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Clothing Effect on Multilayered Skin Model
Exposure From 20 GHz to 100 GHz

Kun Li , Member, IEEE, Kensuke Sasaki , Member, IEEE, Giulia Sacco , Member, IEEE,
and Maxim Zhadobov , Senior Member, IEEE

Abstract—This study presents a statistical assessment of clothed
human skin model exposure from 20 to 100 GHz. Dielectric prop-
erty data for two typical textile materials, i.e., cotton and wool,
were provided for the first time over the entire frequency range.
A statistical analysis of the ratio of absorbed power density (APD)
to skin temperature elevation was performed by Monte Carlo sim-
ulations using a multi-layer skin model with a textile layer. Three
key parameters, namely the angle of incidence, cross-polarization
power ratio (XPR), and air gap spacing between cloth and skin
surface, were considered in the dosimetry analysis. The results show
that at an incidence angle up to 60◦, fluctuations of the ratio are
observed by varying XPR from −50 to 50 dB. In the 20–100 GHz
range, when the XPR is less than 0 dB, i.e., horizontally polarized
wave is dominant, the impact on the ratio caused by either the
incident angle or the air gap spacing is marginal. The deviation is
increased when XPR exceeds 0 dB, i.e., vertically polarized wave
is dominant, especially above 60 GHz at the incidence angles above
60◦.

Index Terms—APD, dielectric property, exposure assessment,
millimeter waves, dosimetry, human skin, clothing effect, statistical
analysis.

I. INTRODUCTION

W ITH the rapid development of the 5th/6th generation
(5G/6G) wireless communication systems, millimeter-

wave (mmWave) and terahertz (THz) frequencies are in-
creasingly employed [1]. Wireless technologies and elec-
tronic/electrical devices operating at these frequencies, such as
mobile phones, laptops, and wearable devices, should comply
with electromagnetic fields (EMFs) exposure limits [2], [3]. In
2020 and 2019, the International Commission on Non-Ionizing
Radiation Protection (ICNIRP) and the Institute of Electrical
and Electronics Engineers (IEEE) International Commission on
Electromagnetic Safety (ICES) (IEEE Standard C95.1) pub-
lished the updated exposure limits [4], [5]. From 6 to 300 GHz,
the revised guidelines/standard recommend the absorbed power
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density (APD) or epithelial power density, respectively, as a new
metric for the basic restriction (BR) or dosimetric reference limit
(DRL), which is derived from the threshold of adverse health
effects related to superficial heating caused by localized EMF
exposure.

Recent dosimetric studies on the APD at mmWaves primarily
aimed at clarifying three aspects: 1) impact of beam steering
upcoming for 5G/6G mobile systems; 2) appropriate APD aver-
aging schemes or methods that enables high correlation with
skin temperature elevation for distinct human body models;
3) clothing effects caused by textile materials that modify the
electromagnetic power deposition in skin and resultant heating.

The angle-of-incidence dependence of the power transmis-
sion coefficient, APD, and skin temperature elevation induced
by plane-wave exposure and practical radiation sources (e.g.,
phased array antennas) was extensively studied [6], [7], [8],
[9], [10], [11]. Diao et al. clarified the effect of the incidence
angle on the spatial-average power densities and resultant tem-
perature elevation using both computational and thermographic
measurement approaches [12], [13]. It was found that the normal
incidence is the worst-case for surface temperature rise when
bare skin is directly illuminated as it corresponds to the max-
imum APD for a given incident power density (IPD). Several
groups computed APD and resultant temperature rise above
6 GHz using various skin models, exposure conditions and
numerical methods [14], [15], [16], [17], [18], [19], [20], [21].
These computational results indicate that an APD ranging from
34–60 W/m2 is required to elevate the temperature of bare skin
by 1 ◦C.

