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By recording scenes from multiple viewpoints, Light Field Image (LFI) encompasses both angular and spatial information, thereby offering users a more immersive experience. Since LFIs may be distorted at various stages from acquisition to visualization, Light Field Image Quality Assessment (LFIQA) is of vitally important to monitor the potential impairments of LFI quality. However, existing objective LFIQA metrics fail to establish a reasonable correlation between spatial and angular information in LFIs, especially ignoring the imbalance problem of large spatial variations and subtle angular variations, which results in unsatisfactory quality evaluation performance. To alleviate this imbalance, in this paper, we propose a novel Blind LFIQA metric based on Angular-Spatial Effect Modeling, abbreviated as ASEM-BLiF. Specifically, the proposed metric consists of two branches. In the principal branch, we first present an Angular Effect Modeling (AEM) module to capture the angular information independently of spatial information. Based on AEM, we further design an Angular-Spatial Quality Learning (ASQL) module to model the local angular-spatial effect and establish the global relationship between different local regions for quality assessment via Transformer. In the auxiliary branch, a Discriminative Region Selection (DRS) module is proposed for auxiliary learning to improve the learning efficiency and prediction accuracy from a local perspective. Moreover, we present a Dynamic Weighting Loss (DWLoss) to achieve an optimal balance between principal and auxiliary learning throughout training. To demonstrate the effectiveness of the proposed metric, extensive experiments are conducted on five publicly available LFIQA databases with a variety of metrics.

The experimental results show that compared to our previous work DeeBLiF, the current state-of-the-art LFIQA metric, our proposed ASEM-BLiF metric achieves 5.67%, 7.75%, 5.96%, 4.44%, and 0.33% SROCC performance improvements in quality assessment on the Win5-LID, NBU-LF1.0, LFDD, VALID10bit, and SHU databases, respectively. The code will be publicly available.

I. INTRODUCTION

T HE EMERGENCE of Light Field Image (LFI) enables a wide range of immersive broadcasting scenes [START_REF] Kara | Evaluation of the concept of dynamic adaptive streaming of light field video[END_REF], [START_REF] Sawahata | Estimating angular resolutions required in light-field broadcasting[END_REF], from which many attrIEEEdraft,active applications are emerged, such as post-capture image editing [START_REF] Wang | Selective light field refocusing for camera arrays using Bokeh rendering and superresolution[END_REF], [START_REF] Bishop | The light field camera: Extended depth of field, aliasing, and superresolution[END_REF], deocclusion [START_REF] Pei | All-in-focus synthetic aperture imaging using image matting[END_REF], [START_REF] Wang | Effective light field deocclusion network based on Swin transformer[END_REF], and reflectance estimation [START_REF] Wang | SVBRDFinvariant shape and reflectance estimation from light-field cameras[END_REF], [START_REF] Zhou | Shape and reflectance reconstruction using concentric multi-spectral light field[END_REF]. By encoding intensity and directions of light rays into a 4D representation [START_REF] Levoy | Light field rendering[END_REF], the LFI can be described by a biplane model L (u, v, h, w). In this model, (u, v) denote different angular viewpoints to record the same scene, while (h, w) record the spatial information of each viewpoint, i.e., Sub-Aperture Image (SAI). In the process of compression [START_REF] Huang | Prediction-oriented disparity rectification model for geometry-based light field compression[END_REF], reconstruction [START_REF] Wu | Spatial-angular attention network for light field reconstruction[END_REF], and display [START_REF] Paudyal | Perceptual quality of light field images and impact of visualization techniques[END_REF], LFIs containing extra angular information inevitably suffer from various distortions, which are quite different from those in other image types [START_REF] Zhai | Perceptual image quality assessment: A survey[END_REF], [START_REF] Min | Screen content quality assessment: Overview, benchmark, and beyond[END_REF]. This further affects the quality of the user's visual experience [START_REF] Paudyal | Toward the perceptual quality evaluation of compressed light field images[END_REF]. Light Field Image Quality assessment (LFIQA) has thus become an imperative in monitoring the visual quality of LFIs.

At present, quality assessment can be classified into two categories: subjective and objective. Subjective methods directly collect the human ratings for each viewed image, and are thus treated as the most reliable way to obtain the quantitative perceptual quality [START_REF]Subjective Video Quality Assessment Methods for Multimedia Applications[END_REF]. Nevertheless, subjective methods are extremely time-consuming and labor-intensive, and difficult to be employed in real-time systems. Instead, objective metrics design computational models to evaluate the perceptual quality automatically, with the aim of being effective substitutes for subjective methods. In recent years, a wealth of objective LFIQA metrics have been proposed [START_REF] Alamgeer | A survey on visual quality assessment methods for light fields[END_REF]. However, despite the remarkable achievements, the prediction accuracy of objective LFIQA metrics is still far from ideal due to various factors. First, the characteristics of LFIs vary slightly depending on the capture hardware (e.g., LFIs captured by the multi-camera array [START_REF] Wilburn | High performance imaging using large camera arrays[END_REF] have larger angular disparity than that captured by the light field camera [START_REF] Ng | Light field photography with a hand-held plenoptic camera[END_REF]), which increases the difficulty of designing a general LFIQA metric. Further, LFIs can be visualized in different representations due to its high-dimensional nature, which also brings more challenges to LFIQA. More importantly, the inherently narrow parallax of LFIs results in subtle differences between adjacent angular views. This characteristic causes complex and idiosyncratic visual effect, and thus sets LFIQA metrics apart from traditional 2DIQA metrics [START_REF] Venkatanath | Blind image quality evaluation using perception based features[END_REF], [START_REF] Mittal | Making a 'completely blind' image quality analyzer[END_REF], [START_REF] Li | No-reference quality assessment for multiply-distorted images in gradient domain[END_REF], [START_REF] Mittal | No-reference image quality assessment in the spatial domain[END_REF], [START_REF] Min | Blind quality assessment based on pseudo-reference image[END_REF], [START_REF] Min | Blind image quality estimation via distortion aggravation[END_REF], 3DIQA metrics [START_REF] Xu | No-reference stereoscopic image quality assessment based on saliency-guided binocular feature consolidation[END_REF], [START_REF] Liu | Binocular spatial activity and reverse saliency driven no-reference stereopair quality assessment[END_REF], [START_REF] Chen | Blind stereoscopic video quality assessment: From depth perception to overall experience[END_REF], [START_REF] Shao | Blind image quality assessment for stereoscopic images using binocular guided quality lookup and visual codebook[END_REF], and multi-view IQA metrics [START_REF] Tian | NIQSV: A no reference image quality assessment metric for 3D synthesized views[END_REF], [START_REF] Tian | NIQSV+: A no reference synthesized view quality assessment metric[END_REF], [START_REF] Gu | Multiscale natural scene statistical analysis for no-reference quality evaluation of DIBR-synthesized views[END_REF].

