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Abstract 

Recently, ensemble-based machine learning models have been widely used and have demonstrated 

their efficiency in bankruptcy prediction. However, these algorithms are black box models and 

people cannot understand why they make their forecasts. This explains why interpretability 

methods in machine learning attract attention from many artificial intelligence researchers. In this 

paper, we evaluate the prediction performance of Random Forest, LightGBM, XGBoost, and 

NGBoost (Natural Gradient Boosting for probabilistic prediction) for French firms from different 

industries with the horizon of one to five years. We then use Shapley Additive Explanations 

(SHAP), a model-agnostic method to explain XGBoost, one of the best models for our data. SHAP 

can show how each feature impacts the output from XGBoost. Furthermore, single prediction can 

also be explained, thus allowing black box models to be used in credit risk management. 
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1. Introduction

In the last 60 years, predicting bankruptcy has been an interesting topic that has attracted the 

attention of many researchers. Beaver (1966) utilized a univariate analysis; Altman (1968) 

employed a multivariate technique; and machine learning and deep learning techniques have 

recently been widely implemented. However, there is no mature or clear theory of why businesses 

fail (Wang et al., 2014). Through empirical studies, researchers in many countries continue to try 

to find the best way to predict the fate of a failed firm. The main problems in the bankruptcy 

prediction field are improving model accuracy, selecting appropriate variables, increasing the 

prediction time frame, and interpreting bankruptcy prediction models. Bellovary et al. (2007) 

reviewed 165 bankruptcy prediction studies, many of which achieved good predictive 

performance. The researchers raised an interesting question, "Why do we continue to develop new 

and different models for bankruptcy prediction?" and suggested that "future research should 

consider how these models can be applied and, if necessary, refined".  

The most challenging aspect of using artificial intelligence to predict bankruptcies is interpreting 

and explaining the results. In Europe, according to the “right to explanation” rule, customers who 

are denied a loan have the right to demand explanations from financial institutions. Nevertheless, 

du Jardin (2017) concluded that ensemble models cannot be used as a decision-making tool in 

practice because they cannot be interpreted. Following Son et al. (2019), there are two primary 

reasons why machine learning models are not utilized in practice. First, the prediction accuracy 

does not significantly exceed that of statistical models. Second, the results cannot be interpreted. 

In addition, most studies dealing with distress prediction focus on improving the accuracy of the 

model and pay insufficient attention to the model’s interpretation (Alfaro et al., 2008).  

In recent years, a growing number of studies have used model-agnostic methods, including Partial 

Dependence Plot, Local interpretable model-agnostic explanations (LIME), and Shapley Additive 

Explanations (SHAP), to interpret machine learning models. Among these methods, SHAP, 

developed by Lundberg and Lee (2017), stands out as the only one based on game theory, an 

economic theory. SHAP measures the contribution of each explanatory variable at each point 

prediction of a machine learning model, making it useful for predicting the failure of companies 

and potentially transforming the industry's use of ensemble models for bankruptcy forecasting. 

Despite its potential, most studies that have employed SHAP to interpret their models prioritize 

improving the accuracy of their bankruptcy prediction models. For instance, Perboli and 
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Arabnezhad (2021) sought to achieve short-term prediction accuracy improvements while also 

making accurate mid- and long-term predictions. Yıldırım et al. (2021) utilized graph theory in 

default prediction, and Sigrist and Leuenberger (2023) introduced a hybrid econometric-machine 

learning model to model multi-period cumulative and forward corporate default probabilities. 

These studies have used SHAP to enhance the credibility of their black box models. However, 

financial analysis in bankruptcy prediction using SHAP has yet to be comprehensively examined. 

To address this knowledge gap, we use SHAP to perform financial ratio analysis for predicting 

bankruptcy. This local model-agnostic method allows us to understand the impact of each financial 

ratio on bankruptcy prediction in our data. Our study contributes to the field of corporate failure 

prediction in three ways. Firstly, we analyze the effects of financial ratios on financial distress in 

a cross-industry sample of French companies, using SHAP to interpret the relationship between 

each ratio and bankruptcy prediction. Our study provides insights into ambiguous relationships by 

showing interaction visualizations. Secondly, we employ the NGBoost model, which shows 

promise in bankruptcy prediction despite the XGBoost model's robustness. We are the first 

researchers, to our knowledge, to use this model in bankruptcy prediction. Finally, while it is 

recommended to use companies from the same industry to avoid producing misleading results, our 

study demonstrates that ensemble-based machine learning algorithms can predict bankruptcy 

accurately across various French industries. 

This paper is structured as follows: section 2 contains a review of the literature that clarifies our 

research question. In section 3, we present the sample and variables. In section 4, we briefly 

introduce the machine learning models used in our experiments. In section 5, we summarize our 

results before concluding in Section 6. 

2. Literature review 

The main objective of many corporate bankruptcy prediction studies is to improve model accuracy. 

There are two main categories: statistical techniques and artificial intelligence techniques. 

Statistical techniques include discriminant analysis, logistic regression, etc. Artificial intelligence 

techniques consist of an artificial neural network, a support vector machine, ensemble models and 

deep learning. Comparing model accuracy among these techniques is a common goal for many 

researchers (Barboza et al., 2017; Charalambous et al., 2022, 2023; Staňková, 2023) 

Following  Hung and Chen (2009) and Wang et al. (2014), there is no consistent conclusion that 

one specific technique is better than another. However, Altman et al. (2020) concluded that logistic 
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regression and neural networks outperform support vector machines, gradient boosting and 

decision trees. In recent years, ensemble-based techniques have performed better than single 

models in corporate failure prediction (Alfaro et al., 2008; du Jardin, 2019; Nanni & Lumini, 

2009). Jones et al. (2017) recommended using ensemble techniques because they predict 

significantly better than all other classifiers on both cross-sectional and longitudinal test samples. 

We compile a list of recent studies using complex machine learning algorithms in Table 1. The 

number of variables used in these studies varies from 16 to 50. Some researchers employ fewer 

than 20 independent variables, but their models can provide a high level of accuracy in bankruptcy 

prediction (Perboli and Arabnezhad 2021; Bussmann et al. 2021; Smith and Alvarez 2022; Sigrist 

and Leuenberger 2023). 

Table 1  

Explanatory variables. 
Study Models Number of 

variables   
Sample 
size    

Time period Variable types  Interpretable 
methods 

du Jardin 
(2010) 

NN 14 1,020  2002-2003 Financial ratio None 

du Jardin 
(2015) 

NN, SOM 36 18,620 2003-2012 Financial ratio, 
Market-based 
variables  

None 

du Jardin 
(2016) 

Bagging, 
Boosting, 
Random 
subspace,  

35 17,660 2003-2012 Financial ratio, None 

Jones et al. 
(2017) 

NN, SVMs, 
AdaBoost, 
RF 

35 30,129 After the year 
2000 

Financial ratio  Relative 
variable 
importance 

Veganzones 
and Séverin 
(2018) 

NN, SVM, 
RF 

10  1,500 2013-2014 Financial ratio  None 

Sigrist and 
Hirnschall 
(2019) 

Grabit, 
Boosted MC 
Logit, 
Boosted 
Logit, RF, 
NN 

50  155  2014-2016 Financial ratio, 
SME 
characteristics  

Partial 
dependence 
plots 

Perboli and 
Arabnezhad, 
(2021) 

RF, NN, 
XGBoost  

15  8,959  2001-2018 Financial ratio  
 

SHAP 

Bussmann et 
al. (2021) 

XGBoost  19  15,045 2015 Balance-sheet 
variables  

SHAP 

Smith and 
Alvarez 
(2022) 

XGBoost, 
LightGBM, 
NN, RF, 
SVM 

17  64,057  1992-2016 Financial ratio  
Balance-sheet 
variables 

Feature 
importance 
score  
Partial 
dependence plot 
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Sigrist and 
Leuenberger 
(2023) 

TreeBoost, 
NN, RF, 
Ensemble 

16 21,637 1961-2020 Financial ratio 
and Industry 
dummies 

SHAP 

NN Neural Networks, RF Random Forest, SVM Support Vector Machine, SOM Self Organizing Map. 

Although the variable selection method in a bankruptcy prediction model plays an important role 

in enhancing the model’s performance, there is a limited theoretical framework for selecting the 

best variables (Balcaen and Ooghe 2006). Following Bellovary et al. (2007), 752 different 

variables are used in bankruptcy prediction models, classified as financial ratio, market-based 

variables, textual data (firm’s textual disclosure) and non-financial variables. The number of 

variables considered in a study ranges from 1 to 57. Likewise, du Jardin (2010) found that more 

than 500 different ratios were used in nearly 200 scientific papers. Furthermore, recent research 

has introduced innovative predictors of failure, such as human resources, earnings management, 

communicative value of annual report, and macroeconomic indicators (Almaskati et al., 2021; T.-

K. Chen et al., 2023; Hernandez Tinoco & Wilson, 2013; Kellner et al., 2022; Schalck & Yankol-

Schalck, 2021; Séverin & Veganzones, 2021; Veganzones et al., 2023; Zhao et al., 2022).

Numerous studies (Ben Jabeur et al., 2023; Cho et al., 2010; du Jardin, 2010; Jabeur & Serret,

2023; Wang et al., 2014) have demonstrated enhanced prediction accuracy in bankruptcy models

by employing meticulous variable selection from the extensive pool of bankruptcy predictors.

Increasing the horizon of bankruptcy prediction is another subject of studies on business failure.

The shorter the horizon, the more obvious the signs of bankruptcy that any statistical method can

predict accurately. As the horizon increases and symptoms of bankruptcy become weaker, the

differences in accuracy among the methods can vary. Following du Jardin and Séverin (2011), for

a period of three to six years, a self-organizing map is more accurate than other techniques such as

discriminant analysis, logistic regression, neural networks and survival analysis. Altman et al.