On the other hand, the impact of clothing on skin exposure to
mmWaves has garnered significant attention. At mmWaves, for
the clothes that cover the human body, the dielectric properties
of the fabric and an air gap spacing impact the electromagnetic
power deposition [22], [23], [24], [25]. This may affect APD and
resultant temperature elevation in the human skin. Sacco et al.
studied APD and temperature rise at 26 and 60 GHz, considering
the impact of a textile layer in contact or proximity of the human
body [24], [25]. It is known that a textile material may perform
as an impedance transformer, where an air gap between the cloth
and skin modifies the electromagnetic power deposition and
results in a temperature rise variation up to 20.9% compared to
the bare skin at 60 GHz. However, the clothing effects on broad-
band mmWave skin exposure were not elucidated due to the
lack of broadband complex permittivity data of textiles. Harmer
et al. presented the complex permittivity of textiles and leather
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Fig. 1. Measurement setup for textile samples under test.

in 14–40 GHz using a free-wave transmittance-based method
[26]. Luo et al. estimated the complex permittivities of four
cloth materials (linen, leatherette, polyester fiber, and latex mat-
tress) at 40–50 GHz based on quantum-behaved particle swarm
optimization algorithm and free-space measurement [27]. At
higher frequencies, since the air gap spacing is comparable with
the wavelength, e.g., 3 mm at 100 GHz, it is indispensable to
employ the broadband dielectric properties of cloths for accurate
dosimetry analysis.

Another point worth discussing is what type of computational
method is to be employed for dosimetric analysis of human
body models covered with clothing. Numerical methods such
as FDTD (finite-difference time-domain method) using whole-
body voxel models are widely employed, but it is challenging
to create a clothing model based on the existing body models,
particularly at mmWaves. For localized exposure analysis using
simplified models, the impact of textile material, configuration,
thickness, and coverage method on the simulation accuracy
is difficult to determine. Given the computational scale for
mmWave bands, solving the one-dimensional multi-layer model
using the Pennes bio-heat transfer equation is a practical and
effective solution [22]. As a 1-D model, it may not realistically
represent the three-dimensional thermal diffusion that occurs in
the heterogeneous human body. However, since it is a rigorous
solution obtained by solving the boundary conditions for both
the electromagnetic field and heat conduction, the resulting
skin temperature elevations up to steady-state may have more
conservative values compared to numerical simulation results.

In this study, an equivalent dielectric property data for the
samples of cotton and wool were measured for the first time.
On the basis of measured dielectric constants, a statistical as-
sessment of clothed human skin exposure at 20–100 GHz was
performed by Monte Carlo simulation. The ratio between the
APD and temperature elevation at the skin surface was analyzed
using a multi-layer skin model with a textile layer.

II. DIELECTRIC PROPERTY MEASUREMENT OF TEXTILE

SAMPLES

Fig. 1 shows the setup for measurement of dielectric prop-
erties of textile materials. The free-space method with spot-
focus-type lens antennas was employed for measurements in the
18–110 GHz range [28]. Two lens antennas were connected to a
vector network analyzer (E8361 A, Agilent Technologies) via a

Fig. 2. Measured relative complex permittivity: (a) real part, (b) imaginary
part.

mmWave frequency extender (N5260 A, Agilent Technologies).
Measurements were conducted in K-, Ka-, Q-, V-, and W-bands,
covering the frequency range of 18 to 110 GHz. During the ex-
periment, a conical-rectangular waveguide adapter was utilized
to facilitate the transition for each IEEE frequency band. TRL
(Thru-Reflection-Line) calibration was applied before the start
of each frequency band measurement. The reproducibility of our
measurement system was checked using a reference sample, i.e.,
glass [28], before starting the measurement of clothing samples.
Further details of the measurement procedure can be found in
[28].

The box plots of measurement results for the samples of cotton
and wool are shown in Fig. 2. Fig. 2(a) and (b) denote the real and
imaginal part of relative complex permittivity, respectively, as a
function of frequency. In Fig. 2(a) and (b), the height of the box
indicates the interquartile range (IQR) from the 75th and 25th
percentiles of entire data. The horizontal line in the middle of the
box indicates the statistical median values of relative complex
permittivities in each frequency range (K − W bands). The
range between the lower and upper whiskers of the error bars
represents the variability of the measured data within a range
corresponding to 1.5 times IQR. The triangle signs indicate the
outliers. The sampling intervals for the K-, Ka-, Q-bands were
set at 250 MHz, while those for the V- and W-bands were set at
500 MHz. These intervals were primarily determined based on
experience with dielectric permittivity measurements and the
sweeping specifications of the test equipment. Therefore, for
each box with error bars, the number of measurment points are
35, 55, 69, 51, 71 in each frequency band. It is observed that both
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TABLE I
MEASURED COMPLEX PERMITTIVITY

