
HAL Id: hal-04223071
https://hal.science/hal-04223071

Submitted on 29 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transient acoustic wave propagation in rigid porous
media: A time-domain approach
Zine El Abiddine Fellah, Claude L. Depollier

To cite this version:
Zine El Abiddine Fellah, Claude L. Depollier. Transient acoustic wave propagation in rigid porous
media: A time-domain approach. Journal of the Acoustical Society of America, 2000, 107 (2), pp.683-
688. �hal-04223071�

https://hal.science/hal-04223071
https://hal.archives-ouvertes.fr


Transient acoustic wave propagation in rigid porous media:
A time-domain approach

Z. E. A. Fellah and C. Depolliera)

Laboratoire d’Acoustique de l’Universite´ du Maine, IAM UMR-CNRS 6613, Ave O. Messiaen,
72085 Le Mans Cedex 9, France

~Received 20 May 1999; revised 9 August 1999; accepted 1 October 1999!

Wave propagation of acoustic waves in porous media is considered. The medium is assumed to have
a rigid frame, so that the propagation takes place in the air which fills the material. The Euler
equation and the constitutive relation are generalized to take into account the dispersive nature of
these media. It is shown that the connection between the fractional calculus and the behavior of
materials with memory allows time-domain wave equations, the coefficients of which are no longer
frequency dependent, to be worked out. These equations are suited for direct and inverse scattering
problems, and lead to the complete determination of the porous medium parameters. ©2000
Acoustical Society of America.@S0001-4966~00!02701-6#

PACS numbers: 43.20.Bi, 43.20.Hq@ANN#
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INTRODUCTION

During the last two decades, there has been a reb
interest in sound propagation in porous materials. The m
reason is not only the necessity of noise control in archit
tural acoustics or in transport vehicles, but also a better
oretical understanding of wave propagation in complex m
dia. Special attention has been paid to wave propagatio
porous media having a rigid frame, and nowadays the mo
chromatic wave propagation in these media is well und
stood. Some of the recent progress in this area is reviewe
Refs. 1 and 2. If many applications like medical imaging
inverse scattering problems3 require the study of the behav
ior of pulses traveling in porous media, it is only recen
that the response of these media to such excitations has
addressed.4 To efficiently cope with the specific problem
appearing in the transient acoustic field propagation, su
methods not related to fixed frequency formulation must
applied. Among them, one can cite the hereditary mechan5

or the time-domain approaches. The time-domain respo
of a material is described by an instantaneous response a
‘‘susceptibility’’ kernel responsible for the memory effect
Evidently, the Fourier transformation translates the fixed f
quency results into the time domain. However, in the ana
sis of the transient behavior of the fields, especially the sh
time behavior near the wave front, the investigations of
problem as a time-domain problem are more appropriate
time-domain approach differs from the frequency analysis
that the susceptibility functions of the problem are convo
tion operators acting on the velocity and the pressure fie
and therefore a different algebraic formalism has to be
plied to resolve the wave equation. In the past, many auth
have used the fractional calculus as an empirical metho
describing the properties of viscoelastic materials.6,7 The ob-
servation that the asymptotic expressions of stiffness
damping in porous materials are proportional to fractio
powers of frequency suggests the fact that time derivative

a!Electronic mail: Claude.Depollier@univ-lemans.fr
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fractional order might describe the behavior of sound wa
in this kind of material. In addition to that, fractional-orde
time derivatives simultaneously model relaxation and f
quency dependence.

The outline of the paper is as follows. In Sec. I th
model of equivalent fluid is presented and the basic eq
tions in the frequency domain are given. Section II is d
voted to the connection between fractional derivative a
wave propagation in rigid porous media. Section III conta
the asymptotic analyses for the low and high frequencies;
generalized Euler equation and constitutive relation and
time-domain wave equations are worked out.

I. MODEL OF THE EQUIVALENT FLUID

Let a homogeneous isotropic porous material with p
rosity f be saturated with a compressible and viscous fl
of densityr f and viscosityh. It is assumed that the frame o
this porous solid is not deformable when it is subjected to
acoustic wave. It is the case, for example, for a porous m
dium which has a large skeleton density or very large ela
modulus or weak fluid-structure couplings. To apply the
sults of linear elasticity it is required that the wavelength
sound waves should be much larger than the sizes of pore
grains in the medium.