Existing objective LFIQA metrics can be categorized into Full-Reference (FR), Reduced-Reference (RR), and No-Reference/blind (NR). Among them, the FR/RR LFIQA metrics are fully/partially based on the undisturbed information derived from reference LFIs. In contrast, the blind LFIQA metrics without using reference information are more feasible for most real-world scenarios. In the domain of blind LFIQA, many previous studies [START_REF] Zhou | Tensor oriented no-reference light field image quality assessment[END_REF], [START_REF] Pan | Combining tensor slice and singular value for blind light field image quality assessment[END_REF], [START_REF] Xiang | No-reference light field image quality assessment using four-dimensional sparse transform[END_REF] have shown that the blind LFIQA metrics need to consider the additional effect of angular discontinuity on spatial quality. The handcrafted feature-based blind LFIQA metrics typically extract Natural Scene Statistic (NSS) features from angular and spatial aspects, respectively, and then combine these features to assess the perceptual quality of LFIs. Obviously, these metrics fail to establish a deep relationship between angular and spatial information for quality evaluation. More recently, some researchers (e.g., [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF]) attempted to extract angular and spatial features in a unified deep learning-based framework, aiming to establish a deeper relationship between these two features. For this goal, current deep blind LFIQA metrics generally adopt two pipelines. One pipeline is to first extract spatial features from each viewpoint image (i.e., SAI), and then fuse all spatial features based on angular characteristics. This pipeline has two disadvantages. First, the computational complexity is very high since spatial feature extraction is employed for all SAIs. Second, original angular information will be lost after spatial feature extraction. The other pipeline is to simultaneously extract angular and spatial features from the low-dimensional representations of LFIs, such as Epipolar Plane Image (EPI). The weakness of this pipeline also lies in two aspects. First, whether the quality of LFIs can be adequately reflected by its low-dimensional representations is still unclear. Second, the resulting features are dominated by spatial information since spatial variations are much larger than angular variations. Although angular information is important, existing metrics based on the above two pipelines more or less ignore the angular effect on spatial quality, resulting in unsatisfactory quality evaluation performance. Therefore, how to effectively and elegantly model the angular-spatial effect in the design of deep blind LFIQA metrics still deserves further investigation.

Enlightened by the above analyses, in this paper, we develop a new deep blind LFIQA metric by effectively modeling the angular-spatial effect of LFIs. Different from previous works, the underlying design principle of the proposed metric is to minimize the imbalance of large spatial variations and subtle angular variations, and preserve the angular effect in the original information for subsequent angular-spatial effect modeling. Specifically, we first model the angular effect of different viewpoints without introducing spatial information, to prevent the loss of angular information. After that, we model the local angular-spatial effect and establish the global relationship between different local regions to predict the global quality. In addition, angular-spatial effect is more pronounced in some local regions [START_REF] Meng | Objective quality assessment of lenslet light field image based on focus stack[END_REF], [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF], and the quality of these regions is more consistent with the global quality, which facilitates the quality-aware feature learning. To this end, we propose to utilize the discriminative local regions for auxiliary learning to improve the learning efficiency and prediction accuracy. Further, considering that the relationship between principal and auxiliary learning directly affects the training outcome, a reasonable weighting scheme throughout training is a prerequisite for achieving better result. The contributions of this paper are summarized as follows.

• We propose a novel blind LFIQA metric named ASEM-BLiF, which effectively models the angular-spatial effect by addressing the imbalance problem between angular and spatial information. Specifically, we first present an Angular Effect Modeling (AEM) module to capture the angular information independently of spatial information, and then model the angular-spatial effect for quality assessment via Angular-Spatial Quality Learning (ASQL). Section II describes the related works. Section III introduces the proposed metric in detail. Section IV exhibits the experimental results. In Section V, conclusions will be drawn.

II. RELATED WORKS

A. Representations of LFIs

As aforementioned, the LFI can be described by a biplane model L(u, v, h, w), but it is still difficult to imagine this 4D format. A solution to this challenge is to observe the underlying data along with a subset of dimensions. To this end, an LFI can be visualized in several low-dimensional representations [START_REF] Wu | Light field image processing: An overview[END_REF], [START_REF] Conti | Dense light field coding: A survey[END_REF], and they are summarized as follows.

• Sub-Aperture Image (SAI). Taking the uv plane as a set of camera views and the hw plane as their focal plane, an LFI can be represented as a 2D array of pinhole views, and each view is a 2D image called SAI. • Pseudo Video Sequence (PVS). PVS is a 3D representation of the LFI, created by arranging each SAI as a frame and displaying all SAIs in a certain order. • Refocused Image (RI). A 2D refocused image containing focus and defocus regions is generated by superimposing multi-views with a specific slope related to the disparity.

B. Quality Assessment of LFIs

The FR/RR LFIQA metrics [START_REF] Meng | Objective quality assessment of lenslet light field image based on focus stack[END_REF], [START_REF] Tian | A multi-order derivative feature-based quality assessment model for light field image[END_REF], [START_REF] Fang | Light filed image quality assessment by local and global features of epipolar plane image[END_REF], [START_REF] Min | A metric for light field reconstruction, compression, and display quality evaluation[END_REF], [START_REF] Meng | Full reference light field image quality evaluation based on angular-spatial characteristic[END_REF], [START_REF] Tian | A light field image quality assessment model based on symmetry and depth features[END_REF], [START_REF] Tian | Light field image quality assessment via the light field coherence[END_REF], [START_REF] Huang | Light field image quality assessment using contourlet transform[END_REF], [START_REF] Huang | A spatial and geometry feature-based quality assessment model for the light field images[END_REF], [START_REF] Meng | Image quality evaluation of light field image based on macro-pixels and focus stack[END_REF], [START_REF] Ma | Light field image quality assessment using natural scene statistics and texture degradation[END_REF], [START_REF] Paudyal | Reduced reference quality assessment of light field images[END_REF], [START_REF] Xiang | Pseudo light field image and 4D Wavelet-transform-based reduced-reference light field image quality assessment[END_REF] evaluate the perceptual quality of distorted LFIs by using the full/partial reference information. For example, Fang et al. [START_REF] Fang | Light filed image quality assessment by local and global features of epipolar plane image[END_REF] propose a FR LFIQA metric by calculating the similarity between the gradient magnitudes of reference and distorted SAIs and EPIs. Paudyal et al. [START_REF] Paudyal | Reduced reference quality assessment of light field images[END_REF] present a RR metric for LFIQA, in which the depth map similarity between reference and distorted LFIs is exploited as the predicted quality score. However, the practical application of FR/RR LFIQA metrics is very limited because reference LFIs are often not available, the research of blind LFIQA metrics has thus received more attention.