(2020) found that a logistic regression model can perform as well as a neural network and even

better than a support vector machine over a 10-year period.

The last objective in a business failure study is how to interpret and explain bankruptcy prediction

using ensemble-based models. These models can be replicated easily by market practitioners

because they require minimal intervention for data preparation, selection of variables and

specification of the model architecture (Jones et al., 2017). However there is a trade-off between

accuracy and interpretability called the black box problem (du Jardin, 2017; Lundberg & Lee,

2017). Researchers try to overcome the black box problem by measuring the importance of features
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and the relationship between features and the predicted outcome. Appendix A summarizes the 

important features resulting from various methods used to explain and interpret ensemble-based 

models. These studies use several important variables. Jones et al. (2017) facilitated model 

interpretation by measuring the importance of variables using the relative variable importance 

method in random forest. Other studies calculated an importance score for each feature and used 

a partial dependence plot to illustrate their effects on the model’s output (Jabeur et al., 2021; Sigrist 

& Hirnschall, 2019; Smith & Alvarez, 2022; Son et al., 2019). Some researches focused on the 

importance of explaining individual predictions in practice (Bussmann et al., 2021; Perboli and 

Arabnezhad, 2021; Sigrist and Hirnschall, 2019; Smith and Alvarez, 2021). 

Recently, several studies introduced SHAP, a novel consistent and accurate method, which can 

explain any particular prediction to interpret XGBoost and LagaBoost in bankruptcy prediction 

(Moen 2020; Perboli and Arabnezhad 2021; Bussmann et al. 2021; Schalck and Yankol-Schalck 

2021; Sigrist and Leuenberger 2023). SHAP is the only explanation method based on a solid theory 

(Molnar, 2020). Thus, SHAP has also been widely employed in other domains, such as drought 

prediction (Dikshit & Pradhan, 2021), power system (Zhang et al., 2020) and air quality prediction 

(Vega García & Aznarte, 2020). Because interpretable machine learning has been developed only 

recently, studies analyzing financial ratio impacts from black box models remain rare. Almost all 

studies applying SHAP simply identify the important features with no further interpretation 

(Bussmann et al. 2021; Yıldırım et al. 2021; Sigrist and Leuenberger 2023). Surprisingly, the 

aspect of financial analysis has not been closely examined in prior works. In fact, Sigrist and 

Leuenberger (2023) utilized SHAP to highlight the most important feature for their novel model, 

LaGaBoost, without interpretation. Their study provided the SHAP dependence plot but did not 

describe how a variable affected the prediction. In the same way, Yıldırım et al. (2021) employed 

SHAP to illustrate which variables contributed most to the prediction. Perboli and Arabnezhad 

(2021) utilized SHAP to provide the most important features of their model for a random company. 

However, a financial analysis cannot be conducted because their financial ratios are not clearly 

disclosed.  

Compared with prior work in this research stream, our study provides a comprehensive analysis 

of financial ratios for bankruptcy prediction. First, we demonstrate the relationship between each 

financial ratio and failure prediction. We attempt to explain these relationships using financial 

theories and compare them with the findings of previous research. Second, for certain ratios for 
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which the relationship with bankruptcy prediction is not defined, we interpret the interaction 

between the values of these ratios and their Shapley values to illustrate how these ratios contribute 

to the failure prediction. Third, we investigate the causes of bankruptcy for different companies in 

the dataset. These analyses allow us to better understand the bankruptcy process and enrich the list 

of important financial ratios used by black box models in bankruptcy prediction. 

3. Data and variables 

Our study data is based on a sample of French companies from various industries collected by 

Diane Bureau van Dijk, which provides the complete data of French companies. We select 24 

available financial ratios from 6 categories (financial structure, liquidity-solvency, efficiency, 

profitability, rotation and contribution) computed by Diane Bureau van Dijk. These financial 

variables are used in numerous previous researches and have demonstrated their bankruptcy 

prediction ability in machine learning (du Jardin, 2017, 2019; Jabeur et al., 2021). Table 2 

represents the ratios used in our research, which were collected annually from 2013 to 2017.  

Following du Jardin (2010), both young, failed and non-failed companies have the same financial 

structure. Therefore, we only collect companies that were established before January 1, 2014 (in 

operation for at least 4 years). For size criteria, all companies had total assets of less than 43 million 

euros in 2018. The bankruptcy occurred in 2018 and non-failed companies were still in business 

in 2019. From our criteria, the sample includes 4,054 available bankrupt firms in 2018, 5,600 non-

failed firms that were chosen randomly among approximately 1.4 million firms available in the 

database. We opted to use a subsample of non-failed firms, which is a commonly used technique 

in previous bankruptcy prediction studies (Altman, 1968; Beaver, 1966; du Jardin, 2010; Jabeur et 

al., 2021; Smith & Alvarez, 2022), as it allows for a more manageable dataset to work with while 

maintaining the representativeness of the sample. For instance, in practice, the Banque de France 

(the central bank of France) constructs a credit score using annual samples of approximately 5,000 

companies, one third of which are failed firms (Bardos, 1995). This score has been tested on annual 

samples of around 30,000 companies, and the technique is still in use today (du Jardin, 2019). 

Additionally, using a subsample allows for better control over the data and reduces the 

computational resources required for modeling and analysis. Overall, our decision to use a 

subsample is in line with standard industry practice and previous research in bankruptcy 

prediction. 
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We divide our data into a training sample (80% of the population) to estimate the parameters of 

the machine learning models and a test sample (20% of the population) to evaluate the accuracy 

of the models. The proportion of failed firms in both our training and test samples is approximately 

40%, which is consistent with other studies in the field (du Jardin, 2010, 2016; Wang et al., 2014). 

Zmijewski (1984) demonstrated that the overall classification rate of a bankruptcy model using 

logistic regression or probit regression is stable when the proportion of failed and non-failed firms 

falls within the range of 0.5 to 0.04.  

Appendix B shows the descriptive statistics for all independent variables from 1 to 5 years before 

failure. In general, non-failed firms always have a higher median profitability than failed firms, 

such as R17 (Profit or Loss/Shareholder Funds), R18 (Profit or Loss/Capital Employed). One year 

before the bankruptcy, the deterioration symptom becomes clearer. Failed firms have negative 

average profitability and efficiency ratios, for example R18 (Profit or Loss/Capital Employed), 

R13 (EBIT/Operating Revenues) and R15 (Operating Cash flow/Value-Added). Non-failed firms, 

however, show their better performance by their positive mean profitability ratios (Appendix B, 

Table 6). In addition, Appendix C presents the correlation between the independent variables one, 

two, three, four and five years before their bankruptcy. We use Principal Component Analysis 

(PCA) in Discriminant analysis and Logistic regression to handle correlated variables. To handle 

outliers in our analysis, we adopt the Winsorization method at the 5% level. By limiting the effects 

of outliers, we can obtain more accurate and reliable results in our analysis while also ensuring 

that our conclusions are not distorted by a few anomalous observations. 

Table 2  

Explanatory variables.  
Financial dimension  Variable Formula Variable value  
Financial Structure R01 Capital Employed/Fixed Assets Absolute value 

R02 (Shareholder Funds/Capital Employed)*100 Percentage  
R03 (Financial Debt/Capital Employed)*100 Percentage 
R04 (Shareholder Funds/Total Assets)*100 Percentage 

Liquidity-solvency R05 Working Capital Requirement/Current Assets Absolute value  
R06 Current Asset/Current Liabilities Absolute value  
R07 Financial Debt/Cash Flow Absolute value  

Efficiency R08 (Cash flow/Total Sales)*100 Percentage  
R09 (Working Capital Requirement/Total Sales)*360  Absolute value (days) 
R10 (Net Current Assets/Total Sales)*360 Absolute value (days) 
R11 Total Sales/ Tangible and Intangible Assets Absolute value  
R12 Total Sales/Total Assets Absolute value  
R13 (EBIT/Operating Revenue)*100 Percentage 
R14 (Value-Added/Total Sales)*100 Percentage 
R15 (Operating Cash flow/Value-Added)*100  Percentage 
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R16 (Profit or Loss before Tax/Operating Revenue)*100 Percentage 
Profitability  R17 (Profit or Loss/Shareholder Funds)*100 Percentage 

R18 (Profit or Loss/Capital Employed)*100  Percentage 
Rotation  R19 (Stock/ Total Sales)*360  Absolute value (days) 

R20 (Debtors/Operating Revenue)*360  Absolute value (days) 
R21 (Creditors/Operating Revenue)*360  Absolute value (days) 

Contribution R22 (Cost of Labor/Value-Added)*100  Percentage 
R23 (Taxes/Value-Added)*100  Percentage 
R24 (Interest/Value-Added)*100 Percentage 

EBIT: Earnings before interest and taxes.  

 

4. Methodology  

4.1 Modeling method 

In this paper, we divide eight models into three groups. The first group includes traditional models 

with Logistic Regression and Discriminant Analysis. The second group, called single machine 

learning models, includes Support Vector Machine and Neural Network. The last group consisting 

of ensemble models contains Random Forest, Gradient Boosting Model such as LightGBM, 

XGBoost, and Natural Gradient Boost. 

4.1.1  Discriminant Analysis 

Altman (1968) uses  multiple discriminant analysis to distinguish between failed and non-failed 

firms by calculating the Z score function for each firm: 

𝑍 = 	𝑤! +& 𝑤"𝑥"
#

"$%
 

Here 𝑥"  represents the explanatory variables such as: Working Capital/Total assets, Retained 

Earnings/Total Assets, Earnings Before Interest and Taxes/Total Assets, Market Value of 

Equity/Book Value of Total Debt and Sales/Total Assets. The coefficients 𝑤"  are calculated to 

maximize between-class variances and minimize within-class variances. The disadvantage of the 

method is that it requires restrictive statistical assumptions, which is sometimes impossible for 

financial data. 

