1 , . . . , X n , while minimizing the sum of the squared Euclidean distances, is defined as follows:

(k, σ) ∈ arg min n+k ′ -1 i=1 ∥X σ ′ (i+1) -X σ ′ (i) ∥ 2 : k ′ ∈ N, σ ′ ∈ S k ′ , ( 12 
)
where S k ′ denotes the set of all discrete functions σ ′ : {1, . . . , n + k ′ } → {1, . . . , n} such that σ ′ ({1, . . . , n + k ′ }) = {1, . . . , n} and σ ′ (j) ̸ = σ ′ (j + 1). Note that such a pair (k, σ) may not be unique and keep in mind that σ depends on k.

An important remark is that any shortest path (with a squared norm) is allowed to visit several times the same point (i.e., k > 0). This is a consequence of the fact that the squared Euclidean distance does not verify the triangle inequality. Note also that the number of visits to the point X i is equal to |σ -1 (i)|. An illustration of four shortest paths in dimension 2 is provided in Figure 4. On the top, every single data point is visited once (i.e., k = 0 in formula ( 12)), contrary to the two examples in the bottom, where a point is visited twice (i.e., k = 1). Let us now provide some intuition on the way the optimal function G ⋆ K : [0, 1] → R d is obtained. In a nutshell, this function strictly follows σ, one of the optimal paths in (12). Thus, there exist some 0 ⩽ t

1 < • • • < t n+k ⩽ 1 such that G ⋆ K (t j ) = X σ(j)
, j ∈ {1, . . . , n+k}. Since the optimal path (and therefore G ⋆ K ) can visit several times each sample point X i , we need to take into account how long G ⋆ K stays constant at X i , whenever it visits this data point. This period of time is denoted by φ(i) and chosen to be equal to

φ(i) = 1 |σ -1 (i)| 1 n - j∈σ -1 (i) 1 2K (∥X σ(j-1) -X i ∥ + ∥X σ(j+1) -X i ∥) (by convention, X σ(0) = X σ(1) and X σ(n+k+1) = X σ(n+k)
). The quantity |σ -1 (i)| × φ(i) thus corresponds to the total measure of the atoms X i under the distribution G ⋆ K♯U . Finally, for any j ∈ {1, . . . , n + k}, we let

V j = j-1 ℓ=1 φ(σ(ℓ)) + ∥X σ(ℓ+1) -X σ(ℓ) ∥ K = V j-1 + φ(σ(j -1)) + ∥X σ(j) -X σ(j-1) ∥ K .
This quantity V j is more complicated to grasp, but intuitively, it corresponds to the time steps where the function G ⋆ K has arrived on a sample point X σ(j) and will pause at X σ(j) for a time equal to φ(σ(j)).

A visual explanation of the construction mechanism of G ⋆ K is depicted in Figure 5. The top shows the trajectory of G ⋆ K following an optimal path σ in ( 12). The bottom shows the succession of time steps at which G ⋆ K passes from one point to another.

Figure 5: G ⋆ K explained. For each data point X σ(j) (embedded by a specific color), the bold part of the interval symbolizes the time G ⋆ K is equal to X σ(j) , while the light part refers to the jump from X σ(j) to X σ(j+1) . Note that G ⋆ K follows the optimal path under the squared Euclidean norm.

Equipped with this notation, we may now properly define the function G ⋆ K : [0, 1] → R d , as follows:

G ⋆ K (u) =              X σ(j) if u ∈ [V j , V j + φ(σ(j))] for 1 ⩽ j ⩽ n + k X σ(j) + u -(V j + φ(σ(j))) K X σ(j+1) -X σ(j) ∥X σ(j+1) -X σ(j) ∥ if u ∈ [V j + φ(σ(j)), V j+1 ] for 1 ⩽ j ⩽ n + k -1.
(13) Observe that the function G ⋆ K is well-defined as soon as

K ⩾ n max i=1,...,n j∈σ -1 (i) 1 2 (∥X σ(j-1) -X i ∥ + ∥X σ(j+1) -X i ∥),
and that it belongs to Lip K ([0, 1], R d ). Making the connection with the univariate case of Section 3, we have that if d = 1, then each point is visited only once, so that k = 0 and, for each i ∈ {1, . . . , n}, X σ

(i) = X (i) (or X σ(i) = X (n-i+1) ). Besides, |σ -1 (i)| = 1 and φ(i) = 1/n -(X (i+1) -X (i-1)
)/(2K). We thus recover the univariate function defined in (3).

Optimality properties

In this subsection, we first compute the 1-Wasserstein distance between G ⋆ K♯U and µ n , and then prove that this value minimizes Problem (1) in the multivariate setting, under a mild assumption.

Proposition 10 Assume that

K ⩾ n max i=1,...,n j∈σ -1 (i) 1 2 (∥X σ(j-1) -X i ∥ + ∥X σ(j+1) -X i ∥),
and let

G ⋆ K ∈ Lip K ([0, 1], R d ) be defined in (13). Then W 1 ( G ⋆ K♯U , µ n ) = 1 4K n+k-1 j=1 ∥X σ(j+1) -X σ(j) ∥ 2 .
By construction, it is clear that G ⋆ K visits each data point, following the optimal path σ. The proof of Proposition 10 reveals that G ⋆ K spends a time 1/n (in terms of Lebesgue measure) in each "standard" Voronoi cell Vor(i), that is