Fig. 3. Multilayer model used for statistical dosimetry analysis comprised of
a cloth material, air gap layer, epidermis, dermis, fat, and muscle.

cotton and wool materials are almost non dispersive. Although
outliers increase at higher frequencies, the statistical median
value for both real and imaginary parts of complex permittivities
are stable. This is mainly attributed to a negligibly small water
concentration in the textile.

The statistical results of measured complex permittivities are
summarized in Table I. Given the constant profiles of statistical
median values for complex permittivities, as shown in Fig. 2,
we use the average value of the data measured across the entire
considered frequency band. The dielectric constant of textiles
extracted in this study agrees well with those in [24]. Therefore,
in this study, the mean value of permittivity of textile samples
under test was employed to represent the equivalent dielectric
constant for dosimetric analysis at 20–100 GHz. The simulation
model and method are introduced hereafter.

III. ANALYTICAL MODEL AND METHOD

Fig. 3 shows a two-dimensional multilayer model represent-
ing human skin layers of the forearm covered by cloths. The
model is composed of a textile material layer, an air gap, and a
conventional four-layer skin model including epidermis, dermis,
subcutaneous fat, and muscle layers [22]. The width of the air gap
is zg . A plane wave is used as excitation. The angle of incidence
at the air/model interface is denoted as θ0. Here, two polarization
components are considered (TE and TM), whose electric field
vectors are perpendicular and parallel to the incident plane,
respectively. Thus, the cross-polarization power ratio of the
incident wave, i.e., XPR, can be simplified as the power ratio
of TE to TM waves in this 2-D model as follows.

XPR =

(
ETE

ETM

)2

(1)

As mentioned in [22], this consideration is different from the
empirical way of expressing XPR in multipath propagation
environment of mobile communication systems. For dosimetric
analysis, it is simplified by treating the multipath radio wave

TABLE II
THERMAL PARAMETERS

components as one illumination source before entering the hu-
man body. Therefore, the plane wave incidence does not take into
account the phase difference between the orthogonally polarized
components.

The steady-state temperature elevation due to electromagnetic
wave absorption considering the effects of cloths and air gap
layers is calculated by solving Pennes’s bioheat transfer equation
[22], [29], [30], [31], [32],

κi
d2

dz2
Ti(z) + σi

|Ei(z)|2
2

+Ai −Bi [Ti(z)− Tb] = 0, (2)

where Ti and Tb are the temperatures of the each layer of skin
models and blood (◦C), respectively.κi is the thermal conductiv-
ity [W/(m ◦ C)]. Ai and Bi denote the basal metabolism per unit
volume (W/m 3) and a term associated with blood flow [W/(m3◦

C)], respectively. σi denotes the equivalent conductivity (S/m)
taking into account the dielectric loss. Ei(z) is the peak ampli-
tude of the electric field (V/m) inside the cloth materials, air gap
spacing, and skin tissues.

The boundary conditions for thermal analysis of a clothed
human skin model with and without an air gap space are de-
scribed in detail in [22] ((3)–(14)). Note that the term associated
with the electromagnetic power absorption Si(z) was derived
considering the power allocation in the polarization components
of incident waves,

Si(z) =
XPR

1 +XPR
Si,TE(z) +

1

1 +XPR
Si,TM(z), (3)

where the derivation of the formulae for the terms of Si,TE(z)
and Si,TM(z) taking θ0 and XPR into account is detailed (see
Appendix in [22]). For consistency with previous studies [9],
[22], [29], the dielectric properties of skin layers reported in
[33], [34] were employed. The heat transfer coefficient for the
air to skin boundary was set to 10 W/(m2◦C). The body core
temperature at the deeper boundary of the muscle layer was set
to 37 ◦C, and the air temperature was 20 ◦C. Table II summarizes
the parameters used in the thermal analysis, inspired from the
data reported in [24], [29]. IPD was set to 10 W/m2.