4.1.2  Logistic regression 

After discriminant analysis, Ohlson (1980) was the first researcher to use logistic regression in 

bankruptcy prediction. The method calculates the probability of default for each company through 

a sigmoid function as follows: 

Z= 1+ %

%&	(!(#$%∑ #'('
)
'*+ ) 
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where 𝑥" represents the explanatory variable and 𝑤!, 𝑤" are the intercept and the regression 

coefficient. Compared with discriminant analysis, logistic regression does not require a strong 

statistical condition regarding linearity, normal distribution and homoscedasticity. However, a 

dependent variable must follow a logistic distribution and the problem of multicollinearity among 

explanatory variables must be avoided. 

4.1.3  Support Vector Machine 

Cortes and Vapnik (1995) were the first to introduce the support vector machine (SVM) as a binary 

classifier. The idea of SVM is to create an optimal separating hyperplane in order to classify data 

into two groups (bankruptcy and non-bankruptcy). The hyperplane maximizes the distance 

between the nearest observation of each group and its decision boundary. In case of a non-linear 

separable dataset, SVM transforms the dataset using kernel functions into a higher dimension 

space in which  a hyperplane might separate two classes linearly. Recently, SVM has been used 

widely in bankruptcy prediction as one of references of performance comparison among many 

machine learning classifiers (Alaka et al., 2018; Jabeur et al., 2021). 

4.1.4 Neural Network 

An artificial neural network is a state-of-the-art technique for many applications. In bankruptcy 

prediction, the algorithm was first applied in 1990 (Odom & Sharda, 1990). Beside discriminant 

analysis, logistic regression and SVM, a neural network is also considered to be a reference 

measure used to evaluate the performance of other ensemble methods. The neural network contains 

multiple layers. The inputs (financial ratios) from the first layer are processed to the output layer 

(failed or non-failed company) through hidden layers to calculate the weight of each node. In the 

back propagation stage, the node weights are recalculated in order to reduce the classification error. 

The neural network is a non-linear classifier so the algorithm does not require any assumptions 

about input or output. However, it is difficult to define relationships between input variables and 

output classification. 

4.1.5  Random forest 

The random forest is an ensemble learning method proposed by Breiman (2001).The random forest 

classifier consists of a large number of individual decision trees. Based on bootstrap sampling, 

each individual decision tree generates a class prediction. The outcome of the random forest is the 

class prediction which receives the most votes from an individual tree. Following Krauss et al. 

(2017), Loureiro et al. (2018) and Mercadier and Lardy (2019), random forest classifiers 
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demonstrate their effectiveness in economics and finance. Random forest models outperform 

traditional models so this classifier has been widely used in recent years (Babar et al., 2020). 

4.1.6  XGBoost 

XGBoost is an ensemble tree model based on gradient boosting  that was first introduced by Chen 

and Guestrin (2016). The final model of XGBoost is described as:  

𝑍 = 𝐹(𝑥") 	= 	& ƒ*

+

"$%

(𝑥") 

where  𝑥" represents independent variables, and ƒ*(𝑥") denotes the output function of each tree. 

XGBoost is more efficient and faster than Gradient Boosting thanks to a regularized learning 

objective. The regularization term penalizes the complexity of each tree function in order to avoid 

overfitting. The regularization term is included in the loss function as follows:  

ℒ(𝜙) 	= 	&l(𝑦,0
"

; 𝑦") 	+	&Ω(
-

ƒ-) 

and Ω(ƒ) 	= 	𝛾𝑇	 +	%
.
𝜆||𝑤||. 

where l is loss the function measuring the difference between the prediction and the real value,  Ω 

is the regularization function calculated based on parameters 𝛾, 𝜆, number of leaves T and the score 

w at each leaf. If the regularization parameters are zero, the objective function simply becomes the 

original Gradient boosting. XGBoost is not only credited by winning many Kaggle competitions 

but has also been used in various disciplines. In bankruptcy prediction, XGBoost demonstrates its 

efficiency through numerous experimental studies in Poland (Zięba et al., 2016), Korea (Son et 

al., 2019), Spain (Smith & Alvarez, 2022), Europe (Climent et al. 2019; Bussmann et al. 2021) 

and the United States (Carmona et al., 2019). 

4.1.7  LightGBM 

Like XGBoost, the Light gradient boosting machine or LightGBM is a new efficient 

implementation of the Gradient boosting decision tree. This popular algorithm was proposed by 

Ke et al. (2017) and has been used for classification tasks in many research areas, such as peer-to-

peer network loan default (Ma et al., 2018), cryptocurrency price prediction (Sun et al., 2020), 

chemistry (C. Chen et al., 2019). 

LightGBM differs from other gradient boosting decision tree algorithms by using gradient-based 

one-side sampling (GOSS) and exclusive feature bundling (EFB). GOSS is used to partition the 

optimal node by calculating the variance gain. EFB increases the speed of the training process by 
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clustering many exclusive features into less dense features. These GOSS and EFB techniques 

allow the algorithm to grow the tree vertically instead of horizontally like XGBoost. LightGBM 

might therefore improve the training speed and accuracy especially for large datasets. 

4.1.8  NGBoost 

NGBoost is a natural gradient boosting algorithm for probabilistic forecasting developed recently 

by Duan et al. (2020). The algorithm differs from other algorithms in that it returns the conditional 

probability of the output instead of the expected value in the regression task. In classification 

problems, NGBoost predicts the probability of each class like most other classification algorithms.  

The new algorithm consist of a base learner, a parametric probability distribution and a scoring 

rule. According to Duan et al. (2020), NGBoost provides similar performance compared with 

existing methods for probabilistic prediction while offering advantages in terms of flexibility, 

scalability and ease of use. 

4.2 Choice of tuning parameters 

The Grid search is an important step in hyperparameter tuning before the training process. This 

popular optimization technique can provide optimal performance for a machine learning algorithm 

by combining different hyperparameter values. We use the grid search during the cross-validation 

phase and employ AUC (area under the curve) as a measure of success for each combination of 

hyperparameters. In cross-validation, the training sample is divided randomly into k groups (called 

folds), where one group is considered as a test data set and the remaining k-1 folds are considered 

as a training set. Each machine learning model is a fitted training set and evaluated on the test set. 

This process is repeated until all the fold data become test set to avoid the overfitting problem. 

In our research, we tune hyperparameters with 10-fold cross-validation. The optimal set of 

hyperparameters found after grid search is run again with 10-fold cross-validation in a test sample 

to verify the performance. The hyperparameters that give the best performance of SVM, Neural 

network, Random forest, XGboost, LightGBM and NGBoost are presented in Appendix D. 

4.3 Shapley Additive Explanations 

SHAP is an approach developed by Lundberg and Lee (2017) that can provides explanations for 

any machine learning model. One of its key contributions is the ability to provide explanations for 

individual predictions. SHAP assigns Shapley values, which are important values from game 

theory to each feature. These values indicate the contribution of each feature to the final prediction. 
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Shapley values are represented as an additive feature attribution method based on a linear function 

and can be expressed as follows: 

𝑓(𝑥) = g	(𝑥/) = 	𝜙! +	&𝜙"𝑥′"

0

"

 

In this formula, 𝑓 represents the original prediction model, while g represents the explanation 

model. The term 𝑥 = (𝑥%, 𝑥., … , 𝑥1) in the function 𝑓(𝑥) represents a vector of p variables or 

features used as input for the machine learning models. The function 𝑓(𝑥) computes the prediction 

or output of the model. However, the explanation model g use a simplified input 𝑥/ obtained via a 

mapping function 𝑥 = ℎ2(𝑥/). Here, M represents the number of simplified input variables in a 

single prediction. The term 𝜙! denotes the base value, which is the average prediction of the model 

across all inputs, and 𝜙" represents the contribution (or Shapley value) of each individual feature 

𝑥′". 

The prediction function 𝑓(𝑥) is expressed as the sum of a base value 𝜙! and the contributions 𝜙" 

from individual features. In other words, the prediction 𝑓(𝑥) is obtained by summing the base 

value 𝜙! with the weighted contributions 𝜙" * 𝑥′" for each feature. This equation enables the 

decomposition of predictions into feature-level explanations, facilitating an understanding of the 

importance of each feature in influencing the model`s output. The Shapley value 𝜙" of the feature 

𝑥′" can be calculated as follow: 

𝜙" 	= 	 &
|𝑆|! (𝐹	 −	 |𝑆| 	− 1)	!

𝐹	!
3	⊆5\{"}

[𝑓2(𝑆 ∪ {𝑖}) 	−	𝑓2(𝑆)] 

In the formula, F represents the set of all features, and |S| denotes the number of variables in 

variable subset S that does not include the variable 𝑥′". For each subset S, the formula calculates 

the difference between two predictions: 𝑓2(𝑆 ∪ {𝑖}) and 𝑓2(𝑆). Here, 𝑓2(𝑆 ∪ {𝑖}) represents the 

model’s prediction when the feature 𝑥′" is included along with the features in subset S, while 𝑓2(𝑆) 

represents the model’s prediction with only the features in subset S. The formula further 

incorporates combination coefficients. The numerator includes 𝑆|! (𝐹	 −	 |𝑆| − 1)!, which 

accounts for the number of possible orderings of the features in subset S within the overall set of 

all features (F). The denominator, 𝐹	!, represents the total number of possible orderings of all 

features in set F. 
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The Shapley value 𝜙! is obtained by summing these contributions over all subsets S. This 

calculation considers all possible combinations of features and their effects on the model’s 

predictions. It provides a fair and consistent way to attribute importance values to individual 

features, accounting for their interactions with other features. 

In SHAP, global feature importance can be assessed by calculating the average of the absolute 

Shapley values for each variable across all observations. Variables with higher average Shapley 

values are considered more important. The global feature importance for the 𝑖-th variable, denoted 

as 𝐼", is calculated as the average across all observations or the sample size: 

𝐼" 	= 	
1
𝑛& 	|∅"

(:)|
#

:$%

 

Here, n represents the number of observations or the sample size, and ∅"
(:) is Shapley value of 

variable 𝑖 in the j-th observation of the sample. 

