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Abstract—A study of the self-healing property of weakly-
diffractive vector beams radiated by a finite circular radiating
aperture on an infinite ground plane is presented. The obstacle is
a circular metallic disk, which is axially aligned and placed at a
certain distance over the radiating aperture. Three different field
distributions are considered as excitation for the aperture: the
non-diffractive Bessel beam (BB), the Bessel-Gauss beam (BG),
and the transverse electromagnetic mode (TEM) of a coaxial
cable. The analysis is performed resorting to a spectral Green
approach and to a Physical Optics (PO) framework. In all cases, a
radially polarized beam is assumed. The results confirm the self-
healing property of the non-diffracting beams. They also show
the impact on the amplitude of the regenerated field due to the
obstacle radius. The chosen approach is validated using a full-
wave commercial software.

Index Terms—Bessel, Bessel-Gauss, non-diffractive beams, self-
healing, spectral Green’s functions.

I. INTRODUCTION

The scalar Bessel beams are exact solutions to the scalar
Helmholtz equation [1] described by Bessel functions. These
beams do not exhibit diffractive spreading while propagating
in free space. Moreover, they also have the ability to self-
reconstruct (regenerate) their initial intensity profile after an
obstruction [2]. The scalar solution of [1] can be extended to
the vectorial case as shown in [3].

However, in practice, the ideal non-diffracting beams are not
realizable since they would require infinite power and an un-
limited radiating aperture [4] to be able to operate in an infinite
range. As an alternative, we can use finite apertures to create
weakly-diffracting beams that do not undergo diffraction over
a limited range known as non-diffractive range (NDR) [4].
The self-healing propriety is also observed over the NDR. In
[5], the researchers have experimentally validated the theory
previously developed in [4] using finite radiating apertures to
produce weakly-diffracting vector Bessel beams.

The goal of this work is to analyze the self-reconstruction
of weakly-diffracting vector Bessel Beams. For this purpose,
we study the electromagnetic scattering by a circular disk,
composed of a perfect electric conductor (PEC). The fields
radiated by the circular aperture are radially polarized and
transverse magnetic with respect to the z coordinate (TMz)
[7].

Considering the cylindrical coordinate system (ρ, ϕ, z), the
TMz tangential component of the electric field can have the
form [4]:

Eρ = A(ρ)J1(kρρ)e
−jkzz (1)

where A(ρ) is a tapering function to control the amplitude of
the transverse field distribution, k20 = k2ρ + k2z , and k0 is the
free-space propagation constant.

The circular radiating aperture is located over an infinite
ground plane, and it is excited with three different radially
polarized field distributions: Bessel (BB) and Bessel-Gauss
(BG) beams, which are non-diffractive, and the transverse
electromagnetic mode (TEM) of a coaxial cable [8]. For
the analysis, an equivalent magnetic current distribution is
assumed over the radiating aperture [7]. To derive the radiated
fields we use a spectral Green function approach [9].

The paper is organized as follows. In section II, the scat-
tering problem is modeled. In section III, we present the
simulated results for three obstacles of different sizes. In
the last section, we conclude the paper and propose future
directions for this work.

II. METHODOLOGY

The system aperture-obstacle is modeled as a scattering
problem [7]. In this formulation, the fields are divided in
incident, scattered and total fields. The incident fields, E⃗in

and H⃗in, are defined as the fields of the radiating source with
the obstacle absent, while the scattered fields, E⃗s and H⃗s,
are the fields due to the electric current on the surface of
the obstacle with the aperture absent. Finally, the total fields
are the ones considering both the obstacle and the radiating
aperture: E⃗(H⃗)tot = E⃗(H⃗)in + E⃗(H⃗)s.

To derive the current over the obstacle surface we use a
Physical Optics (PO) approach [7]. As presented in [10] the
PO delivers good results only when the effects of multiple scat-
tering in the system are negligible and the radius of curvature
of the obstacle is sufficiently greater than the wavelength of
operation. In this approximation, the surface electric current
exists only over the surface which is illuminated by the source,
and is calculated as J⃗ ≈ 2n̂× H⃗in, where n̂ is the normal to
the surface of the obstacle.

