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Abstract

The whole-body elasto-geometrical calibration of humanoid robots is critical
particularly for their control and accurate simulation. However, it is often not
considered probably since it is a nontrivial task due to the mechanical complex-
ity and inherent constraints of anthropomorphic structures. Also, humanoid
robots have to sustain great efforts on their support legs, leading to link and
joint being deformed, and are prone to auto-collision. Thus, elastic parameters
have to be factored in in addition to the geometric ones and to improve the
precision of the pose of all robot segments. This is much more cumbersome and
time consuming than the classical calibration of serial manipulators that deals
solely with the estimation of the pose of the end-effector. Finally, due to the
complexity of the task, a manual intervention in several steps of the calibration
is no longer possible and a thorough automation of the approach is needed.
Therefore, we propose to use a stereophotogrammetric system along with em-
bedded joint torque sensors to calibrate the pose of all robot links with a fully
automatic procedure. The generation of the minimal set of optimal calibration
postures is based on a new iterative optimization process that leads to a stable
maximum of an observability index. Then full set of geometrical parameters
but also joint and base elastic parameters were calibrated using a single least-
square optimization program. The proposed method was validated on a TALOS
humanoid robot allowing to obtain an accurate whole-body calibration in less
than 10 minutes. The proposed approach was cross-validated experimentally
and showed an average RMS error of the tracked markers of 2.2mm.

Keywords: Calibration, Humanoid Robot, Elasto-geometric calibration,
Stereophotogrammetric system.

∗Corresponding author
Email address: vincent.bonnet@laas.fr (Vincent Bonnet )

Preprint submitted to Elsevier September 29, 2023



1. Introduction

Humanoid robots are the focus of extensive research and their field of appli-
cations keeps expanding. Companies are already offering commercial versions
of these robots but mainly for research purposes. For this reason, they are
constantly evolving and often modified to meet new experimental requirements.
Also they are frequently dismantled, repaired and reassembled after an inci-
dent. As a result the kinematics of robot models might be slightly modified.
In addition to their light design, humanoid robots are more prone to inadver-
tent kinematic and non-kinematic errors, thus challenging the pose estimation
of every links. Kinematics errors refer to the slight 3D position and orientation
variations of the nominal values between two consecutive frames [21]. Non-
kinematics errors in humanoid robots are related to joint flexibilities, attributed
to the use of harmonic drive gears, and to link deformations observed mainly at
the leg level. Link deformations can be intrinsic to the design of the robot and
used to absorb impacts [2] or can be undesired due to the large applied efforts
observed during single support phase for example. In humanoids it is crucial to
locate accurately each link for offline planning of steps for walking or contact
point locations, or for generating complex whole-body manipulation motions
while avoiding auto-collision on the real robot. Of course end-effector pose is
important, as in industrial robotics, but it can be effectively achieved only if the
pose of the floating base is also well estimated. The floating base pose usually
relies on the FKM and IMU data that are, after a static transformation from
the IMU frame to the floating base one, fused together in an adaptive filter [31].
If these models are incorrect, so will be the pose estimation of each link. Each
link pose estimation is also important for dynamics calculation when projecting
external forces as this is needed to control dynamical balance.

1.1. Related work

The literature on industrial robotics contains numerous studies about the use
of geometrical calibration for reducing the influence of kinematics errors [15]. It
relies on using position and/or orientation measurements or constraints of the
end-effector, taken over specific joint configurations called calibration postures,
relatively to a frame defined at the base of the robot, to estimate parameters
of a linearized error model. Besides a purely kinematics source of errors the
recent development of collaborative robots, that have by design relatively flexible
joints, have seen the development of new multi-modal approaches [32, 37]. The
modalities can rely on the measured joint torques [26], the estimated ones from
motor position readings [25], or the ones calculated using the dynamic model [17]
to estimate elasto-geometrical parameters. However, except for a few exceptions
[19], the study of deformation in serial manipulators was done at the joint
level. Indeed, it is a reasonable to assume that the links of serial manipulators
are rigid. This might not be the case for humanoid robot legs as very large
efforts can be applied to them. Adding measurements or constraints creates
redundant information on the internal state of the robot which generates a
system of equations depending on the robot’s posture. In order to obtain more
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equations than unknowns and thus make the systems robust to measurement
errors, it will be necessary to position the robot in a number of measurement
configurations. The use of Optimal Calibration Postures (OCP), allows for
better results of the calibration process compared to random postures [16, 10].
It is now apparent that a consensus has emerged to use an optimization process
to maximize the influence of error parameters on the measurements. The choice
of the cost function is still debatable and is dependent on the experimental setup
[16, 34].

