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Abstract
Transformer architectures are complex and
their use in NLP, while it has engendered many
successes, makes their interpretability or ex-
plainability challenging. Recent debates have
shown that attention maps and attribution meth-
ods are unreliable (Pruthi et al., 2019; Brunner
et al., 2019). In this paper, we present some of
their limitations and introduce COCKATIEL,
which successfully addresses some of them.
COCKATIEL is a novel, post-hoc, concept-
based, model-agnostic XAI technique that gen-
erates meaningful explanations from the last
layer of a neural net model trained on an NLP
classification task by using Non-Negative Ma-
trix Factorization (NMF) to discover the con-
cepts the model leverages to make predictions
and by exploiting a Sensitivity Analysis to esti-
mate accurately the importance of each of these
concepts for the model. It does so without com-
promising the accuracy of the underlying model
or requiring a new one to be trained.

We conduct experiments in single and multi-
aspect sentiment analysis tasks and we show
COCKATIEL’s superior ability to discover con-
cepts that align with humans’ on Transformer
models without any supervision, we objec-
tively verify the faithfulness of its explanations
through fidelity metrics, and we showcase its
ability to provide meaningful explanations in
two different datasets.

Our code is freely available: https://github.
com/fanny-jourdan/cockatiel

1 Introduction

NLP models have undeniably gotten increasingly
more complex since the introduction of the trans-
former architecture (Vaswani et al., 2017; Devlin

* Denotes equal contribution
†Work done as a Scalian employee, before April 2023

and joining IRT Saint-Exupéry.

Figure 1: An illustration of COCKATIEL. Given
some sentences of IMDB reviews, COCKATIEL (i)
identifies concepts for prediction, (ii) ranks them, and
(iii) gives the most important elements for each concept
(to help us interpret the concept).

et al., 2018; Liu et al., 2019a). This trend, which is
also occurring in the domain of Computer Vision,
has brought about a need for understanding how
these models make their predictions. The presence
of bias in these models could indeed be prejudi-
cial in applications where the user’s lives are at
stake (De-Arteaga et al., 2019). Humans should be
able to comprehend the reasons behind the model’s
decisions if these models are to gain general accep-
tance. Also, companies need to ensure that they
are deploying algorithms which are free of harm-
ful biases and that the explanations that they are
obligated to issue are easily understandable by em-
ployees and end-users alike (Kop, 2021).

Intelligibility by humans has then become a key
topic in explainable AI systems. As AI systems
become more sophisticated and are deployed in
increasingly complex environments, the ability to
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provide clear and concise explanations of their de-
cisions becomes more pressing.

Researchers have proposed multiple solutions to
address this challenge. The most straightforward
approach analyzes how each part of the input influ-
ences the model’s prediction. There are different
ways of doing this, through perturbation (Ribeiro
et al., 2016; Zeiler and Fergus, 2014) or by lever-
aging the gradients inside the neural network (Sun-
dararajan et al., 2017a). However, these approaches
suffer from being vulnerable to adversarial manip-
ulation (Wang et al., 2020), from only performing
partial input recovery (Adebayo et al., 2018) and
from a general lack of stability with respect to the
input (Ghorbani et al., 2019a). Another research
path for transformer models harnesses the informa-
tion in the attention maps of the transformers’ lay-
ers to understand how the elements in the input re-
late to the output, implying that the attention mech-
anism is inherently interpretable. In spite of a num-
ber of supporters initially for this approach, there
has been a recent wave of detractors of attention-
based explanations (Jain and Wallace, 2019; Pruthi
et al., 2019; Serrano and Smith, 2019).

More in line with our proposal work, researchers
in the field of rationalization have proposed spe-
cific architectures to extract excerpts from whole
inputs and predict a model’s output based on these
rationales (Lei et al., 2016; Jain et al., 2020; Chang
et al., 2020; Yu et al., 2019; Bastings et al., 2019;
Paranjape et al., 2020). These rationales can be
seen as explanations that are sufficiently high-level
to be easily understood by humans. However, they
require to train an entirely new model. Only one ra-
tionale can also be found per input text, when there
might intuitively be several predictions for a given
prediction. Finally, these approaches use architec-
tures that have mostly been left behind since the
introduction of the transformer architecture, due to
their inferior predictive capabilities.

In line with the project of generating explana-
tions that are meaningful to humans, concept-based
explainable AI (XAI) has lately advanced the sate
of the art. The pioneer method TCAV (Kim et al.,
2018) goes beyond widespread attribution methods
to create high-level explanations based on hand-
picked concepts. More recently, Fel et al. (2022)
has extended this technique to discover automati-
cally pertinent concepts inside the network’s acti-
vation space and to find the parts of the input space
that most align with each concept. Still, it has only

been applied to convolutional architectures for im-
age classification tasks.

In this paper, we present COCKATIEL, a novel
technique for generating reliable and meaningful
explanations for NLP neural architectures for clas-
sification problems. It extends CRAFT (Fel et al.,
2022) and our contributions can be summarized as
follows:

• We introduce a post-hoc explainability tech-
nique that is applicable to any neural network
architecture containing non-negative activa-
tion functions. The technique is capable of
explaining predictions of individual instances
as well as providing insights of the model’s
general behavior.