Vor(i) = x ∈ R d : ∥x -X i ∥ ⩽ ∥x -X j ∥ for all j ̸ = i , i = 1, . . . , n.
These cells correspond to additively weighted Voronoi cells with weight w = (0, . . . , 0). We define in the same way Γ 0 j 1 ...jp and H 0 as in ( 8) and ( 9), respectively. In the remainder of the subsection, we prove the optimality of G ⋆ K on a subset smaller than Lip K ([0, 1], R d ). This subset is denoted by Lip • K ([0, 1], R d ) and is defined below. Recall that for any G ∈ Lip K ([0, 1], R d ) such that G ♯U is nonatomic, there exists according to Theorem 9 a weight w ∈ R n and an optimal transport map T w from G ♯U to µ n such that

W 1 (G ♯U , µ n ) = R d ∥x -T w (x)∥dG ♯U (x) = 1 0 ∥G(u) -T w (G(u))∥du. Definition 11 Let G ∈ Lip K ([0, 1], R d ). We say that G is in Lip • K ([0, 1], R d ) if G ♯U is nonatomic and, for all u ∈ [0, 1] and all i ∈ {1, . . . , n} such that T w (G(u)) = X i , there exists v ∈ [0, 1] such that G(v) = X i and ∀x ∈ [u, v] (or [v, u]), T w (G(x)) = X i .
Definition 11 means that as soon as the function G enters a weighted Voronoi cell, then it must passes through its center. Even though G ⋆ K♯U has atoms, the following theorem shows that

W 1 ( G ⋆ K♯U , µ n ) achieves the infimum of Problem (1) over Lip • K ([0, 1], R d ). Theorem 12 Assume that K ⩾ n max i=1,...,n j∈σ -1 (i) 1 2 (∥X σ(j-1) -X i ∥ + ∥X σ(j+1) -X i ∥), and 
let the function G ⋆ K ∈ Lip K ([0, 1], R d ) be defined in (13). Then W 1 ( G ⋆ K♯U , µ n ) = inf G∈Lip • K ([0,1],R d ) W 1 (G ♯U , µ n ) = 1 4K n+k-1 j=1 ∥X σ(j+1) -X σ(j) ∥ 2 . Proof Let G ∈ Lip • K ([0, 1], R d ).
According to Theorem 9, there exists a weight w ∈ R n and an optimal transport map T w from G ♯U to µ n . We denote by [a 1 , a 2 ], [a 2 , a 3 ], . . . , [a p-1 , a p ] the intervals such that a 1 = 0, a p = 1, and, for all j ∈ {1, . . . , p -1}, there exists τ (j) ∈ {1, . . . , n} such that u ∈ [a j , a j+1 ] implies that T w (G(u)) = X τ (j) (with τ (j) ̸ = τ (j + 1)).

Using the fact that G is K-Lipschitz and satisfies Definition 11, it is easy to see that

a j+1 -a j ⩾ 1 K ∥G(a j ) -X τ (j) ∥ + ∥G(a j+1 ) -X τ (j) ∥ .
Observe that

W 1 (G ♯U , µ n ) = R d ∥x -T w (x)∥dG ♯U (x) = 1 0 ∥G(u) -T w (G(u))∥du = p-1 j=1 a j+1 a j ∥G(u) -X τ (j) ∥du.
Therefore,

W 1 (G ♯U , µ n ) ⩾ p-1 j=1 a j + ∥G(a j )-X τ (j) ∥ K a j (∥G(a j ) -X τ (j) ∥ -K(u -a j ))du + a j+1 a j+1 - ∥G(a j+1 )-X τ (j) ∥ K K u -a j+1 - ∥G(a j+1 ) -X τ (j) ∥ K du = 1 2K p-1 j=1 ∥G(a j ) -X τ (j) ∥ 2 + ∥G(a j+1 ) -X τ (j) ∥ 2 .
Observe that, by the triangle inequality,

∥G(a j ) -X τ (j-1) ∥ + ∥G(a j ) -X τ (j) ∥ ⩾ ∥X τ (j-1) -X τ (j) ∥. So, ∥G(a j ) -X τ (j-1) ∥ 2 + ∥G(a j ) -X τ (j) ∥ 2 ⩾ 1 2 ∥X τ (j-1) -X τ (j) ∥ 2 .
Using (12) (Main Document), we conclude that

W 1 (G ♯U , µ n ) ⩾ 1 4K p-1 j=1 ∥X τ (j-1) -X τ (j) ∥ 2 ⩾ W 1 ( G ⋆ K♯U , µ n ).
Therefore, inf

G∈Lip • K ([0,1],R d ) W 1 (G ♯U , µ n ) ⩾ W 1 ( G ⋆ K♯U , µ n ).
Finally, a slight adaptation of Proposition 7 shows that

W 1 ( G ⋆ K♯U , µ n ) ⩾ inf G∈Lip • K ([0,1],R d ) W 1 (G ♯U , µ n ),
and the theorem is proved.