The traditional handcrafted feature-based blind LFIQA metrics [START_REF] Zhou | Tensor oriented no-reference light field image quality assessment[END_REF], [START_REF] Pan | Combining tensor slice and singular value for blind light field image quality assessment[END_REF], [START_REF] Xiang | No-reference light field image quality assessment using four-dimensional sparse transform[END_REF], [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF], [START_REF] Shi | BELIF: Blind quality evaluator of light field image with tensor structure variation index[END_REF], [START_REF] Shi | No-reference light field image quality assessment based on spatial-angular measurement[END_REF], [START_REF] Ak | No-reference quality evaluation of light field content based on structural representation of the epipolar plane image[END_REF], [START_REF] Xiang | VBLFI: Visualization-based blind light field image quality assessment[END_REF], [START_REF] Xiang | No-reference light field image quality assessment based on depth, structural and angular information[END_REF], [START_REF] Liu | Pseudoreference subaperture images and microlens image-based blind light field image quality measurement[END_REF], [START_REF] Lamichhane | No-reference light field image quality assessment exploiting saliency[END_REF], [START_REF] Chai | Blind quality evaluator of light field images by group-based representations and multiple plane-oriented perceptual characteristics[END_REF] generally extract angular and spatial NSS features, and then utilize non-linear regression models [START_REF] Chang | LibSVM: A library for support vector machines[END_REF] to produce the quality score. For example, Shi et al. [START_REF] Shi | BELIF: Blind quality evaluator of light field image with tensor structure variation index[END_REF] design a Blind quality Evaluator of Light Field image (BELIF), in which the principal component of cyclopean image array is firstly generated, then the naturalness and structural similarity index are extracted to assess the spatial and angular quality degradation, respectively. Shi et al. [START_REF] Shi | No-reference light field image quality assessment based on spatial-angular measurement[END_REF] further propose a blind LFIQA metric named NR-LFQA, in which the spatial and angular quality are measured based on the naturalness distribution features of the cyclopean image array and the global and local features of EPIs, respectively. Zhou et al. [START_REF] Zhou | Tensor oriented no-reference light field image quality assessment[END_REF] present a Tensor orientedbased blind LFIQA metric called Tensor-NLFQ, which adopts Tucker decomposition to obtain the principal components of four oriented SAI stacks, the global naturalness and local frequency features are extracted to evaluate the spatial quality, and the structural similarity distributions are used to measure the angular consistency. Xiang et al. [START_REF] Xiang | VBLFI: Visualization-based blind light field image quality assessment[END_REF] propose a Visualization-based Blind quality assessment metric for LFIs (VBLFI), which calculates the mean difference image of LFIs and evaluates the perceptual quality using Curvelet transform. Based on VBLFI, Xiang et al. [START_REF] Xiang | No-reference light field image quality assessment based on depth, structural and angular information[END_REF] additionally measure the angular quality deterioration on EPIs. Further, Xiang et al. [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF] propose a blind LFIQA metric (PVRI) based on PVS and RIs, in which the angular quality is measured from the structure, motion and disparity information of PVS, and the spatial quality is evaluated from the depth and semantic information of RIs. Pan et al. [START_REF] Pan | Combining tensor slice and singular value for blind light field image quality assessment[END_REF] also employ Tucker decomposition on LFIs, and then utilize the sharpness and distribution information of tensor slice and the percentage of singular value to measure the quality deterioration in spatial and angular domains, respectively. Chai et al. [START_REF] Chai | Blind quality evaluator of light field images by group-based representations and multiple plane-oriented perceptual characteristics[END_REF] perform quality assessment by measuring angular consistency and spatial-angular features with texture and structure descriptors. Although the handcrafted feature-based blind LFIQA metrics take into account the angular inconsistency, they have limitation in establishing a deep connection between angular and spatial information for measuring quality degradation.

With the explosive development of deep learning, some deep blind LFIQA metrics [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF], [START_REF] Guo | No-reference deep quality assessment of compressed light field images[END_REF], [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF], [START_REF] Fu | A light field image quality assessment method based on stereo vision[END_REF] have been designed to extract angular and spatial features in a unified framework. As mentioned before, existing deep blind LFIQA metrics often follow two pipelines. Guo's metric [START_REF] Guo | No-reference deep quality assessment of compressed light field images[END_REF] is the representative work of the first pipeline, in which spatial feature extraction is first employed on each SAI, and then angular information is exploited to fuse spatial features of different SAIs. However, the first pipeline is not only computationally inefficient, but also suffers from the loss of angular information. On the contrary, several existing deep blind LFIQA metrics adopt the second pipeline, which simultaneously extracts angular and spatial features from the low-dimensional representations of LFIs. For example, Zhao et al. [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF] propose a Deep Light Field Image Quality Evaluator (DeLFIQE), in which 2D discriminative EPI patches containing both angular and spatial information are first generated, and then a Convolutional Neural Networkbased (CNN-based) model is designed for feature extraction and quality assessment. Similarly, Alamgeer and Farias [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF] propose a deep blind LFIQA metric named DNNF-LFIQA, which extracts CNN features from 2D horizontal and vertical EPIs in the frequency domain. Our previous work DeeBLiF [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF] first generates 2D spatio-angular patches from LFIs, and then extracts angular and spatial features via a two-stream CNN model for quality evaluation. Fu et al. [START_REF] Fu | A light field image quality assessment method based on stereo vision[END_REF] develop a Stereo vision-based LFIQA metric called SvLFIQA. This metric explores the local quality and local significance of light field cyclopean image patches to predict the LFI quality. However, these metrics employing the second pipeline still have two disadvantages: First, the relationship between the generated low-dimensional representations and the LFI quality is unclear. Second, spatial information is dominant in feature extraction and quality degradation learning because spatial variations are much larger than angular variations, which leads to insufficient measurement of angular distortions.

To sum up, it can be found that all the existing deep blind LFIQA metrics take into account angular and spatial information. However, compared to previous blind LFIQA metrics (including our previous work DeeBLiF), several innovations are incorporated into the proposed ASEM-BLiF metric: First and foremost, existing metrics suffer from the imbalance problem between angular and spatial information. To alleviate this imbalance, ASEM-BLiF presents a more efficient manner for angular-spatial effect modeling, in which angular effect is modeled without introducing spatial information, and then the relationship between angular and spatial information is subsequently established for LFI quality evaluation. Besides, ASEM-BLiF utilizes local information for auxiliary learning to improve the learning efficiency and prediction accuracy, which is neglected in existing metrics. Moreover, a fixed learning function is widely adopted in state-of-the-art metrics, but ASEM-BLiF exploits a dynamic learning scheme to achieve better training outcome. Finally, comprehensive experiments 

III. PROPOSED METRIC

Fig. 1 presents the overview of the proposed ASEM-BLiF metric, which mainly consists of four components: AEM, ASQL, DRS, and DWLoss. Among them, the AEM module is used to capture the angular information independently of spatial information, while the ASQL module is designed for modeling angular-spatial effect and performing quality prediction. The design of the AEM and ASQL modules is motivated by the fact that subtle LFI angular variations are easily affected by large LFI spatial variations, which results in the loss of angular information and the reduction of the discrimination ability against angular distortions. Further, due to the lack of the consideration of local information in the quality learning process, the DRS module is explored to construct the auxiliary learning branch, aiming to improve the learning efficiency and prediction accuracy from a local perspective. Finally, considering that a reasonable weighting scheme promotes better training results, DWLoss is developed to balance the relationship between principal and auxiliary learning throughout the training process.

Let L ∈ R U×V×H×W×C denote the input SAI array of LFI, where U×V and H×W are the angular and spatial resolutions, respectively, and C denotes the RGB color channels. Inspired by [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF], we first spatially partition L into B overlapping blocks to ensure a sufficient training set, denoted as B, where S is the spatial size of the block. Then two branches are designed, the principal branch participates in both training and test stages, while the auxiliary branch is used only in the training stage. In the principal branch, the angular information of the input block is first captured by the AEM module, followed by the ASQL module for local angular-spatial effect modeling and quality prediction from a global perspective. In the auxiliary branch, the DRS module is utilized to selectively obtain discriminative regions with large angular sparsity, whose quality is subsequently predicted and exploited for auxiliary learning.