To propagate the fields, we use the a spectral free space
Green function approach based on [9]. The BB, BG and TEM



Fig. 1. Evolution of the amplitude of the distorted Etot
ρ (ρ, z), for the

BB distribution. The radius of the aperture and obstacle are 4λ and 8λ,
respectively. The minimum shadow distance extends until z = 0.306 m.

field distributions have analytical spectral domain representa-
tions, as presented in [8]. To go from the spectral domain to
the direct space, and vice versa, we use a Hankel Transform
[11] based on the Fast Fourier Transform (FFT).

III. NUMERICAL RESULTS

The radiating aperture is placed on the plane z = 0, and it
is centered at the origin of the cylindrical coordinate system.
The obstacle is placed perpendicular to the axis z, at a distance
d from the aperture. We have chosen an aperture with a radius
of 8λ which operates at 10 GHz, having λ = 0.03 m. Only
TMz polarized fields are considered.

The NDR of both the Bessel and Bessel-Gauss beams equals
0.99 m (33.15λ), and kρ ≈ 0.23k0. The obstacle and the
aperture are axially aligned, and the distance between them
is d = 0.05 m. For the TEM distribution, the inner radius is
0.8λ, or 10% of the outer radius.

The obstacle chosen is a circular perfect electric conductor
(PEC) disk. To study the impact of the obstacle’s radius (a) on
the electromagnetic fields, we have varied its radius. Thus, we
have three different cases, namely A (a = 1.6λ), B (a = 2.4λ),
and C (a = 4λ).

The shadow distance [12] is defined as the minimum dis-
tance after which the beam is able to self-reconstruct, and can
be calculated as in [2]: zmin ≈ (ak0)/(2kρ). The calculated
minimum shadow distance is 0.102 m, 0.154 m, and 0.256 m
for cases A, B, and C, respectively.

Fig. 1 exhibits the case for obstacle C. |Etot
ρ |, disturbed by

the obstacle, is shown propagating along the axis z. We can
observe a high resonant region between the obstacle and the
source. Furthermore, there is a region of null field just behind
the obstacle, until z = 0.12 m. Then, the field starts to self-
recover, gradually regaining its intensity.

In Fig 2, the total tangential electric field is shown for the
three different field distributions at z = 0.5 m. The total field
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Fig. 2. The images (a), (b) and (c) represent |Etot
ρ |, normalized by |Ein

ρ | and
distorted by the obstacle on the plane z = 0.5 m. The curves A, B and C are
referenced to obstacles of radius 1.6λ, 2.4λ and 4λ, respectively. The dashed
purple line represents the normalized |Ein

ρ |, plotted here for comparison.
Image (d) compares the results obtained from our approach and the results
from COMSOL, for |Etot

ρ | radiated by the BB distribution on the plane z =
0.5 m.

at this plan is compared to the incident tangential field at the
same plan. Furthermore, Fig. 2 shows the comparison between
the BB results with the commercial full-wave software COM-
SOL [13] and the approach developed in this work. The results
from our diffraction formulation using the PO approximation
for the induced currents show good agreement with COMSOL.
We can observe the impact of the size of the obstacle in the
amplitude of the tangential electric field. For the worst case,
obstacle C, |Etot

ρ | is approximately 0.66|Ein
ρ |, 0.40|Ein

ρ | and
0.30|Ein

ρ | for BB, BG and TEM distributions respectively. We
can verify the the self-healing effect in the BB and BG beams.
However, while the field profile is restored, the amplitude is
not fully recovered.

IV. CONCLUSION

We have reported the behavior of three different TMz

polarized field distributions distorted by a circular PEC disk
obstacle over a radiating circular aperture. We have modeled
the system as a scattering problem by using a PO approach.
We verified the self-healing effect for the Bessel and Bessel-
Gauss beams. As expected, the TEM field distribution does
not present a self-healing behavior. As an extension of this
work, we are analyzing the impact of obstacles in the power
transfer efficiency between two radiating apertures excited by
weakly-diffractive field distributions.
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