Note that we could not show the optimality of G ⋆ K on Lip K ([0, 1], R d ). However, all the numerical experiments indicate that the generative functions G θ output by WGANs satisfy

W 1 ( G ⋆ K♯U , µ n ) < W 1 (G θ ♯U , µ n ).
Consequently, restricting the set of Lipschitz continuous functions to Lip • K ([0, 1], R d ) might not be necessary. We leave it as an open problem to prove that G ⋆ K is indeed the infimum over the whole set Lip K ([0, 1], R d ). Similarly to the univariate case, the distribution G ⋆ K♯U has atoms located at the sample points X i , with respective mass |σ -1 (i)|×φ(i). It is also noteworthy that the minimizer G ⋆ K is not necessarily unique, because there may be different paths σ minimizing the sum of the squared Euclidean distances in (12). Furthermore, if |σ -1 (i)| ⩾ 2, one can arbitrarily choose how to split the time period

|σ -1 (i)| × φ(i) = G ⋆ K♯U ({X i }) according to the different moments G ⋆ K passes by X i .
In order to illustrate Theorem 12, we propose in Figure 6 a 2-dimensional experiment that compares the 1-Wasserstein distance W 1 ( G ⋆ K♯U , µ n ) with the results of parametric WGANs. The generator is composed of ReLU neural networks of depth 3 and 6, and width 100, while the discriminator is composed of ReLU neural networks of depth 5 and width 100. We train a WGAN architecture on two different configurations, n = 5 for the first and n = 10 for the second, both with the choice K = 50 (compatible with the assumption on K in Theorem 12). We see, as expected, that the parametric WGAN (denoted by G θ ♯U ) gets close to the optimal function G ⋆ K . However, since neural networks lack capacity and cannot replicate all Lipschitz functions, they operate some smoothing. Finally, observe that as n grows, mimicking the optimal function G ⋆ K is harder, while increasing the depth can help. Theorem 12 is valid under the condition K ⩾ K 2 , where As K 2 (and thus K) is a function of n, it is therefore natural to understand the behavior of W 1 ( G ⋆ K♯U , µ) when n tends to infinity.

K 2 := n max i=1,...,n j∈σ -1 (i) 1 2 (∥X σ(j-1) -X i ∥ + ∥X σ(j+1) -X i ∥).
Proposition 13 Assume that µ has a probability density with respect to the Lebesgue measure on R d and that S(µ) is bounded.

1. We have

1 K 2 = O(n -1+1/d ) a.s.
2. If, in addition, the density of µ is bounded away from 0 on S(µ), then, for all K ⩾ K 2 , in probability,

W 1 ( G ⋆ K♯U , µ) = O( log n √ n ) for d = 2 O(n -1/d ) for d ⩾ 3.
The proof of Proposition 13 reveals that, for d ⩾ 2, W 1 ( G ⋆ K♯U , µ n ) = O(n -1/d ) in probability, which coincides with the rate of W 1 (µ, µ n ) for d ⩾ 3 (Fournier and Guillin, 2015, Theorem 1). However, for d = 2, W 1 (µ, µ n ) = O( log n √ n ), and the speed of convergence to 0 of W 1 ( G ⋆ K♯U , µ) is therefore slightly slowed down by the term W 1 (µ, µ n ). In essence, this proposition states that while K ⩾ K 2 tends to infinity as n grows, the infimum is taken over a larger collection of functions, which enables G ⋆ K♯U to get closer to the target distribution µ for the 1-Wasserstein distance. [START_REF] Liang | How well generative adversarial networks learn distributions[END_REF] derived minimax-type results for classes of absolutely continuous distributions defined with Sobolev constraints.

Conclusion

We provided in this paper a thorough analysis of the properties of WGANs, in both the finite sample and asymptotic regimes. Although the dimension of the latent space is assumed to be equal to 1, the results are valid regardless of the dimension d of the output space. In this setting, we showed that for a fixed sample size n, optimal WGANs are closely linked with connected paths minimizing the sum of the squared Euclidean distances between the sample points. We also highlighted the fact that WGANs are able to approach (for the 1-Wasserstein distance) the target distribution as n tends to infinity, at a given convergence rate and provided the family of Lipschitz functions grows with K. We derived in passing new results on optimal transport theory in the semi-discrete setting. In a nutshell, the main message is that WGANs generate data that lie on very specific regions of the ambient space-thus showing some limited "creativity"-while being able to asymptotically recover the unknown distribution of the observations under appropriate assumptions.

Nevertheless, many questions remain open and should, in our eyes, be given special attention. First, the current approach is based on a somewhat ideal definition of WGANs, in the sense that we use Lip K ([0, 1], R d ) and Lip 1 (R d , R) for, respectively, the generator and the discriminator. However, one should keep in mind that in practice both the generator and the discriminator are implemented by deep neural networks. It follows that the results of the paper have to be appreciated in light of the approximation capabilities of neural networks. In particular, larger datasets will require deeper and more expressive networks to reconstruct the optimal functions G ⋆ K . Also, using neural networks, the sample points in the dataset are less likely to be overfitted, thus getting closer to the true purpose of generative models, which is to mimic the observations without resampling from the learning database.

We believe that studying the potential benefits of this regularization effect is an interesting problem. Next, it was assumed throughout that the latent random variable U is uniform. The extension to latent variables with unbounded support, such as Gaussian distributions, is not straightforward and requires careful investigation.

Finally, an interesting research direction is to understand and analyze the mechanisms of WGANs when the dimension p of the latent space is strictly larger than 1. In this context, the univariate shortest paths will be replaced by surfaces, and the interesting question In the left column, we use a uniform latent distribution on [0, 1] (target points in red, sampled points in blue). In the second column, we use a uniform latent distribution on [0, 1] 2 (the optimal generator is denoted by Ḡ⋆ K ). The third column shows heatmaps of the gradients' norm of the optimal generator (the bluer the lower and the redder the higher). Finally, the last column shows supplementary points sampled close to ( 1 2 , 1 2 ) (in the latent space).