Measurements can be taken from a wide range of commercially available or
custom-designed measurement tools such as a Laser tracker [30] or Coordinate
Measuring Machines (CMM) [25] or even, with a reduced accuracy, Inertial Mea-
surement Units (IMU) and sensitive skin [37]. Laser trackers usually measure,
in static condition, 3D position or 6D pose of a link, usually the end-effector.
However, at anyone time, a Laser tracker can only measure information about
a single link. Therefore, a Laser tracker will not be able to monitor the pos-
sible modifications of the pose of the robot base between two static postures.
For a floating base system it might significantly decrease the accuracy of the
measurements with respect to the robot base frame.

Optical CMM are less expensive than Laser trackers and they can measure
simultaneously several marker positions while being sufficiently accurate for
geometric calibration of serial manipulators [30]. However, such systems have a
relatively limited measurement volume, are highly sensitive to marker occlusion,
as the cameras are located on the same plane, and they can only measure the
3D position of a limited number of markers.

Other measurements can be provided by Stereophotogrammetric Systems
(SS) that have not been used often for robots’ calibration purposes, at least in
scientific papers. They measure the 3D positions of numerous retro-reflective
markers in a very large volume [8]. They have a much lower accuracy than
Laser tracker and CMM but were shown to have a correct precision for robotics
applications [28]. The accuracy of SS is influenced by several factors, such as
the number of cameras and their setup, measurement and calibration volume,
camera resolution, dynamic or static motions, etc. Thus, there is no exact value
to be provided but it has been shown that in a large workspace the use of 21
cameras yields an accuracy of approximately 200µm [1].

In humanoids the calibration process has been much less studied than in
industrial robotics [23, 32]. Except for one study that proposes to compute
the whole body geometrical parameters using SLAM [36], most research actu-
ally focused on dual-arms robot and proposed hand-eye calibration methods
[7, 33, 3, 18]. Using embedded sensors drastically reduces the complexity of
the experimental setup and theoretically does not require the intervention of an
operator. However, to the best of our knowledge, these approaches are not very
accurate as they are limited to the arms and trunk joints and were not used to
estimate the full set of kinematic parameters except for a recent simulation study
[33]. For example, Birbach et al. [3] identified solely the rigid transformation
matrices related to the camera and neck frames and joint offsets and flexibilities
of the arms. Moreover, they only assessed the accuracy of the calibrated robot
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using camera pixel re-projection error and a throwing ball demo. Stepanova et
al. [33] proposed to calibrate the full set of kinematic parameters of the arms
while using the pose information of the end-effector related to the contact point
formed by two arms in interaction and an embedded camera looking at the con-
tact point. They showed that with 100 postures they could calibrate the whole
set of kinematic parameters with an accuracy of 1mm for the end-effector posi-
tion. However, these results were obtained in simulation only and the method
seems challenging when it has to be implemented on most real humanoid robots
as it requires a calibrated sensitive skin. To the best of our knowledge only a
limited number of iCub prototypes are equipped with such sensitive skin. Also,
the torso joints, that are crucial to positioning the arms relatively to their base
frame, were supposed constant. There is no explanation on how the calibration
can be performed using embedded sensors for these joints.