In these porous materials, acoustic waves propagate
in the fluid. They can be seen as an equivalent fluid,
density and the bulk modulus of which are ‘‘renormalized
by the fluid-structure interactions. Viscous and thermal
fects are well described by the Kirchhoff theory of the sou
propagation in cylindrical tubes. Unfortunately, the fund
mental equations of acoustics that are used in this theory
be very difficult to solve in the case of tubes with a nonc
cular cross section. Zwikker and Kosten8 have worked out a
simplified model of the sound propagation in the case o
circular cross section where viscous and thermal effects
treated separately. They derived the important result that
correction factor of bulk modulus of the fluid only contain
the thermal effect and that of density only the viscous o
The validity of this model has been justified later for a lar
683107(2)/683/6/$17.00 © 2000 Acoustical Society of America
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range of radii at acoustical frequencies. Taking this res
into consideration, it is assumed that the basic equation
the model of the equivalent fluid are the Euler equation~E!
and the law of the mass conservation~M! associated with the
behavior ~or adiabatic! equations, and we will hencefort
refer to them asEM equations,

r fa~v!
]v i

]t
52¹ i p,

b~v!

Ka

]p

]t
52¹•v. ~1!

In these relations,v and p are the particle velocity and th
acoustic pressure,Ka5gP0 is the compressibility modulus
of the fluid, a(v) and b(v) are the dynamic tortuosity o
the medium and the dynamic compressibility of the air
cluded in the porous material. These two response factors
complex functions which heavily depend on the frequen
f 5v/2p. Their theoretical expressions are given by Allar1

and Lafarge,2

a~v!5a`S 11
hf

j va`r fk0
A11 j

4a`
2 k0

2r fv

hL2f2 D , ~2!

b~v!5g2~g21!

3S 11
hf

j vr fk08 PrA11 j
4k08

2r fv Pr

hf2L82
D 21

,

~3!

where j 2521, g represents the adiabatic constant, Pr
Prandtl number,a` the tortuosity,k0 the static permeability,
k08 the thermal permeability andL and L8 the viscous and
thermal characteristic lengths.9 This model was initially de-
veloped by Johnson, Koplik and Dashen,10 and completed by
Allard and Champoux by adding the description of therm
effects.11 Later on, Lafarge introduced the parameterk08
which describes the additional damping of sound waves
to the thermal exchanges between fluid and structure at
surface of the pores.2

The functionsa(v) andb(v) express the viscous an
thermal exchanges between the air and the structure w
are responsible for the sound damping in acoustic mater
These exchanges are due on the one hand to the fl
structure relative motion and on the other hand to the
compressions-dilatations produced by the wave motion.
parts of the fluid affected by these exchanges can be
mated by the ratio of a microscopic characteristic length
the media, as, for example, the sizes of the pores, to
viscous and thermal skin depth thicknessd5(2h/vr0)1/2

andd85(2h/vr0Pr)
1/2. For the viscous effects this doma

corresponds to the region of the fluid in which the veloc
distribution is perturbed by the frictional forces at the inte
face between the viscous fluid and the motionless struct
For the thermal effects, it is the fluid volume affected by t
heat exchanges between the two phases of the porous
dium. In this model, the sound propagation is complet
determined by the five following parameters:f, a` , s
5h/k0 , L andL8. In the next section, we will show that th
values of these parameters are given by the low- and h
frequency wave equations.
684 J. Acoust. Soc. Am., Vol. 107, No. 2, February 2000 Z. E.
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The sound velocity in the porous material is deriv
from Eqs.~2! and ~3! and yields the usual equation,

c~v!5A Ka

r fa~v!b~v!
. ~4!

In this expression, the velocity is a complex function of t
frequency, which is not very convenient to investigate t
propagation of ultrasonic short pulses or to deduce the va
of the parameters of the medium. This is due to the fact t
the EM equations are neither expressed in time domain
in frequency domain: they are correct only for monoch
matic waves. To restore their validity for transient signa
we need to write them in the time domain.

II. FRACTIONAL DERIVATIVE AND BEHAVIOR OF
MATERIALS

The constitutive relation between the straine(t) at time
t and the driving stresss(t) is at the heart of the conven
tional description of the theory of elasticity. In the ‘‘class
cal’’ theory, the stresses and strains are related by const
Accordingly, the time histories of these values are simi
and the deformation process is completely reversible. It w
found out, however, that most elastic materials exhibit
explicit departure from this type of behavior due to the fa
that they partially absorb energy. These deviations from p
elasticity may be taken into account by replacing the ela
constants by integral or differential time operators.