will then be to understand the driving forces of WGANs when p < d and p = d. As a teaser, we show in Figure 7 the impact of increasing the dimension of the latent space from p = 1 to p = 2, in the case where data (in red) lie in dimension d = 2. We note that when p = 1, the WGAN is able to find the shortest paths for the squared Euclidean distance, as predicted by the theory. For p = 2, the situation is quite intriguing since the 1-Wasserstein distance between the empirical measure and the pushforward distribution of U by the optimal function G is decreasing. Besides, the generated distributions seem to be concentrated with positive mass on the data points and, with decreasing probabilities, on a path-theoretically undetermined-linking them. Note however that it seems also possible to generate samples anywhere in the convex hull of the data points. This is illustrated in the fourth column of the figure, where we voluntarily sample latent vectors close to the center ( 1 2 , 1 2 ). We visualize on the heatmaps in the third column the appearance of areas with high gradients of the optimal generator, dividing the latent space. Analyzing the geometrical properties of these latent configurations is a very exciting avenue for future research. Therefore,

W 1 ( G ⋆ K♯U , µ n ) = 1 0 | G ⋆ K (u) -F -1 µn (u)|du = n-1 i=1 i/n i/n- X i+1 -X i 2K X i + K u -( i n - X i+1 -X i 2K ) -X i du + n-1 i=1 i/n+ X i+1 -X i 2K i/n X i+1 -X i 2K + K(u - i n ) -X i+1 du = n-1 i=1 1 2 K (X i+1 -X i ) 2 4K 2 + (X i+1 -X i ) 2 4K 2 = 1 4K n-1 i=1 (X i+1 -X i ) 2 ,
as desired.

Appendix E. Proof of Theorem 5

As in the proof of Proposition 4, it is assumed without loss of generality that the X i 's are ordered by increasing values, i.e.,

X 1 ⩽ X 2 ⩽ • • • ⩽ X n . Let G : [0, 1] → R be an arbitrary K-Lipschitz continuous function in G K , with K ⩾ n max i=1,...,n-1 (X i+1 -X i ). According to
Proposition 4, the first statement will be proven if we show that for such a function G,

W 1 (G ♯U , µ n ) ⩾ n-1 i=1 (X i+1 -X i ) 2 4K .
Let Π(π 1 , π 2 ) be the set of couplings between two probability measures π 1 and π 2 . According to Ambrosio and Gigli (2013, Lemma 2.12), for any π ∈ Π(G ♯U , µ n ), there exists a coupling γ ∈ Π(λ 1 , µ n ) such that π = (G, Id) #γ , where λ 1 stands for the Lebesgue measure on the interval [0, 1] and Id is the identity function. Therefore,

W 1 (G ♯U , µ n ) = inf π∈Π(G ♯U ,µn) R×R |x -y|dπ(x, y) ≥ inf γ∈Π(λ 1 ,µn) [0,1]×R |G(u) -y|dγ(u, y).
Since the function (u, y) → |G(u) -y| is continuous, then, according to Pratelli (2007, Theorem B), we have inf

γ∈Π(λ 1 ,µn) [0,1]×R |G(u) -y|dγ(u, y) = inf T 1 0 |G(u) -T (u)|du,
where the infimum is taken over all measurable functions T : [0, 1] → {X 1 , . . . , X n } such that T ♯U = µ n . Any such transport map T takes the form T

(u) = n i=1 X i 1{u ∈ C i }, where C 1 , . . . , C n are Borel subsets of [0, 1] such that λ 1 (C i ) = 1 n . We conclude that W 1 (G ♯U , µ n ) ⩾ inf C 1 ,...,Cn n i=1 C i |G(u) -X i |du, (16) 
where the infimum is taken over all disjoint Borel sets C

1 , . . . , C n ⊆ [0, 1] such that λ 1 (C i ) = 1 n .
To prove the first statement of the theorem, it is therefore sufficient to lower bound the infimum above.

The case n = 1 is clear since the function G(u) ≡ X 1 satisfies W 1 (G ♯U , µ 1 ) = 0. Thus, in the sequel, it is assumed that n ⩾ 2. We let a = inf

[0,1] G, b = sup [0,1] G, and ℓ 1 ⩽ ℓ 2 so that X ℓ 1 = min X i ⩾a X i and X ℓ 2 = max X i ⩽b
X i . Note that we can safely assume that ℓ 1 and ℓ 2 are welldefined, since for Ĝ(u

) := G(u)1{G(u) ∈ [X 1 , X n ]}+X 1 1{G(u) < X 1 }+X n 1{G(u) > X n }, we have inf C 1 ,...,Cn n i=1 C i |G(u) -X i |du ⩾ inf C 1 ,...,Cn n i=1 C i | Ĝ(u) -X i |du.
We also suppose that n > ℓ 2 ⩾ ℓ 1 + 1 > 1 and leave the other cases as straightforward adaptations. Since G is continuous, for each i ∈ {ℓ 1 , . . . , ℓ 2 -1}, there exists u

i ∈ [0, 1] such that G(u i ) = X i +X i+1 2 . We let A - i = [u i -X i+1 -X i 2K , u i ], A + i = [u i , u i + X i+1 -X i 2K
], and write

T (u) = n j=1 X j 1{u ∈ C j }. With this notation, A - i |G(u) -T (u)|du = i j=1 A - i (G(u) -X i + X i -X j )1{u ∈ C j }du + n j=i+1 A - i (X i+1 -G(u) + X j -X i+1 )1{u ∈ C j }du = i j=1 A - i (G(u) -X i )1{u ∈ C j }du + λ 1 (C j ∩ A - i )(X i -X j ) + n j=i+1 A - i (X i+1 -G(u))1{u ∈ C j }du + λ 1 (C j ∩ A - i )(X j -X i+1 ) . (17) 
Exploiting the fact that the function G is K-Lipschitz continuous and G(u i ) = X i +X i+1

