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Blind Perceptual Quality Assessment of LFI Based
on Angular-Spatial Effect Modeling

Zhengyu Zhang , Shishun Tian , Member, IEEE, Yuhang Zhang , Graduate Student Member, IEEE,
Wenbin Zou , Luce Morin, Member, IEEE, and Lu Zhang

Abstract—By recording scenes from multiple viewpoints,
Light Field Image (LFI) encompasses both angular and spatial
information, thereby offering users a more immersive experience.
Since LFIs may be distorted at various stages from acqui-
sition to visualization, Light Field Image Quality Assessment
(LFIQA) is of vitally important to monitor the potential impair-
ments of LFI quality. However, existing objective LFIQA metrics
fail to establish a reasonable correlation between spatial and
angular information in LFIs, especially ignoring the imbalance
problem of large spatial variations and subtle angular variations,
which results in unsatisfactory quality evaluation performance.
To alleviate this imbalance, in this paper, we propose a novel
Blind LFIQA metric based on Angular-Spatial Effect Modeling,
abbreviated as ASEM-BLiF. Specifically, the proposed metric
consists of two branches. In the principal branch, we first
present an Angular Effect Modeling (AEM) module to capture
the angular information independently of spatial information.
Based on AEM, we further design an Angular-Spatial Quality
Learning (ASQL) module to model the local angular-spatial
effect and establish the global relationship between different local
regions for quality assessment via Transformer. In the auxil-
iary branch, a Discriminative Region Selection (DRS) module is
proposed for auxiliary learning to improve the learning efficiency
and prediction accuracy from a local perspective. Moreover,
we present a Dynamic Weighting Loss (DWLoss) to achieve
an optimal balance between principal and auxiliary learning
throughout training. To demonstrate the effectiveness of the
proposed metric, extensive experiments are conducted on five
publicly available LFIQA databases with a variety of metrics.
The experimental results show that compared to our previous
work DeeBLiF, the current state-of-the-art LFIQA metric, our
proposed ASEM-BLiF metric achieves 5.67%, 7.75%, 5.96%,
4.44%, and 0.33% SROCC performance improvements in quality
assessment on the Win5-LID, NBU-LF1.0, LFDD, VALID10bit,
and SHU databases, respectively. The code will be publicly
available.
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I. INTRODUCTION

THE EMERGENCE of Light Field Image (LFI) enables a
wide range of immersive broadcasting scenes [1], [2],

from which many attrIEEEdraft,active applications are
emerged, such as post-capture image editing [3], [4], de-
occlusion [5], [6], and reflectance estimation [7], [8]. By
encoding intensity and directions of light rays into a 4D rep-
resentation [9], the LFI can be described by a biplane model
L(u, v, h, w). In this model, (u, v) denote different angular
viewpoints to record the same scene, while (h, w) record the
spatial information of each viewpoint, i.e., Sub-Aperture Image
(SAI). In the process of compression [10], reconstruction [11],
and display [12], LFIs containing extra angular information
inevitably suffer from various distortions, which are quite dif-
ferent from those in other image types [13], [14]. This further
affects the quality of the user’s visual experience [15]. Light
Field Image Quality assessment (LFIQA) has thus become an
imperative in monitoring the visual quality of LFIs.

At present, quality assessment can be classified into two cat-
egories: subjective and objective. Subjective methods directly
collect the human ratings for each viewed image, and are thus
treated as the most reliable way to obtain the quantitative
perceptual quality [16]. Nevertheless, subjective methods are
extremely time-consuming and labor-intensive, and difficult to
be employed in real-time systems. Instead, objective metrics
design computational models to evaluate the perceptual qual-
ity automatically, with the aim of being effective substitutes
for subjective methods. In recent years, a wealth of objective
LFIQA metrics have been proposed [17]. However, despite the
remarkable achievements, the prediction accuracy of objective
LFIQA metrics is still far from ideal due to various factors.
First, the characteristics of LFIs vary slightly depending on
the capture hardware (e.g., LFIs captured by the multi-camera
array [18] have larger angular disparity than that captured by
the light field camera [19]), which increases the difficulty of
designing a general LFIQA metric. Further, LFIs can be visu-
alized in different representations due to its high-dimensional
nature, which also brings more challenges to LFIQA. More
importantly, the inherently narrow parallax of LFIs results in
subtle differences between adjacent angular views. This char-
acteristic causes complex and idiosyncratic visual effect, and
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thus sets LFIQA metrics apart from traditional 2DIQA met-
rics [20], [21], [22], [23], [24], [25], 3DIQA metrics [26], [27],
[28], [29], and multi-view IQA metrics [30], [31], [32].

Existing objective LFIQA metrics can be categorized
into Full-Reference (FR), Reduced-Reference (RR), and No-
Reference/blind (NR). Among them, the FR/RR LFIQA met-
rics are fully/partially based on the undisturbed information
derived from reference LFIs. In contrast, the blind LFIQA
metrics without using reference information are more feasi-
ble for most real-world scenarios. In the domain of blind
LFIQA, many previous studies [33], [34], [35] have shown
that the blind LFIQA metrics need to consider the additional
effect of angular discontinuity on spatial quality. The hand-
crafted feature-based blind LFIQA metrics typically extract
Natural Scene Statistic (NSS) features from angular and spa-
tial aspects, respectively, and then combine these features to
assess the perceptual quality of LFIs. Obviously, these met-
rics fail to establish a deep relationship between angular and
spatial information for quality evaluation. More recently, some
researchers (e.g., [36], [37]) attempted to extract angular and
spatial features in a unified deep learning-based framework,
aiming to establish a deeper relationship between these two
features. For this goal, current deep blind LFIQA metrics gen-
erally adopt two pipelines. One pipeline is to first extract
spatial features from each viewpoint image (i.e., SAI), and
then fuse all spatial features based on angular characteristics.
This pipeline has two disadvantages. First, the computational
complexity is very high since spatial feature extraction is
employed for all SAIs. Second, original angular information
will be lost after spatial feature extraction. The other pipeline
is to simultaneously extract angular and spatial features from
the low-dimensional representations of LFIs, such as Epipolar
Plane Image (EPI). The weakness of this pipeline also lies
in two aspects. First, whether the quality of LFIs can be ade-
quately reflected by its low-dimensional representations is still
unclear. Second, the resulting features are dominated by spa-
tial information since spatial variations are much larger than
angular variations. Although angular information is important,
existing metrics based on the above two pipelines more or less
ignore the angular effect on spatial quality, resulting in unsat-
isfactory quality evaluation performance. Therefore, how to
effectively and elegantly model the angular-spatial effect in
the design of deep blind LFIQA metrics still deserves further
investigation.

