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Transient acoustic wave propagation in rigid porous media:
A time-domain approach

Z. E. A. Fellah and C. Depollier®
Laboratoire d’Acoustique de I'Universitdu Maine, IAM UMR-CNRS 6613, Ave O. Messiaen,
72085 Le Mans Cedex 9, France

(Received 20 May 1999; revised 9 August 1999; accepted 1 Octobep 1999

Wave propagation of acoustic waves in porous media is considered. The medium is assumed to have
a rigid frame, so that the propagation takes place in the air which fills the material. The Euler
equation and the constitutive relation are generalized to take into account the dispersive nature of
these media. It is shown that the connection between the fractional calculus and the behavior of
materials with memory allows time-domain wave equations, the coefficients of which are no longer
frequency dependent, to be worked out. These equations are suited for direct and inverse scattering
problems, and lead to the complete determination of the porous medium paramete?§00©
Acoustical Society of AmericfS0001-4966)0)02701-4

PACS numbers: 43.20.Bi, 43.20.H4NN]

INTRODUCTION fractional order might describe the behavior of sound waves
in this kind of material. In addition to that, fractional-order

During the last two decades, there has been a rebortime derivatives simultaneously model relaxation and fre-

interest in sound propagation in porous materials. The maiguency dependence.

reason is not only the necessity of noise control in architec- The outline of the paper is as follows. In Sec. | the

tural acoustics or in transport vehicles, but also a better themodel of equivalent fluid is presented and the basic equa-

oretical understanding of wave propagation in complex metions in the frequency domain are given. Section Il is de-

dia. Special attention has been paid to wave propagation inoted to the connection between fractional derivative and

porous media having a rigid frame, and nowadays the monowave propagation in rigid porous media. Section Il contains

chromatic wave propagation in these media is well underthe asymptotic analyses for the low and high frequencies; the

stood. Some of the recent progress in this area is reviewed igeneralized Euler equation and constitutive relation and the

Refs. 1 and 2. If many applications like medical imaging ortime-domain wave equations are worked out.

inverse scattering problerhsequire the study of the behav-

ior of pulses traveling in porous media, it is only recentlyl. MODEL OF THE EQUIVALENT FLUID

that the response of these media to such excitations has been Let a homogeneous isotropic porous material with po-

addres;ed..To efﬂment}y cope W't.h t.h € specific p.roblem_s rosity ¢ be saturated with a compressible and viscous fluid
appearing in the transient acoustic field propagation, suite f densityp; and viscosityz. It is assumed that the frame of

methods not related to fixed frequency formulation must b(?his porous solid is not deformable when it is subjected to an

applied. Among them, one can cite the hereditary mechsc‘;mlcsacOustic wave. It is the case, for example, for a porous me-

or the t|m¢—d_oma|n gpproaches_. The time-domain respons um which has a large skeleton density or very large elastic
of a mate_n_a_l is described by an instantaneous response angd,y,j,s or weak fluid-structure couplings. To apply the re-
“SL_Jsceptlelty” kemel responmblg for the memory gffects. sults of linear elasticity it is required that the wavelength of
Evidently, the Fourier transformation translates the fixed fre’sound waves should be much larger than the sizes of pores or
guency results into the time domain. However, in the analy- rains in the medium.

sis of the transient behavior of the fields, especially the short | -\ (<o porous materials, acoustic waves propagate only
time behavior near the wave front, the investigations .of the, the fluid. They can be seen as an equivalent fluid, the
problem asa tlme—doma_ln problem are more appropnat_e._%ensity and the bulk modulus of which are “renormalized”
time-domain approach differs from the frequency analysis iy yhe fiyid-structure interactions. Viscous and thermal ef-
that the susceptibility functions of the problem are convolu-fects are well described by the Kirchhoff theory of the sound
tion operators acting on the velocity and the pressure field§,,aqation in cylindrical tubes. Unfortunately, the funda-
and therefore a different algebraic formalism has t0 be apmenta| equations of acoustics that are used in this theory can
plied to resolve the wave equation. In the past, many authore yery difficult to solve in the case of tubes with a noncir-