The crucial leg calibration was only assessed in two studies that proposed to
lay down the robot to avoid dynamical balance problems. This is not possible
for all humanoids and can be done only through an operator manipulation. The
measurement of the pose of the foot was done either using the embedded camera
and a checkerboard pattern attached to the foot, with a limited field of view due
to the laying configuration, or using an industrial collaborative robot controlled
in impedance so as to manipulate the humanoid foot [23]. The latter approach
is promising and could be used for all end-effectors but it does not ensure that
the base of the robot will not move during the calibration experiment.

As humanoids feature five end-effectors, one has to reduce the number of
static postures required for the calibration process. Depending on the routine,
performing calibration with such complex systems, can be highly time consum-
ing while taking up human resources, thus leading to robot downtime. Beside
using OCP, time reduction can be done by collecting other measurements than
only the end-effector 3D position or pose for a given posture. Interestingly, if
all joints motion could be monitored separately, it would greatly simplify the
calibration process. This can be done using a SS.

In this context, we propose to assess the practicability of using a classical SS
and numerous retro-reflective markers located on most of the links of a humanoid
robot to measure a minimal set of optimal calibration postures for performing
the whole-body calibration of a large size humanoid robot.

1.2. Paper Contribution and Overview

This study proposes the following contributions:

• A framework based on a stereophotogrammetric system and joint torque
sensors to estimate the elasto-geometrical errors of a humanoid robot with-
out manual intervention.

• A simple handling of whole body joints and leg links deformations to
estimate accurately the floating base pose.

• An optimization process avoiding local minima to solve the large scale
problem of generating Optimal Calibration Postures (OCP) for humanoids.
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• An experimental validation on TALOS humanoid robot by means of stan-
dard metrics of the calibration errors and with a reduced overall calibration
run-time of 10 minutes.

The paper is organized as follows. Section II describes the robot calibration
model that includes a simple way of taking into account the elastic deforma-
tions. Section III describes the pragmatic generation of whole-body calibration
postures using an optimization process and a modified version of the Iterative
One-by-One Pose Search (IOOPS) algorithm [10]. Section IV and V present
the experimental setup and results obtained with a TALOS humanoid robot.
Finally, the paper discusses benefits and drawbacks of the proposed method.

2. Mechanical and Error Models

2.1. Geometrical Model

Dof Joint torque sensor
Dof no joint torque sensor

Figure 1: Mechanical model of the humanoid robot TALOS composed of 30 actuated DoF
among which 24 are provided with a joint torque sensor.

The humanoid robot TALOS is composed of NJ=30 actuated Degrees-of-
Freedom (DoF) and NL=17 links as depicted in Fig. 1. The relative 3D trans-
lation and rotation between two adjacent robot links were calculated using the
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classical Modified Denavith-Hartenberg convention [22]. It is based on four pa-
rameters describing the joint angle θi, the offset distance di, the link length ri,
and the so-called twist angle αi. As shown in Fig. 1 some consecutive axes of
rotation of the TALOS’ legs are parallel. Thus, to avoid numerical instabilities
in the calibration process a fifth parameter βj allowing rotational displacement
along the y-axis was added to the corresponding axes [13] and set to zero oth-
erwise. It leads to the following transformation matrix from frame i to frame
i− 1:

i−1Ti = Roty(βi)Rotx(αi)Trx(di)Rotz(θi)Trz(ri) (1)

The TALOS floating base frame is located at the waist level and its pose in
the global system of reference R0 is calculated using six parameters thanks to
the following transformation matrix:

0Tw =0 TMwRotz(γ0)Trz(b0)Rotx(α0)Trx(d0)

Rotz(θ0)Trz, d0)
(2)

where 0TMw is the transformation matrix from the frame created from three
retro-reflective markers tracked by the SS and attached to the waist in the global
system of reference.
As developed in section 4, clusters of three retro-reflective markers are attached
to several links of the robots. A cluster can monitor separately the motion
of a single joint or of a group of joints (see Section 4). Nevertheless, each
cluster is attached to a given joint frame in the model. The 3D position of
the kth marker is set in its corresponding joint frame using three parameters
δMk = [δMdk δMβk δMrk]