Enlightened by the above analyses, in this paper, we develop
a new deep blind LFIQA metric by effectively modeling the
angular-spatial effect of LFIs. Different from previous works,
the underlying design principle of the proposed metric is to
minimize the imbalance of large spatial variations and subtle
angular variations, and preserve the angular effect in the origi-
nal information for subsequent angular-spatial effect modeling.
Specifically, we first model the angular effect of different
viewpoints without introducing spatial information, to prevent
the loss of angular information. After that, we model the
local angular-spatial effect and establish the global relationship
between different local regions to predict the global quality.
In addition, angular-spatial effect is more pronounced in some
local regions [38], [39], and the quality of these regions is

more consistent with the global quality, which facilitates the
quality-aware feature learning. To this end, we propose to
utilize the discriminative local regions for auxiliary learning
to improve the learning efficiency and prediction accuracy.
Further, considering that the relationship between principal
and auxiliary learning directly affects the training outcome,
a reasonable weighting scheme throughout training is a pre-
requisite for achieving better result. The contributions of this
paper are summarized as follows.

• We propose a novel blind LFIQA metric named ASEM-
BLiF, which effectively models the angular-spatial effect
by addressing the imbalance problem between angular
and spatial information. Specifically, we first present
an Angular Effect Modeling (AEM) module to cap-
ture the angular information independently of spatial
information, and then model the angular-spatial effect for
quality assessment via Angular-Spatial Quality Learning
(ASQL).

• We design an auxiliary learning branch based on
Discriminative Region Selection (DRS) to improve the
learning efficiency and prediction accuracy from a
local perspective. Further, a Dynamic Weighting Loss
(DWLoss) is presented to balance the relationship
between principal and auxiliary learning throughout the
training process.

• We conduct extensive experiments on five representative
LFIQA databases with the state-of-the-arts. The exper-
imental results demonstrate that the proposed metric
performs better than the existing LFIQA metrics by a sig-
nificant margin, while having a faster running time than
most existing blind LFIQA metrics.

The reminder of this paper is organized as follows.
Section II describes the related works. Section III intro-
duces the proposed metric in detail. Section IV exhibits the
experimental results. In Section V, conclusions will be drawn.

II. RELATED WORKS

A. Representations of LFIs

As aforementioned, the LFI can be described by a biplane
model L(u, v, h, w), but it is still difficult to imagine this
4D format. A solution to this challenge is to observe the
underlying data along with a subset of dimensions. To this
end, an LFI can be visualized in several low-dimensional
representations [40], [41], and they are summarized as follows.

• Sub-Aperture Image (SAI). Taking the uv plane as a set
of camera views and the hw plane as their focal plane, an
LFI can be represented as a 2D array of pinhole views,
and each view is a 2D image called SAI.

• MicroLens Image (MLI). By collecting all rays from dif-
ferent viewpoints of the uv plane approaching to the hw
plane, an LFI can be visualized as a 2D image with high
spatial resolution.

• Epipolar Plane Image (EPI). By vertically stacking the
rows h from SAIs in a fixed angular row u, one can obtain
a 2D horizontal EPI. A 2D vertical EPI can be obtained
in a similar manner.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Accepted manuscript



ZHANG et al.: BLIND PERCEPTUAL QUALITY ASSESSMENT OF LFI 3

• Pseudo Video Sequence (PVS). PVS is a 3D representa-
tion of the LFI, created by arranging each SAI as a frame
and displaying all SAIs in a certain order.

• Refocused Image (RI). A 2D refocused image containing
focus and defocus regions is generated by superimposing
multi-views with a specific slope related to the disparity.

B. Quality Assessment of LFIs

The FR/RR LFIQA metrics [38], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53] evaluate the perceptual
quality of distorted LFIs by using the full/partial reference
information. For example, Fang et al. [43] propose a FR
LFIQA metric by calculating the similarity between the gra-
dient magnitudes of reference and distorted SAIs and EPIs.
Paudyal et al. [52] present a RR metric for LFIQA, in which
the depth map similarity between reference and distorted LFIs
is exploited as the predicted quality score. However, the prac-
tical application of FR/RR LFIQA metrics is very limited
because reference LFIs are often not available, the research
of blind LFIQA metrics has thus received more attention.

The traditional handcrafted feature-based blind LFIQA met-
rics [33], [34], [35], [39], [54], [55], [56], [57], [58], [59],
[60], [61] generally extract angular and spatial NSS features,
and then utilize non-linear regression models [62] to produce
the quality score. For example, Shi et al. [54] design a Blind
quality Evaluator of Light Field image (BELIF), in which the
principal component of cyclopean image array is firstly gen-
erated, then the naturalness and structural similarity index are
extracted to assess the spatial and angular quality degradation,
respectively. Shi et al. [55] further propose a blind LFIQA met-
ric named NR-LFQA, in which the spatial and angular quality
are measured based on the naturalness distribution features of
the cyclopean image array and the global and local features of
EPIs, respectively. Zhou et al. [33] present a Tensor oriented-
based blind LFIQA metric called Tensor-NLFQ, which adopts
Tucker decomposition to obtain the principal components of
four oriented SAI stacks, the global naturalness and local
frequency features are extracted to evaluate the spatial quality,
and the structural similarity distributions are used to mea-
sure the angular consistency. Xiang et al. [57] propose a
Visualization-based Blind quality assessment metric for LFIs
(VBLFI), which calculates the mean difference image of LFIs
and evaluates the perceptual quality using Curvelet transform.
Based on VBLFI, Xiang et al. [58] additionally measure the
angular quality deterioration on EPIs. Further, Xiang et al. [39]
propose a blind LFIQA metric (PVRI) based on PVS and RIs,
in which the angular quality is measured from the structure,
motion and disparity information of PVS, and the spatial qual-
ity is evaluated from the depth and semantic information of
RIs. Pan et al. [34] also employ Tucker decomposition on LFIs,
and then utilize the sharpness and distribution information
of tensor slice and the percentage of singular value to mea-
sure the quality deterioration in spatial and angular domains,
respectively. Chai et al. [61] perform quality assessment by
measuring angular consistency and spatial-angular features
with texture and structure descriptors. Although the hand-
crafted feature-based blind LFIQA metrics take into account

the angular inconsistency, they have limitation in establishing
a deep connection between angular and spatial information for
measuring quality degradation.