have used the fractional calculus as an empirical method qf ,ar cross section. Zwikker and Kostdmve worked out a
describing the properties of viscoelastic materidl3he ob- simplified model of the sound propagation in the case of a
servation that the asymptotic expressions of stiffness angdi.c jar cross section where viscous and thermal effects are
damping in porous materials are proportional to fractionaleateq separately. They derived the important result that the
powers of frequency suggests the fact that time derivatives Qfqrection factor of bulk modulus of the fluid only contains
the thermal effect and that of density only the viscous one.
dElectronic mail: Claude.Depollier@univ-lemans.fr The validity of this model has been justified later for a large
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range of radii at acoustical frequencies. Taking this result  The sound velocity in the porous material is derived
into consideration, it is assumed that the basic equations dfom Egs.(2) and(3) and yields the usual equation,
the model of the equivalent fluid are the Euler equatign
and the law of the mass conservatidh) associated with the Ka
behavior (or adiabati¢ equations, and we will henceforth c(w)= m- 4
refer to them a€M equations,
v, Bw) dp In this expression, the velocity is a complex function of the
pra(w) —=-Vp, ————=-V.v. (1)  frequency, which is not very convenient to investigate the
at Ka dt propagation of ultrasonic short pulses or to deduce the values
In these relationsy and p are the particle velocity and the ©f the parameters of the medium. This is due to the fact that
acoustic pressureé§,= yP, is the compressibility modulus f[he EM equations are neither expressed in time domain nor
of the fluid, a(w) and B(w) are the dynamic tortuosity of " frequency domain: they are correct only for monochro-
the medium and the dynamic compressibility of the air in-matic waves. '_I'o restor_e the|r_vaI|d|ty fqr transient signals,
cluded in the porous material. These two response factors alé® need to write them in the time domain.
complex functions which heavily depend on the frequency
f=w/27. Their theoretical expressions are given by Alfard

and Lafarg@, Il. FRACTIONAL DERIVATIVE AND BEHAVIOR OF
MATERIALS

nd Aol kipro - , o
a(w)=a.| 1+ K 1+) -5 @ The constitutive relation between the straift) at time
JwaepiKo nA“P

t and the driving stress(t) is at the heart of the conven-

Blw)=y—(y—1) tional description of the theory of elasticity. In the “classi-
cal” theory, the stresses and strains are related by constants.
o 4ky2psw Pr -1 Accordingly, the time histories of these values are similar
X[ 1+ ——— 1+j——— , and the deformation process is completely reversible. It was
jwpiko Pr nPp2A 2 found out, however, that most elastic materials exhibit an
3) explicit departure from this type of behavior due to the fact

that they partially absorb energy. These deviations from pure
where j2=—1, v represents the adiabatic constant, Pr theelasticity may be taken into account by replacing the elastic
Prandtl numberq., the tortuosity k, the static permeability, constants by integral or differential time operators.

ko the thermal permeability and and A’ the viscous and

thermal characteristic IengtﬁsThls model was initially de- A Fractional derivative and viscoelasticity

veloped by Johnson, Koplik and Dash€rand completed by . . . _
Allard and Champoux by adding the description of thermal The fractional calculus model of viscoelastic behavior
effects!* Later on, Lafarge introduced the parametely employs derivatives of fractional orders to relate stress fields

to the thermal exchanges between fluid and structure at théhown that constitutive equations employing such deriva-
surface of the pores. tives are linked to the microscopic theories describing the

The functionsa(w) and B(w) express the viscous and macroscopic behavior of the media. Bagley and Tdrtve
thermal exchanges between the air and the structure whicgxplored the models of the form
are responsible for the sound damping in acoustic materials.
These exchanges are due on the one hand to the fluid- o (t)+bDM o (t)]=Goe(t) + G1D[e(1)],
structure relative motion and on the other hand to the air ]
compressions-dilatations produced by the wave motion. Th¥hereb, Go, Gy, A and v are five parameters to be deter-
parts of the fluid affected by these exchanges can be estiined by least-squares fit to experimental d&d.x(t)] is
mated by the ratio of a microscopic characteristic length ofn€ fractional derivative of order defined by
the media, as, for example, the sizes of the pores, to the
viscous and thermal skin depth thickness (2 7/wpg)*? DY[x(t)]= =
and 6’ = (279l wpoP,)*2 For the viscous effects this domain
corresponds to the region of the fluid in which the velocity
distribution is perturbed by the frictional forces at the inter-wherev is a real number anl(x) is the gamma function. A
face between the viscous fluid and the motionless structurdractional derivative no longer represents the local variations
For the thermal effects, it is the fluid volume affected by theof the function but on the contrary, it acts as a convolution
heat exchanges between the two phases of the porous metegral operator. More details about the properties of frac-
dium. In this model, the sound propagation is completelytional derivatives and about fractional calculus are given in
determined by the five following parameter$, «., o  Ref. 12.
= nlkg, A andA’. In the next section, we will show that the In view of the success obtained with these models, one
values of these parameters are given by the low- and highis inclined to ask if they can be generalized to the case of
frequency wave equations. wave motion in rigid porous materials.