• We measure COCKATIEL’s ability to discover
concepts that align with those that Humans
would employ in a sentiment analysis appli-
cation. Although we did not train the model
on data annotated with these human concepts,
COCKATIEL’s explanations find them with
high accuracy.

• We demonstrate that in addition to generat-
ing meaningful concepts for Humans, these
explanations are faithful to the models: An ex-
planation X provided by method C is faithful
to a model M just in case if X is returned as
a putative explanation of M ’s behavior by C,
the X plays a causal role in M ’s behavior.

• We provide examples of explanations on fine-
tuned RoBERTa models (Liu et al., 2019a)
and bidirectional LSTMs trained from scratch
to show how the concept decomposition can
be used to understand the inner workings of
complex models.

2 Related Work

2.1 Explaining through rationalization

Finding rationales in text refers to the process of
identifying expressions that provide the key rea-
sons or justifications that are provided for a par-
ticular claim or decision about that text. Lei et al.
(2016) defined rationales as "a minimal set of text
spans that are sufficient to support a given claim
or decision". They should satisfy two desiderata:
they should be interpretable, and they should reach
nearly the same prediction as the original output.
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To do so, they use a generator network that finds in-
teresting excerpts and an encoder network that gen-
erates predictions based on them. However, their
scheme requires the use of reinforcement learn-
ing (Williams, 1992) for the optimization proce-
dure. Bastings et al. (2019) proposed to include
a reparametrization trick to allow for better gradi-
ent estimations without the need for reinforcement
learning techniques, and a sparsity constraint to
encourage the retrieval of minimal excerpts.

Yu et al. (2019) and Paranjape et al. (2020) stud-
ied the problem of producing adequate rationales
from a game-theoretic point of view. However,
these models can be quite complex to train, as they
either require a reparametrization trick or a rein-
forcement learning procedure. Jain et al. (2020)
proposed to solve this problem by introducing a
support model capable of producing continuous im-
portance scores for instances of the input text, that
the rationale extractor can use to decide whether an
excerpt will make a good rationale or not.

All these rationales will serve as an explanation
for single instances, but won’t explain how models
predict whole classes. Chang et al. (2019) intro-
duced a rationalization technique that allows for the
retrieval of rationales for factual and counterfactual
scenarios using three players.

However, all these techniques are not model ag-
nostic and require specific architectures, in par-
ticular rather simple architectures or LSTMs, and
training procedures. But these architectures have
been shown to not produce optimal results.

2.2 Concept-based explanations

Concept-based explainability is a growing area
of research in AI, focused on generating human-
understandable explanations for the decisions made
by machine learning models. One popular ap-
proach for generating concepts is TCAV (Kim et al.,
2018). It uses gradient-based techniques to identify
the important features of a model. However, TCAV
relies on Human inputs, as it requires the user to
manually specify the concepts to be tested. This
can be time-consuming and may not always pro-
duce the most comprehensive explanations (Ghor-
bani et al., 2019b).

Another approach, ACE (Ghorbani et al., 2019b),
aims to automate the concept extraction process.
ACE uses a clustering algorithm to identify inter-
pretable concepts in the model’s activations, with-
out the need for Human input. While this approach

has the potential to greatly reduce the time and ef-
fort required for concepts extraction, the authors
criticize their own reliance on pre-defined cluster-
ing algorithms, which may not always produce the
most relevant or useful concepts.

An alternative uses matrix factorization tech-
niques, such as non-negative matrix factorization
(NMF) (Lee and Seung, 1999), to identify inter-
pretable factors in the data (Zhang et al., 2021; Fel
et al., 2022). As presented in Section 3, or strategy
is inspired by (Fel et al., 2022) and is therefore a
concept-based explanations XAI method. In (Fel
et al., 2022), the authors developed a framework
for generating global and local explanations. They
successfully tested the meaningfulness and the ca-
pacity of these explanations to help Humans to
understand the model’s behavior through psycho-
logical experiments. However, this approach has
only been applied to convolutional neural networks
for image classification tasks so far.

For NLP applications, Bouchacourt and Denoyer
(2019) proposed a self-interpretable neural archi-
tecture capable of simultaneously generating a pre-
diction on classification tasks and its concept-based
explanation. These concepts are learned without
supervision from excerpts using a bidirectional
LSTM during the training phase of the model, and
the predictions are only based on the presence or
absence of the individual concepts in the input sen-
tences. Despite of its capacity to generate interest-
ing concepts, its low prediction accuracy for the
classification task is a serious limitation (see Table
1). Going further, Antognini and Faltings (2021)
introduced ConRAT, a technique that includes or-
thogonality, cosine similarity and knowledge dis-
tillation constraints, as well as a concept pruning
procedure to improve on both the quality of the
extracted concepts and the model’s accuracy.