With the explosive development of deep learning, some
deep blind LFIQA metrics [36], [37], [63], [64], [65] have
been designed to extract angular and spatial features in a
unified framework. As mentioned before, existing deep blind
LFIQA metrics often follow two pipelines. Guo’s metric [63]
is the representative work of the first pipeline, in which spa-
tial feature extraction is first employed on each SAI, and
then angular information is exploited to fuse spatial fea-
tures of different SAIs. However, the first pipeline is not
only computationally inefficient, but also suffers from the
loss of angular information. On the contrary, several exist-
ing deep blind LFIQA metrics adopt the second pipeline,
which simultaneously extracts angular and spatial features
from the low-dimensional representations of LFIs. For exam-
ple, Zhao et al. [36] propose a Deep Light Field Image
Quality Evaluator (DeLFIQE), in which 2D discriminative EPI
patches containing both angular and spatial information are
first generated, and then a Convolutional Neural Network-
based (CNN-based) model is designed for feature extraction
and quality assessment. Similarly, Alamgeer and Farias [37]
propose a deep blind LFIQA metric named DNNF-LFIQA,
which extracts CNN features from 2D horizontal and ver-
tical EPIs in the frequency domain. Our previous work
DeeBLiF [64] first generates 2D spatio-angular patches from
LFIs, and then extracts angular and spatial features via a
two-stream CNN model for quality evaluation. Fu et al. [65]
develop a Stereo vision-based LFIQA metric called SvLFIQA.
This metric explores the local quality and local signifi-
cance of light field cyclopean image patches to predict the
LFI quality. However, these metrics employing the second
pipeline still have two disadvantages: First, the relationship
between the generated low-dimensional representations and
the LFI quality is unclear. Second, spatial information is dom-
inant in feature extraction and quality degradation learning
because spatial variations are much larger than angular vari-
ations, which leads to insufficient measurement of angular
distortions.

To sum up, it can be found that all the existing deep
blind LFIQA metrics take into account angular and spatial
information. However, compared to previous blind LFIQA
metrics (including our previous work DeeBLiF), several inno-
vations are incorporated into the proposed ASEM-BLiF met-
ric: First and foremost, existing metrics suffer from the imbal-
ance problem between angular and spatial information. To
alleviate this imbalance, ASEM-BLiF presents a more efficient
manner for angular-spatial effect modeling, in which angular
effect is modeled without introducing spatial information, and
then the relationship between angular and spatial information
is subsequently established for LFI quality evaluation. Besides,
ASEM-BLiF utilizes local information for auxiliary learning
to improve the learning efficiency and prediction accuracy,
which is neglected in existing metrics. Moreover, a fixed learn-
ing function is widely adopted in state-of-the-art metrics, but
ASEM-BLiF exploits a dynamic learning scheme to achieve
better training outcome. Finally, comprehensive experiments
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Fig. 1. Overview of the proposed ASEM-BLiF metric. For better visualization, the angular resolution of the input SAI array of LFI is set to 3×3.

are conducted on five LFIQA databases, which demonstrate
the superiority of ASEM-BLiF in various aspects.

III. PROPOSED METRIC

Fig. 1 presents the overview of the proposed ASEM-BLiF
metric, which mainly consists of four components: AEM,
ASQL, DRS, and DWLoss. Among them, the AEM mod-
ule is used to capture the angular information independently
of spatial information, while the ASQL module is designed
for modeling angular-spatial effect and performing quality
prediction. The design of the AEM and ASQL modules is
motivated by the fact that subtle LFI angular variations are
easily affected by large LFI spatial variations, which results
in the loss of angular information and the reduction of the
discrimination ability against angular distortions. Further, due
to the lack of the consideration of local information in the
quality learning process, the DRS module is explored to
construct the auxiliary learning branch, aiming to improve
the learning efficiency and prediction accuracy from a local
perspective. Finally, considering that a reasonable weighting
scheme promotes better training results, DWLoss is developed
to balance the relationship between principal and auxiliary
learning throughout the training process.

Let L ∈ R
U×V×H×W×C denote the input SAI array of LFI,

where U×V and H×W are the angular and spatial resolu-
tions, respectively, and C denotes the RGB color channels.
Inspired by [64], we first spatially partition L into B over-
lapping blocks to ensure a sufficient training set, denoted as
LBb ∈ R

U×V×S×S×C, b = 1, 2, . . . , B, where S is the spa-
tial size of the block. Then two branches are designed, the
principal branch participates in both training and test stages,

while the auxiliary branch is used only in the training stage.
In the principal branch, the angular information of the input
block is first captured by the AEM module, followed by the
ASQL module for local angular-spatial effect modeling and
quality prediction from a global perspective. In the auxiliary
branch, the DRS module is utilized to selectively obtain dis-
criminative regions with large angular sparsity, whose quality
is subsequently predicted and exploited for auxiliary learning.
During training, a DWLoss is further employed to achieve an
optimal balance between the learning of principal and auxil-
iary branches. In the test stage, the overall LFI quality score is
obtained by averaging the predicted quality score of all blocks.
All components are described in the following subsections.

A. Angular Effect Modeling (AEM)

Subtle angular variation is one of the most distinctive char-
acteristics of LFIs [66]. With the final goal of modeling
angular-spatial effect for quality assessment, the design of
AEM module is inspired by the following two points to han-
dle the angular information: First, to minimize the imbalance
of large spatial variations and subtle angular variations, the
raw angular information should be captured individually rather
than captured simultaneously with spatial information. Second,
angular hierarchical features extracted from different angular
disparities are beneficial to encode the angular information
with subtle variations.

As shown in Fig. 1(a), the proposed AEM module consists
of two AEM blocks (Fig. 1(d)). In each AEM block, two sub-
branches with angular convolutions (Fig. 1(b)) are designed in
parallel to extract angular hierarchical features without con-
sidering any spatial information. Note that, due to the low
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angular resolution (typically 9×9) of LFIs, the padding of
all angular convolutions is set to zero to avoid introducing
irrelevant information. Specifically, as shown in Fig. 1(b), the
top sub-branch encodes the small angular disparity by utiliz-
ing two 3×3 angular convolutions with a dilation rate of 1,
while the bottom sub-branch uses a 3×3 angular convolution
with a dilation rate of 2 to encode the large angular dispar-
ity. The design motivation is to ensure that both sub-branches
have the same output size, which facilitates the subsequent
combination. Finally, features of these two sub-branches are
concatenated and fused by a 1×1 angular convolution. Given
an input block LB ∈ R

U×V×S×S×C, the above process is
described as,

f A = φA(LB) (1)

where f A ∈ R
S×S×C denotes the output features of the AEM

module φA(·).