Using the parameters and analytical formulae mentioned
above, the variations of APD and temperature elevation at the
clothed skin surface was evaluated by a Monte Carlo simula-
tion. The Monte Carlo simulation was conducted by varying
the thickness of each layer using normally distributed random
numbers generated by Matlab R2019b [9]. The mean values and
standard deviations of the thickness of cotton and wool materials
were measured as 0.065 ± 0.015 mm and 1.24 ± 0.01 mm,
respectively. The statistical data of the skin layer thicknesses in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Accepted manuscript



4 IEEE JOURNAL OF ELECTROMAGNETICS, RF, AND MICROWAVES IN MEDICINE AND BIOLOGY, VOL. 00, NO. 0, 2023

Fig. 4. Ratio of APD to ΔT at skin surface as functions of incidence angle
(θ0) and air gap spacing (zg) at 60 GHz for selected values of XPR for
(a) cotton and (b) wool.

previous study was employed (see Table II in [29]). The number
of iterations was set to 104 for each oblique incidence angle,
XPR, and air gap spacing.

IV. RESULTS

A. Effects of XPR

Fig. 4 shows the mean ratio of the APD to the steady-state
surface temperature elevation (ΔT ) at 60 GHz as functions
of θ0 and zg . The XPR at −50 dB, 0 dB, and 50 dB were
shown, which denotes three representative scenarios: TM wave
dominant; equal polarization power allocation; and TE wave
dominant, respectively.

For both cotton (Fig. 4(a)) and wool (Fig. 4(b)) materials, all
the results show a significant decrease at higher incidence angles
and large air gap spacing, especially for cases ofXPR= 50 dB.
As θ0 and zg decrease to less than 60◦ or 3 mm, the ratio of the
APD to ΔT remains at a relatively high level even with some
fluctuations caused by the variations in incidence angle and air
gap. When θ0 is approaching 0◦, i.e., normal incidence exposure,
the increase in air gap spacing results in a periodic fluctuation.
Moreover, it is observed that the fluctuation with the angle of
incidence is relatively small in a radio-wave environment dom-
inated by horizontally polarized incidence waves, i.e., XPR =
−50 dB.

Fig. 5 illustrates the mean ratio of the APD toΔT as a function
of XPR when the angle of incidence θ0 and air gap spacing zg
are under selected ranges at 20, 60, and 100 GHz. Fig. 5(a) and

(b) show the results using cotton and wool materials, respec-
tively. In Fig. 5(a), it is shown that the dependence on the XPR
is not obvious at frequency of 20 GHz when θ0 and zg is less
than 60◦ or 3 mm, respectively. When the frequency is increased
to 60 GHz, a deviation can be observed when XPR≥ 10 dB. In
particular, for cases of higher incidence angles, i.e., θ0 = 60◦, a
significant variation of the curves in the range of XPR≥ 10 dB
is shown. Furthermore, at 100 GHz, the curve shows an abrupt
decrease for the case of θ0 = 60◦ at zg = 1 mm in comparison
with other cases.

For wool material, as shown in Fig. 5(b), almost similar
profiles as those of cotton can be seen. At 60 GHz, a slight change
occurs in some cases of XPR > 0 dB. However, most trends
of curves indicate that when XPR < 0 dB, there is no obvious
difference among all the results even considering the changes of
θ0 and zg . When XPR > 0 dB, higher oblique incidence angle
may result in a significant decrease of the ratio of the APD to
ΔT . At lower frequency bands with lower angles of incidence,
the ratio of the APD to ΔT is almost independent on the XPR.

B. Frequency Dependence

Fig. 6 shows the the mean ratio of the APD toΔT as a function
of frequency from 20 to 100 GHz under selected range of oblique
incidence angle, i.e., θ0 ≤ 30◦ or θ0 ≤ 60◦. Fig. 6(a) and (b)
indicate the results of cotton and wool materials, respectively,
when XPR ≤ 0 dB, i.e., XPR = −50, −20, −10, and 0 dB.
Fig. 6(c) and (d) indicate the those when XPR ≥ 0 dB, i.e.,
XPR= 0, 10, 20, and 50 dB. The air gap spacing zg at the range
of 0 to 5 mm were included. The error bars denote the standard
deviation of the ratio of the APD to ΔT due to individual
differences in the textile layer and skin tissue thickness.