2

, we have that for u ∈ A

- i ∪ A + i , X i +X i+1 2 -K|u i -u| ⩽ G(u) ⩽ X i +X i+1 2 + K|u i -u|. Thus, i j=1 A - i (G(u) -X i )1{u ∈ C j }du + n j=i+1 A - i (X i+1 -G(u))1{u ∈ C j }du ⩾ i j=1 A - i X i + X i+1 2 -K(u i -u) -X i 1{u ∈ C j }du + n j=i+1 A - i X i+1 - X i + X i+1 2 + K(u i -u) 1{u ∈ C j }du = n j=1 A - i X i+1 -X i 2 -K(u i -u) 1{u ∈ C j }du = A - i X i+1 -X i 2 -K(u i -u) du = (X i+1 -X i ) 2 4K - 1 2 (X i+1 -X i ) 2 4K = (X i+1 -X i ) 2 8K . (18) 
Combining this inequality with (17) yields

A - i |G(u) -T (u)|du ⩾ (X i+1 -X i ) 2 8K + i-1 j=1 λ 1 (C j ∩ A - i )(X i -X j ) + n j=i+1 λ 1 (C j ∩ A - i )(X j -X i+1 ).
Employing the same technique for A + i , we obtain

A + i |G(u) -T (u)|du ⩾ (X i+1 -X i ) 2 8K + i-1 j=1 λ 1 (C j ∩ A + i )(X i -X j ) + n j=i+1 λ 1 (C j ∩ A + i )(X j -X i+1 ).
So, letting A i = A - i ∪ A + i and using the fact that X ℓ+1 ⩾ X ℓ for all ℓ ⩽ n -1, we are led to

A i |G(u) -T (u)|du ⩾ (X i+1 -X i ) 2 4K + i-1 j=1 λ 1 (C j ∩ A i )(X j+1 -X j ) + n j=i+2 λ 1 (C j ∩ A i )(X j -X j-1 ). (19) 
Now, let u ℓ 1 -1 ∈ [0, 1] be such that G(u ℓ 1 -1 ) = a+X ℓ 1 2

. With a slight abuse of notation, define A -

ℓ 1 -1 = [u ℓ 1 -1 - X ℓ 1 -a 2K , u ℓ 1 -1 ] and A + ℓ 1 -1 = [u ℓ 1 -1 , u ℓ 1 -1 + X ℓ 1 -a 2K ]
. Then, using the same method as above, one easily shows that, for A ℓ 1 -1 = A - ℓ 1 -1 ∪ A + ℓ 1 -1 ,

A ℓ 1 -1 |G(u) -T (u)|du ⩾ (X ℓ 1 -a) 2 4K + ℓ 1 -1 j=1 λ 1 (C j ∩ A ℓ 1 -1 )(a -X j ) + n j=ℓ 1 +1
λ 1 (C j ∩ A ℓ 1 -1 )(X j -X ℓ 1 ).

In a similar fashion, for u ℓ 2 ∈ [0, 1] such that G(u ℓ 2 ) = X ℓ 2 +b 2

and, with a slight abuse of notation, letting

A ℓ 2 = [u ℓ 2 - b-X ℓ 2 +1 2K , u ℓ 2 + b-X ℓ 2 +1 2K
], we obtain

A ℓ 2 |G(u) -T (u)|du ⩾ (b -X ℓ 2 ) 2 4K + ℓ 2 -1 j=1 λ 1 (C j ∩ A ℓ 2 )(X ℓ 2 -X j ) + n j=ℓ 2 +1 λ 1 (C j ∩ A ℓ 2 )(X j -b).
Accordingly,

A ℓ 1 -1 ∪A ℓ 2 |G(u) -T (u)|du ⩾ (X ℓ 1 -a) 2 4K + (b -X ℓ 2 ) 2 4K + ℓ 1 -2 j=1 λ 1 (C j ∩ A ℓ 1 -1 )(X j+1 -X j ) + λ 1 (C ℓ 1 -1 ∩ A ℓ 1 -1 )(a -X ℓ 1 -1 ) + n j=ℓ 1 +1 λ 1 (C j ∩ A ℓ 1 -1 )(X j -X j-1 ) + ℓ 2 -1 j=1 λ 1 (C j ∩ A ℓ 2 )(X j+1 -X j ) + λ 1 (C ℓ 2 +1 ∩ A ℓ 2 )(X ℓ 2 +1 -b) + n j=ℓ 2 +2 λ 1 (C j ∩ A ℓ 2 )(X j -X j-1 ). ( 20 
)
Let B = ℓ 2 i=ℓ 1 -1 A i , and observe that the target integral can be decomposed in the following way: Inequalities ( 19) and ( 20) provide a lower bound on the first term on the right-hand side of (21). Let us now work out the second term. To this aim, observe that

B c |G(u) -T (u)|du ⩾ ℓ 1 -1 j=1 B c |G(u) -X j |1{u ∈ C j }du + n j=ℓ 2 +1 B c |G(u) -X j |1{u ∈ C j }du ⩾ ℓ 1 -2 j=1 B c (X ℓ 1 -1 -X j )1{u ∈ C j }du + B c (a -X ℓ 1 -1 )1{u ∈ C ℓ 1 -1 }du + B c (X ℓ 2 +1 -b)1{u ∈ C ℓ 2 +1 }du + n j=ℓ 2 +2 B c (X j -X ℓ 2 +1 )1{u ∈ C j }du.
Exploiting λ 1 (C j ) = 1 n for j ∈ {1, . . . , n}, we see that