B. Angular-Spatial Quality Learning (ASQL)

The main objective of ASQL module is to model the
angular-spatial effect and further predict the global quality.
Firstly, two residual blocks (Fig. 1(e)) based on the widely-
used ResNet [67] are performed to model the local angular-
spatial effect. The motivation is that the angular information
from multiple viewpoints is captured in the channel dimen-
sion of f A, so the angular-spatial effect can be modeled by
conventional spatial convolutions (Fig. 1(c)) which simultane-
ously extract spatial and channel features. Note that such a
feature extraction part can be easily extended by using other
mainstream backbones. Here, we use only a small number of
spatial convolutions for feature extraction to prevent spatial
information from dominating in the angular-spatial effect. Let
the above feature extraction denote as φL(·),

f L = φL
(
f A

)
(2)

where f L ∈ R
m×m×d denotes the generated local angular-

spatial features. Here, m is equal to S/4 since we adopt two
residual blocks and each block halves the spatial resolution. d
denotes the depth of feature maps.

However, using a small number of spatial convolutions
with small receptive field inevitably lacks the consideration of
global content information [68]. Different local regions may
have different angular-spatial effect and local quality [38], thus
it is necessary to establish the relationship between the local
regions and the global quality. To this end, we subsequently
adopt the Transformer derived from DETR [69] to achieve
this goal. Specifically, we convert the generated local angular-
spatial features f L into a sequence of features with size m2×d,
where m2 and d represent the sequence length and feature
depth, respectively.

f L = [
f 1; f 2, . . . , ; f m2

]
, f L ∈ R

m2×d (3)

To mine the self-attention relationship between the local
regions, Multi-head Self-Attention (MSA) [69] extended
from the standard Query-Key-Value-Self-Attention (QKV-SA)
architecture is adopted. First, the Q, K, and V matrices are
separately obtained from the input sequence f L. Note that,

since the position information of local regions is lost after the
operation in Eq. (3), an extra learnable positional embedding
pe ∈ R

m2×d is added to the sequence before generating the Q
and K matrices [69],

Q = (
f L + pe

)
Wq, Wq ∈ R

d×d′
(4)

K = (
f L + pe

)
Wk, Wk ∈ R

d×d′
(5)

V = f LWv, Wv ∈ R
d×d′

(6)

where d′ is set to d/Y , Y is the head number of MSA, Wq,
Wk, and Wv are the linear projection matrices of Q, K, and
V, respectively. Then, let x0 denote the combination of Q, K,
and V, we obtain MSA(x0) as,

SAy(x0) = Softmax
(

QKT/
√

d′
)

V (7)

MSA(x0) = Concat(SA1(x0); · · · ; SAY(x0))Wln (8)

where Wln ∈ R
d×d is the linear projection matrix used in the

final step before obtaining the MSA output.
Based on MSA, the standard Transformer encoder con-

sisting of T encoder layers is designed linearly. As shown
in Fig. 1(f), each encoder layer contains MSA, Multi-
Layer Perception (MLP), Dropout (Drop), Addition, and
Normalization (Norm) [70] operations. As a result, we gener-
ate the self-attention features xT , and further obtain the global
features f G by Average (Avg) pooling,

x′
t = Norm(Drop(MSA(xt−1)) + xt−1), t = 1, . . . , T (9)

xt = Norm
(
Drop

(
MLP

(
x′

t−1

)) + x′
t−1

)
, t = 1, . . . , T (10)

f G = Avg(xT), f G ∈ R
1×d, xT ∈ R

m2×d (11)

Finally, two Fully Connected (FC) layers and one
LeakyReLU (LReLU) activation layer are adopted for pro-
ducing global quality score QG of the input block,

QG = FC
(
LReLU

(
FC

(
f G

)))
(12)

The above processes model the local angular-spatial effect
and establish the global relationship between different local
regions to predict the global quality, which are viewed as the
principal branch of the proposed metric.

C. Discriminative Regions Selection (DRS)-Based
Auxiliary Learning

In addition to the learning of the global quality prediction
in the principal branch, we further design an auxiliary branch
to exploit the local angular-spatial effect f L for learning from
a local perspective. As shown in Fig. 1(a), we first predict the
local quality score for each spatial position of f L with two
1×1 convolutions,

QL = Conv1×1
(
f L

)
(13)

where QL ∈ R
m×m denotes the predicted local quality scores

of different spatial positions.
As widely discussed in many studies [71], [72], [73], [74],

when an image suffers from distortions, the quality of differ-
ent regions in the image will be affected to varying degrees.
In addition, since human eyes tend to focus on the anomalies,
errors, and incoherent regions of an image, these low-quality
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regions are more likely to negatively impact the global qual-
ity. Along this vein, we argue that different regions in an LFI
contain different angular-spatial effect and corresponding local
quality, and only the quality of certain regions has a close cor-
relation with the global LFI quality. Therefore, adopting all
region quality as supplementary information for learning will
be detrimental to the training process (see Section IV-F). As
a result, we propose a DRS module and utilize discriminative
regions for auxiliary learning to improve the learning effi-
ciency and prediction accuracy. Since the angular-spatial effect
denotes the effect of angular inconsistent on spatial quality,
regions with large angular sparsity are regarded as discrimina-
tive regions in our metric, which contain strong angular-spatial
effect [38], [39]. As shown in Fig. 1(a), for an input block
LB, the grayscale SAI array, denoted as G ∈ R

U×V×S×S, is
first generated. Then the angular horizontal difference Dhor

u,v
and angular vertical difference Dver

u,v between adjacent SAIs
are calculated as,

Dhor
u,v = Gu+1,v − Gu,v (14)

Dver
u,v = Gu,v+1 − Gu,v (15)

where u = 1, . . . , U-1, v = 1, . . . , V-1, and Gu,v denotes the
SAI of (u, v) angular viewpoint in G.