As shown in Fig. 6(a) and (b), when XPR ≤ 0 dB, the cases
of θ0 ≤ 30◦ and θ0 ≤ 60◦ agree well with each other regardless
of air gap spacing and textile materials. When XPR≥ 0 dB, as
shown in Fig. 6(c) and (d), slight difference between the curves
of θ0 ≤ 30◦ and θ0 ≤ 60◦ is observed. The statistical mean value
indicates that the higher incidence angle up to 60◦ will result in
a small decrease of the ratio of the APD to ΔT in a radio-wave
environment dominated by vertically polarized incidence waves
regardless of air gap spacing and cloth materials.

Fig. 7 shows the ratio of the APD to ΔT as a function of
frequency from 20 to 100 GHz under selected range of air
gap spacing, i.e., zg ≤ 1 mm or zg ≤ 3 mm. Fig. 7(a) and (b)
indicate the results of cotton and wool materials, respectively,
when XPR≤ 0 dB, whereas Fig. 7(c) and (d) indicate the those
whenXPR≥ 0 dB. The angle of incidence θ0 ranging from 0 to
89◦ was considered. Similar to Fig. 6, the error bars denote the
standard deviation due to individual differences in the textiles
and skin tissue thickness.

WhenXPR≤ 0 dB, the curves of zg ≤ 1mm and zg ≤ 3mm
show a small discrepancy with each other. This indicates that in
a radio-wave environment dominated by horizontally polarized
incidence waves, the difference of air gap spacing may have
impact on the frequency dependence of ratio of the APD to ΔT
at 20–100 GHz. On the other hand, whenXPR≥0 dB, as shown
in Fig. 7(c) and (d), a relatively large standard deviation occurs
in the considered frequency range. With the increase of the air
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Fig. 5. Ratio of APD to ΔT at skin surface as a function of XPR under selected incidence angle (θ0) and air gap spacing (zg) at frequencies of 20, 60, and
100 GHz when using the textile materials of (a) cotton and (b) wool.

Fig. 6. Ratio of APD to ΔT at skin surface as a function of frequency under
selected range of incidence angle (θ0) at 20–100 GHz when (a) XPR ≤ 0 dB
(cotton), (b) XPR ≤ 0 (wool), (c) XPR ≥ 0 dB (cotton), and (d) XPR ≥ 0
(wool).

gap spacing range from zg ≤ 1mm to zg ≤ 3mm, the maximum
relative standard deviation increases from 12.5% to 23%. This
phenomenon may be attributed to the fact that many cases of
extremely high incidence angles, i.e., over 60◦, are included in
the statistical outcomes. Comparing Figs. 6 and 7, it can be seen
that the impacts on the ratio of the APD to ΔT caused by the air
gap spacing may be higher than that by the oblique incidence
angle when a relatively practical range of incidence angles is
assumed, e.g., θ0 ≤ 60◦.

C. Statistical Analysis

Fig. 8 illustrates the probability density function (PDF) char-
acteristics using the statistical mean values of the APD at fre-
quencies from 20 to 100 GHz when the ΔT is assumed to be

Fig. 7. Ratio of APD to ΔT at skin surface as a function of frequency selected
range of air gap spacing (zg) at 20–100 GHz when (a) XPR ≤ 0 dB (cotton),
(b) XPR ≤ 0 (wool), (c) XPR ≥ 0 dB (cotton), and (d) XPR ≥ 0 (wool).

0.5◦. The histograms and fitted curves with Gaussian distribution
are shown. Fig. 8(a) and (b) indicate the results of cotton and
wool materials, respectively, when considering different selected
range of incidence angles θ0. Whereas Fig. 8(c) and (d) show
those of considering the air gap spacing. TheXPRwas set from
−50 to 50 dB.