LB b ∈ R U×V×S×S×C , b = 1, 2, . . . ,
During training, a DWLoss is further employed to achieve an optimal balance between the learning of principal and auxiliary branches. In the test stage, the overall LFI quality score is obtained by averaging the predicted quality score of all blocks. All components are described in the following subsections.

A. Angular Effect Modeling (AEM)

Subtle angular variation is one of the most distinctive characteristics of LFIs [START_REF] Adhikarla | Towards a quality metric for dense light fields[END_REF]. With the final goal of modeling angular-spatial effect for quality assessment, the design of AEM module is inspired by the following two points to handle the angular information: First, to minimize the imbalance of large spatial variations and subtle angular variations, the raw angular information should be captured individually rather than captured simultaneously with spatial information. Second, angular hierarchical features extracted from different angular disparities are beneficial to encode the angular information with subtle variations.

As shown in Fig. 1(a), the proposed AEM module consists of two AEM blocks (Fig. 1(d)). In each AEM block, two subbranches with angular convolutions (Fig. 1(b)) are designed in parallel to extract angular hierarchical features without considering any spatial information. Note that, due to the low angular resolution (typically 9×9) of LFIs, the padding of all angular convolutions is set to zero to avoid introducing irrelevant information. Specifically, as shown in Fig. 1(b), the top sub-branch encodes the small angular disparity by utilizing two 3×3 angular convolutions with a dilation rate of 1, while the bottom sub-branch uses a 3×3 angular convolution with a dilation rate of 2 to encode the large angular disparity. The design motivation is to ensure that both sub-branches have the same output size, which facilitates the subsequent combination. Finally, features of these two sub-branches are concatenated and fused by a 1×1 angular convolution. Given an input block LB ∈ R U×V×S×S×C , the above process is described as,

f A = φ A (LB) (1)
where f A ∈ R S×S×C denotes the output features of the AEM module φ A (•).

B. Angular-Spatial Quality Learning (ASQL)

The main objective of ASQL module is to model the angular-spatial effect and further predict the global quality. Firstly, two residual blocks (Fig. 1(e)) based on the widelyused ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] are performed to model the local angularspatial effect. The motivation is that the angular information from multiple viewpoints is captured in the channel dimension of f A , so the angular-spatial effect can be modeled by conventional spatial convolutions (Fig. 1(c)) which simultaneously extract spatial and channel features. Note that such a feature extraction part can be easily extended by using other mainstream backbones. Here, we use only a small number of spatial convolutions for feature extraction to prevent spatial information from dominating in the angular-spatial effect. Let the above feature extraction denote as φ L (•),

f L = φ L f A (2)
where f L ∈ R m×m×d denotes the generated local angularspatial features. Here, m is equal to S/4 since we adopt two residual blocks and each block halves the spatial resolution. d denotes the depth of feature maps. However, using a small number of spatial convolutions with small receptive field inevitably lacks the consideration of global content information [START_REF] Vaswani | Attention is all you need[END_REF]. Different local regions may have different angular-spatial effect and local quality [START_REF] Meng | Objective quality assessment of lenslet light field image based on focus stack[END_REF], thus it is necessary to establish the relationship between the local regions and the global quality. To this end, we subsequently adopt the Transformer derived from DETR [START_REF] Carion | End-to-end object detection with transformers[END_REF] to achieve this goal. Specifically, we convert the generated local angularspatial features f L into a sequence of features with size m 2 ×d, where m 2 and d represent the sequence length and feature depth, respectively.

f L = f 1 ; f 2 , . . . , ; f m 2 , f L ∈ R m 2 ×d (3)
To mine the self-attention relationship between the local regions, Multi-head Self-Attention (MSA) [START_REF] Carion | End-to-end object detection with transformers[END_REF] extended from the standard Query-Key-Value-Self-Attention (QKV-SA) architecture is adopted. First, the Q, K, and V matrices are separately obtained from the input sequence f L . Note that, since the position information of local regions is lost after the operation in Eq. ( 3), an extra learnable positional embedding p e ∈ R m 2 ×d is added to the sequence before generating the Q and K matrices [START_REF] Carion | End-to-end object detection with transformers[END_REF],

Q = f L + p e W q , W q ∈ R d×d (4) K = f L + p e W k , W k ∈ R d×d (5) V = f L W v , W v ∈ R d×d ( 6 
)
where d is set to d/Y, Y is the head number of MSA, W q , W k , and W v are the linear projection matrices of Q, K, and V, respectively. Then, let x 0 denote the combination of Q, K, and V, we obtain MSA(x 0 ) as,

SA y (x 0 ) = Softmax QK T / √ d V (7) MSA(x 0 ) = Concat(SA 1 (x 0 ); • • • ; SA Y (x 0 ))W ln ( 8 
)
where W ln ∈ R d×d is the linear projection matrix used in the final step before obtaining the MSA output.

Based on MSA, the standard Transformer encoder consisting of T encoder layers is designed linearly. As shown in Fig. 1(f), each encoder layer contains MSA, Multi-Layer Perception (MLP), Dropout (Drop), Addition, and Normalization (Norm) [START_REF] Ba | Layer normalization[END_REF] operations. As a result, we generate the self-attention features x T , and further obtain the global features f G by Average (Avg) pooling,

x t = Norm(Drop(MSA(x t-1 )) + x t-1 ), t = 1, . . . , T (9) 
x t = Norm Drop MLP x t-1 + x t-1 , t = 1, . . . , T (10) 
f G = Avg(x T ), f G ∈ R 1×d , x T ∈ R m 2 ×d (11) 
Finally, two Fully Connected (FC) layers and one LeakyReLU (LReLU) activation layer are adopted for producing global quality score Q G of the input block,

Q G = FC LReLU FC f G ( 12 
)
The above processes model the local angular-spatial effect and establish the global relationship between different local regions to predict the global quality, which are viewed as the principal branch of the proposed metric.