Then the angular gradient SAI array G ∈ R
(U−1)×(V−1)×S×S

is calculated as,

Gu,v =
√
Dhor

u,v
2 + Dver

u,v
2 (16)

where Gu,v denotes the SAI of (u, v) angular viewpoint in
G. Then we combine different angular viewpoints in G to
Ga ∈ R

S×S using angular average pooling ψA(·),

Ga = ψA(G) = 1

(U − 1)(V − 1)

U−1∑

u=1

V−1∑

v=1

Gu,v (17)

The generated Ga has the same spatial resolution as the
input LB and stores the angular sparsity by recording the gra-
dient intensity, in which regions with larger gradient intensity
are more pronounced to have stronger angular-spatial effect.
In order to select discriminative regions corresponding to QL
with spatial resolution m×m, we further reduce the spatial res-
olution of Ga by applying spatial average pooling ψS(·) for
non-overlapping (S/m)×(S/m) regions,

Gs = ψS(Ga) (18)

where Gs ∈ R
m×m is the gradient intensity corresponding

to QL.
Let G�N

s denote the assembly of N (0< N < m2) dis-
criminative regions with the largest gradient intensity in Gs,
the angular-spatial effect of these regions can be exploited
to improve the quality-aware feature learning. Here, N is
a hyperparameter and its effect on the performance of the
proposed metric will be further discussed in Section IV-F).
Correspondingly, the predicted local quality scores of these
discriminative regions are denoted as Q�N

L .

D. Dynamic Weighting Loss (DWLoss)

The training of the auxiliary branch is driven by minimizing
the differences between the local quality scores QL of discrim-
inative regions �N and the Mean Opinion Score (MOS) label
QMOS, based on the Mean Square Error (MSE) function,

La = 1

N

1

Bs

N∑

n=1

Bs∑

i=1

(
Q�n,i

L − Qi
MOS

)2
(19)

where La denotes the loss function of the auxiliary branch, Bs

represents the batch size.
Similarly, the loss function of the principal branch is defined

based on the MSE between global quality scores QG and the
MOS label QMOS,

Lp = 1

Bs

Bs∑

i=1

(
Qi

G − Qi
MOS

)2
(20)

where Lp denotes the loss function of the principal branch.
Intuitively, the easiest way to construct the final loss func-

tion is to add Lp and La according to fixed weights [36], [63].
However, this naive way is suboptimal in our proposed metric.
This is mainly attributed to the fact that the auxiliary branch is
only involved during training, while the final training objective
of our metric is the principal branch. In addition, the learn-
ing of local angular-spatial effect should serve as the basis
for the learning of global quality prediction. Based on such a
hypothesis, the auxiliary branch should be biased at the early
training stage, while the principal branch should be prominent
at the late training stage. As a result, we design a DWLoss
to assign dynamic learning weights for principal and auxiliary
branches,

DWLoss = Epc

Ept
Lp +

(
1 − Epc

Ept

)
La (21)

where Epc and Ept denote the number of current and total
epochs, respectively.

At the beginning of the training process, the proposed
DWLoss assigns the largest weight to the auxiliary branch,
aiming to learn the angular-spatial effect from a local perspec-
tive. Subsequently, the weight of the auxiliary branch gradually
decreases, while the weight of the principal branch gradually
increases. Finally, the global quality prediction is dominant at
the end of the training, leading to better training result than
the naive way.

E. Implementation Details

We implement the proposed metric using Pytorch library,
with the hardware configurations of Intel i7-10700 CPU,
NVIDIA GeForce RTX 3080 GPU, and 64G RAM Memory.
Our metric is trained for 50 epochs, and the model of the
last epoch is used to report the performance. The model
parameters are updated using a mini-batch Stochastic Gradient
Descent (SGD) optimizer with a weight momentum of 0.9 and
a decay of 0.0001 [64]. The model is trained from scratch
with the batch size of 8 and the learning rate of 0.001. In
order to ensure a large enough training set and avoid excessive
overlap between different blocks, we spatially partition each
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LFI into 25 blocks (i.e., B=25) with spatial size 112×112
(i.e., S=112). No other data augmentation methods are used
except horizontal flipping. The number of the selected dis-
criminative regions is set to 20. The head number of MSA is
set to 8, while the encoder layer number T is set to 4. All
input blocks cropped from the same LFI use the MOS label
of their source LFI as training targets [36].

IV. EXPERIMENTS

A. Databases

In our experiments, five benchmark LFIQA databases are
used, including Win5-LID [75], NBU-LF1.0 [76], LFDD [77],
VALID10bit [78], and SHU [79].

• Win5-LID database contains 220 distorted LFIs generated
from 6 real-world and 4 synthetic reference scenes. There
are 4 distortion types with 5 distortion levels, including
HEVC, JPEG2k, Linear interpolation (LN), and Nearest
Neighbor interpolation (NN), and 2 CNN-based distortion
types with only 1 distortion level. The MOS label ranged
from 1 to 5 is provided.

• NBU-LF1.0 database consists of 8 real-world and
6 synthetic reference scenes, based on which 210 dis-
torted LFIs are obtained with 5 distortion types and
3 distortion levels. These distortion types include NN,
Bicubic Interpolation (BI), learning based reconstruction
(EPICNN), disparity map based reconstruction (Zhang),
and spatial super-resolution reconstruction (VDSR). The
MOS label on a 5-point discrete scale is presented.

• LFDD database has 8 synthetic reference scenes and 480
distorted LFIs. A total of 12 common distortion types are
included, each of which contains 5 distortion levels. The
database provides the MOS label ranged from 1 to 5.

• VALID10bit database has 5 reference scenes and 100 dis-
torted LFIs under 5 compression distortions, including
HEVC, VP9, and 3 LFI compression methods. Each dis-
tortion type has 4 distortion levels. The database contains
the MOS label ranged from 1 to 5.

• SHU database contains 8 real-world reference scenes.
Based on which, 240 distorted LFIs are generated with 5
distortion types and 6 distortion levels, including JPEG,
JPEG2k, Gaussian blur, white noise, and motion blur. The
MOS label ranged from 0 to 5 is presented.

For all databases, the distorted LFIs generated from real-
world and synthetic reference scenes are of spatial resolutions
434×625 and 512×512, respectively. The distorted LFIs from
different databases have different original angular resolutions
(ranging from 9×9 to 15×15). However, due to the hardware
limitations of light field cameras, the quality of the edge views
of LFIs is impacted to some extent. Therefore, we only use
the central 9×9 angular views of LFIs for all databases in our
metric.

B. Experimental Settings and Evaluation Criteria

K-fold cross-validation is adopted as the train-test split
strategy to conduct our experiments. For each database, all
distorted LFIs are divided into K folds according to their ref-
erence scenes, which guarantees that the scenes in the training

and test sets are completely independent. Here, K is set to half
of the reference scene number in each database. For example,
Win5-LID database has 10 reference scenes, so K is set to 5.
As a result, each fold contains the distorted LFIs from two
reference scenes. In the experiments, we train the model on
K-1 randomly-selected folds and test the performance on the
remaining fold. Consequently, we loop through all train-test
splits and take the average result as the reported performance.