There are a number of methods that use the additive feature attribution method, such as LIME, 

DeepLIFT and Layer-Wise Relevance Propagation. However, following Lundberg and Lee 

(2017), each method has its own way of calculating or approximating  𝜙" but only the Shapley 

value can guarantee the following properties:  

Property 1 (Local accuracy):  The explanation model g	(𝑥/) matches the original model 𝑓(𝑥) when 

𝑥 = ℎ2(𝑥/). 

Property 2 (Missingness): Missingness constraint features (𝑥′" = 0) have no attributed impact.   

Property 3 (Consistency): If a model changes so that the marginal contribution of a feature value 

increases or stays the same (regardless of other features), the Shapley value also increases or stays 

the same. 

The SHAP method contains multiple ways for calculating the Shapley value (𝜙") including Kernel 

SHAP, Deep SHAP and TreeSHAP. TreeSHAP can be applied to understand tree ensemble 

methods, such as random forest or gradient boosting trees.  

Feature importance scores can be measured based on several methods implemented in tree 

ensemble software packages, including Gain, Split Count and Permutation (Lundberg & Lee, 

2018). These methods have been widely used in previous research to explain bankruptcy prediction 

models (Carmona et al., 2019; Climent et al., 2019; Jabeur et al., 2021; Sigrist & Hirnschall, 2019; 

Smith & Alvarez, 2022; Son et al., 2019). However, following Lundberg and Lee (2018), the 
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feature importance scores from the Gain and Split Count are not reliable due to their inconsistency, 

and only the SHAP and Permutation methods are able to resolve this problem. The difference 

between the two methods is how they measure feature importance. On the one hand, Permutation 

feature importance uses model performance. On the other hand, SHAP is based on the magnitude 

of feature attributions (Molnar, 2020). Consequently, SHAP is clearly the solution for our goal in 

this study: to display attributions of important financial ratios to the bankruptcy prediction for each 

company. 

5. Results 

5.1 Performance of the models 

We use average prediction accuracy, Type-I error, Type-II error and AUC (area under the curve) 

ROC (receiver operation characteristics) in order to compare the performance of our methods.  

The average prediction accuracy is calculated by dividing the sum of True Positives and True 

Negatives by the total number of companies in the test set. The Type-I error is the percentage of 

failed firms that were wrongly classified in the non-failed firm class. The Type-II error is the 

percentage of non-failed firms that were incorrectly identified in the bankruptcy firm class. The 

AUC-ROC curve is widely used for performance measurement of classification models. ROC is a 

curve with True positive rate on the y-axis and False positive rate on the x-axis, while AUC is the 

area under the ROC curve representing the degree of separability. The AUC takes values from 0 

to 1; a model with a higher AUC value is better at distinguishing between bankrupt companies and 

healthy companies. 

Table 3  

Correct classification rates. 
 

 

Ensemble models Single models Traditional models 

NGBoost LightGBM XGBoost RF SVM NN DA LR 

1Y 

2Y 

3Y 

4Y 

5Y 

86% 87% 88% 87% 84% 85% 72% 81% 

83.5% 86% 86.5% 85.5% 83% 82.5% 69.5% 74.5% 

82% 83% 83.5% 83.5% 80% 81% 65.5% 72% 

81% 82% 82% 81.5% 80% 80% 67.5% 72.5% 

81.5% 83% 83.5% 82.5% 78.5% 79.5% 70.5% 71.5% 

Average 82.8% 84.2% 84.7% 84% 81.1% 81.6% 69% 74% 

DA Discriminant Analysis, LR Logistic regression, NN Neural Networks, RF Random Forest, SVM Support Vector 

Machine. 
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Table 3 presents the correct classification rates for all models. Overall, XGBoost always achieves 

the best performance over the 1-year to 5-year horizon. Ensemble models provide the highest 

accuracy but these classifiers do not significantly outperform single models. Logistic regression 

performs fairly well in the short term but the accuracy decreases rapidly when the horizon 

prediction exceeds 2 years. These findings correspond with the result of du Jardin (2015). In terms 

of average correct classification rates, there is only a small difference between model accuracies 

in a given group. 

Table 4  

Type-I error and Type- II error. 
 Ensemble models Single models Traditional models 

 NGBoost LightGBM XGBoost  RF SVM NN DA LR 

1 Y Type-I error 17% 22% 16% 18% 15% 24% 70% 39% 

Type-II error 11% 7% 9% 9% 15% 9% 6% 8% 

2 Y Type-I error 21% 22% 18% 19% 16% 27% 71% 41% 

Type-II error 12% 9% 10% 11% 16% 11% 7% 14% 

3 Y Type-I error 23% 23% 20% 22% 18% 24% 77% 43% 

Type-II error 14% 12% 13% 13% 21% 15% 8% 17% 

4 Y  Type-I error 23% 20% 16% 21% 18% 23% 75% 41% 

Type-II error 16% 15% 19% 16% 21% 16% 7% 17% 

5 Y  Type-I error 29% 28% 25% 28% 19% 33% 66% 46% 

Type-II error 11% 10% 10% 11% 22% 12% 8% 16% 

Average Type-I error 22.6% 23% 19% 21.6% 17.2% 26.2% 71.8% 42% 

Type-II error 12.8% 10.6% 12.2% 12% 19% 12.6% 7.2% 14.4% 

DA Discriminant Analysis, LR Logistic regression, NN Neural Networks, RF Random Forest, SVM Support Vector 

Machine. 

 

Table 4 illustrates the Type-I and Type-II errors of our classifier models. The inequality between 

Type-I and Type II errors was found in numerous studies (Alfaro et al., 2008; Nanni & Lumini, 

2009; C. Tsai & Wu, 2008). In our study, almost all of these models except SVM identify non-

failed firms better than failed firms. It is also the only model that can outperform XGBoost in the 

Type-I error, although the difference is not significant. On the other hand, XGBoost is much better 

than SVM in classifying non-failed companies. In the case of bankruptcy, the cost of Type-I error 

is greater than that of a Type-II error (Altman et al., 1977). Therefore, in terms of Type-I and Type-

II errors, we cannot conclude that ensemble models outperform SVM. 
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Table 5  

Area under the ROC curve (AUC). 
 

AUC 

Ensemble models Single models Traditional models 

NGBoost LightGBM XGBoost RF SVM NN DA LR 

1Y 

2Y 

3Y 

4Y 

5Y 

93% 94% 94% 93% 92% 91% 73% 84% 

91% 92% 93% 92% 90% 88% 69% 78% 

89% 90% 91% 90% 88% 87% 66% 78% 

87% 90% 90% 89% 87% 88% 68% 78% 

89% 91% 91% 90% 86% 87% 74% 78% 

DA Discriminant Analysis, LR Logistic regression, NN Neural Networks, RF Random Forest, SVM Support Vector 

Machine. 

 

Table 5 shows the AUC values of our classifier models from one to five years before the 

bankruptcy. In terms of AUC, XGBoost shows the best performance in every single year. Almost 

all of the models have the highest predictive power one year before failure. We also found that 

ensemble models outperform traditional models. The best AUC values of Logistic Regression and 

Discriminant Analysis are only 84% and 74%, respectively. Meanwhile the best performance for 

ensemble models are 94% for LightGBM, XGBoost and 93% for NGBoost and Random forest. 

The ensemble models group also slightly outperforms single models and has provides stable 

accuracy over time. The performance of ensemble methods and XGBoost in particular supports 

previous findings of (Carmona et al., 2019; Climent et al., 2019; Smith & Alvarez, 2022). 

5.2 Importance of features with SHAP Summary Plot 

For a global interpretation, we employ SHAP Feature Importance (on the left side of Fig.1) and 

SHAP Summary Plot (on the right side of Fig.1). The SHAP Feature Importance is a visualization 

tool that enables us to understand the importance of each feature in a machine learning model. This 

graph displays the features ranked according to their mean absolute SHAP values, which 

represents their impact on the model's predictions. The SHAP summary plot is another powerful 

visualization tool that can help understand the contribution of each feature to the output of a black 

box model. 

The left side of Fig. 1 shows the most prominent features that explain the XGBoost model 

prediction for one year before bankruptcy in our test sample. These features are sorted vertically 

based on their average impact on the prediction, with the most important feature appearing at the 

top of the graph. For instance, R23 (tax ratio) is the most significant feature since it has the highest 
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global impact, which is calculated by the average of the absolute Shapley values of R23 in each 

firm. The SHAP Feature Importance graph provides a quick and intuitive way to identify the most 

important features and their impact on the model's predictions. This can be especially useful in 

finance, where understanding the drivers of a model's predictions is essential for making informed 

decisions. By using the SHAP Feature Importance graph, we can prioritize our attention on the 

most significant features and ensure that our decisions are based on the most important variables. 

Our analysis showed that a number of financial ratios played an important role in predicting failure 

in our dataset. Specifically, the tax ratio (R23), cost of labor to value-added (R24), asset turnover 

(R14), interest level (R24), and debtor days (R20) were the most important ratios for predicting 

failure. This finding is consistent with previous research on corporate bankruptcy prediction, 

which has identified these ratios as important indicators of financial distress. Interestingly, our 

results also showed that the most important ratios for the XGBoost models were consistent across 

different prediction horizons, including the 2-year, 3-year, 4-year, and 5-year horizons. These 

ratios were the tax ratio (R23), interest level (R24), debtor days (R20), and working capital 

requirement ratio (R05), as illustrated in Appendix E, Figs. 8-11.  