1
I'(—v)

ft(t—u)‘”‘lx(u)du, (5
0
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B. Fractional derivative relationship for a porous S
medium F> 1, (10

To write the basic equations in the time domain we useI lled the low-fr nev ranae. For th fr ncies. th
a quite different method than the one described in Ref. 7. S called the fow-requency range. or these frequencies, the

As seen above, the complex susceptibilitie@s) and viscous forces are important everywhere in the fluid. At the

B(w) have been worked out in the framework of the equiva-same time, the compression-dilatation cycle in the porous

lent fluid model. They must be mapped into the time domain.material is slow enough to favor the thermal exchanges be-

For that, the trick is to expand these functions into series O%ween fluid af_‘d struc_ture. At the same time, the temperature
© of the frame is practically unchanged by the passage of the

sound wave because of the high value of its specific heat: the
frame acts as a thermostat. In this case the isothermal com-
pressibility is directly applicable.

We consider the low-frequency approximations of the
response factora(w) and 8(w). Whenw—0, Egs.(2) and
(3), respectively, become

n¢ )
joagpiko/’
to write the useful relationship

Blw)~. (12)

FID"9(D]=(jw)"Flg(D)]. ®) . N :
) ) o aq is the the low-frequency approximation of the tortuosity
At last, we substitute the fractional derivatives for the powersyiven by Lafarge in Ref. 2 and also obtained by Ndfis

a<w>=§ a,(jo)”, ﬁ(w)=§ by(jw)*, (6)

wherev and\ may be fractional numbers. Then we use the
rules of the fractional calculus and the Fourier transform

Flow= | gmetat Y

1+ (12)

a(w)~ag

of w, from homogenization theory,
! (v(r)?)
(jo)"=D'-]. =, 13
v w

Unfortunately, this method leads to very complicated equa-

tions if valid expressions are required for all valuessoind ~ where(v(r) is the average velocity of the viscous fluid for
exact solutions for general conditions are not easily obtainedlirect current flow within a volume element small compared
For example, in this framework the EM equations have thgo the relevant wavelength, but large compared to the indi-

following general form: vidual grains/pores of the solid.
The time-domain expression far becomes
ﬁVi 1 5p
pi> a,D" WF—VHO. K_E b)\D)\[E}:_v'V' t b
v A n _
: ) a(w)—»ao( T 1), (14)

Another way to tackle this problem is to consider the
asymptotic expressions of( w) andB8(w), whenw tends to
zero or to infinity, which are generally very simple functions
of w.

wherel is the unit operator ané, *g(t)=[5g(t’)dt’. For a
wave traveling along the directiorxQthe generalized forms
of EM equations in the time domain are now

o no ap vy Ip av

prag g+ q V=" and (- e=— o (19

IIl. WAVE EQUATIONS IN THE TIME DOMAIN Ix Ka dt X’

The fact that more than one time-domain equation mustn this approximation, the Euler equation expresses the bal-
be considered, one equation for each particular range of frednce between the driving forces of the wave, the drag forces
quencieS, appears to be the drawback of this approach_ Of(i)V/ko due to the flow resistance of the material and the
course, it would be better to have only one model to describéhertial forces.
the sound propagation in the whole time domain. However, ~The wave equation is derived from these two relations
we know that the relative importance of the effects responby elementary manipulations,
sible for the behavior of a fluid in a porous media is signifi- 2 A v
cantly modified when the frequency goes from zero to high ~~ _ 5”7~ _4Z-_—
values. In this case it seems reasonable that the physics laws x> at? ot
which govern the wave propagation may be quite differen
from one domain to the other. We now consider the cases o
low- and high-frequency responses. pragy