To evaluate the performance, four standard criteria
are adopted, including Pearson Linear Correlation Co-
efficient (PLCC), Spearman Rank Order Correlation Coefficient
(SROCC), Kendall Rank Order Correlation Coefficient
(KROCC), and Root Mean Square Error (RMSE). Among
them, PLCC evaluates the linear relationship, SROCC and
KROCC measure the monotonicity, and RMSE focuses on the
prediction accuracy. As suggested in [80], the predicted qual-
ity score is passed through a five-parameter non-linear logistic
mapping function before calculating PLCC and RMSE,

Q̃ = β1

{
1

2
− 1

1 + eβ2(Q−β3)

}
+ β4Q + β5 (22)

where β1−5 are the fitting parameters, Q and Q̃ represent
the quality prediction and its non-linear mapping result,
respectively.

C. Overall Performance Comparison

In this subsection, our proposed ASEM-BLiF metric is com-
pared with plenty of state-of-the-art IQA metrics, including
five blind 2DIQA metrics (PIQE [20], NIQE [21], GWH-
GLBP [22], BRISQUE [23], and BMPRI [25]), three blind
3DIQA metrics (Xu’s [26], SINQ [27], and BSVQE [28]),
four FR LFIQA metrics (MDFM [42], Fang’s [43],
Min’s [44], and Meng’s [45]), and eleven blind LFIQA
metrics (BELIF [54], NR-LFQA [55], Tensor-NLFQ [33],
VBLFI [57], DSA [58], PVRI [39], TSSV-LFIQA [34],
4D-DCT-LFIQA [35], DeLFIQE [36], DNNF-LFIQA [37],
and DeeBLiF [64]). Among them, DeLFIQE [36], DNNF-
LFIQA [37], DeeBLiF [64] and our proposed ASEM-BLiF are
deep learning-based metrics, while other metrics are based on
handcrafted features. For fair comparison, the learning-based
metrics are executed based on K-fold train-test splits, while
the non-learning-based metrics are directly performed on the
same test sets. For blind 2DIQA metrics, we evaluate the qual-
ity of individual SAIs and take the average as the overall LFI
quality. For blind 3DIQA metrics, we average the quality of
every two horizontal adjacent SAIs as the overall LFI qual-
ity. To avoid bias, we reproduce the performance of all metrics
on the same hardware configurations (Section III-E), using the
released codes/features and default parameter settings from the
corresponding papers.

The experimental results are shown in TABLE I. It can
be seen that due to the limited consideration of angular
inconsistency, traditional 2D/3D IQA metrics perform much
worse than LFIQA metrics in quality evaluation. In addi-
tion, due to the diversity of reference scenes, distortion types
and levels of the adopted LFIQA databases, existing FR/blind
LFIQA metrics generally struggle to perform well on all
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TABLE I
OVERALL PERFORMANCE COMPARISON ON FIVE LFIQA DATABASES. EXCLUDING OUR PROPOSED METRIC, THE BEST AND SECOND-BEST

PERFORMANCE ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY, WHILE THE PERFORMANCE OF OUR PROPOSED METRIC IS SHOWN IN BOLD.
THE DEEP LEANING-BASED AND HANDCRAFTED FEATURE-BASED METRICS ARE MARKED WITH AND WITHOUT *, RESPECTIVELY

databases. However, the proposed ASEM-BLiF metric consis-
tently achieves SOTA results on most databases. Especially on
the two most complex databases Win5-LID and NBU-LF1.0,
which contain both real-world and synthetic LFIs, our metric
outperforms all IQA metrics by a significant margin. In most
cases, the learning-based blind LFIQA metrics can achieve
competitive or even superior performance than the FR LFIQA
metrics. However, on the VALID10bit database, the FR
LFIQA metrics generally obtain better results than the blind
LFIQA metrics. One possible reason is that the VALID10bit
database contains only 100 distorted LFIs, which may be
insufficient to train a well-performing blind LFIQA model.
Nevertheless, our metric still yields competitive performance
on the VALID10bit database compared with the FR LFIQA
metrics, while outperforming other blind LFIQA metrics sig-
nificantly. The overall performance further demonstrates the
superiority of our metric over other state-of-the-arts.

Moreover, TABLE I shows that compared with our
proposed ASEM-BLiF metric, the performance of three
existing deep learning-based metrics (i.e., DeLFIQE [36],
DNNF-LFIQA [37], and DeeBLiF [64]) is quite limited,
and the possible reasons behind this deserve further inves-
tigation. First, DeLFIQE executes quality evaluation using a
small number of EPI patches, thus its effectiveness is signif-
icantly constrained when dealing with LFIs of low angular
resolution. In DNNF-LFIQA, each LFI is treated as an indi-
vidual sample, and the limited size of the LFIQA database
inevitably leads to overfitting during the training process. In
contrast, DeeBLiF obtains better results by addressing the

aforementioned two issues. However, DeeBLiF uses symmet-
ric branches for angular and spatial information respectively,
which leads to insufficient measurement of angular distortions.
The proposed ASEM-BLiF metric strives to address the imbal-
ance problem between angular and spatial information, thereby
achieving superior quality evaluation performance.

Since K-fold cross-validation is adopted to conduct the
experiments, each split has different training and test sets,
resulting in different results. The average result reported in
TABLE I is sensitive to outliers as it is a parametric measure
of central tendency. In contrast, the median is a non-parametric
measure that is robust to outliers. Therefore, we present the
median PLCC/SROCC performance of blind LFIQA metrics
for a more comprehensive performance comparison, as shown
in Fig. 2. Here, due to the poor performance of DeLFIQE [36],
we have removed it for better visualization. It can be seen
that our metric still achieves outstanding performance on all
databases compared to other metrics when considering the
median result.

To further demonstrate the effectiveness of our metric in
quality evaluation, we provide the scatter plots of the predicted
quality score versus the MOS label for the best-performing
handcrafted feature-based metric (4D-DCT-LFIQA [35]) and
four deep learning-based metrics (DeLFIQE [36], DNNF-
LFIQA [37], DeeBLiF [64], and our proposed ASEM-BLiF).
As shown in Fig. 3, three databases with different num-
bers of predictions are used. The scatter plots of the
Win5-LID, NBU-LF1.0, and LFDD databases are exhibited
in the top, middle, and bottom rows, with 44, 30, and 120
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Fig. 2. Median PLCC (left) and SROCC (right) performance comparison of blind LFIQA metrics on five LFIQA databases.