In Fig. 8(a) and (b), it is observed that for each textiles, the
histogram agrees approximately with the Gaussian distribution
regardless of different ranges of incidence angles θ0. However,
in Fig. 8(c) and (d), small deviations from Gaussian distribution
are shown when considering the selected range of the air gap
spacing zg .

The statistical results are summarized in Table III. For a
selected range of angle of incidence or air gap spacing, all the
other parameters such as XPR, frequency, and layer thickness
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Fig. 8. PDF characteristics of APD when ΔT is 0.5◦ at 20–100 GHz with
XPR from −50 to 50 dB for different textile materials under selected ranges
of incidence angle and air gap spacing, (a) cotton (θ0 ≤ 30◦ and θ0 ≤ 60◦),
(b) wool (θ0 ≤ 30◦ and θ0 ≤ 60◦), (c) cotton (zg ≤ 1 mm and zg ≤ 3 mm),
and (d) wool (zg ≤ 1 mm and zg ≤ 3 mm).

TABLE III
STATISTICAL ANALYSIS

variations were varied to derive the mean value and standard
deviation of the APD that is required to elevate the 0.5 ◦C tem-
perature elevation at skin surface. The mean square error (MSE)
and correlation coefficient (coeff.) in comparison with Gaussian
distribution are included. It can be seen that the mean values
of the APD show a good agreement with the general public
basic restriction of 20 W/m2 for local exposure at 6–300 GHz
in ICNIRP guideline [4]. In some cases, the required APD for
the skin temperature elevation by 0.5 ◦C at high incident angles
is smaller than the exposure limits in the ICNIRP guidelines,
i.e., 20 W/m2. This is actually because in order to obtain a
large APD at high incident angles, an extremely higher level
of IPD is required than at normal incidence. In other words, the
APD will not exceed 20 W/m2 when specifying the same IPD
as in the Reference Levels in the ICNIRP guidelines. Moreover,
the MSE range from 1.31–1.9 and 2.09–2.61, respectively, in
the cases of θ0 ≤ 30◦ and θ0 ≤ 60◦. When the zg ≤ 1 mm and
zg ≤ 3 mm is considered, the MSE increase to 2.46–3.9 and
3.97–4.91, respectively. The correlation coefficient also reduces
from up to 0.95 to less than 0.75. The above-mentioned results
imply that in the frequency range from 20 to 100 GHz, when
the power allocation of polarization components were assumed
for dosimetry analysis, to obtain an equivalent ΔT at the skin
surface, the oblique incidence angle less than 60◦ do not sig-
nificantly affect the statistical distribution of the APD even if

the clothing effects were included. On the contrast, when the
higher incidence angles were considered, the air gap spacing
effects may result in a variation in the probability of the APD
regardless of textile materials.

V. CONCLUSION

In this study, we investigated the statistical performance
of clothed human-skin exposures to electromagnetic fields at
20–100 GHz. The equivalent dielectric constants for the textile
materials of cotton and wool in the above frequency range was
provided for the first time. Measurement results indicate that the
frequency dependence of dielectric permittivities of the utilized
cloth samples is relatively stable in the considered frequency
range. Then, a statistical analysis of the ratio of the APD to skin
surface temperature elevation using a multilayered skin model
with textile and air gap layers was conducted by Monte Carlo
simulation. The impacts of oblique incidence angles, XPR,
and air gap spacing between textile layer and skin model were
studied.

It is found that at a high incidence angle up to 60◦, expectable
fluctuations of the ratio of the APD to ΔT are observed when
XPR range from −50 to 50 dB. At 20–100 GHz, when the
XPR is less than 0 dB, i.e., horizontally polarized wave is
dominant, the impact on the ratio of the APD to ΔT caused by
either the incident angle or the air gap spacing is not significant.
The deviation of the ratio of the APD to ΔT will be increased
when XPR exceeds 0 dB, i.e., vertically polarized wave is
dominant, especially at frequencies over 60 GHz when the
incidence angle is higher than 60◦. However, considering more
realistic exposure conditions in general, such as incident angles
less than 60◦ and air gaps less than 3 mm, it is observed that the
impact on the APD to obtain an equivalent ΔT caused by the
clothing effects in the above frequency range is marginal from
statistics point of view.
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