A. Fractional derivative and viscoelasticity

The fractional calculus model of viscoelastic behav
employs derivatives of fractional orders to relate stress fie
to strain fields in viscoelastic materials and it has be
shown that constitutive equations employing such deri
tives are linked to the microscopic theories describing
macroscopic behavior of the media. Bagley and Torvik7 have
explored the models of the form

s~ t !1bDl@s~ t !#5G0e~ t !1G1Dn@e~ t !#,

whereb, G0 , G1 , l andn are five parameters to be dete
mined by least-squares fit to experimental data.Dn@x(t)# is
the fractional derivative of ordern defined by

Dn@x~ t !#55
1

G~2n!
E

0

t

~ t2u!2n21x~u!du, ~5!

wheren is a real number andG(x) is the gamma function. A
fractional derivative no longer represents the local variatio
of the function but on the contrary, it acts as a convoluti
integral operator. More details about the properties of fr
tional derivatives and about fractional calculus are given
Ref. 12.

In view of the success obtained with these models, o
is inclined to ask if they can be generalized to the case
wave motion in rigid porous materials.
684A. Fellah and C. Depollier: Pulse propagation in porous media
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B. Fractional derivative relationship for a porous
medium

To write the basic equations in the time domain we u
a quite different method than the one described in Ref. 7

As seen above, the complex susceptibilitiesa(v) and
b(v) have been worked out in the framework of the equiv
lent fluid model. They must be mapped into the time doma
For that, the trick is to expand these functions into series
v,

a~v!5(
n

an~ j v!n, b~v!5(
l

bl~ j v!l, ~6!

wheren andl may be fractional numbers. Then we use t
rules of the fractional calculus and the Fourier transform

F@g~ t !#5E
2`

`

g~ t !ej vtdt, ~7!

to write the useful relationship

F@Dng~ t !#5~ j v!nF@g~ t !#. ~8!

At last, we substitute the fractional derivatives for the pow
of v,

~ j v!n→
t

Dn@•#.

Unfortunately, this method leads to very complicated eq
tions if valid expressions are required for all values ofv and
exact solutions for general conditions are not easily obtain
For example, in this framework the EM equations have
following general form:

r f(
n

anDnF]v i

]t G52¹ i p,
1

Ka
(
l

blDlF]p

]t G52¹•v.

~9!

Another way to tackle this problem is to consider t
asymptotic expressions ofa(v) andb(v), whenv tends to
zero or to infinity, which are generally very simple functio
of v.

III. WAVE EQUATIONS IN THE TIME DOMAIN

The fact that more than one time-domain equation m
be considered, one equation for each particular range of
quencies, appears to be the drawback of this approach
course, it would be better to have only one model to desc
the sound propagation in the whole time domain. Howev
we know that the relative importance of the effects resp
sible for the behavior of a fluid in a porous media is sign
cantly modified when the frequency goes from zero to h
values. In this case it seems reasonable that the physics
which govern the wave propagation may be quite differ
from one domain to the other. We now consider the case
low- and high-frequency responses.

A. Low-frequency approximations

The range of frequencies such that viscous skin thi
nessd5(2h/vr0)1/2 is much larger than the radius of th
poresr,
685 J. Acoust. Soc. Am., Vol. 107, No. 2, February 2000 Z. E.
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is called the low-frequency range. For these frequencies,
viscous forces are important everywhere in the fluid. At t
same time, the compression-dilatation cycle in the por
material is slow enough to favor the thermal exchanges
tween fluid and structure. At the same time, the tempera
of the frame is practically unchanged by the passage of
sound wave because of the high value of its specific heat:
frame acts as a thermostat. In this case the isothermal c
pressibility is directly applicable.

We consider the low-frequency approximations of t
response factorsa(v) andb(v). Whenv→0, Eqs.~2! and
~3!, respectively, become

a~v!'a0S 11
hf

j va0r fk0
D , ~11!

b~v!'g. ~12!

a0 is the the low-frequency approximation of the tortuos
given by Lafarge in Ref. 2 and also obtained by Norris13

from homogenization theory,

a05
^v~r !2&

^v~r !&2
, ~13!

where^v(r & is the average velocity of the viscous fluid fo
direct current flow within a volume element small compar
to the relevant wavelength, but large compared to the in
vidual grains/pores of the solid.