T . To estimate the 3D position vector y (3 × NM )
of the NM considered markers in the global system of reference, the Forward
Kinematics Model (FKM) of the TALOS robot was used:

y = FKM(q,L, δP,
0 Tw, δM) (3)

where q and L are the joint positions and nominal segment length vectors, re-
spectively. δP = [δθi δri δdi

δαi
δβi

]T is the vector containing the differential
variation of the geometric parameter terms that should be identified. The con-
tribution of each small errors in the kinematic parameters Ψθ, Ψα, Ψd Ψr, and
Ψβ (((3 × NM × NS) × NJ)) to the resultant marker position errors ∆y can
be calculated efficiently thanks to the well-known generalized differential model
described by Khalil et al. [20]. Thus, the geometric calibration model is the
following:

∆y = Ψδg

where δg = [δP δT0 δM]T

Ψ = [Ψθ Ψα Ψd Ψr Ψβ ΨT0 ΨM]

(4)

where Ψ ((3×NM ×NS)× (NJ × 5)) is the total generalized Jacobian matrix.
ΨT0 ((3×NM×NS)×6) andΨM ((3×NM×NS)×(3×NM )) are the generalized
Jacobian matrices related to the robot’s base and local marker positions.
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The generalized Jacobian matrix Ψ is not full rank, i.e., some parameters
are not linearly independent, as they are structurally unidentifiable. The set
of identifiable parameters was determined numerically in simulation using a
set of one thousand joint configurations complying with the joint limits and
a QR decomposition method [12]. Since there is no unique set of regrouping
equations, we used the fact that the QR decomposition which allows for the
independent columns of the matrix Ψ to be grouped together. Doing so, we
identify in priority the parameters that can be updated in the control system
[21]. For example, the estimate of the local marker positions is required only
during the calibration as the markers will be removed from the robot in daily
use. This is why the Ψ matrix was organized by placing first the joint offsets,
then parameters ri and di, the angles αi and finally the parameters related to
the robot’s base matrix T0 and the local marker poses δM. Once the redundant
parameters had been identified, their corresponding columns in Ψ were deleted.
The nominal values of these parameters were used in the model. The generalized
Jacobian matrix containing the Nb identifiable parameters is called the base
generalized Jacobian matrix and denotedΨb. For the six DoF of the leg and with
three clusters of markers, a total of Nb = 44 parameters had to be determined.
It includes 17 joints parameters and 27 parameters that are related to the local
marker positions. Number 17 corresponds to the 4x3 calibration parameters of
the hip and ankle joints and to the calibration DH parameters related to the knee
joint, as the hip and knee joint are co-linear [19]. Moreover, the joint parameters
related to the first hip joint and last ankle joint cannot be dissociated from the
marker’s local position. Thus, they were set to zero as previously explained. For
the four DoF the head-trunk system with two clusters of markers, the number
of identifiable parameters was Nb = 30. Among these, twelve were related to
the joints. For the seven DoF of the arm with six clusters of markers it was
Nb = 74 with twenty identifiable parameters related to the joints.

2.2. Analysis of Non-geometric Parameters

As previously stated, humanoid robots are more subject to non-geometric
errors than classical industrial manipulators as they use harmonic drive gear-
boxes and feature links that are subject to very large mechanical stress. Several
studies have proposed to model the joint deflections of serial manipulators as
a linear torsional spring to account for the constant compliance of each joint
[17]. Usually, the same joint configurations are used to estimate the geometric
parameters and the joint flexibilities solely by adding a weight or by applying
external wrenches on the end-effector. The aim is to avoid making the calibra-
tion procedure too complex from an experimental point of view. However, only
the static components of the additional joint torques are then taken into account
[17]. Few papers have investigated the complete elastic deformations of joints
and links. Indeed, modeling all link deformations increases dramatically the
number of parameters to be estimated and does not significantly improve the
kinematics accuracy in industrial robots [19]. Despite an interesting theoretical
framework, these studies incur a large computational cost especially for tree
structures. Additionally, the estimate of deformations during impact phases,
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that are often observed in humanoids, might be difficult to obtain in real-time
with the filtering delay needed to arrive at a proper estimate of joint acceler-
ations. Fortunately, the TALOS robot is equipped with joint torque sensors.
Consequently, the effect of both static and dynamic loads on the joints and on
the links can be monitored. For the joint of the head-arms and trunk chains
elasticity was modeled as [17]:

δθK = Kθ
−1τ (5)

where δθK is the vector of the small joint deflections due to the loads applied
onto the joints. Kθ, (NJ ×NJ) and τ (NJ ×1) are the diagonal stiffness matrix
and the vector of the measured joint torques, respectively.

For the legs another approach was chosen as modeling only the joint deflec-
tion infers that the deformations are co-linear with the joint axes. This might
not be the case for link deformations. Additionally, compensating for the flexi-
bilities at the joint level will only improve one dimension of the pose estimate of
the links that are located after this joint. For the TALOS legs, the effect of the
3D link deformations on the pose estimate of the robot’s floating base should
not be neglected. Thus, to avoid the experimental and computational burden
of using a link deformation model, it is proposed to calculate δT0, the influence
of the link deformations onto the pose of the robot’s floating base. This can be
done by relying on the virtual force principle and by estimating the equivalent
diagonal Cartesian stiffness matrix Kw (6× 6):

δT0
= Kw

−1(JT )−1τ (6)

where J in the Jacobian matrix describing the velocity of the frame attached to
the waist in the support foot frame. Consequently the total elasto-geometrical
vector of error parameters that should be compensated for is defined as:

δ = [δg diag(Kθ) diag(Kw)]T (7)

3. Optimal Calibration Posture (OCP) Calculation

Calibration postures should be selected to increase the influence of the pa-
rameter errors on the pose correction of the considered link(s). Usually, a large
number of measurements is used since adding measurement postures to a cal-
ibration process increases its robustness [11]. A humanoid robot calibration
procedure should focus on improving the accuracy of the pose estimation of all
its links in order to avoid autocollisions and to control the dynamic balance.
Thus, the number of required calibration postures for a humanoid robot might
be very large. However, it has been shown that improvement of the accuracy of
the calibration process reaches a plateau after a certain number of postures [14].
Thus, to minimize the number of postures required to reach this plateau and
to determine OCP, a dedicated algorithm should be used [10]. Even for serial
manipulators, determining the minimal number of postures and the OCP while
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avoiding mechanical limitations is difficult. Most of the algorithms fall into local
minima owing to the large scale of the problem. Usually the number of postures
is set a priori. The proposed approach allows to determine a minimal set of
feasible OCP.

3.1. Constraints

Obviously, calibration postures should be feasible for the robot. Thus, a set
of feasible postures Cfeasible was defined by the following inequalities:

q−j ≤ qj ≤ q+j , with j = 1, ..., NJ (8)

|τj(q)|≤ τ+j (9)

P−
E ≤ PE(q) ≤ P+

E (10)

0 ≤ dspheres(q) (11)

(8) means that the joint angles should remain within their boundaries, τj(q)
in (9) is the motor torque of joint j necessary to compensate for gravity in
configuration q, τ+j is the maximal torque value of the jth joint. (10) constrains
the end-effector position and orientation to remain in a subset of their workspace
defined in the waist frame. One subset is defined for each sub-chain in order to
reflect the area of use of the end-effector.

(a) (b)

0.6m0.6m

0.6m

0.4m

0.4m 0.6m

Figure 2: (a) View of the calibration workspaces of the arms and legs. (b) Position of the 28
spheres used to avoid auto-collisions.