Ky '’

0. (16)

he first coefficient of this equation,

17
A. Low-frequency approximations leads to the sound velocitg=a"? in the air filling the

The range of frequencies such that viscous skin thickstructure of the material. This result shows that the viscous
nessé=(27n/wpy)Y'? is much larger than the radius of the forces and the shape of the pores increase the fluid density by
poresr, the factoray=1. The second coefficient,
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noy When the wave propagates along the coordinate axigite

d= kO_K’ (18) EM equations are generalized as follows in the time domain:
a
is the damping-distortion term due to viscous and thermal o piaL| 7 V2 re gvlot’ ,_9p
effects which take place in the porous material. From these pf““E“LZ A 7o N Fdt'=— v
) " : : L Pt eyt
equations it is possible to estimatg and the flow resistivity (25)
o= nlky. At very low frequency, the asymptotic expressions
for a(w) and B(w) are 1op, 'y—l( n )1’2ft ap/at’dt,_ v
(@~—2, o) ag T KATTER e
a(w)~ ———, w)=~="y.
jopiko y (26)
In this range of frequencies, EM equations become A consequence of this is a surprising result: the retarding
force is no longer proportional to the time derivative, it is
7l_¢V: P g LN (20 found to be proportional to a fractional derivative of order
Ko X K, dt ax’ 1/2 of the acoustic velocity. This occurs because the volume

where the Euler equation is reduced to the Darcy’s IaV\P]c ﬂ.Uid part_igipating in the motion is not the same for all
motion, as it is for a fully developed steady flow. The phe-

which defines the static flow resistivity= 5/ky. The fields b q db ideri h | f
which are varying in time, the pressure, the acoustic velocitynomena maly be understood by considering such a volume o

etc., follow a diffusion equation with the diffusion constant fluid in a pore to .be in harmonic mqtlon. At a higher fre-
quency, only a thin boundary layer is excited: the average

_ Kako shear stress is high. At a lower frequency, the same ampli-
oy’ tude of the fluid motion allows a thicker layer of fluid to
participate in the motion, and consequently the shear stress is
less. The penetration distances of the viscous forces and
therefore the excitation of the fluid depend on the frequency.
In the time domain, such a dependence is associated with a
fractional derivative. The generalized mass conservation
equation is interpreted in the same way. In these equations,
the convolutions express the dispersive nature of the porous
When the frequency increases, the skin thickness bematerial. They take into account the memory effects due to
comes narrower and the viscous effects are concentrated inyge fact that the response of the medium to the wave excita-
small volume near the fram&r <1. In this case, the viscous tjon is not instantaneous but needs some time to take place.
effects in the fluid can be neglected: the fluid behaves almost The wave equation is derived from these two relations

A quite similar result is given by Johnson in Ref. 14. How-
ever, the adiabatic constagtdoes not appear in Johnson’s
model in which the thermal expansion is neglected.

B. High-frequency approximation

like a perfect fluid(without viscosity. by elementary calculation and can be written as
At high frequencies the compression/dilatation cycle is
much faster than the heat transfer between the air and the °v v t §%vlot'? v

'—C—=0, 27)

structure, and in this case, it is a good approximation to —2 A3 TB =4t at
. Do . - X ot @ \t—t

consider that the compression is adiabatic.
The high-frequency approximations of the response facwhere the coefficients are given by

tors a(w) and B(w) whenw—c0 are given by the relations

2 ” 1/2 A:pfax' B:2amwlm(i+7f;l)'
a(w)~a,| 1+ —|—— , (21 Ka Ka T \A - JPrA’
Al jops
2('}’_ 1)/ ) 1/2 C:4am(7_ 1)77
Blo)~1+— \jwprpf) (22 KaAA ' JPT
. . - o 71/2 .
In the time domain, the expressions of the respomsasdg 1 he first one gives the velocity=A""* of the wave in the
become air included in the porous material. In this case the fluid