The time-domain expression fora becomes

a~v!→
t

a0S I 1
hf

a0r fk0
] t

21D , ~14!

whereI is the unit operator and] t
21g(t)5*0

t g(t8)dt8. For a
wave traveling along the direction 0x, the generalized forms
of EM equations in the time domain are now

r fa0

]v
]t

1
hf

k0
v52

]p

]x
and

g

Ka

]p

]t
52

]v
]x

. ~15!

In this approximation, the Euler equation expresses the
ance between the driving forces of the wave, the drag for
hfv/k0 due to the flow resistance of the material and t
inertial forces.

The wave equation is derived from these two relatio
by elementary manipulations,

]2v

]x2
2a

]2v

]t2
2d

]v
]t

50. ~16!

The first coefficient of this equation,

a5
r fa0g

Ka
, ~17!

leads to the sound velocityc5a21/2 in the air filling the
structure of the material. This result shows that the visc
forces and the shape of the pores increase the fluid densit
the factora0>1. The second coefficient,
685A. Fellah and C. Depollier: Pulse propagation in porous media
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d5
hfg

k0Ka
, ~18!

is the damping-distortion term due to viscous and therm
effects which take place in the porous material. From th
equations it is possible to estimatea0 and the flow resistivity
s5h/k0 . At very low frequency, the asymptotic expressio
for a(v) andb(v) are

a~v!'
hf

j vr fk0
, b~v!'g. ~19!

In this range of frequencies, EM equations become

hf

k0
v52

]p

]x
and

g

Ka

]p

]t
52

]v
]x

, ~20!

where the Euler equation is reduced to the Darcy’s l
which defines the static flow resistivitys5h/k0 . The fields
which are varying in time, the pressure, the acoustic veloc
etc., follow a diffusion equation with the diffusion constan

D5
Kak0

hfg
.

A quite similar result is given by Johnson in Ref. 14. Ho
ever, the adiabatic constantg does not appear in Johnson
model in which the thermal expansion is neglected.

B. High-frequency approximation

When the frequency increases, the skin thickness
comes narrower and the viscous effects are concentrated
small volume near the framed/r !1. In this case, the viscou
effects in the fluid can be neglected: the fluid behaves alm
like a perfect fluid~without viscosity!.

At high frequencies the compression/dilatation cycle
much faster than the heat transfer between the air and
structure, and in this case, it is a good approximation
consider that the compression is adiabatic.

The high-frequency approximations of the response f
tors a(v) andb(v) whenv→` are given by the relations

a~v!'a`S 11
2

L S h

j vr f
D 1/2D , ~21!

b~v!'11
2~g21!

L8
S h

j v Prr f
D 1/2

. ~22!

In the time domain, the expressions of the responsesa andb
become

a~v!→
t

a`S d~ t !1
2

L S h

r f
D 1/2

t21/2D *, ~23!

b~v!→
t S d~ t !1

2~g21!

L8
S h

Prr f
D 1/2

t21/2D *, ~24!

where * denotes the time convolution andd(t) is the Dirac
function. The tortuositya` is real-valued and defined as
Eq. ~13! but from the field of the microscopic velocityv(r )
in a perfect fluid. Brown15 has shown that this quantity i
related to the electrical formation factorF by a`5Ff.
686 J. Acoust. Soc. Am., Vol. 107, No. 2, February 2000 Z. E.
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When the wave propagates along the coordinate axis 0x, the
EM equations are generalized as follows in the time doma

r fa`

]v
]t

12
r fa`

L S h

pr f
D 1/2E

2`

t ]v/]t8

At2t8
dt852

]p

]x
,

~25!

1

Ka

]p

]t
12

g21

KaL8
S h

p Prr f
D 1/2E

2`

t ]p/]t8

At2t8
dt852

]v
]x

.

~26!