On the right side of Fig. 1, the SHAP summary plot displays the Shapley values for each feature 

on the x-axis and the corresponding feature values on the y-axis. Each dot is a feature value for 

one of the companies in our test sample. The values range from high (red) to low (blue). The 

Shapley value measures the contribution of each feature to the model's output, where a positive 

value indicates that the feature increases the probability of failure and a negative value indicates 

that the feature decreases the probability of bankruptcy. By examining the SHAP summary plot, 

we can identify the most important features for predicting bankruptcy and their direction of impact. 

The plot enables us to quickly determine which features have the greatest influence on the model's 

predictions, allowing for an improved interpretation of the model's behavior and increased 

confidence in its predictions. 

The SHAP Summary Plot on the right side of Fig. 1 not only shows us the most important features 

for predicting bankruptcy but also provides insights into the relationship between feature values 

and their impact on the prediction. As expected, a low tax ratio (R23), which is often used as a 

proxy for profitability, is the most important feature in predicting bankruptcy. Additionally, low 

profitability ratios (R16, R18) are also predictors of high bankruptcy probability. These findings 

are consistent with previous research that has identified financial profitability ratios and efficiency 
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ratios as critical factors in predicting corporate failure (Bussmann et al., 2021; Jabeur et al., 2021; 

Schalck & Yankol-Schalck, 2021; Sigrist & Hirnschall, 2019). 

Our analysis of the SHAP summary plot reveals that working capital management is also crucial 

for predicting bankruptcy. Specifically, high/low values of creditor/debtor days (R20, R21) are 

among the most important features. In a study with a 2-year horizon, Jabeur et al. (2021) found 

that the collection period is one of the most important ratios in the CatBoost model. High values 

of the working capital requirement ratios (R05 and R09) and labor cost (R22) also complement 

the prediction of bankruptcy. 

Fig. 1 On the left, SHAP Feature Importance for a 1-year horizon. On the right, SHAP Summary 

Plot for a 1-year horizon. 

In our sample, companies with high asset turnover (R12) or high value-added creation (R14) are 

more likely to increase the probability of bankruptcy. The asset turnover ratio is a significant 

component of the Dupont chain of ratios, and higher turnover is generally associated with higher 

profitability. Altman (1968) also used this as one of five ratios to predict bankruptcy. However, 

the comparison is only valid within the same industry. For example, wholesalers have high 

turnover and low margins, while the luxury sector has low turnover and high margins. 

Additionally, the mean and median turnover ratios of failed firms are higher than those of non-

failed firms in our sample (Appendix B, Table 6-10). If sales generate high value-added (R14), 
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this is usually indicative of a differentiation strategy, which Porter (2008) considers a generic 

source of competitiveness. However, it can also be a sign of a longer production cycle and potential 

liquidity problems. Yıldırım et al. (2021) found a similar surprising finding in their SHAP 

summary plot, where high gross profit to net sales is associated with high Shapley value. We 

analyze the impact of asset turnover (R12) and value-added creation (R14) on bankruptcy risk in 

more detail in the next section with SHAP dependence plots. It's also important to look at how 

debt affects the chance of going bankrupt. As expected, high interest (R24) makes the chance of 

failing higher. Smith and Alvarez (2022) found that the debt to interest expense ratio (CL.FinExp) 

and the interest coverage ratio (EBIT.FinExp) are among the variables that contribute the most to 

the XGBoost model with data in Spain. 

We also use the SHAP Summary Plot with LightGBM, our second-most accurate model. Figure 

12 in Appendix E shows the most important features of LightGBM one year prior to failure. The 

most important financial ratios of LightGBM are similar to those of XGBoost, including R23, R24, 

R20, and R12. 

5.3 SHAP Dependence Plot 

Prior research primarily utilized Partial dependence plots to illustrate the relationship between a 

feature and the model's output prediction (Jabeur et al., 2021; Sigrist & Hirnschall, 2019; Smith & 

Alvarez, 2022; Son et al., 2019). However, SHAP dependence plots provide additional information 

by showing the local effect of a feature as opposed to the average effect across all feature values 

(Molnar, 2020). SHAP dependence plots can also reveal non-monotonic relationships between a 

feature and the model's output, which is useful for identifying specific instances in which the 

relationship is non-linear or complex. While SHAP dependence plots provide insights into the 

relationship between features and model output, they do not establish causality because machine 

learning algorithms are designed to exploit associations rather than model causal relationships 

(Molnar et al., 2022). 

In this section, we use a SHAP dependence plot to visualize the relationship between the most 

important ratios, R23 (tax ratio), R22 (cost of labor), R14 (value-added creation), R24 (interest 

level), R20 (debtor days), R21 (days payable outstanding), R09 (working capital requirement to 

total sales), R05 (working capital requirement to current assets), and their Shapley values. 
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Fig. 2.  SHAP dependence plot of R23, R22 and R24 for a 1-year horizon. 

 

The value-added generated by a company is typically determined by subtracting its cost of goods 

sold from its revenue. This value is then allocated to various stakeholders, such as employees, the 

state, lenders, and investors, in the form of wages, taxes, interest, and profits. Figure 2 illustrates 

the impact of different components of value-added on failure prediction, namely R23 (tax ratio), 

R22 (cost of labor to value-added), and R24 (interest level), which respectively represent the 

contributions of the state, employees, and lenders in the value-added distribution. These ratios are 

identified as the most important, second-most important, and fourth-most important features, 

respectively, in the decision-making process of the XGBoost model. 

The graph located in the top left of Figure 2 illustrates the influence of the state's contribution to 

value-added (R23) on the probability of bankruptcy. In general, a higher proportion of the state's 

involvement in value-added is considered a positive indicator for companies, as it reflects a healthy 

financial position. Within our test set, a proportion of state ranging from 5% to 25% is associated 
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with a reduced probability of bankruptcy, while R23 values below 5% are indicative of a higher 

risk of failure.  

The graph displayed in the top-right corner of Figure 2 indicates a non-linear relationship between 

the ratio of labor costs to value-added (R22) and the risk of bankruptcy. Specifically, when the 

labor cost-to-value-added ratio exceeds 90%, there is a significant increase in the probability of 

bankruptcy. This is likely due to the fact that a high ratio of labor costs to value-added indicates 

low profit margins, which may not be sustainable over the long term. Conversely, a ratio of labor 

costs to value-added lower than 80% is associated with a lower risk of failure, as it indicates that 

the company is generating more value per unit of labor cost, leading to higher profitability and 

financial stability. These results suggest that there may be an optimal range of the labor cost-to-

value-added ratio that minimizes the risk of bankruptcy, and companies should strive to balance 

labor costs and value-added to achieve financial stability. It is important to note that this optimal 

ratio may vary depending on the industry and market conditions, as well as other factors such as 

the company's size and capital structure. 

The graph on the bottom of the Fig.2 illustrates the complex relationship between R24 

(Interest/Value-Added) and its Shapley value. In our test sample, a low level of interest (less than 

1% of value-added) contributes to a decrease in the probability of bankruptcy. However, a very 

low level of interest (around 0%) can have either a low or high Shapley value, which means it can 

either increase or decrease a company's failure risk. These two results indicate that there are several 

configurations (situations) that lead to failure: in one case, it is high leverage, while in the other, it 

is the inability to raise funds. This contradiction of low leverage also appeared in the study by 

Bussmann et al. (2021) using SHAP for XGBoost. The study shows that the ratio of total assets to 

total liabilities is the most explanatory ratio and has a positive importance with predicting failure. 
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Fig. 3. SHAP dependence plot of R14 for a 1-year horizon. 

The (Value-Added/Total Sales) ratio is a widely used measure of a company's efficiency in 

generating value per unit of sales. Nevertheless, its impact on bankruptcy risk is not 

straightforward. In our sample of mixed industries, we found that a ratio lower than 20% 

contributes to a lower failure risk, while a ratio from 20% to 80% is surprisingly associated with a 

higher bankruptcy risk. However, a (Value-Added/Total Sales) ratio above 80% seems to 

contribute to a lower failure risk. 

One plausible explanation for the finding that a (Value-Added/Total Sales) ratio lower than 20% 

contributes to a lower failure risk is that such companies tend to have lower fixed costs, which can 

provide greater flexibility and enable them to respond more quickly to changes in the market 

environment. Another possible explanation is that companies with lower ratios may be operating 

in less competitive industries with higher profit margins, which can contribute to their financial 

stability. These factors may enable companies with lower ratios to better withstand adverse 

economic conditions and maintain their solvency. 
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Fig. 4. SHAP dependence plot of R20 and R21 for a 1-year horizon. 

The graph on the left side of Fig.4 demonstrates the impact of debtor days (R20) on its Shapley 

values. Our analysis shows that companies with debtor days ranging from 20 to 200 days have a 

decreased likelihood of bankruptcy. Conversely, a lengthy collection period (more than 200 days) 

raises the risk of bankruptcy. Similarly, a very short collection period also leads to a higher failure 

risk. It is worth noting that R20 (debtor days) is just one factor among several that contribute to a 

company's financial health and should be assessed in conjunction with other relevant metrics. 

The relationship between the days payable outstanding (DPO or R21) and the corresponding SHAP 

values is depicted in the graph on the right of Fig.4. Our findings suggest that a firm's failure risk 

may increase when it takes more than 140 days to pay its suppliers or when the firm is asked to 

pay its bills very quickly (less than 20 days), as indicated by positive SHAP values. Additionally, 

our analysis revealed that a credit payable period ranging from 30 to 110 days was associated with 

a reduced probability of bankruptcy. However, it is worth noting that the specific factors driving 

this relationship may differ depending on the industry. For instance, in the construction industry, 

contractors typically pay their suppliers after the project is completed. Therefore, longer payables 

periods may not necessarily indicate poor financial management or an increased risk of 

bankruptcy. These findings emphasize the importance of carefully managing payables periods 

while considering industry-specific factors to avoid the risk of financial distress and, ultimately, 

bankruptcy. 