B c |G(u) -T (u)|du ⩾ ℓ 1 -2 j=1 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C j ∩ A i ) (X j+1 -X j ) + 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C ℓ 1 -1 ∩ A i ) (a -X ℓ 1 -1 ) + 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C ℓ 2 +1 ∩ A i ) (X ℓ 2 +1 -b) + n j=ℓ 2 +2 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C j ∩ A i ) (X j -X j-1 ). ( 22 
)
Thus, using identity (21) together with inequalities ( 19), (20), and ( 22), we are led to

1 0 |G(u) -T (u)|du ⩾ (X ℓ 1 -a) 2 4K + (b -X ℓ 2 ) 2 4K + ℓ 1 -2 j=1 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C j ∩ A i ) + ℓ 2 i=ℓ 1 -1 λ 1 (C j ∩ A i ) (X j+1 -X j ) + 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C ℓ 1 -1 ∩ A i ) + ℓ 2 i=ℓ 1 -1 λ 1 (C ℓ 1 -1 ∩ A i ) (a -X ℓ 1 -1 ) + ℓ 2 -1 i=ℓ 1 (X i+1 -X i ) 2 4K + 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C ℓ 2 +1 ∩ A i ) + ℓ 2 i=ℓ 1 -1 λ 1 (C ℓ 2 +1 ∩ A i ) (X ℓ 2 +1 -b) + n j=ℓ 2 +2 1 n - ℓ 2 i=ℓ 1 -1 λ 1 (C j ∩ A i ) + ℓ 2 i=ℓ 1 -1 λ 1 (C j ∩ A i ) (X j -X j-1 ).
So,

1 0 |G(u) -T (u)|du ⩾ (X ℓ 1 -a) 2 4K + ℓ 2 -1 i=ℓ 1 (X i+1 -X i ) 2 4K + (b -X ℓ 2 ) 2 4K
+ j∈{1,...,ℓ 1 -2}∪{ℓ 2 +1,...,n-1}

X j+1 -X j n + 1 n (a -X ℓ 1 -1 ) + 1 n (X ℓ 2 +1 -b).

Since K ⩾ n max i=1,...,n-1 (X i+1 -X i ), we have

X j+1 -X j n ⩾ (X j+1 -X j ) 2 K
, and thus

(X ℓ 1 -a) 2 4K + 1 n (a -X ℓ 1 -1 ) ⩾ 1 4K (X ℓ 1 -a) 2 + 4(a -X ℓ 1 -1 )(X ℓ 1 -X ℓ 1 -1 ) = 1 4K (X ℓ 1 -a) 2 + 4(a -X ℓ 1 -1 )(X ℓ 1 -a + 4(a -X ℓ 1 -1 ) 2 ⩾ (X ℓ 1 -X ℓ 1 -1 ) 2 4K . (23) Similarly, (X ℓ 2 -b) 2 4K + 1 n (X ℓ 2 +1 -b) ⩾ (X ℓ 2 +1 -X ℓ 2 ) 2 4K .
Using once again the assumption on K, we conclude that

1 0 |G(u) -T (u)|du ⩾ n-1 i=1 (X i+1 -X i ) 2 4K .

  distribution µ is uniform. (b) The distribution µ is standard Gaussian.

Figure 1

 1 Figure 1: 1-Wasserstein distance W 1 ( G K♯U , µ) as a function of n and K (the bluer the lower and the redder the higher). Results are averaged over 2 runs.

  (a) Fitting n = 5 data points with a generator depth equal to 3. W1( G ⋆ K♯U , µn) = 0.080 and W1(G θ ♯U , µn) = 0.501. (b) Fitting n = 5 data points with a generator depth equal to 5. W1( G ⋆ K♯U , µn) = 0.080 and W1(G θ ♯U , µn) = 0.165. (c) Fitting n = 9 data points with a generator depth equal to 3. W1( G ⋆ K♯U , µn) = 0.033 and W1(G θ ♯U , µn) = 0.280. (d) Fitting n = 9 data points with a generator depth equal to 5. W1( G ⋆ K♯U , µn) = 0.033 and W1(G θ ♯U , µn) = 0.210.

Figure 3 :

 3 Figure 3: Output functions G θ of the WGANs compared with the optimal G ⋆ K .

  (a) Shortest path with n = 4, k = 0 in (12). (b) Shortest path with n = 7, k = 0 in (12). (c) Shortest path with n = 6, k = 1 in (12). (d) Shortest path with n = 15, k = 1 in (12).

Figure 4 :

 4 Figure 4: Examples of shortest paths in dimension 2, with the squared Euclidean distance.

  (a) The sample size is n = 5 and the depth of the generator is equal to 3. The WGAN misses the shortest path leading to a deteriorated 1-Wasserstein distance: W1( G ⋆ K♯U , µn) = 0.030 and W1(G θ ♯U , µn) = 0.286. (b) The sample size is n = 5 and the depth of the generator is equal to 6. The WGAN is closer to the shortest path: W1( G ⋆ K♯U , µn) = 0.018 and W1(G θ ♯U , µn) = 0.174. (c) The sample size is n = 10 and the depth of the generator is equal to 3. The WGAN misses the shortest path, with a worsened 1-Wasserstein distance: W1( G ⋆ K♯U , µn) = 0.025 and W1(G θ ♯U , µn) = 0.321. (d) The sample size is n = 10 and the depth of the generator is equal to 6. The WGAN is closer to the shortest path: W1( G ⋆ K♯U , µn) = 0.025 and W1(G θ ♯U , µn) = 0.160.