A consequence of this is a surprising result: the retard
force is no longer proportional to the time derivative, it
found to be proportional to a fractional derivative of ord
1/2 of the acoustic velocity. This occurs because the volu
of fluid participating in the motion is not the same for a
motion, as it is for a fully developed steady flow. The ph
nomena may be understood by considering such a volum
fluid in a pore to be in harmonic motion. At a higher fre
quency, only a thin boundary layer is excited: the avera
shear stress is high. At a lower frequency, the same am
tude of the fluid motion allows a thicker layer of fluid t
participate in the motion, and consequently the shear stre
less. The penetration distances of the viscous forces
therefore the excitation of the fluid depend on the frequen
In the time domain, such a dependence is associated w
fractional derivative. The generalized mass conserva
equation is interpreted in the same way. In these equati
the convolutions express the dispersive nature of the po
material. They take into account the memory effects due
the fact that the response of the medium to the wave exc
tion is not instantaneous but needs some time to take pl

The wave equation is derived from these two relatio
by elementary calculation and can be written as

]2v

]x2
2A

]2v

]t2
2BE

2`

t ]2v/]t82

At2t8
dt82C

]v
]t

50, ~27!

where the coefficients are given by

A5
r fa`

Ka
, B5

2a`

Ka
Ar fh

p S 1

L
1

g21

APrL8
D ,

C5
4a`~g21!h

KaLL8APr
.

The first one gives the velocityc5A21/2 of the wave in the
air included in the porous material. In this case the flu
density is modified by the factora` . The other coefficients
are essentially dependent on the characteristic lengthsL and
L8, and express the viscous and thermal interactions
tween the fluid and the structure. The knowledge of th
three coefficients allows the determination of the three
rametersa` , L and L8. This can be achieved from th
measurements of the damping and broadening of ultras
pulses during the propagation in the porous medium.

With this model, one can hope to get an easier estim
tion of the characteristic lengths than for example Ref. 16
this paper, the characteristic lengths are deduced from
high-frequency asymptotic behavior of either the velocity
686A. Fellah and C. Depollier: Pulse propagation in porous media
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the attenuation curves which allow only the determination
the lengthL5@L211(g21)(APrL821#21. In this case, the
estimation of the characteristic lengths needs the data
tained from the dispersion curves in air- and helium-fill
materials. On the contrary, by using inverse scattering m
ods, the time-domain approach provides the viscousL and
the thermalL8 characteristic lengths from the coefficientsB
andC of Eq. ~27!. On the other hand, Eq.~27! is well suited
for analytical solutions and numerical applications. Figure
shows the evolution of a Gaussian pulse in an air-filled
rous medium as a time function. These results are obta
by convolution of the Green’s function of Eq.~27! with the
pulse. During the propagation, the pulse gets wider while
amplitude decreases; the result is a warped Gaussian p
due to the combined effects of dispersion and attenua
where high frequencies are faster but more attenuated

FIG. 1. Space evolution of a Gaussian pulse in a porous medium.
medium parameters are those of the polyrethan foam Bulpren R60, m
factured by Recticel.a`51.04, f50.98, L5231024 m, L85531024 m,
s52850 Nm24 s.

FIG. 2. Numerical simulations of warped Gaussian pulse forx55 cm for
two values ofB coefficient@Eq. ~27!#; solid line:B52.4131024 and broken
line: B54.4131024.
687 J. Acoust. Soc. Am., Vol. 107, No. 2, February 2000 Z. E.
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the low frequencies. Figure 2 presents numerical simulati
for two values of theB coefficient of Eq.~27!. Warping of
the input signal is mainly due to this effect.@The contribution
of the other term of Eq.~27! is not significant.# Other nu-
merical applications and comparisons with experimental
sults will be given in Ref. 17. Accordingly, it seems possib
to get the specific contribution of viscous and thermal effe
to the spreading and attenuation of ultrasonic pulses by s
dard inverse scattering methods.

IV. CONCLUSION

In this paper the time-domain equations for the transi
wave propagation in a porous medium have been derive
the low- and high-frequency ranges. In each range, the c
ficients of the wave equation are no more frequency dep
dent, and viscous and thermal effects can be distinguis
At very low frequency, the viscous forces and the therm
exchanges are strong enough to prevent the waves f
propagating in these materials: the field’s evolution follow
diffusion equation. At low frequency the damping is weak
and the fields can propagate. In the high-frequency range
wave propagation is described by hereditary mechanics. A
consequence of the relaxation phenomenon, the fluid den
and the bulk modulus are no longer constant numbers
they are signal dependent.

The results of preliminary numerical simulations tend
indicate that studies of the propagation of transient wa
may yield useful data. Ultrasonic impulses seem to be
efficient tool to probe the properties of sound absorbing m
terials. Last, the time-domain wave equations have a w
adapted form for the analysis of the direct and inverse s
tering problems.
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