C. Discriminative Regions Selection (DRS)-Based Auxiliary Learning

In addition to the learning of the global quality prediction in the principal branch, we further design an auxiliary branch to exploit the local angular-spatial effect f L for learning from a local perspective. As shown in Fig. 1(a), we first predict the local quality score for each spatial position of f L with two 1×1 convolutions,

Q L = Conv 1×1 f L ( 13 
)
where Q L ∈ R m×m denotes the predicted local quality scores of different spatial positions. As widely discussed in many studies [START_REF] Po | A novel patch variance biased convolutional neural network for no-reference image quality assessment[END_REF], [START_REF] Min | Unified blind quality assessment of compressed natural, graphic, and screen content images[END_REF], [START_REF] Min | Quality evaluation of image dehazing methods using synthetic hazy images[END_REF], [START_REF] Min | Objective quality evaluation of dehazed images[END_REF], when an image suffers from distortions, the quality of different regions in the image will be affected to varying degrees. In addition, since human eyes tend to focus on the anomalies, errors, and incoherent regions of an image, these low-quality regions are more likely to negatively impact the global quality. Along this vein, we argue that different regions in an LFI contain different angular-spatial effect and corresponding local quality, and only the quality of certain regions has a close correlation with the global LFI quality. Therefore, adopting all region quality as supplementary information for learning will be detrimental to the training process (see Section IV-F). As a result, we propose a DRS module and utilize discriminative regions for auxiliary learning to improve the learning efficiency and prediction accuracy. Since the angular-spatial effect denotes the effect of angular inconsistent on spatial quality, regions with large angular sparsity are regarded as discriminative regions in our metric, which contain strong angular-spatial effect [START_REF] Meng | Objective quality assessment of lenslet light field image based on focus stack[END_REF], [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF]. As shown in Fig. 1(a), for an input block LB, the grayscale SAI array, denoted as G ∈ R U×V×S×S , is first generated. Then the angular horizontal difference D hor u,v and angular vertical difference D ver u,v between adjacent SAIs are calculated as,

D hor u,v = G u+1,v -G u,v (14) D ver u,v = G u,v+1 -G u,v (15) 
where u = 1, . . . , U-1, v = 1, . . . , V-1, and G u,v denotes the SAI of (u, v) angular viewpoint in G.

Then the angular gradient SAI array G ∈ R (U-1)×(V-1)×S×S is calculated as,

G u,v = D hor u,v 2 + D ver u,v 2 (16) 
where G u,v denotes the SAI of (u, v) angular viewpoint in G. Then we combine different angular viewpoints in G to G a ∈ R S×S using angular average pooling ψ A (•),

G a = ψ A (G) = 1 (U -1)(V -1) U-1 u=1 V-1 v=1 G u,v (17) 
The generated G a has the same spatial resolution as the input LB and stores the angular sparsity by recording the gradient intensity, in which regions with larger gradient intensity are more pronounced to have stronger angular-spatial effect. In order to select discriminative regions corresponding to Q L with spatial resolution m×m, we further reduce the spatial resolution of G a by applying spatial average pooling ψ S (•) for non-overlapping (S/m)×(S/m) regions,

G s = ψ S (G a ) ( 18 
)
where G s ∈ R m×m is the gradient intensity corresponding to Q L . Let G N s denote the assembly of N (0< N < m 2 ) discriminative regions with the largest gradient intensity in G s , the angular-spatial effect of these regions can be exploited to improve the quality-aware feature learning. Here, N is a hyperparameter and its effect on the performance of the proposed metric will be further discussed in Section IV-F). Correspondingly, the predicted local quality scores of these discriminative regions are denoted as Q N L .

D. Dynamic Weighting Loss (DWLoss)

The training of the auxiliary branch is driven by minimizing the differences between the local quality scores Q L of discriminative regions N and the Mean Opinion Score (MOS) label Q MOS , based on the Mean Square Error (MSE) function,

L a = 1 N 1 B s N n=1 B s i=1 Q n ,i L -Q i MOS 2 ( 19 
)
where L a denotes the loss function of the auxiliary branch, B s represents the batch size.

Similarly, the loss function of the principal branch is defined based on the MSE between global quality scores Q G and the MOS label Q MOS ,

L p = 1 B s B s i=1 Q i G -Q i MOS 2 ( 20 
)
where L p denotes the loss function of the principal branch.

Intuitively, the easiest way to construct the final loss function is to add L p and L a according to fixed weights [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], [START_REF] Guo | No-reference deep quality assessment of compressed light field images[END_REF]. However, this naive way is suboptimal in our proposed metric. This is mainly attributed to the fact that the auxiliary branch is only involved during training, while the final training objective of our metric is the principal branch. In addition, the learning of local angular-spatial effect should serve as the basis for the learning of global quality prediction. Based on such a hypothesis, the auxiliary branch should be biased at the early training stage, while the principal branch should be prominent at the late training stage. As a result, we design a DWLoss to assign dynamic learning weights for principal and auxiliary branches,

DWLoss = Ep c Ep t L p + 1 - Ep c Ep t L a ( 21 
)
where Ep c and Ep t denote the number of current and total epochs, respectively. At the beginning of the training process, the proposed DWLoss assigns the largest weight to the auxiliary branch, aiming to learn the angular-spatial effect from a local perspective. Subsequently, the weight of the auxiliary branch gradually decreases, while the weight of the principal branch gradually increases. Finally, the global quality prediction is dominant at the end of the training, leading to better training result than the naive way.

E. Implementation Details

We implement the proposed metric using Pytorch library, with the hardware configurations of Intel i7-10700 CPU, NVIDIA GeForce RTX 3080 GPU, and 64G RAM Memory. Our metric is trained for 50 epochs, and the model of the last epoch is used to report the performance. The model parameters are updated using a mini-batch Stochastic Gradient Descent (SGD) optimizer with a weight momentum of 0.9 and a decay of 0.0001 [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF]. The model is trained from scratch with the batch size of 8 and the learning rate of 0.001. In order to ensure a large enough training set and avoid excessive overlap between different blocks, we spatially partition each This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Accepted manuscript

LFI into 25 blocks (i.e., B=25) with spatial size 112×112 (i.e., S=112). No other data augmentation methods are used except horizontal flipping. The number of the selected discriminative regions is set to 20. The head number of MSA is set to 8, while the encoder layer number T is set to 4. All input blocks cropped from the same LFI use the MOS label of their source LFI as training targets [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF].

IV. EXPERIMENTS

A. Databases

In our experiments, five benchmark LFIQA databases are used, including Win5-LID [START_REF] Shi | Perceptual evaluation of light field image[END_REF], NBU-LF1.0 [START_REF] Huang | Reconstruction distortion oriented light field image dataset for visual communication[END_REF], LFDD [START_REF] Zizien | LFDD: Light field image dataset for performance evaluation of objective quality metrics[END_REF], VALID10bit [START_REF] Viola | VALID: Visual quality assessment for light field images dataset[END_REF], and SHU [START_REF] Shan | A noreference image quality assessment metric by multiple characteristics of light field images[END_REF]. Based on which, 240 distorted LFIs are generated with 5 distortion types and 6 distortion levels, including JPEG, JPEG2k, Gaussian blur, white noise, and motion blur. The MOS label ranged from 0 to 5 is presented. For all databases, the distorted LFIs generated from realworld and synthetic reference scenes are of spatial resolutions 434×625 and 512×512, respectively. The distorted LFIs from different databases have different original angular resolutions (ranging from 9×9 to 15×15). However, due to the hardware limitations of light field cameras, the quality of the edge views of LFIs is impacted to some extent. Therefore, we only use the central 9×9 angular views of LFIs for all databases in our metric.

B. Experimental Settings and Evaluation Criteria

K-fold cross-validation is adopted as the train-test split strategy to conduct our experiments. For each database, all distorted LFIs are divided into K folds according to their reference scenes, which guarantees that the scenes in the training and test sets are completely independent. Here, K is set to half of the reference scene number in each database. For example, Win5-LID database has 10 reference scenes, so K is set to 5. As a result, each fold contains the distorted LFIs from two reference scenes. In the experiments, we train the model on K-1 randomly-selected folds and test the performance on the remaining fold. Consequently, we loop through all train-test splits and take the average result as the reported performance.