Figure 6 :

 6 Figure 6: Fitting 2-dimensional data points with a univariate latent space. The blue curves are the ones reached after optimization with WGANs G θ ♯U and the red curves are the constructed ones G ⋆ K♯U

  (a) W1( G ⋆ K♯U , µn) = 0.27. (b) W1( Ḡ⋆ K♯U , µn) = 0.15. (c) Latent space heatmap. (d) Supp. green points. (e) W1( G ⋆ K♯U , µn) = 0.16. (f) W1( Ḡ⋆ K♯U , µn) = 0.10. (g) Latent space heatmap. (h) Supp. green points. (i) W1( G ⋆ K♯U , µn) = 0.42. (j) W1( Ḡ⋆ K♯U , µn) = 0.13. (k) Latent space heatmap. (l) Supp. green points.

Figure 7 :

 7 Figure7: Influence of the dimension p of the latent space. In the left column, we use a uniform latent distribution on [0, 1] (target points in red, sampled points in blue). In the second column, we use a uniform latent distribution on [0, 1] 2 (the optimal generator is denoted by Ḡ⋆ K ). The third column shows heatmaps of the gradients' norm of the optimal generator (the bluer the lower and the redder the higher). Finally, the last column shows supplementary points sampled close to ( 1 2 , 1 2 ) (in the latent space).

  ) -T (u)|du = B |G(u) -T (u)|du + B c |G(u) -T (u)|du.(21)
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Appendix A. Proof of Lemma 1

We only focus on the first statement since the proof of the second one is similar. Let G, G ′ ∈ Lip K ([0, 1], R d ). Observe that by the triangle inequality and the primal definition of the 1-Wasserstein distance, we have

where γ is the pushforward distribution of U by the pair (G, G ′ ), with marginals G ♯U and G ′ ♯U . Thus,

where ∥ • ∥ ∞ denotes the supremum norm of functions, i.e., for f : [0, 1] → R d , ∥f ∥ ∞ = sup{∥f (x)∥ : x ∈ [0, 1]}. Hence the map Lip K ([0, 1], R d ) ∋ G → W 1 (G ♯U , µ n ) is continuous with respect to the uniform norm. Now let G 0 ≡ X 1 be a constant function on [0, 1]. Then, clearly, W 1 (G 0 ♯U , µ n ) < ∞. Next, let G be any function in Lip K ([0, 1], R d ) such that

Then, upon observing that there exists u 0 ∈ [0, 1] such that ∥G(u 0 )∥ = ∥G∥ ∞ and using the fact that G is K-Lipschitz continuous on [0, 1], we deduce that for all u ∈ [0, 1] and any i ∈ {1, . . . , n}, one has

Therefore, letting

we see that inf

Appendix B. Proof of Theorem 2

Proof of 1(i)

Since µ is of order 1, one has lim n→∞ W 1 (µ, µ n ) = 0 a.s. according to Villani (2008, Theorem 6.8). Hence, by the triangle inequality and because G K ∈ G K , we only need to prove that

has distribution µ, and thus one has lim n→∞ W 1 (F -1 ♯U , µ n ) = 0. This proves the result.

Proof of (2)

The result is proved by contradiction. Fix K > 0 and assume that on an event of strictly positive probability lim inf

So, W 1 (G K♯U , µ) = 0 and therefore, since F -1 (U ) has distribution µ, we have

Next, by continuity of G K , there exists a compact set

Proof of 1(ii)

We show the result by contradiction, assuming as in the proof of statement (2) that for K < 1/K 1 , on an event of strictly positive probability,

Arguing as in the previous proof, we have that G K (U ) L ∼ F -1 (U ). Then, it is a classical exercise to deduce from ( 14), since F -1 (u) > -∞ for all u ∈ (0, 1) and F is continuous,

Moreover, both assumptions

Repeating this inequality entails, for all ℓ ⩾ 0,

But, for all u ∈ [0, 1], the sequence ((F • G K ) ℓ (u)) ℓ⩾1 is bounded by 1. In addition, KK 1 < 1 by assumption. Thus, there exist a ∈ [0, 1] and a subsequence (ℓ q ) q⩾1 such that, for all u ∈ [0, 1], lim

Hence, as q → ∞, (F • G K ) ℓq (U ) almost surely converges to a, which contradicts (15).

Appendix C. Proof of Theorem 3

Looking for a contradiction, we start as in the proof of Theorem 2, cases (1ii) and ( 2), by assuming that on an event of strictly positive probability,

As we have seen, this implies W 1 (G K♯U , µ) = 0 and, in turn, since the support of

, where H d is the d-dimensional Hausdorff measure (see, e.g., Evans and Gariepy, 2015, Theorem 2.8). But this is impossible since H d ([0, 1]) = 0 as soon as d > 1.

Appendix D. Proof of Proposition 4

To lighten the notation, it is assumed throughout the proof that the X i 's are ordered by increasing values, i.e., X 1 ⩽ X 2 ⩽ • • • ⩽ X n . According to Santambrogio (2015, Proposition 2.17), the 1-Wasserstein distance between two probability measures π 1 and π 2 on the real line, with respective generalized inverses F -1

Since G ⋆ K is monotone and continuous, the generalized inverse of G ⋆ K♯U is G ⋆ K . Also, denoting by F -1 µn the generalized inverse of µ n , we have

To complete the proof, it remains to show that G ⋆ K and G ⋆ K • S are the only minimizers of (1) (Main Document). Returning to inequality (23), we see that if the function G does not visit each data points, then

Also, according to (18), for the function G to be optimal it needs to go at speed K between each observation. Finally, with equation ( 16), we have that an optimal G must be such that

a property satisfied by G ⋆ K and G ⋆ K • S according to (4) (Main Document). We conclude that G ⋆ K and G ⋆ K • S are the unique minimizers of Problem (1) (Main Document) as they are the only functions satisfying these three conditions.