Fig. 3. Scatter plots of the predicted quality score versus the MOS label on the Win5-LID (top row), NBU-LF1.0 (middle row), and LFDD (bottom row)
databases, where the red line represents the perfect prediction.

predictions each, respectively. The red line represents the per-
fect prediction. From the figure we can see that the predictions
of our metric are more consistent with the subjective scores
than other state-of-the-art metrics, demonstrating its superior
ability to simulate the human visual perception.

D. Performance Comparison of Individual Distortion Types

An excellent IQA metric should show efficacy in various
distortion types. Therefore, the performance of different IQA

metrics for different distortion types is investigated and com-
pared in this subsection. The experiments are performed on
the Win5-LID and NBU-LF1.0 databases based on K-fold
train-test strategy. Here we do not consider two CNN-based
distortions in the Win5-LID database because both of them
have only one distortion level. Due to the space constrains,
we only provide the SROCC performance in TABLE II, as
the PLCC/KROCC/RMSE performance show similar results.
It can be observed that the FR LFIQA metrics typically
perform better than the blind LFIQA metrics for individual
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TABLE II
SROCC PERFORMANCE OF DIFFERENT DISTORTION TYPES ON THE WIN5-LID AND NBU-LF1.0 DATABASES. THE BEST TWO RESULTS

ARE MARKED IN BOLD. HIT-COUNT TALLIES THE NUMBER OF TIMES EACH IQA METRIC OBTAINING A TOP-TWO RESULT. THE DEEP

LEANING-BASED AND HANDCRAFTED FEATURE-BASED METRICS ARE MARKED WITH AND WITHOUT *, RESPECTIVELY.

distortions. A possible explanation is that the availability
of reference information can greatly help to distinguish the
same distortion type but different distortion levels. In addi-
tion, we can also observe that the performance of most blind
LFIQA metrics exhibits significant variations as the type of
distortion changes. However, our metric robustly achieves
competitive performance in most distortion types. Further,
in certain types of distortions, our metric significantly out-
performs state-of-the-art blind LFIQA metrics, and achieves
competitive performance with existing FR metrics, e.g., LN
distortion in Win5-LID database and VDSR distortion in
NBU-LF1.0 database. The above analyses fully demonstrate
the robustness of our metric.

However, the performance of JPEG2k distortion in Win5-
LID database and Zhang’s distortion in NBU-LF1.0 database is
somewhat unsatisfactory. The reasons behind deserve deeper
investigation. For JPEG2k distortion in Win5-LID database,
JPEG2k distorted LFIs are generated by adopting JPEG2k
on each SAI, in which angular information does not directly
participate in the generation process. In this case, spatial dis-
tortion is much more severe compared to angular distortion.
However, our metric focuses on modeling the angular-spatial
effect dominated by angular information. This may be the rea-
son for the suboptimal performance of JPEG2k distortion. For
Zhang’s distortion in NBU-LF1.0 database, Zhang’s distortion

is a depth estimation-based angular distortion, in which dif-
ferent regions in a scene have different angular reconstruction
quality according to the estimated depth. However, our met-
ric is a block-based metric and assumes that all regions are
of the same quality during training, which is not conducive
to evaluate Zhang’s distortion. Our previous work DeeBLiF
also performs unsatisfactorily on Zhang’s distortion due to the
same reason.

E. Performance of Cross-Database Validation

Since the generalization ability is a crucial factor for
designing an effective IQA metric, we investigate the cross-
database performance of our proposed metric in this subsec-
tion. We conduct the cross-database experiments following
most previous works [33], [35], [39]. Specifically, we first
train our metric on the whole Win5-LID database due to
its diversity and complexity in terms of image categories
and distortion types. Then, we evaluate the performance on
each distortion type that is shared between the Win5-LID
database and other databases, including NBU-LF1.0 (NN),
LFDD (JPEG2k), VALID10bit (HEVC), and SHU (JPEG2k).
The results are shown in TABLE III. We can find that
our metric still performs well on HEVC and JPEG2k even
when trained on another database, implying a relatively good
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TABLE III
PERFORMANCE OF TRAINING ON THE WIN5-LID DATABASE,

AND TESTING ON THE NBU-LF1.0, LFDD,
VALID10BIT, AND SHU DATABASES

TABLE IV
ABLATION STUDIES OF DIFFERENT MODULES ON THE WIN5-LID AND

NBU-LF1.0 DATABASES. BOLD REPRESENTS THE BEST PERFORMANCE

generalization ability on compression distortions. However,
our metric shows relatively poor performance on the NN dis-
tortion. The reason for this result has been discussed in [39],
that is, the NN distortion is implemented differently in the
Win5-LID and NBU-LF1.0 databases. For Win5-LID database,
the LFI containing 9×9 SAIs is reconstructed in five dif-
ferent distortion levels, each of which involves 50, 40, 30,
20, and 10 randomly selected SAIs to reconstruct the LFI,
respectively. For NBU-LF1.0 database, the 9×9 SAIs are first
down-sampled to 5×5, 3×3, and 2×2 fixed SAIs, respec-
tively, and then the NN interpolation is used for reconstruction.
We can easily find that the distortion levels between these
two databases do not overlap, which leads to relatively poor
performance on the NN distortion.

F. Ablation Studies

To further explore the effectiveness of each module of our
metric, we conduct ablation experiments in this subsection.
TABLE IV reports the experimental results on the Win5-LID
and NBU-LF1.0 databases, where w/o is the abbreviation
of without, and Aux. Learn. denotes the auxiliary learning
branch. The table demonstrates a significant decrease in the
performance of our metric on both databases when the AEM
module is excluded, indicating the crucial role of capturing
angular information for LFIQA. In addition, we can also find
that using auxiliary learning without DRS module (i.e., w/o
DRS) performs even worse than not using auxiliary learning
(i.e., w/o Aux. Learn.). A possible explanation is that if all
regions are introduced for auxiliary learning, the regions with
insufficient angular-spatial information will lead to decreased

TABLE V
PERFORMANCE OF DIFFERENT NUMBER OF N ON THE WIN5-LID AND

NBU-LF1.0 DATABASES. BOLD REPRESENTS THE BEST PERFORMANCE

performance. This demonstrates that the selected discrimina-
tive regions are necessary for auxiliary learning. Moreover,
incorporating DWLoss into the training process can further
promote learning towards better performance. Finally, the
combination of all proposed modules culminates in enhanced
effectiveness.