The two graphs in Fig.5 clearly demonstrate a negative relationship between the working capital 

requirement (R09, R05) and bankruptcy risk. In general, a low requirement for working capital is 

perceived as a positive indicator of a company's financial health. In our sample, we observed that 
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a negative working capital requirement to current assets (R05) has a negative SHAP value, which 

significantly reduces the likelihood of bankruptcy. The graph also shows that a working capital 

requirement to current assets (R05) of 0.5 represents a critical threshold, above which the risk of 

bankruptcy increases. These results emphasize the importance of effective management of 

working capital to maintain a company's financial health and mitigate the risk of bankruptcy. 
 

 

 

Fig. 5. SHAP dependence plot of R09 and R05 for a 1-year horizon. 

Other SHAP dependence plots for the remaining important ratios are presented in Appendix F. We 

can see that there is considerable dispersion in the interaction between ratios, and the linear 

relationships are not always presented. It is difficult to confirm a relationship between these 

variables and their impacts on the prediction (Shapley value), but we do have an overview of 

feature values and their SHAP values. This finding is consistent with Sigrist and Leuenberger 

(2023) where the most important variables have non-linear effects. This explains why machine 

learning models outperform traditional models, which are based on linear regression.  

5.4 SHAP force plot for local explanations 

 
Failed company 
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Non-failed company 

Fig. 6. SHAP force plot for a non-failed company and a failed company one year before failure. 

The most important application of SHAP is represented in Fig. 6 SHAP force plot. The figure 

answers the question “Why does the XGBoost model predict that a company fails?”. The SHAP 

force plot allows us to clearly explain the bankruptcy prediction for every firm in the dataset. This 

implementation therefore allows banks and credit institutions to explain their decisions using 

machine learning and comply with implementation of the right to explanation in the United States 

and Europe. 

The SHAP force plot is used to visually represent the important features that influence the 

estimation of a company's bankruptcy probability. In Fig. 6, local explanations for two individual 

instances in the XGBoost model are presented. The prediction process begins with a basel value 

of 0.4271, which represents the average of all predictions. 

In the SHAP force plot, each feature is represented as an arrow. The color scheme is used to 

indicate the contribution of each feature to the bankruptcy risk. The color red signifies a positive 

contribution, suggesting that the feature value increases the probability of bankruptcy. Conversely, 

the color blue indicates a negative contribution, implying that the feature value reduces the 

bankruptcy risk. Features with a more substantial impact on the score are positioned closer to the 

dividing boundary between red and blue, and the size of the bar represents the magnitude of that 

impact. To calculate the final predicted bankruptcy probability, the sum of all attribute attribution 

values is computed and added to the basel value.  

By analyzing the SHAP force plot, valuable insights can be gained regarding the relative 

importance of different features in determining a company's bankruptcy probability. This plot aids 

in understanding how each feature contributes to the overall prediction, whether positively or 

negatively. 

In the top of Fig. 6, the company has an 86% chance of going bankrupt. The most important 

features that push the failure probability from the base value 42.71% to 86% are as follows: 
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R16 (Profit or Loss before Tax/Operating Revenue)*100: -22.13 

R19 (Stocks/Total sales)*360 (days): 394.1 

R13 (EBIT/Operating Revenue)*100: -21.6 

R22 (Cost of Labor/Value-Added)*100: 288.6 

R18 (Profit or Loss/Capital Employed)*100: -73.95 

R20 (Debtors/Operating Revenue)*360 (days): 2.1 

With a SHAP force plot, we can see why XGBoost predicts that the company will be bankrupt. 

This company suffers losses and inefficiencies (R16, R13 and R18 are negative). A high cost of 

labor exceeding value-added by almost 2.9 times is another factor contributing to the failure 

prediction. In addition, this company has a very strict credit policy of only 2.1 days that might 

have a negative influence on sales and cause a very high DSI of 394.1 days compared with the 

mean of 31.2 days and 3.8 days for non-failed and failed firms, respectively (Appendix B, Table 

6).  

In the bottom of Fig. 5, the non-failed case has only 1% of failure prediction. The financial 

variables that have a strong impact on low failure probability are as follows: 

R23 (Taxes/Value-Added)*100 : 11.56 

R21 (Creditors/Operating Revenue)*360 (days): 61.56 

R24 (Interest/Value-Added)*100 : 0.641 

R20 (Debtors/Operating Revenue)*360 (days): 71.27 

R22 (Cost of Labor/Value-Added)*100: 65.45 

R16 (Profit or Loss before Tax/Operating Revenue)*100: 6.356 

In our sample, the medians of R16 for failed and non-failed firms are 1.2% and 2.5% respectively 

(Appendix B, Table 6).  This is therefore a profitable and efficient company which explains why 

the firm is able to contribute 11.56% of its value-added to the government compared with the 

median of only 5% for failed firms and 11% for non-failed firms (Appendix B, Table 6). Regarding 

labor cost management, 65.45% of value-added is contributed to employees in comparison with 

the median of 74.9% for non-failed firms and 88.4% for failed firms (Appendix B, Table 6). In 

terms of credit policy, the company allows 71.27 days for its clients to pay their bills, which helps 

the firm have a DSI of only 61.92 days (R19). 
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Fig. 7. SHAP force plots for another failed company one year before failure. 

Fig. 7 illustrates another case of bankruptcy. The financial ratios that increase the probability of 

failure are presented below.  

R12 (Total Sales/Total Assets) = 1.651 

R13 (EBIT/Operating Revenue)*100 = -18.14 

R16 (Profit or Loss before Tax/Operating Revenues)*100 = -9.79 

R18 (Profit of Loss/Capital Employed)*100 = -221 

R22 (Cost of Labor/Value-Added)*100 = 116.2 

The use of financial ratios in bankruptcy prediction varies across different companies, as shown in 

Fig. 6, where the failed company is found to have a different set of important features than the 

company being analyzed in Fig. 7 (R16, R19, R13, R22, R18, R20 vs. R12, R13, R16, R18 and 

R22). Additionally, SHAP analysis reveals that certain ratios, such as R16 and R12, may not be 

the most important features globally, but may be crucial for predicting the failure of a subset of 

companies. The local explanation provided by SHAP, as demonstrated in Fig. 6 and 7, offers clear 

and compelling evidence of its benefits. Specifically, the SHAP local explanation identifies the 

ratios that increase the prediction of failure, as well as those ratios that decrease the bankruptcy 

risk for each company. Moreover, the Shapley values assigned to each ratio are unique to each 

company, enabling practitioners to understand why a particular company is failing by identifying 

the important features that contribute to the prediction of failure. This customization of important 

features is a significant advantage of using SHAP, as it provides practitioners with a clear and 

intuitive way to interpret and explain the behavior of their machine learning models in a local 

context. By identifying the specific features that contribute to a particular prediction, SHAP 

empowers practitioners to make more informed decisions and take appropriate actions to mitigate 

the risk of failure for individual companies. 



Accepted manuscript
 29 

6. Conclusions 

In this research, we evaluated the bankruptcy prediction performance of eight binary classification 

models on French corporate data from 2013 to 2017. Ensemble models provide the highest 

accuracy and most stable results based on AUC-ROC and the correct average prediction accuracy. 

This finding supports previous research showing that ensemble-based techniques perform better 

than single classifiers. However, SVM still has a performance comparable to the ensemble models 

based on Type-I and Type-II errors. As XGBoost is the best performer among our ensemble 

models, we employed SHAP in order to illustrate the important features and their relation to the 

prediction of corporate failure. Furthermore, SHAP can also provide an analysis of important 

features in a single prediction. This application assists us in determining which variables contribute 

to a company’s bankruptcy prediction.  

Our study has some theoretical implications. Firstly, we show that using the SHAP explanation, 

we can examine what takes place inside a black box bankruptcy prediction model. This application 

increases the credibility of the black box model and allows us to gain insight into XGBoost’s 

forecast. Secondly, we contribute to the literature by identifying a number of important financial 

ratios and visualizing their complex relationship with failure prediction. In terms of local 

interpretation, we found that a financial ratio can contribute differently to the bankruptcy 

prediction of each company. Finally, we confirm the effectiveness of several ensemble methods in 

bankruptcy prediction for companies from various industries. These methods are easy to 

implement and can model non-linear relationships between financial ratios and the prediction. 

Our experimental results have several practical implications for credit management in banks and 

financial institutions. Ensemble classifiers allow credit managers to effectively detect financial 

distress up to 5 years earlier. These classifiers are easy to replicate because they do not require 

complicated data preparation steps. Moreover, practitioners using SHAP will be able to give a full 

explanation for each decision made. As a result, companies applying for a loan can fully 

understand the decision made by credit institutions.  

Our study has several limitations that can be improved by future research. Firstly, our dataset 

consists of only 24 yearly financial ratios. Other non-financial variables could be used to improve 

prediction performance, such as textual data or corporate governance indicators. Secondly, our 

dataset includes almost equal numbers of failed and non-failed firms, which rarely occurs in 

practice. Finally, we use SHAP to create a transparent relationship between feature value and 
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failure prediction, but these relationships cannot be used to derive causal insights. It is appropriate 

to explore some useful tools to estimate the causal effects between financial ratios and bankruptcy. 
 