density is modified by the factat.,. The other coefficients
t 2 [ p\Y? are essentially dependent on the characteristic lenytaad
“(w)—’aoo<5(t)+K p_) t_llz)*1 (23) A’ and express the viscous and thermal interactions be-
' tween the fluid and the structure. The knowledge of these
2(y—=1)[ 7 \¥? i three coefficients allows the determination of the three pa-
T( ) t x, (249 rametersa.,, A and A’. This can be achieved from the
measurements of the damping and broadening of ultrasonic
where * denotes the time convolution aaft) is the Dirac  pulses during the propagation in the porous medium.
function. The tortuosityr., is real-valued and defined as in With this model, one can hope to get an easier estima-
Eq. (13) but from the field of the microscopic velocit(r) tion of the characteristic lengths than for example Ref. 16. In
in a perfect fluid. Browf? has shown that this quantity is this paper, the characteristic lengths are deduced from the
related to the electrical formation factét by «.=F¢. high-frequency asymptotic behavior of either the velocity or

t

B(w)—| 8(t)+

Prps
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05 T the low frequencies. Figure 2 presents numerical simulations
input signal | for two values of theB coefficient of Eq.(27). Warping of

the input signal is mainly due to this effefThe contribution

of the other term of Eq(27) is not significanfl Other nu-

035 | x=1 cm ; merical applications and comparisons with experimental re-
0al ] sults will be given in Ref. 17. Accordingly, it seems possible
to get the specific contribution of viscous and thermal effects
to the spreading and attenuation of ultrasonic pulses by stan-
dard inverse scattering methods.

045 |

04 |

025 |

02

015 |

wave amplitude

IV. CONCLUSION

01
In this paper the time-domain equations for the transient
wave propagation in a porous medium have been derived in
the low- and high-frequency ranges. In each range, the coef-
) ficients of the wave equation are no more frequency depen-
time (s) dent, and viscous and thermal effects can be distinguished.
, _ _ _ At very low frequency, the viscous forces and the thermal
FIG. 1. Space evolution of a Gaussian pulse in a porous medium. The
medium parameters are those of the polyrethan foam Bulpren R60, manﬁa-XChang?S are strong enF)UQh to .prevent thg waves from
factured by Recticela,.=1.04, $=0.98, A =2x10"4 m, A’ =5X10"* m, propagating in these materials: the field’s evolution follows a
o=2850 Nnm*s. diffusion equation. At low frequency the damping is weaker
and the fields can propagate. In the high-frequency range, the
the attenuation curves which allow only the determination of¥ave propagation is desc”t,’ed by hereditary mechaplcs. A‘Q’, a
the lengthL =[ A+ (y—1)(VPrA’~1]~L. In this case, the consequence of the relaxation phenomenon, the fluid density

estimation of the characteristic lengths needs the data otﬁnd the bulk modulus are no longer constant numbers but

tained from the dispersion curves in air- and helium—filledthey_l_‘";l]re 5|gn|f;tl d?penlc_jent. ical simulati tend t
materials. On the contrary, by using inverse scattering meth- . € results of preliminary numerical simulations tend to
ods, the time-domain approach provides the vischuand Indicate that studies of the propagation of transient waves

the thermalA’ characteristic lengths from the coefficiefts may yield useful data. Ultrasom_c impulses seem tq be an
andC of Eq. (27). On the other hand, Eq27) is well suited efficient tool to probe the properties of sound absorbing ma-

for analytical solutions and numerical applications. Figure 1ter|als. Last, the time-domain wave equations have a well

shows the evolution of a Gaussian pulse in an air-filled po_adapted form for the analysis of the direct and inverse scat-

rous medium as a time function. These results are obtainett?rlng problems.

by convolution of the Green'’s function of ER7) with the

pulse. During the propagation, the pulse gets wider while itéA‘CK'\'OV\”‘EDGME'\ITS

amplitude decreases; the result is a warped Gaussian pulse The authors express their thanks to Professor B. Cast-

due to the combined effects of dispersion and attenuatioagnele, and Professor M. Fellah and Dr. D. Lafarge for use-

where high frequencies are faster but more attenuated th&nl comments. They are indebted to the referees for careful
reading of the manuscript and for many suggestions on im-
proving its presentation.
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