3 COCKATIEL

In this section, we describe COCKATIEL, our
concept-based XAI technique for NLP models
to generate human-understandable explanations.
It has three main components: (i) it uses Non-
Negative Matrix Factorization (NMF) to discover
the concepts that the neural network under study
leverages to make predictions; (ii) it exploiting Sen-
sitivity Analysis to estimate accurately the impor-
tance of each of these concepts for the model; and
(iii) it uses a black-box explainability technique to
generate instance-wise explanations at a per-word
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Figure 2: Overview of our method: COCKATIEL can be divided into three phases. (i) The first step is assembling
the concepts base. We propose to do this by constituting a database of whole or excerpts of input texts, projecting
each one of these elements into the embedding of the model of our choice h(x) and using the NMF algorithm to
decompose the resulting non-negative matrix into two low-rank, non-negative matrices: U and W . (ii) Once U and
W have been computed, we can compute the Total Sobol indices for the concept base’s columns by masking the
coefficients and by looking at their effect on the classifier’s output: c((U ⊙M)W T ). (iii) Finally, we propose
to retrieve the influence of each word of the instance under study in each concept through Occlusion, that is, by
applying masks to each word (or clause) in the input and quantifying the changes in each of the concept coefficients.

and per-clause level. Fig. 2 presents a schematic
outline of COCKATIEL.

Notation In a supervised learning framework, we
assume that a neural network model f : X n → Yn

has already been trained for some classification
task. We denote by (x1, ...,xn) ∈ X n a set of n
input texts and (y1, ..., yn) ∈ Yn their associated
labels. We consider f to be a composition of h,
the last embedding of x (i.e. the last layer of the
feature extractor model), and c, the classification
function, f(x) = c ◦ h(x) with h(x) ⊆ Rp .

COCKATIEL will factorize h through NMF, so
we require h to be non-negative – i.e. h(x) ≥
0 ∀x ∈ X . This constraint is typically verified
when the last layer has an activation function such
that σ(x) ≥ 0, which is the case in (but it’s not
limited to) layers or blocks using ReLU.

3.1 Unsupervised concept discovery -
"Concept part"

COCKATIEL discovers concepts without super-
vision by factorizing the neural network’s inter-
mediary activations by using a NMF algorithm.
Because we are factorizing h, we can generate ex-
planations on embeddings without needing to deal
with the complexities of attention layers (Pruthi
et al., 2019); nor do we have to deal with the non-
identifiability of transformer models (Brunner et al.,
2019). Thus, the concept extraction phase of our
method does not depend on the specificities of at-
tention. We will address this later on in Section 3.3
to be able to generate our instance-level explana-

tions.

NMF algorithm: We choose an excerpt-
extraction function τ1 to generate a database of
excerpts coming from texts that the model places
in the desired class dc – i.e. Xi = τ1(xi) such
that f(xi) = dc. Then, we place ourselves at the
model’s last layer and we extract the activations
A = h(Xi) for each of the excerpts Xi in the
database. With this information, we solve the
constrained optimization problem engendered by
the NMF algorithm:

(U ,W ) = argmin
U≥0,W≥0

1

2
∥A−UW T ∥2F , (1)

where || · ||F is the Frobenius norm.
This allows us to decompose the high-rank ma-

trix containing all activations A ∈ Rn×p into two
low-rank matrices U ∈ Rn×r and W ∈ Rp×r.
Intuitively, this corresponds to W being a matrix
whose columns represent the concepts that we will
use to generate explanations, and U is a matrix con-
taining the coefficients quantifying the presence of
each concept. These matrices are built so as to
minimize the reconstruction error 1

2∥A−UW ∥2F ,
enforcing the relevance of the concepts, and with
a non-negative constraint for each matrix, thus en-
couraging sparsity in their elements.

It is important to note that these coefficients
uij ∈ R+, so the presence of a concept can be
determined by where its value stands in the con-
cept’s coefficients distribution. In practice, we have
found that fixing a threshold at the quantile repre-
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senting the 10% highest values leads to accurate
and easy to interpret explanations.

Choice of τ1: As we want the concepts to be
descriptive enough to convey an abstraction but
short enough to only contain one, we work with
excerpts chosen by an excerpt-extraction function
τ1. The choice of τ1, which should depend on the
dataset and the text’s format, heavily impacts the
type of explanations that we are able to generate.

We have identified 3 possible τ1 functions: (i)
take all the full text ; (ii) split the text into sen-
tences (of at least 6 words) ; (iii) split the text into
clauses. Linguistically, it doesn’t make sense to
take smaller tokens like one or two words since
their meaning is typically too unfocused to provide
a real explanation.

We therefore chose τ1 to respond specifically to
each use-case. If we want to capture the mood of
whole inputs, we can designate the inputs as the
excerpts, and then interpret them by leveraging the
local part of our method. If we instead wish to
extract more simple but structured concepts, we
can choose τ1 to pick sentences of at least 6 words
and ending in a full-stop. The first condition is
necessary in the case of the beer review dataset,
which is composed of short sentences containing
very simple descriptions. For this dataset, using
only very short excerpts would fail to convey the
complexity of the ideas conveyed by the concepts.
In this paper, we present results using these two
excerpt-extraction functions.