To evaluate the performance, four standard criteria are adopted, including Pearson Linear Correlation Coefficient (PLCC), Spearman Rank Order Correlation Coefficient (SROCC), Kendall Rank Order Correlation Coefficient (KROCC), and Root Mean Square Error (RMSE). Among them, PLCC evaluates the linear relationship, SROCC and KROCC measure the monotonicity, and RMSE focuses on the prediction accuracy. As suggested in [START_REF]Final report from the video quality experts group on the validation of objective models of video quality assessment[END_REF], the predicted quality score is passed through a five-parameter non-linear logistic mapping function before calculating PLCC and RMSE,

Q = β 1 1 2 - 1 1 + e β 2 (Q-β 3 ) + β 4 Q + β 5 ( 22 
)
where β 1-5 are the fitting parameters, Q and Q represent the quality prediction and its non-linear mapping result, respectively.

C. Overall Performance Comparison

In this subsection, our proposed ASEM-BLiF metric is compared with plenty of state-of-the-art IQA metrics, including five blind 2DIQA metrics (PIQE [START_REF] Venkatanath | Blind image quality evaluation using perception based features[END_REF], NIQE [START_REF] Mittal | Making a 'completely blind' image quality analyzer[END_REF], GWH-GLBP [START_REF] Li | No-reference quality assessment for multiply-distorted images in gradient domain[END_REF], BRISQUE [START_REF] Mittal | No-reference image quality assessment in the spatial domain[END_REF], and BMPRI [START_REF] Min | Blind image quality estimation via distortion aggravation[END_REF]), three blind 3DIQA metrics (Xu's [26], SINQ [START_REF] Liu | Binocular spatial activity and reverse saliency driven no-reference stereopair quality assessment[END_REF], and BSVQE [START_REF] Chen | Blind stereoscopic video quality assessment: From depth perception to overall experience[END_REF]), four FR LFIQA metrics (MDFM [START_REF] Tian | A multi-order derivative feature-based quality assessment model for light field image[END_REF], Fang's [START_REF] Fang | Light filed image quality assessment by local and global features of epipolar plane image[END_REF], Min's [START_REF] Min | A metric for light field reconstruction, compression, and display quality evaluation[END_REF], and Meng's [START_REF] Meng | Full reference light field image quality evaluation based on angular-spatial characteristic[END_REF]), and eleven blind LFIQA metrics (BELIF [START_REF] Shi | BELIF: Blind quality evaluator of light field image with tensor structure variation index[END_REF], NR-LFQA [START_REF] Shi | No-reference light field image quality assessment based on spatial-angular measurement[END_REF], Tensor-NLFQ [START_REF] Zhou | Tensor oriented no-reference light field image quality assessment[END_REF], VBLFI [START_REF] Xiang | VBLFI: Visualization-based blind light field image quality assessment[END_REF], DSA [START_REF] Xiang | No-reference light field image quality assessment based on depth, structural and angular information[END_REF], PVRI [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF], TSSV-LFIQA [START_REF] Pan | Combining tensor slice and singular value for blind light field image quality assessment[END_REF], 4D-DCT-LFIQA [START_REF] Xiang | No-reference light field image quality assessment using four-dimensional sparse transform[END_REF], DeLFIQE [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], DNNF-LFIQA [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF], and DeeBLiF [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF]). Among them, DeLFIQE [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], DNNF-LFIQA [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF], DeeBLiF [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF] and our proposed ASEM-BLiF are deep learning-based metrics, while other metrics are based on handcrafted features. For fair comparison, the learning-based metrics are executed based on K-fold train-test splits, while the non-learning-based metrics are directly performed on the same test sets. For blind 2DIQA metrics, we evaluate the quality of individual SAIs and take the average as the overall LFI quality. For blind 3DIQA metrics, we average the quality of every two horizontal adjacent SAIs as the overall LFI quality. To avoid bias, we reproduce the performance of all metrics on the same hardware configurations (Section III-E), using the released codes/features and default parameter settings from the corresponding papers.

The experimental results are shown in TABLE I. It can be seen that due to the limited consideration of angular inconsistency, traditional 2D/3D IQA metrics perform much worse than LFIQA metrics in quality evaluation. In addition, due to the diversity of reference scenes, distortion types and levels of the adopted LFIQA databases, existing FR/blind LFIQA metrics generally struggle to perform well on all This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. databases. However, the proposed ASEM-BLiF metric consistently achieves SOTA results on most databases. Especially on the two most complex databases Win5-LID and NBU-LF1.0, which contain both real-world and synthetic LFIs, our metric outperforms all IQA metrics by a significant margin. In most cases, the learning-based blind LFIQA metrics can achieve competitive or even superior performance than the FR LFIQA metrics. However, on the VALID10bit database, the FR LFIQA metrics generally obtain better results than the blind LFIQA metrics. One possible reason is that the VALID10bit database contains only 100 distorted LFIs, which may be insufficient to train a well-performing blind LFIQA model. Nevertheless, our metric still yields competitive performance on the VALID10bit database compared with the FR LFIQA metrics, while outperforming other blind LFIQA metrics significantly. The overall performance further demonstrates the superiority of our metric over other state-of-the-arts. Moreover, TABLE I shows that compared with our proposed ASEM-BLiF metric, the performance of three existing deep learning-based metrics (i.e., DeLFIQE [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], DNNF-LFIQA [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF], and DeeBLiF [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF]) is quite limited, and the possible reasons behind this deserve further investigation. First, DeLFIQE executes quality evaluation using a small number of EPI patches, thus its effectiveness is significantly constrained when dealing with LFIs of low angular resolution. In DNNF-LFIQA, each LFI is treated as an individual sample, and the limited size of the LFIQA database inevitably leads to overfitting during the training process. In contrast, DeeBLiF obtains better results by addressing the aforementioned two issues. However, DeeBLiF uses symmetric branches for angular and spatial information respectively, which leads to insufficient measurement of angular distortions. The proposed ASEM-BLiF metric strives to address the imbalance problem between angular and spatial information, thereby achieving superior quality evaluation performance.
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Since K-fold cross-validation is adopted to conduct the experiments, each split has different training and test sets, resulting in different results. The average result reported in TABLE I is sensitive to outliers as it is a parametric measure of central tendency. In contrast, the median is a non-parametric measure that is robust to outliers. Therefore, we present the median PLCC/SROCC performance of blind LFIQA metrics for a more comprehensive performance comparison, as shown in Fig. 2. Here, due to the poor performance of DeLFIQE [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], we have removed it for better visualization. It can be seen that our metric still achieves outstanding performance on all databases compared to other metrics when considering the median result.