 

Appendix A. Main studies dealing with explaining and interpreting ensemble-based models 
Studies  Method  Important variables  
Jones et al. (2017) Relative variable 

importance 
Annual Growth in Capital Expenditure, Annual 
Growth in Leverage Free Cash Flow, Earnings 
per Share, Annual Growth in Revenue, Total 
Asset Write Downs to Total Equity 

Son et al. (2019) Feature importance score  
Partial dependence plot 

Cannot be disclosed due to confidentiality 

Sigrist and Hirnschall (2019) Feature importance score  
Partial dependence plot 
Local partial dependence 
plot 

Rating no. 2, Retaining earnings to assets , 
repayment score, current ratios 
(the names of the second and third important 
variables cannot be disclosed)  

Perboli and Arabnezhad (2021) SHAP  The five most important variables belong to two 
feature types: Cost/Debt, Revenue/Profit  
 

Jabeur et al. (2021) Feature importance score  
Partial dependence plot  

1-year horizon: Return on shareholder funds, 
Return on capital employed , Return on total 
assets 
2-year horizon: Solvency ratio, Return on 
shareholder funds, Return on capital employed  
3-year horizon: Stock turnover, Solvency-ratio, 
Credit period 

Bussmann et al. (2021) SHAP total assets to total liabilities, EBIDTA to interest 
coverage ratio, profit before taxes plus interest 
paid then divided by total assets, trade receivables 
divided by operating revenues, profit or loss after 
tax divided by shareholder funds 

Smith and Alvarez (2022) Feature importance score  
Partial dependence plot 

1-year horizon: TL.TA, logTA, logSALES, 
SALES.EBIT, CL.FinExp 
2-year horizon: logTA, logSALES, TL.TA, 
TL.EQ, EBIT.FinExp 
3-year horizon: logSALES, logTA, TL.TA, 
CL.FinExp, DEBTORS.SALES 
4-year horizon: logSALES, TL.TA, logTA, 
CL.FinExp, DEBTORS.SALES 

Yıldırım et al. (2021) SHAP Total loans to Total Assets, Own funds to Total 
Assets, Cash Ratio, Net sales + Stock 
changes/Stocks, Gross Profit to Net Sales 

Sigrist and Leuenberger (2023) SHAP Relative size, Excess return, Idiosyncratic stock 
volatility, Market value/Total assets, EBIT/Total 
Assets  

Schalck and Yankol-Schalck 
(2021) 

SHAP Self-ownership, Capital (Equity capital in euros), 
Revenues (Turnover of the year in euros), 
Region, Employees (Number of staff members) 
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Appendix B : Descriptive statistic of variables 

See table 6, 7, 8, 9, 10.  

Table 6  

Summary of descriptive statistic of variables for a 1-year horizon. 

Mean St. Dev. Median Min  Max 
Variable NF F NF F NF F NF F NF F 

R01 6.0 45.9 67.7 1890.6 1.8 1.8 0.0 0.0 3103.6 107904.7 

R02 43.7 38.9 74.3 123.8 45.4 51.1 -3621.9 -3324.0 100.0 100.0 

R03 18.7 25.8 33.9 91.0 11.5 9.5 0.0 0.0 1978.7 2853.3 

R04 33.3 42.8 21.4 34.9 31.7 45.4 -92.3 -99.4 99.0 100.0 

R05 0.4 0.4 0.3 1.2 0.4 0.5 -7.1 -46.5 1.9 1.8 

R06 1.9 4.5 1.5 8.8 1.6 2.0 0.1 0.0 59.2 97.3 

R07 0.6 2.7 80.1 117.8 0.7 0.0 -4431.4 -2006.6 1022.5 5025.0 

R08 3.5 1.3 7.0 19.9 2.6 2.2 -94.3 -99.7 95.4 99.6 

R09 -46.3 2645.4 7855.5 91443.7 44.5 77.9 -580696.0 -33466.3 1462.6 4760439.0 

R10 51.5 91.2 54.5 129.5 38.1 49.3 0.0 0.0 744.7 983.8 

R11 8.5 7.8 101.1 44.2 1.2 0.9 -60.4 -44.7 3513.4 1235.6 

R12 0.4 0.4 0.3 0.5 0.3 0.3 -0.9 -1.5 4.8 7.3 

R13 3.5 -0.4 6.7 19.7 2.5 1.3 -70.1 -94.7 94.5 90.1 

R14 20.8 -39.1 271.1 3202.5 19.0 36.4 -19981.5 -172572.1 136.8 1753.4 

R15 19.5 -11.7 651.6 3705.8 15.3 7.0 -10715.9 -130029.3 46700.1 141520.7 

R16 3.7 -0.1 7.5 20.3 2.5 1.2 -96.1 -98.7 94.5 98.2 

R17 19.2 21.8 1498.8 1258.1 15.9 4.4 -81628.5 -44055.9 11814.7 33863.1 

R18 12.6 -33.7 155.8 978.1 12.8 3.1 -10976.9 -50944.9 737.7 556.1 

R19 47.9 46.2 56.3 105.2 31.2 3.8 0.0 0.0 961.3 999.7 

R20 51.6 70.1 41.8 107.6 46.2 42.1 0.0 0.0 607.2 983.3 

R21 56.5 73.2 39.7 104.8 51.2 43.0 0.0 0.0 933.1 963.3 

R22 91.0 151.8 996.6 1911.4 74.9 88.4 0.0 0.0 73198.3 97029.3 

R23 12.7 12.9 108.8 85.9 9.5 5.0 0.0 0.0 7812.1 3728.0 

R24 5.3 16.0 241.2 576.7 0.6 0.2 0.0 0.0 17718.0 28008.0 

           
F: Failed company, NF: Non-failed company. Variables are defined in Table 3. 
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Table 7  

Summary of descriptive statistic of variables for a 2-year horizon. 

Mean St. Dev. Median Min  Max 
Variable NF F NF F NF F NF F NF F 

R01 5.8 10.1 65.3 125.2 1.8 1.8 0.1 0.1 2923.2 6377.2 

R02 44.6 39.0 47.8 310.7 45.3 51.9 -1613.1 -17173.1 100.0 135.3 

R03 19.0 28.3 27.9 286.9 11.9 10.4 0.0 0.0 1306.0 16152.6 

R04 33.4 43.2 21.3 32.0 31.9 43.7 -96.3 -91.7 98.8 100.0 

R05 0.4 0.4 0.3 0.7 0.4 0.5 -10.8 -19.6 1.6 2.4 

R06 2.0 4.2 1.9 7.7 1.6 2.0 0.1 0.1 86.4 98.7 

R07 4.5 1.7 92.9 71.5 0.7 0.0 -1000.9 -1468.3 5952.5 2147.0 

R08 3.5 3.2 6.6 18.5 2.7 2.8 -83.2 -96.6 92.9 99.6 

R09 213.8 3764.6 11216.1 175044.9 44.1 74.4 -1315.6 -4290.0 823105.5 9602889.0 

R10 51.5 81.2 57.8 118.8 37.1 43.1 0.0 0.0 895.5 974.9 

R11 7.5 8.2 77.2 62.3 1.2 1.1 -65.8 -189.2 3067.1 2832.0 

R12 0.4 0.5 0.3 0.6 0.3 0.3 -0.9 -5.4 4.1 7.7 

R13 3.4 1.5 6.8 17.8 2.4 1.8 -81.1 -96.6 93.4 94.1 

R14 24.8 3.6 18.9 1125.4 19.3 37.5 -75.4 -46761.8 143.4 237.0 

R15 10.6 -23.8 213.6 649.2 14.8 8.9 -8944.9 -32078.0 9111.6 1121.6 

R16 3.6 1.8 7.4 18.8 2.4 1.7 -81.3 -98.9 94.1 98.4 

R17 42.8 78.0 652.3 1117.8 15.5 6.9 -39377.2 -12257.1 12219.1 31728.1 

R18 14.1 4.1 67.9 172.8 12.8 5.5 -3912.3 -5099.3 483.6 5528.3 

R19 48.0 46.6 59.2 100.3 31.1 5.5 0.0 0.0 969.6 973.0 

R20 51.2 63.7 42.6 94.6 45.6 41.4 0.0 0.0 701.4 980.4 

R21 56.5 64.4 39.6 87.9 50.9 41.2 0.0 0.0 895.1 978.3 

R22 80.1 119.5 136.4 594.4 75.2 86.2 0.0 0.0 6872.1 28904.9 

R23 12.1 11.1 62.7 72.8 9.4 4.8 0.0 0.0 4416.0 3300.0 

R24 2.2 4.7 10.4 74.4 0.7 0.3 0.0 0.0 373.0 3237.4 
F: Failed company, NF: Non-failed company. Variables are defined in Table 3. 
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Table 8  

Summary of descriptive statistic of variables for a 3-year horizon. 

Mean St. Dev. Median Min  Max 
Variable NF F NF F NF F NF F NF F 

R01 5.7 7.5 93.7 54.0 1.8 1.9 0.1 0.0 6455.5 2420.6 

R02 43.9 41.7 53.8 231.8 45.6 51.1 -2020.2 -12831.7 99.6 150.3 

R03 19.3 27.0 34.1 189.8 11.5 11.2 0.0 0.0 1710.5 10664.9 

R04 33.2 41.8 21.7 30.7 31.9 42.3 -98.6 -99.6 99.8 100.0 

R05 0.4 0.3 0.3 2.4 0.4 0.5 -5.6 -111.8 1.4 3.3 

R06 2.0 3.8 2.0 7.0 1.6 2.0 0.2 0.0 83.1 99.9 

R07 1.8 -9.7 132.5 626.0 0.7 0.1 -8955.0 -36729.0 2735.7 814.8 

R08 3.4 3.7 6.4 16.3 2.6 3.0 -73.4 -97.0 65.1 96.5 

R09 63.3 426.1 221.5 9265.4 43.1 70.0 -688.3 -4344.6 13132.7 494634.7 

R10 50.2 74.7 56.2 108.5 37.1 41.8 0.1 0.0 930.2 957.9 

R11 6.7 7.8 81.1 34.0 1.2 1.5 -590.4 -580.6 4501.6 741.9 

R12 0.4 0.5 0.3 0.5 0.3 0.4 -1.5 -2.2 4.1 6.7 

R13 3.2 1.9 6.9 16.5 2.4 2.0 -85.5 -99.5 92.8 92.7 

R14 17.9 32.0 502.6 259.2 19.2 37.6 -36881.9 -14243.3 149.0 396.0 

R15 6.1 -23.2 367.2 869.9 14.9 9.1 -25278.9 -34771.8 666.3 9529.9 

R16 3.4 2.3 7.5 17.0 2.4 1.8 -92.5 -99.5 92.8 99.4 

R17 40.1 87.4 738.4 1792.0 15.8 7.5 -30964.8 -4207.3 16416.0 89343.2 

R18 14.8 -9.8 50.1 658.9 13.0 6.3 -1819.3 -37629.3 632.2 2247.6 

R19 47.4 48.4 58.8 103.4 30.0 6.9 0.0 0.0 953.3 903.1 

R20 49.9 57.8 40.2 78.1 44.7 40.8 0.0 0.0 605.7 974.8 

R21 55.2 57.9 38.1 73.1 49.1 40.7 0.0 0.0 737.8 965.0 

R22 83.5 125.3 358.9 815.5 74.9 86.6 0.0 0.2 25042.0 35535.2 

R23 11.6 10.3 32.5 66.4 9.4 4.8 0.0 0.0 2091.0 3123.1 

R24 2.5 4.0 18.4 65.4 0.7 0.4 0.0 0.0 831.0 3458.4 

           
F: Failed company, NF: Non-failed company. Variables are defined in Table 3. 
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Table 9  

Summary of descriptive statistic of variables for a 4-year horizon. 