3.2 Concept importance estimation -
"Ranking part"

A common issue when utilizing concept extrac-
tion methods is the discrepancy between concepts
deemed relevant by humans and those utilized by
the model for classification. To mitigate the po-
tential for confirmation bias during the concept
analysis phase, we estimate the overall importance
of the extracted concepts.

To determine which concept has the most signifi-
cant impact on the model output, we use a counter-
factual reasoning (Peters et al., 2017; Pearl et al.,
2016), and then use sensitivity analysis (Cukier
et al., 1973; Iooss and Lemaître, 2015). A classic
strategy in this area is the use of total Sobol indices
(Sobol, 1993). This method captures the impor-
tance of a concept, along with its interactions with
other concepts, on the model output by calculating
the expected variance that would remain if all the

Figure 3: Concept importance: The global influence
of the NMF concepts on the predictions on RoBERTa
model is measured using Sobol indices. There are differ-
ent concepts for each class (positive and negative label).

indices of the masks except Mi were fixed.
Definition 3.1 (Total Sobol indices). The total
Sobol index STi, which measures the contribution
of a concept Ui as well as its interactions of any
order with any other concepts to the model output
variance, is given by:

STi =
EM∼i(VMi(Y |M∼i))

V(Y )
(2)

=
EM∼i(VMi(c((U ⊙M)W T )|M∼i))

V(c((U ⊙M)W T ))
.

(3)

To estimate the importance of a concept Ui,
we measure the fluctuations of the model output
c(UW T ) in response to perturbations of the con-
cept coefficient Ui. Specifically, we use a se-
quence of random variables M to introduce con-
cept fluctuations and reconstruct a perturbed ac-
tivation Ã = (U ⊙ M)W T . We then propa-
gate this perturbed activation to the model output
Y = c(Ã). An important concept will have a large
variance in the model output, while an unused con-
cept will barely change it.

The method for calculating (2) and (3) exploits
the Sobol-Hoeffding decomposition and is in the
supplementary materials (appendix A).

There are already a plethora of different tech-
niques that allow us to compute this index effi-
ciently (Saltelli et al., 2010; Marrel et al., 2009;
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Janon et al., 2014; Owen, 2013; Tarantola et al.,
2006). But concretely, we estimate the total Sobol
indices using the Jansen estimator (Janon et al.,
2014), a widely recognized efficient method (Puy
et al., 2022). The Jansen estimator is commonly
utilized in conjunction with a Monte Carlo sam-
pling strategy, but we improve over Monte Carlo
by using a Quasi-Monte Carlo sampling strategy.
This technique generates sample sequences with
low discrepancy, resulting in a more rapid and sta-
ble convergence rate (Gerber, 2015).

3.3 Instance-level explanation generation -
"Interpretable elements part"

In this part, we interpret the concepts found previ-
ously. To do this, we find which words and clauses
are associated with each concept.

We adapt Occlusion (Zeiler and Fergus, 2014): a
black-box attribution method that works by mask-
ing each word looking at the impact on the model
output. In this case, to get an idea of the impor-
tance of each word for a given concept, we mask
words in a sentence and measure the effect of the
new sentence (without the words) on the concept.
This operation can be performed at word or clause
level – i.e. mask words or whole clauses – to ob-
tain explanations that are more or less fine-grained
depending on the application.

Motivations: This choice has been shown to per-
form particularly well on NLP models (Fel et al.,
2021a) and doesn’t suffer from the inefficiency of
having to sample a considerable amount of masks
for each explanation. Indeed, in (Fel et al., 2021a),
they compared Occlusion to other explainability
techniques that are commonly used in NLP, and
they showed that it is more faithful to the model
than Saliency (Simonyan et al., 2014), Grad-Input,
SmoothGrad (Smilkov et al., 2017), Integrated Gra-
dients (Sundararajan et al., 2017b), and their own
Sobol method on both LSTM and BERT models.

In addition, in the case of transformer mod-
els, using a black-box method such as Occlusion
avoids manipulating the attention layers between
the input and the activation matrix A, where our
concepts are located. In doing so, we avoid the
non-identifiability problem of transformer models
(Pruthi et al., 2019).

Application: Empirically, we perform the follow-
ing operations:

For a sentence Xi, Ai = h(Xi). We have a fixed
W calculate with the NMF and Wk, the k concept

of W . As before, we get the importance of the
sentence Xi for the concept k:

Uk
i = argmin

U≥0

1

2
∥Ai − UW T

k ∥2F .

Then, we remove the element j from the sentence
i: X̃i−j (i.e. we replace the (tokenized) feature by
a zero). So we have Ãi−j = h(X̃i−j), and:

Ũk
i−j = argmin

U≥0

1

2
∥Ãi−j − UW T

k ∥2F ,

So, ϕ(k, i, j) quantifies the influence of the ele-
ment j in the sentence i for the concept k:

ϕ(k, i, j) = Uk
i − Ũk

i−j ,

For the visualisations (see e.g. Fig. 6), we color
the element with the color of the concept for which
it is most important. In addition, the darker the
color, the more important the element is for the
concept.