To further demonstrate the effectiveness of our metric in quality evaluation, we provide the scatter plots of the predicted quality score versus the MOS label for the best-performing handcrafted feature-based metric (4D-DCT-LFIQA [START_REF] Xiang | No-reference light field image quality assessment using four-dimensional sparse transform[END_REF]) and four deep learning-based metrics (DeLFIQE [START_REF] Zhao | DeLFIQE-A low-complexity deep learning-based light field image quality evaluator[END_REF], DNNF-LFIQA [START_REF] Alamgeer | Deep learning-based light field image quality assessment using frequency domain inputs[END_REF], DeeBLiF [START_REF] Zhang | DeeBLiF: Deep blind light field image quality assessment by extracting angular and spatial information[END_REF], and our proposed ASEM-BLiF). As shown in Fig. 3, three databases with different numbers of predictions are used. The scatter plots of the Win5-LID, NBU-LF1.0, and LFDD databases are exhibited in the top, middle, and bottom rows, with 44, 30, and 120

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. predictions each, respectively. The red line represents the perfect prediction. From the figure we can see that the predictions of our metric are more consistent with the subjective scores than other state-of-the-art metrics, demonstrating its superior ability to simulate the human visual perception.
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D. Performance Comparison of Individual Distortion Types

An excellent IQA metric should show efficacy in various distortion types. Therefore, the performance of different IQA metrics for different distortion types is investigated and compared in this subsection. The experiments are performed on the Win5-LID and NBU-LF1.0 databases based on K-fold train-test strategy. Here we do not consider two CNN-based distortions in the Win5-LID database because both of them have only one distortion level. Due to the space constrains, we only provide the SROCC performance in distortions. A possible explanation is that the availability of reference information can greatly help to distinguish the same distortion type but different distortion levels. In addition, we can also observe that the performance of most blind LFIQA metrics exhibits significant variations as the type of distortion changes. However, our metric robustly achieves competitive performance in most distortion types. Further, in certain types of distortions, our metric significantly outperforms state-of-the-art blind LFIQA metrics, and achieves competitive performance with existing FR metrics, e.g., LN distortion in Win5-LID database and VDSR distortion in NBU-LF1.0 database. The above analyses fully demonstrate the robustness of our metric. However, the performance of JPEG2k distortion in Win5-LID database and Zhang's distortion in NBU-LF1.0 database is somewhat unsatisfactory. The reasons behind deserve deeper investigation. For JPEG2k distortion in Win5-LID database, JPEG2k distorted LFIs are generated by adopting JPEG2k on each SAI, in which angular information does not directly participate in the generation process. In this case, spatial distortion is much more severe compared to angular distortion. However, our metric focuses on modeling the angular-spatial effect dominated by angular information. This may be the reason for the suboptimal performance of JPEG2k distortion. For Zhang's distortion in NBU-LF1.0 database, Zhang's distortion is a depth estimation-based angular distortion, in which different regions in a scene have different angular reconstruction quality according to the estimated depth. However, our metric is a block-based metric and assumes that all regions are of the same quality during training, which is not conducive to evaluate Zhang's distortion. Our previous work DeeBLiF also performs unsatisfactorily on Zhang's distortion due to the same reason.

E. Performance of Cross-Database Validation

Since the generalization ability is a crucial factor for designing an effective IQA metric, we investigate the crossdatabase performance of our proposed metric in this subsection. We conduct the cross-database experiments following most previous works [START_REF] Zhou | Tensor oriented no-reference light field image quality assessment[END_REF], [START_REF] Xiang | No-reference light field image quality assessment using four-dimensional sparse transform[END_REF], [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF]. Specifically, we first train our metric on the whole Win5-LID database due to its diversity and complexity in terms of image categories and distortion types. Then, we evaluate the performance on each distortion type that is shared between the Win5-LID database and other databases, including NBU-LF1.0 (NN), LFDD (JPEG2k), VALID10bit (HEVC), and SHU (JPEG2k). The results are shown in TABLE III. We can find that our metric still performs well on HEVC and JPEG2k even when trained on another database, implying a relatively good This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. generalization ability on compression distortions. However, our metric shows relatively poor performance on the NN distortion. The reason for this result has been discussed in [START_REF] Xiang | Pseudo video and refocused images-based blind light field image quality assessment[END_REF], that is, the NN distortion is implemented differently in the Win5-LID and NBU-LF1.0 databases. For Win5-LID database, the LFI containing 9×9 SAIs is reconstructed in five different distortion levels, each of which involves 50, 40, 30, 20, and 10 randomly selected SAIs to reconstruct the LFI, respectively. For NBU-LF1.0 database, the 9×9 SAIs are first down-sampled to 5×5, 3×3, and 2×2 fixed SAIs, respectively, and then the NN interpolation is used for reconstruction. We can easily find that the distortion levels between these two databases do not overlap, which leads to relatively poor performance on the NN distortion.
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F. Ablation Studies

To further explore the effectiveness of each module of our metric, we conduct ablation experiments in this subsection. TABLE IV reports the experimental results on the Win5-LID and NBU-LF1.0 databases, where w/o is the abbreviation of without, and Aux. Learn. denotes the auxiliary learning branch. The table demonstrates a significant decrease in the performance of our metric on both databases when the AEM module is excluded, indicating the crucial role of capturing angular information for LFIQA. In addition, we can also find that using auxiliary learning without DRS module (i.e., w/o DRS) performs even worse than not using auxiliary learning (i.e., w/o Aux. Learn.). A possible explanation is that if all regions are introduced for auxiliary learning, the regions with insufficient angular-spatial information will lead to decreased performance. This demonstrates that the selected discriminative regions are necessary for auxiliary learning. Moreover, incorporating DWLoss into the training process can further promote learning towards better performance. Finally, the combination of all proposed modules culminates in enhanced effectiveness.

G. Hyperparameter Analyses

Since the performance of our metric is affected by the number of the selected discriminative regions, i.e., N, we perform hyperparameter experiments on the Win5-LID and NBU-LF1.0 databases to investigate the impact of its value. As shown in TABLE V, the performance is compared when N is set to 1, 5, 10, 20, 50, 100, 200, and w/o. Here, w/o represents that all regions are incorporated into the learning process. From the table we can see that the performance is relatively poor if the value of N is too large or too small. The main reason could be that insufficient discriminative regions lead to inadequate information for auxiliary training, while excessive discriminative regions introduce too many low-quality predictions, ultimately impeding the learning process. Therefore, in our implementation, we set N to a moderate value of 20 which yields a satisfactory performance on both Win5-LID and NBU-LF1.0 databases.

H. Time Complexity Analyses

Time complexity is an important factor for an IQA metric as it affects the efficiency and practicality of the metric in real-world applications. Therefore, we conduct an analysis of the time complexity of our metric in comparison to other state-of-the-art metrics. All metrics are executed using the same hardware configurations as mentioned in Section III-E. Following [START_REF] Zhou | Tensor oriented no-reference light field image quality assessment[END_REF], we measure the time complexity of each metric by testing a single LFI from the Win5-LID database, still within an acceptable range. Considering the outstanding performance, our proposed metric achieves a better trade-off between computational efficiency and prediction accuracy.

I. Illustrative Examples

To provide a more intuitive example of quality evaluation, we present some illustrative predictions of our proposed metric, along with four state-of-the-art metrics, on the Win5-LID, NBU-LF1.0, and LFDD databases. Due to space limitations, we only display the central viewpoint of each LFI. As shown in Fig. 4, we present a series of LFIs with diverse MOS labels, distortion types and reference scenes, along with the corresponding predictions from five metrics. It can be found that despite the diverse characteristics of LFIs, our proposed metric exhibits superior performance in accurately predicting the LFI quality compared to other metrics.