Mean St. Dev. Median Min  Max 
Variable NF F NF F NF F NF F NF F 

R01 4.4 7.8 39.7 103.2 1.7 1.9 0.0 0.1 2713.2 5936.5 

R02 42.5 28.3 96.2 1108.3 45.6 51.3 -4952.9 -65350.0 100.0 185.7 

R03 19.6 42.7 33.9 1108.3 11.5 11.9 0.0 0.0 1670.8 65450.0 

R04 32.7 40.6 21.7 30.0 31.3 40.1 -93.1 -98.1 100.0 100.0 

R05 0.3 0.4 1.6 1.1 0.4 0.5 -108.9 -39.3 1.5 24.9 

R06 1.9 3.6 2.2 6.5 1.6 1.9 0.0 0.0 90.0 87.0 

R07 1.1 2.7 79.4 40.6 0.6 0.2 -2767.5 -1287.5 1982.3 945.2 

R08 3.2 4.0 7.1 15.9 2.5 3.0 -95.1 -99.9 68.5 92.2 

R09 83.9 6271.6 1259.1 362450.9 41.7 66.0 -4070.6 -4698.4 77611.7 21710777.0 

R10 50.4 73.1 65.3 107.8 36.2 40.4 0.0 0.0 999.9 978.8 

R11 8.2 8.9 99.4 38.4 1.3 1.6 -679.9 -71.9 5288.4 1156.4 

R12 0.4 0.6 0.3 0.5 0.3 0.4 -2.3 -5.3 5.3 6.7 

R13 3.2 2.3 6.7 15.9 2.3 2.0 -67.2 -93.9 91.9 95.7 

R14 -23.7 -0.5 3546.7 2314.0 19.5 38.2 -259441.5 -138578.6 140.6 173.2 

R15 0.6 -5.8 826.6 211.5 13.7 9.4 -60105.3 -5803.4 1378.9 1111.1 

R16 3.3 2.4 7.6 16.6 2.3 1.9 -75.7 -96.6 92.1 96.4 

R17 206.9 90.6 10555.8 1259.1 15.2 8.8 -40945.9 -12752.3 749488.0 29357.5 

R18 14.5 -76.3 193.1 4622.4 12.7 7.1 -10647.6 -275100.0 7481.4 831.1 

R19 47.1 47.3 59.5 100.5 30.0 6.8 0.0 0.0 917.0 989.1 

R20 51.1 56.8 45.8 78.1 45.1 39.4 0.0 0.0 979.2 999.9 

R21 55.1 55.8 39.6 64.8 48.6 40.8 0.0 0.0 774.3 967.9 

R22 90.0 100.8 902.4 204.9 75.8 85.9 0.0 0.0 65604.4 8387.4 

R23 12.3 8.8 59.7 35.2 9.7 5.0 0.0 0.0 4281.2 1836.4 

R24 3.2 3.0 35.1 47.9 0.9 0.4 0.0 0.0 1849.3 2663.3 

           
F: Failed company, NF: Non-failed company. Variables are defined in Table 3. 
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Table 10  

Summary of descriptive statistic of variables for a 5-year horizon. 

Mean St. Dev. Median Min  Max 
Variable F NF F NF F NF F NF F NF 

R01 4.1 5.9 15.5 24.3 1.7 1.8 0.0 0.0 516.4 908.0 

R02 43.4 42.9 76.8 233.5 44.7 51.1 -4039.9 -12602.8 129.7 333.7 

R03 20.9 25.0 52.2 49.2 12.9 13.8 0.0 0.0 3388.0 2014.0 

R04 32.0 39.9 21.5 28.9 30.2 38.9 -96.1 -97.5 100.0 99.8 

R05 0.3 0.0 0.5 25.1 0.3 0.5 -22.6 -1545.0 1.6 5.5 

R06 1.9 3.5 2.4 6.5 1.6 1.9 0.0 0.0 85.9 98.4 

R07 0.5 3.3 980.6 48.7 0.7 0.3 -56148.5 -870.5 43736.0 1634.4 

R08 3.2 4.9 6.8 15.3 2.4 3.4 -98.5 -89.4 93.3 98.4 

R09 68.5 168.4 607.2 1172.1 40.0 64.0 -1172.6 -13177.2 42522.2 59386.0 

R10 49.5 68.6 65.0 100.2 35.4 38.1 0.0 0.0 929.2 936.2 

R11 6.6 10.7 50.5 62.9 1.3 1.7 -150.0 -126.3 2497.9 2543.6 

R12 0.4 0.6 0.4 0.6 0.3 0.4 -1.6 -0.7 5.8 15.4 

R13 3.0 3.3 7.0 15.3 2.1 2.3 -98.4 -94.6 99.3 90.3 

R14 20.8 39.1 225.1 40.3 19.2 38.7 -15475.1 -1175.5 99.2 197.0 

R15 12.3 -2.3 92.2 370.4 13.2 10.3 -2035.2 -20711.6 5006.9 1347.4 

R16 3.2 3.5 7.6 16.1 2.2 2.2 -96.1 -96.2 92.6 92.2 

R17 133.9 77.9 10543.9 864.2 14.1 9.6 -230368.7 -8419.1 715850.7 26860.3 

R18 12.3 6.2 161.5 90.1 12.2 7.5 -10399.0 -2355.5 1349.0 2563.8 

R19 45.6 46.8 56.0 98.2 29.4 6.8 0.0 0.0 736.9 998.3 

R20 51.1 54.2 46.1 68.6 45.1 39.4 0.0 0.0 823.0 956.0 

R21 56.4 54.4 44.1 63.1 49.1 39.8 0.0 0.0 752.1 798.9 

R22 77.9 96.6 57.2 217.9 75.6 84.8 0.0 0.2 2035.3 10342.6 

R23 12.3 10.1 15.0 112.4 10.3 5.1 0.0 0.0 835.4 6688.4 

R24 2.6 3.9 11.5 55.1 0.9 0.4 0.0 0.0 574.5 3016.5 

           
F: Failed company, NF: Non-failed company. Variables are defined in Table 3. 
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Appendix C: Correlation analysis 

 

Correlation analysis 1-year horizon. 

 

Correlation analysis 2-year horizon. 
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Correlation analysis 3-year horizon. 

 

Correlation analysis 4-year horizon. 
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Correlation analysis 5-year horizon. 

Appendix D : Tuning hyperparameters for models 
Optimal parameters for Random Forest one year before the bankruptcy 

imp_strategy: mean 

learning_rate: 0.1 

max_depth: 14 

max_features: auto 

n_estimatos: 1000 

random_state: 2 

Optimal parameters for XGBoost one year before the bankruptcy 

colsample_bytree: 0.5 

learning_rate: 0.1 

max_depth: 9 

n_estimatos: 400 

objective: binary: logistic 

reg_lambda: 2 

subsample: 0.5 
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Optimal parameters for LightGBM one year before the bankruptcy 

colsample_bytree: 0.5 

learning_rate: 0.01 

max_depth: 9 

n_estimatos: 400 

objective: binary 

reg_lambda: 0.3 

  

Optimal parameters for NGBoost one year before the bankruptcy 

Dist: Bernoulli 

Score: LogScore 

n_estimatos: 2000 

learning_rate 0.005 

minibatch_frac: 0.3 

col_sample: 0.8  

 

Optimal parameters for SVM one year before the bankruptcy 

imp_strategy: mean 

pca_whiten: true 

C: 2 

Class_weight: balanced 

Gamma: auto 

Kernel: rbf 

Probability: true  

 

Optimal parameters for Neural network one year before the bankruptcy 

imp_strategy: mean 

activation: tanh 

alpha: 0.0001 

hidden_layer_sizes: (100,) 

learning_rate: adaptive 

solver: adam 

 

Optimal parameters for Logistic regression one year before the bankruptcy 

imp_strategy: mean 

n_components: 15 

max_inter: 10000 
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tol: 0.1 

C: 10000 

 

Optimal parameters for Discriminant analysis one year before the 

bankruptcy 

imp_strategy: mean 

n_components: none 

solver: svd 

tol: 0.0001 

 

Appendix E: SHAP summary plot 

See figure 8, 9, 10, 11, 12. 

 

 
Fig. 8. SHAP summary plot for a 2-year horizon 

 
Fig. 9. SHAP summary plot for a 3-year horizon 
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Fig. 10. SHAP summary plot for a 4-year horizon 

 
Fig. 11. SHAP summary plot for a 5-year horizon 

 

 

 
Fig. 12. SHAP summary plot for LightGBM for a 1-year horizon 
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Appendix F : SHAP dependence plot 

See figure 13. 
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Fig. 13. SHAP dependence plots for important ratios one year before failure. 
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