Choice of τ2: Just like in the case of the NMF,
the choice of the form of the elements of the input
to occlude will have an impact on the understand-
ability of the explanations. This can be generalized
via another excerpt extraction function τ2, whose
optimal shape will depend on the dataset, the text’s
format and the learned concepts (i.e. Occlusion
shouldn’t be applied at a per-clause level if the
concepts were learned using a τ1 providing sin-
gle words, so this first exceprt extraction function
must be taken into consideration). There is a cer-
tain trade-off between the granularity and the in-
terpretability of the explanations, as illustrated in
Figure 11 in the appendix which contains some
examples with different choices of τ2. In general,
we advise to try different combinations of τi to find
the desired level of granularity in the explanations
for each use-case.

4 Experimental evaluation

For all of our results, we fine-tuned RoBERTa (Liu
et al., 2019a) based models on each dataset. We en-
sured the non-negativity of at least one layer of the
model by adding a ReLU activation after the first
layer of the 1-hidden-layer, dense MLP of the clas-
sification head. For the qualitative analysis, we also
tested COCKATIEL’s performance on bidirectional
LSTM models trained from scratch. More details
about the implementations are left in appendix B.
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Average Appearance Aroma Palate Taste
Model Acc. Prec. Rec. Fsc. P R F P R F P R F P R F

l
=

2
0

RNP 81.1 24.7 21.3 24.9 28.6 23.2 26.5 22.1 21.0 21.5 17.7 24.1 20.4 28.1 16.7 20.9
RNP-3P 80.5 26 21.8 23.3 30.4 25.6 27.8 19.3 20.4 19.8 10.3 12.0 11.1 43.9 28.4 34.5
Intro-3P 85.6 21 18.0 19.1 28.7 24.8 26.6 14.3 14.4 14.3 16.6 19.3 17.9 24.2 13.6 17.4
InvRAT 82.9 37.5 31.6 33.8 54.5 45.5 49.6 26.1 27.6 26.9 22.6 25.9 24.1 46.6 27.4 34.5
ConRAT 91.4 43.8 39.7 40.9 57.8 53.0 55.3 31.9 35.5 33.6 29.0 36.3 32.3 56.5 33.9 42.4

Ours 95.2 40.6 58.4 47 67.5 71.4 69.4 34.1 42.3 37.7 24.8 46.7 32.4 36.1 73.3 48.4

l
=

1
0

RNP 84.4 32.7 14.5 19.5 40.1 12.0 18.5 33.3 18.7 24.0 25.1 17.4 20.6 32.3 9.8 15.07
RNP-3P 83.1 28.4 13.2 17.8 41.8 19.2 26.3 22.2 12.4 15.9 16.5 10.4 12.7 33.2 10.6 16.1
Intro-3P 80.9 24 12.2 16.1 51.0 26.0 34.4 18.8 9.7 12.8 16.5 10.6 12.9 9.7 2.6 4.1
InvRAT 81.9 36.6 15.7 21.8 59.4 26.1 36.3 31.3 15.5 20.8 16.4 9.6 12.1 39.1 11.6 17.9
ConRAT 91.3 38.2 17.6 23.8 51.7 26.2 34.8 32.6 17.4 22.7 23.0 13.8 17.3 45.3 13.1 20.3

Ours 95.2 39.5 58.4 45.5 63.3 56.4 59.7 27.3 67.4 38.9 26 43.5 32.5 41.4 66.1 50.9

Table 1: Objective performance of rationales for the multi-aspect beer reviews. All baselines are trained separately
on each aspect rating, except for ConRAT (Antognini and Faltings, 2021), which is trained on the Overall label just
like our method. Bold and underline denote the best and second-best results, respectively.

We will first analyze the meaningfulness of the
discovered concepts by measuring their alignment
with human annotations on the different aspects
of a multi or single-aspect sentiment analysis task.
Then, we will ensure that our explanations are faith-
ful to the model through an adaptation of the in-
sertion and deletion metrics to concept-based XAI.
Finally, we will showcase some examples of expla-
nations and of applications for our method.

4.1 Alignment with human concepts

Figure 4: Concepts generated with l = 20 for a beer
review. The colors depict the aspects for each annotate
concept. COCKATIEL is trained only on the label and
we use the NMF part of the method to find annotate
concepts. For other examples of review, see appendix D

Following the human-alignment evaluation
in (Antognini and Faltings, 2021), we perform beer
task:

Beer Task We will measure the extent to which
our concepts overlap the human annotations for the

4 different aspects of the multi-aspect beer reviews
dataset (McAuley et al., 2012). This dataset con-
tains reviews for beers with commentary and marks
(from 0 to 5) on 5 different aspects: Appearance,
Aroma, Palate, Taste and Overall. The model will
be trained to predict whether the overall score is
greater than 3 – i.e. a positive review on the beer –
and will not have access to the labels for the other
aspects. Additionally, it includes 994 reviews with
annotations indicating the position of these aspects
in the text. The objective of this evaluation is to
look for concepts that align with these annotations
and measure their capacity to predict the location
of each different aspect. In particular, we searched
across the whole annotated dataset for the concepts
whose F1 score for the prediction of each aspect
was maximal. It is important to note that this does
not take into account to which extent they are im-
portant for the model to predict, but this only serves
as an automatized test for determining whether the
explainability technique is capable of generating
understandable concepts.