G. Hyperparameter Analyses

Since the performance of our metric is affected by the
number of the selected discriminative regions, i.e., N, we
perform hyperparameter experiments on the Win5-LID and
NBU-LF1.0 databases to investigate the impact of its value.
As shown in TABLE V, the performance is compared when
N is set to 1, 5, 10, 20, 50, 100, 200, and w/o. Here, w/o
represents that all regions are incorporated into the learning
process. From the table we can see that the performance is
relatively poor if the value of N is too large or too small.
The main reason could be that insufficient discriminative
regions lead to inadequate information for auxiliary train-
ing, while excessive discriminative regions introduce too many
low-quality predictions, ultimately impeding the learning pro-
cess. Therefore, in our implementation, we set N to a moderate
value of 20 which yields a satisfactory performance on both
Win5-LID and NBU-LF1.0 databases.

H. Time Complexity Analyses

Time complexity is an important factor for an IQA met-
ric as it affects the efficiency and practicality of the metric
in real-world applications. Therefore, we conduct an analysis
of the time complexity of our metric in comparison to other
state-of-the-art metrics. All metrics are executed using the
same hardware configurations as mentioned in Section III-E.
Following [33], we measure the time complexity of each met-
ric by testing a single LFI from the Win5-LID database,
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TABLE VI
COMPARISON OF THE RUNTIME VERSUS THE OVERALL SROCC

PERFORMANCE. BOLD REPRESENTS THE BEST PERFORMANCE. THE

DEEP LEANING-BASED AND HANDCRAFTED FEATURE-BASED METRICS

ARE MARKED WITH AND WITHOUT *, RESPECTIVELY

denoted as the runtime in our experiments. Although the
deep learning-based metrics can be accelerated using GPU,
we report the runtime of all metrics using CPU only for
fair comparison. The handcrafted feature-based metrics are
implemented by MATLAB, while the deep learning-based
metrics are implemented by Python. TABLE VI shows the
runtime versus the overall SROCC performance. We can see
that most handcrafted feature-based blind LFIQA metrics are
time-consuming and achieve unsatisfactory performance. As
comparison, previous deep blind LFIQA metrics have faster
running times, but still struggle to perform well in quality eval-
uation task. However, our proposed metric outperforms other
state-of-the-art metrics with a significant margin and a rel-
atively low time complexity, which further demonstrates the
effectiveness and efficiency of our metric.

Compared to the handcrafted feature-based metrics, the deep
learning-based metrics consume more time on pre-processing
and model training, which are also crucial factors in com-
putational complexity that need to be investigated. Therefore,
we summarize the time consumption of deep blind LFIQA
metrics versus the SROCC performance on the Win5-LID
database, as shown in TABLE VII. It can be found that
although the training time consumption of our metric is
slightly higher than that of DeLFIQE and DeeBLiF, it is

TABLE VII
COMPARISON OF THE TIME CONSUMPTION VERSUS THE SROCC

PERFORMANCE OF DEEP BLIND LFIQA METRICS ON THE WIN5-LID
DATABASE. BOLD REPRESENTS THE BEST PERFORMANCE

Fig. 4. Illustrative quality predictions of the proposed ASEM-BLiF met-
ric and four state-of-the-art metrics on the Win5-LID (top row), NBU-LF1.0
(middle row), and LFDD (bottom row) databases. Bold represents the best
prediction.

still within an acceptable range. Considering the outstanding
performance, our proposed metric achieves a better trade-off
between computational efficiency and prediction accuracy.

I. Illustrative Examples

To provide a more intuitive example of quality evaluation,
we present some illustrative predictions of our proposed met-
ric, along with four state-of-the-art metrics, on the Win5-LID,
NBU-LF1.0, and LFDD databases. Due to space limitations,
we only display the central viewpoint of each LFI. As shown in
Fig. 4, we present a series of LFIs with diverse MOS labels,
distortion types and reference scenes, along with the corre-
sponding predictions from five metrics. It can be found that
despite the diverse characteristics of LFIs, our proposed met-
ric exhibits superior performance in accurately predicting the
LFI quality compared to other metrics.

J. Discussion

The above experimental results have fully demonstrated the
superiority of the proposed ASEM-BLiF metric in terms of
prediction accuracy, time complexity, and robustness. To delve
further in TABLE IV, it can be found that the incorpora-
tion of the AEM module contributes most to the final result,
while each of the other modules (e.g., DRS and DWLoss)
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motivates a better training outcome and slightly improves the
final performance. In other words, the performance achieved
by ASEM-BLiF mainly attributed to the minimization of the
imbalance caused by large spatial variations and subtle angular
variations, indicating the importance of angular-spatial effect
modeling in the LFIQA task. However, despite the remarkable
performance of the proposed metric, two limitations can still
be observed. First, the quality of all LFI blocks is assumed to
be equally important during training and testing, which may
not align with the principles of human visual perception, thus
limiting the performance of quality evaluation. Second, the
proposed metric is only applicable to 4D LFIs with two angu-
lar dimensions due to the use of angular convolutions, but not
to 3D LFIs with one angular dimension, such as LFIs in [66].

In addition to the static LFIs, some researchers additionally
capture the temporal information of light fields and generate
light field videos [81]. In real-world scenarios, visual sig-
nals are rarely presented without any auxiliary information.
They are often presented alongside other information like
audio [82], [83], [84] and text [85], which collectively shape
the user-perceived quality of experience. Therefore, in the
long run, we argue that the subjective and objective quality
evaluation of light fields can take these factors into considera-
tion, to gain a comprehensive understanding of human visual
perception.

V. CONCLUSION

In this paper, we propose a novel blind LFIQA metric by
effectively modeling the angular-spatial effect, which is abbre-
viated as ASEM-BLiF. In comparison to previous works, our
metric handles the angular and spatial information in a sig-
nificantly distinct manner. Specifically, we first present an
Angular Effect Modeling (AEM) module to capture the angu-
lar information independently of spatial information. Then,
we propose an Angular-Spatial Quality Learning (ASQL)
module to model the local angular-spatial effect and estab-
lish the global relationship between different local regions
for quality evaluation. Considering the potential utilization
of the local angular-spatial effect for learning, we further
design a Discriminative Region Selection (DRS)-based aux-
iliary learning branch, which serves to enhance both learn-
ing efficiency and prediction accuracy. Finally, a Dynamic
Weighting Loss (DWLoss) is presented to balance the rela-
tionship between principal and auxiliary learning throughout
the training process. Experimental results on five widely-used
LFIQA databases demonstrate that our metric outperforms
state-of-the-art LFIQA metrics by a large margin in quality
evaluation, while having higher computational efficiency than
most blind LFIQA metrics.
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