Appendix F. Proof of Proposition 6

The first statement is a straightforward consequence of Deheuvels (1984, Theorem 2). Regarding the second statement, we know from Theorem 5 that, for all

Therefore,

) in probability [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure[END_REF], Theorem 1), the conclusion follows from the triangle inequality.

Appendix G. Proof of Proposition 7

The result is a consequence of the following lemma:

We define G m by slightly modifying G on each interval where it is constant. More precisely, let I be the set of all non degenerated connected components of G -1 ({y ∈ R d : λ 1 (G -1 (y)) > 0}). This set is at most countable and, since G is continuous, it contains only disjoint closed intervals, i.e.,

where L ⊂ N and 0 ⩽ a ℓ < b ℓ ⩽ 1. Let K m = min(K, 1/m), e 1 = (1, 0, . . . , 0) ∈ R d , and

otherwise.

It is easy to see that

Moreover, G m is not constant over any non degenerated interval. Thus, the distribution G m♯U is nonatomic. In addition, ∥G m -G∥ ∞ → 0 as m → ∞. In particular, for any continuous bounded function f :

weakly, as m tends to infinity. As the G m♯U 's have supports included in the same compact set, we conclude by Villani (2008, Theorem 6.9) that lim m→∞ W 1 (G m♯U , G ♯U ) = 0. But, by the triangle inequality,

Appendix H. Proof of Proposition 8

Assuming that such a transport map T ⋆ ∈ H w ⋆ exists, we write w ⋆ T ⋆ (x) instead of w ⋆ i whenever T ⋆ (x) = X i , i ∈ {1, . . . , n}. Let φ : R d → R be the 1-Lipschitz map defined by

Since T ⋆ (X i ) = X i for all i ∈ {1, . . . , n}, we have in particular that φ(x) -φ(T ⋆ (x)) = ∥x -T ⋆ (x)∥. Then, denoting by Villani, 2008, Definition 5.7), the graph of T ⋆ is included in ∂φ. Therefore,

We conclude that T ⋆ is an optimal transport map.

Appendix I. Proof of Proposition 10

Let us first show that, for all i ∈ {1, . . . , n + k -1} and j / ∈ {σ(i), σ(i + 1)},

Suppose on the contrary that there exists t ∈ (0, 1) such that

where B • (x, ε) stands for the open ball centered at x of radius ε. Observe that for t ⩽ 1/2,

Consequently,

We deduce that ⟨X σ(i) -X j , X σ(i+1) -X j ⟩ < 0 (notation ⟨•, •⟩ means the scalar product), and so

However, such an inequality is impossible by definition of σ. We conclude that, for all t ∈ [0, 1/2],

and, for all t ∈ [1/2, 1],

Let us now turn to the computation of W 1 ( G ⋆ K♯U , µ n ). First, by definition of φ(i), for i ∈ {1, . . . , n}, we have

This shows that λ 1 ( G ⋆-1 K (Vor(i))) = 1 n , i ∈ {1, . . . , n}-or, said differently, that the function G ⋆ K spends a total time 1/n in each Voronoi cell. Now, introduce T ⋆ : R d → {X 1 , . . . , X n } defined G K♯U -almost everywhere by T ⋆ (x) = X i if x ∈ Vor(i). Then, clearly, T ⋆ ∈ H 0 , where we recall that H 0 = T : R d → {X 1 , . . . , X n } : ∀x ∈ Vor(i), T (x) = X i and ∀x ∈ Γ 0 j 1 ...jp , T (x) ∈ {X j 1 , . . . , X jp } .

Arguing as in the proof of Lemma 14, one shows that there exists a sequence of func-

and, for all m large enough, λ 1 (G ⋆-1 m (Vor(i))) = 1 n , i ∈ {1, . . . , n}. According to Proposition 8, we have

By dominated convergence, we obtain

)∥du, so that T ⋆ is an optimal transport map from G ⋆ K to µ n . Finally,

Appendix J. Proof of Proposition 13

First note, since σ is a path with points that may be visited several times, that

where P n stands for the set of permutations of {1, . . . , n}. But, according to [START_REF] Steele | Growth rates of Euclidean minimal spanning trees with power weighted edges[END_REF], under the conditions of the theorem, there exists a constant C > 0 satisfying

This shows the first statement of the proposition. We start the proof of the second statement by recalling that, according to Fournier and Guillin (2015, Theorem 1), one has, in probability,

Therefore, by the triangle inequality, it is enough to show that, for d ⩾ 2, in probability,

According to Theorem 12, we only need to show that, in probability,

4K

n+k-1 j=1 ∥X σ(j+1) -X σ(j) ∥ 2 = O(n -1/d ), whenever K ⩾ K 2 . But, by the very definition (12) (Main Document) of the pair (k, σ), we have

where τ ∈ P n is a permutation that minimizes the length among the whole set of paths that visit only once each data, i.e., ∥X τ (j+1) -X τ (j) ∥ ℓ = C(ℓ) a.s.

By the above, we conclude that 1 4K

n+k-1 j=1 ∥X σ(j+1) -X σ(j) ∥ 2 = O(n -1/d ) a.s.