We calculate the precision, recall and F1 scores
for each aspect, and we do so with l = 10 and
l = 20 concepts. We remind the reader that, unlike
the baselines, our method is a post-hoc technique,
and thus, the model does not need to be re-trained,
and that changing the number of concepts takes
only a few minutes of compute on GPU.

In Table 1, we present a comparison of our re-
sults to those obtained with some rationalization
techniques: RNP (Lei et al., 2016), RNP-3P (Yu
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et al., 2019), InvRAT (Chang et al., 2020) and Con-
RAT (Antognini and Faltings, 2021) for the task
on Beer. We demonstrate that not only our model
achieves the highest accuracy, but also that it out-
performs all the other methods in its ability to ac-
curately recognize the human annotations, be it by
its precision, recall or F1 score.

4.2 Evaluation of Explanation Faithfulness

We have demonstrated that we can generate con-
cepts that greatly align with humans’, but to legit-
imately serve as an explainability technique, we
must also guarantee its faithfulness. This element
is key, as the concepts leveraged by the model may
not perfectly align with humans in every task, but
we still want the explanation to reflect what the
model is doing. An XAI method is said to be
faithful if its explanations faithfully convey the
information that the model is using to generate
its predictions. In (Ghorbani et al., 2019b; Zhang
et al., 2021), they proposed to use an adaptation of
the deletion and insertion explainability metrics to
concept-based methods. In essence, they proposed
to gradually mask/add the concepts (following their
importance) and seeing the impact on the logits. If
the concepts are indeed important for the model to
predict, they should drastically decrease/increase as
vital information for the prediction is progressively
being erased/added.

To evaluate the explanation Faithfulness and
present qualitative results, we used the IMDB
dataset (Maas et al., 2011). The IMDB dataset
is a collection of 50K movie reviews from the In-
ternet Movie Database (IMDB) website. For each
review, IMDB specifies whether it is positive or
negative (the label). The dataset is balanced, with
25K positive and 25K negative reviews. We used
a RoBERTa model to predict the label from the
reviews.

In Fig. 5, we showcase the plots for these two
fidelity metrics on the IMDB Reviews dataset. We
observe that the concepts are indeed important for
the model’s predictions. In the both plots, the curve
corresponding to the concept ranked in order of im-
portance according to our Sobol method is better
than a random ranking of these concepts, and much
better than if we had taken the order of Sobol impor-
tance in reverse. In particular, to obtain statistically
significant results, we took 10 sets of 10k reviews,
and computed the mean and standard deviation val-
ues for both of the metrics.

Figure 5: (Upper) Deletion curve for RoBERTa on
IMDB Reviews (lower is better). (Lower) Insertion curve
for RoBERTa on IMDB Reviews (higher is better).

4.3 Qualitative evaluation
A model with a good accuracy like RoBERTa gives
very good explanations. Others like LSTM (see
appendix C) do not do so well and do not yield
good explanations. This is not a surprise; if the
model predicts badly, necessarily the concepts it
uses to predict will be bad. Similarly, if the model
is very basic, it uses simple concepts to predict.
The reviews in IMDB are also well written, so it is
more comfortable to analyse sentences and words
to properly call the concepts found by the NMF.

In Fig. 6, we can see the 3 most important con-
cepts for each label class. Each of its concepts
"the favorite movie", "technically good/interesting
movie", "good comedie of family movie" for the pos-
itive class or "the worst movie", "middling movie",
"boring/stupid movie" for the negative class are
ideas that seem natural and which structures our
vision of why a film would be positive or negative.

5 Conclusion

In this paper, we revisited concept-based explain-
ability techniques and presented COCKATIEL, a
post-hoc, model agnostic method capable of gen-
erating meaningful and faithful explanations for
NLP models trained on classification tasks. The
method has three parts: (i) a concept part, using
Non-Negative Matrix Factorization to discover the
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Figure 6: Concepts generated with l = 20 for a few sen-
tences taken from IMDB reviews. The colored elements
are those important for the concept of the corresponding
color (calculated with part (iii) of our method). The
more colorful the element, the more important it is for
the concept (continuously). We have selected the 3 most
important concepts for each label (see Fig. 3). The name
of the concept is chosen manually in view of the impor-
tant elements corresponding to the concepts.

concept, (ii) a ranking part, using Total Sobol in-
dices to measure the influence of each concept, and
(iii) an interpretable elements part, using a black-
box attribution method to quantify the impact of
each element out of each concept.

We measured COCKATIEL’s ability to discover
concepts that align with those humans and obtained
better scores than state-of-the-art methods. We
demonstrated that in addition to generating mean-
ingful concepts for humans, these explanations are
faithful to the models. Finally, we gave some quali-
tative examples of explanations for different mod-
els to understand the method "in practice".