J. Discussion

The above experimental results have fully demonstrated the superiority of the proposed ASEM-BLiF metric in terms of prediction accuracy, time complexity, and robustness. To delve further in TABLE IV, it can be found that the incorporation of the AEM module contributes most to the final result, while each of the other modules (e.g., DRS and DWLoss) motivates a better training outcome and slightly improves the final performance. In other words, the performance achieved by ASEM-BLiF mainly attributed to the minimization of the imbalance caused by large spatial variations and subtle angular variations, indicating the importance of angular-spatial effect modeling in the LFIQA task. However, despite the remarkable performance of the proposed metric, two limitations can still be observed. First, the quality of all LFI blocks is assumed to be equally important during training and testing, which may not align with the principles of human visual perception, thus limiting the performance of quality evaluation. Second, the proposed metric is only applicable to 4D LFIs with two angular dimensions due to the use of angular convolutions, but not to 3D LFIs with one angular dimension, such as LFIs in [START_REF] Adhikarla | Towards a quality metric for dense light fields[END_REF].

In addition to the static LFIs, some researchers additionally capture the temporal information of light fields and generate light field videos [START_REF] Broxton | Immersive light field video with a layered mesh representation[END_REF]. In real-world scenarios, visual signals are rarely presented without any auxiliary information. They are often presented alongside other information like audio [START_REF] Min | Study of subjective and objective quality assessment of audio-visual signals[END_REF], [START_REF] Min | A multimodal saliency model for videos with high audio-visual correspondence[END_REF], [START_REF] Min | Fixation prediction through multimodal analysis[END_REF] and text [START_REF] Zhang | Blind image quality assessment via vision-language correspondence: A multitask learning perspective[END_REF], which collectively shape the user-perceived quality of experience. Therefore, in the long run, we argue that the subjective and objective quality evaluation of light fields can take these factors into consideration, to gain a comprehensive understanding of human visual perception.

V. CONCLUSION

In this paper, we propose a novel blind LFIQA metric by effectively modeling the angular-spatial effect, which is abbreviated as ASEM-BLiF. In comparison to previous works, our metric handles the angular and spatial information in a significantly distinct manner. Specifically, we first present an Angular Effect Modeling (AEM) module to capture the angular information independently of spatial information. Then, we propose an Angular-Spatial Quality Learning (ASQL) module to model the local angular-spatial effect and establish the global relationship between different local regions for quality evaluation. Considering the potential utilization of the local angular-spatial effect for learning, we further design a Discriminative Region Selection (DRS)-based auxiliary learning branch, which serves to enhance both learning efficiency and prediction accuracy. Finally, a Dynamic Weighting Loss (DWLoss) is presented to balance the relationship between principal and auxiliary learning throughout the training process. Experimental results on five widely-used LFIQA databases demonstrate that our metric outperforms state-of-the-art LFIQA metrics by a large margin in quality evaluation, while having higher computational efficiency than most blind LFIQA metrics.

Fig. 1 .

 1 Fig. 1. Overview of the proposed ASEM-BLiF metric. For better visualization, the angular resolution of the input SAI array of LFI is set to 3×3.

Fig. 2 .

 2 Fig. 2. Median PLCC (left) and SROCC (right) performance comparison of blind LFIQA metrics on five LFIQA databases.

Fig. 3 .

 3 Fig. 3. Scatter plots of the predicted quality score versus the MOS label on the Win5-LID (top row), NBU-LF1.0 (middle row), and LFDD (bottom row) databases, where the red line represents the perfect prediction.

Fig. 4 .

 4 Fig. 4. Illustrative quality predictions of the proposed ASEM-BLiF metric and four state-of-the-art metrics on the Win5-LID (top row), NBU-LF1.0 (middle row), and LFDD (bottom row) databases. Bold represents the best prediction.

TABLE I OVERALL

 I PERFORMANCE COMPARISON ON FIVE LFIQA DATABASES. EXCLUDING OUR PROPOSED METRIC, THE BEST AND SECOND-BEST PERFORMANCE ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY, WHILE THE PERFORMANCE OF OUR PROPOSED METRIC IS SHOWN IN BOLD. THE DEEP LEANING-BASED AND HANDCRAFTED FEATURE-BASED METRICS ARE MARKED WITH AND WITHOUT *, RESPECTIVELY

  TABLE II, as the PLCC/KROCC/RMSE performance show similar results. It can be observed that the FR LFIQA metrics typically perform better than the blind LFIQA metrics for individual

TABLE II SROCC

 II PERFORMANCE OF DIFFERENT DISTORTION TYPES ON THE WIN5-LID AND NBU-LF1.0 DATABASES. THE BEST TWO RESULTS ARE MARKED IN BOLD. HIT-COUNT TALLIES THE NUMBER OF TIMES EACH IQA METRIC OBTAINING A TOP-TWO RESULT. THE DEEP LEANING-BASED AND HANDCRAFTED FEATURE-BASED METRICS ARE MARKED WITH AND WITHOUT *, RESPECTIVELY.

TABLE V PERFORMANCE

 V OF DIFFERENT NUMBER OF N ON THE WIN5-LID AND NBU-LF1.0 DATABASES. BOLD REPRESENTS THE BEST PERFORMANCE

TABLE VI COMPARISON

 VI OF THE RUNTIME VERSUS THE OVERALL SROCC PERFORMANCE. BOLD REPRESENTS THE BEST PERFORMANCE. THE DEEP LEANING-BASED AND HANDCRAFTED FEATURE-BASED METRICS ARE MARKED WITH AND WITHOUT *, RESPECTIVELY

denoted as the runtime in our experiments. Although the deep learning-based metrics can be accelerated using GPU, we report the runtime of all metrics using CPU only for fair comparison. The handcrafted feature-based metrics are implemented by MATLAB, while the deep learning-based metrics are implemented by Python.

  TABLE VI shows the runtime versus the overall SROCC performance. We can see that most handcrafted feature-based blind LFIQA metrics are time-consuming and achieve unsatisfactory performance. As comparison, previous deep blind LFIQA metrics have faster running times, but still struggle to perform well in quality evaluation task. However, our proposed metric outperforms other state-of-the-art metrics with a significant margin and a relatively low time complexity, which further demonstrates the effectiveness and efficiency of our metric.Compared to the handcrafted feature-based metrics, the deep learning-based metrics consume more time on pre-processing and model training, which are also crucial factors in computational complexity that need to be investigated. Therefore, we summarize the time consumption of deep blind LFIQA metrics versus the SROCC performance on the Win5-LID database, as shown in TABLE VII. It can be found that although the training time consumption of our metric is slightly higher than that of DeLFIQE and DeeBLiF, it is

TABLE VII COMPARISON

 VII OF THE TIME CONSUMPTION VERSUS THE SROCC PERFORMANCE OF DEEP BLIND LFIQA METRICS ON THE WIN5-LID DATABASE. BOLD REPRESENTS THE BEST PERFORMANCE
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