Limitations

We have demonstrated that COCKATIEL is ca-
pable of generating meaningful explanations that
align with human concepts, and that they tend to
explain rather faithfully the model.

The concepts extracted of NMF are abstract and
we interpret them using part 3 of the method. How-
ever, for the interpretation, we rely on our own un-
derstanding of the concept linked to the examples
of words or clauses associated with the concept.
This part therefore requires human supervision and
will not be identical depending on who is looking.
One way to add some objectivity to this concept
labeling task would be to leverage topic modeling

models to find a common theme to each concept.
In addition, τ1 and τ2 were chosen empirically to

allow for an adequate concept complexity/human
understandability trade-off in our examples. We
recognize that this choice might not be optimal
in every situation, as more complex concept may
be advantageous in some cases, and more easily
understandable ones, in others. We surmise that
this choice might also depend on the amount of
concepts and on the model’s expressivity.

Finally, we have studied the meaningfulness and
fidelity of our generated concepts, but ideally, the
simulatability should also be tested. This prop-
erty measures the explanation’s capacity to help
humans predict the model’s behavior, and has re-
cently caught the attention of the XAI commu-
nity (Fel et al., 2021b; Shen and Huang, 2020;
Nguyen, 2018; Hase and Bansal, 2020). We leave
this analysis for future works.

Ethics Statement

This work contributes to the field of explainability.
This field has strong links with the field of fairness,
because explaining a model makes it possible to
understand its biases. Transformers are a type of
model that are little studied in explainability and
yet it is widely used. COCKATIEL is a tool to ex-
plain transformers and therefore avoid using biased
models against the minority.

It is important to remark that this need for under-
standing automatic decisions start being enforced
by Law, as for instance by the so-called AI act1 of
the European Union. As a consequence, companies
need to ensure that they are deploying algorithms
which are free of harmful biases and that the ex-
planations that they’re obligated to issue are easily
understandable by employees and end-users alike.
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A Sobol technique in details

Let (Ω,A,P) be a probability space of possible
concept perturbations. To build these concept per-
turbations, we use M = (M1, . . . ,Mr) ∈ M ⊆
[0, 1]r, i.i.d. stochastic masks on the original vector
of concept coefficients Û ∈ Rr. We define concept
perturbation U = π(Û ,M) with the perturbation
operator π(Ũ ,M) = Ũ⊙M+(1−M)µ with ⊙
the Hadamard product and µ ∈ R a baseline value,
here zero.

We denote the set U = {1, . . . , r}, u a subset of
U , its complementary ∼ u and E(·) the expectation
over the perturbation space. We define c : A → R,
the classification function and we assume that c ∈
L2(A,P) i.e. |E(c(U))| < +∞.

The Hoeffding decomposition gives c in func-
tion of summands of increasing dimension, de-
noting cu the partial contribution of the concepts
Uu = (Ui)i∈u to the score c(U) :

c(U) = c∅

+

r∑

i

ci (Ui)

+
∑

1⩽i<j⩽r

ci,j (Ui, Uj) + · · ·

+ c1,...,r (U1, . . . , Ur)

=
∑

u⊆U
cu (Uu)

(4)

Eq. 4 consists of 2r terms and is unique under
the orthogonality constraint:

E (cu (Uu) cv (Uv)) = 0,

∀(u,v) ⊆ U2 s.t. u ̸= v

Moreover, thanks to orthogonality, we have
cu (Uu) = E (c(U) | Uu) −

∑
v⊂u cv (Uv) and

we can write model variance as:

V(c(U)) =

r∑

i

V (ci (Ui))

+
∑

1⩽i<j⩽r

V (ci,j (Ui, Uj))

+ . . .+ V (c1,...,r (U1, . . . , Ur))

=
∑

u⊆U
V (cu (Uu))

(5)

Eq. 5 allows us to write the influence of any
subset of concepts u as its own variance. This
yields, after normalization by V(c(U)), the general
definition of Sobol’ indices.
Definition A.1. Sobol indices (Sobol, 1993). The
sensitivity index Su which measures the contribu-
tion of the concept set Uu to the model response
f(U) in terms of fluctuation is given by:

Su =
V (cu (Uu))

V(c(U))
= (6)

V (E (c(U) | Uu))−
∑

v⊂uV (E (c(U) | Uv))

V(c(U))

Sobol indices provide a numerical assessment
of the importance of various subsets of concepts
in relation to the model’s decision-making process.
Thus, we have:

∑
u⊆U Su = 1.

Additionally, the use of Sobol’ indices allows
for the efficient identification of higher-order in-
teractions between features. Thus, we can view
the Total Sobol indices defined in 2 as the sum
of of all the Sobol indices containing the concept
i : STi =

∑
u⊆U ,i∈u Su.
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B Implementation Details

We trained 3 different models. For each model, we
performed a single run and we split datasets in 70%
for train, 10% for validation and 20% for test.

B.1 Trained RoBERTa on Beer dataset
We used a RoBERTa base pretrained on hugging
face by Liu et al. (2019b) (all the information on
the pretrain can be found in the paper). The model
was pretrained on the reunion of five datasets:

• BookCorpus (Zhu et al., 2015), a dataset con-
taining 11,038 unpublished books;

• English Wikipedia (excluding lists, tables and
headers) ;

• CC-News (Mackenzie et al., 2020), a dataset
containing 63 millions English news articles
crawled between September 2016 and Febru-
ary 2019 ;

• OpenWebText (Radford et al., 2019), an open-
source recreation of the WebText dataset used
to train GPT-2 ;

• Stories (Trinh and Le, 2018) a dataset con-
taining a subset of CommonCrawl data fil-
tered to match the story-like style of Winograd
schemas.

We then trained the model on Beer dataset. The
model was trained on 2 GPUs for 10 epochs with a
batch size of 32 and a sequence length of 512. The
optimizer was AdamW with a learning rate of 1e-5,
β1 = 0.9, β2 = 0.98, and ϵ = 1e6

B.2 Trained RoBERTa on IMDB dataset
We used a RoBERTa model already fine-tuned on
IMDB from hugging face. This model used the pre-
training presented above, we fine-tuned it with 2
epochs, a batch size of 16, and an Adam optimizer
with a learning rate of 2e-5, β1 = 0.9, β2 = 0.999
and ϵ = 1e− 8.

B.3 Trained LSTM on IMDB dataset
We created our LSTM with:

SentimentRNN (
( embedding ) : Embedding ( 1 0 0 1 , 512)
( l s t m ) : LSTM( 5 1 2 , 128 ,
num_laye r s =4 , b a t c h _ f i r s t =True ,
b i d i r e c t i o n a l =True )
( d r o p o u t ) : Dropout ( p = 0 . 3 ,

i n p l a c e = F a l s e )
( f c_1 ) : L i n e a r ( i n _ f e a t u r e s =128 ,
o u t _ f e a t u r e s =128 , b i a s =True )
( r e l u ) : ReLU ( )
( f c_2 ) : L i n e a r ( i n _ f e a t u r e s =128 ,
o u t _ f e a t u r e s =2 , b i a s =True )
( s i g ) : Softmax ( dim =1)

)

Then, we trained it on the IMDB dataset. The
model was trained on 2 GPUs for 5 epochs with
a batch size of 128 and a sequence length of 512.
The optimizer was Adam with a learning rate of
1e-4.

C LSTM example

LSTMs are much less complex than RoBERTa, and
as such, we can expect them to leverage less and
much simpler concepts for their predictions.

In particular, COCKATIEL identified 3 concepts
that monopolized the importance score for each
class on the RoBERTa model. For the positive
class, we had "the favorite movie", "technically
good/interesting movie" and "good comedie or fam-
ily movie". For the negative class, we also had
"the worst movie", "middling movie" and "boring
movie".

In contrast, in the case of the LSTM (see fig-
ure 8), COCKATIEL detected a single important
concept per predicted class. For the positive class,
this concept encompasses the positive language
elements mostly, and for the negative class, the neg-
ative elements. This is a much more basic view
of the review classification problem, and COCK-
ATIEL allows us to confirm our intuitions about the
richness of the embedding learned by the LSTM.

D Other examples of COCKATIEL
explanations for RoBERTa
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Figure 7: Concept importance: The global influ-
ence of the NMF concepts on the predictions on LSTM
Model is then measured using Sobol indices. We have
different concepts for each class (positive and negative
label).

Figure 8: Concepts generated for a LSTM model with
l = 5 for a few sentences out of IMDB reviews. The
colored elements are those important for the concept
of the corresponding color (calculated with part (iii) of
our method). The more colorful the element, the more
important it is for the concept (continuously). We have
selected the most important concept for each label (see
Fig. 7). The name of the concept is chosen manually
in view of the important elements corresponding to the
concepts.

Figure 9: Concepts generated with l = 20 for some
beer reviews with RoBERTa model. The color depicts
the aspects for each annotate concept. COCKATIEL is
trained only on the label and we use the NMF part of
the method to find annotate concepts.

Figure 10: Concepts generated for a RoBERTa model
with l = 20 for a few sentences taken out of IMDB
reviews. The colored elements are those important for
the concept of the corresponding color (calculated with
part (iii) of our method). The more colorful the element,
the more important it is for the concept (continuously).
We have selected the 3 most important concepts for each
label (see Fig. 3). The name of the concept is chosen
manually in view of the important elements correspond-
ing to the concepts.
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Figure 11: Concepts generated for a RoBERTa model
with l = 20 for a few sentences taken out of IMDB
reviews. The excerpts chosen by an excerpt-extraction
function τ1 are sentences for both (so, we have same
concepts). The colored elements are those that are con-
sidered to be the most important for the concept of the
corresponding color (calculated with part (iii) of our
method). We compare the visualisations of the same
sentences with two different excerpt-extraction func-
tions τ2: words (on the left) and clauses (on the right).
We split the text into clauses for occlusion using the fair
library’s SequenceTagger implementation.
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