The sub calibration workspaces of the end-effectors were roughly set as the
manipulation areas in front of the robot torso for the hands and the areas cor-
responding to large steps for the feet. The actual values are indicated in Fig
2.a. For the orientation of the feet and hands, 3D variations of 60deg from the
nominal orientation were allowed. To avoid auto-collision, spheres were used to
represent the links as shown in Fig 2.b. The radius of each sphere was set to
fit at best its corresponding link cover width plus a small tolerance. The use of
simple autocollision model allows for a safety margin to be set easily and to have

9



an efficient collision detection at a low computational cost. This was done by
forcing dspheres (Nc×1), the Euclidean distance between spheres, to be positive
for Nc possible contacts (Inequality( 11)). For the head-trunk chain the number
of contacts that were checked was Nc = 4, for the arms it was Nc = 15 and for
the legs Nc = 16.

3.2. Decomposition of the optimization problem

A pragmatic decomposition of the optimization problem is proposed. The
OCP determinations for the head, leg and arm chains starting from the waist
are performed separately. This decomposition is possible thanks to the use
of numerous retro-reflective markers. For the left and right arms and legs,
symmetric OCP are used. Thus, in the following sections three optimization
problems are solved each with a different observation matrix Ψb corresponding
to each kinematic chain.

3.3. Selection of observability index

Numerous studies have compared observability indices [15, 29, 5, 16] mainly
built from the calculation of the singular values of the observation matrix. As
recalled by Nahvi and Hollerbach [29], assuming that the errors in the parame-
ters are included in a N −d sphere of unit radius, the resulting pose errors form
an ellipsoid, the axes of which are the singular values σ of Ψb. In the presence of
a relatively high level of measurement noise, maximizing the product of the sin-
gular values leads to the best calibration results [16]. It is similar to maximizing
the determinant of Ψb

TΨb [5, 34], which means increasing the volume of the
error ellipsoid. This is interesting for our study as the SS accuracy and precision
are much lower than the ones of laser tracker. Moreover, in the proposed setup
some error parameters can have a much greater influence on the measurement
due to different link sizes or marker locations for example. Then, it is usually
recommended to normalize the columns of the observation matrix. Fortunately,
the determinant of Ψb

TΨb is invariant under any non-singular linear transfor-
mation [34]. Thus, we retained the root of the product of the singular values as
observability index [5, 16, 34, 29]:

O1 =
Nb
√
σ1σ2...σNb√

(Nq)
(12)

where Nq is the number of considered postures, and σi with i = 1, ..., Nb are the
singular values of Ψb. The singular values were obtained using a classical SVD
decomposition.

3.4. Feasible OCP generation

Determination of a vector of OCP q∗ = (q∗1 , . . . q
∗
Nq

) ∈ CNq

feasible is essential for
the calibration of manipulators. OCP are generated prior to the calibration fol-
lowing optimization procedures that meet the constraints defined in Section 3.1.
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3.4.1. Definitions

We define by
F = ∪∞

i=1Ci
feasible

the set of vectors of feasible postures of any length. With this definition, O1

defined in Equation (12) can be considered as a mapping from F to R.
Let N be a positive integer, and q = (q1, · · · , qN ) be a vector of N feasible

postures. We denote by

q−
k = (q1, · · · , qk−1, qk+1, · · · , qN )

the vector of postures obtained by removing the posture at rank k. In the
following developments, the determination of the posture that degrades the
most index O1 when it is removed was performed. For that, we define

k = worstIndex(q) = argmink∈{1,··· ,N}O1(q
−
k ).

Finally, O1 was optimized over a limited number of postures thanks to the
following optimization function. Let I be a set of positive integers not greater
than N and q0 = (q01, · · · , q0N ) ∈ CN

feasible a vector of N feasible postures. Func-
tion partialOptim(I,q0) was defined as that that optimizes O1 over postures
of indices in I, starting from q0:

partialOptim(I,q0) = argmaxqi,i∈IO1(q1, · · · , qN )

qj = q0j for any j /∈ I

For example,

partialOptim({1, 3},q0) =

argmaxq1,q3O1(q1, q02, q3, q04 · · · , q0N )

3.4.2. Classical approach and limits

An important question, still open, is the determination of the number of
calibration postures Nq. A lower bound of Nq is given by the minimal number
of postures Np needed to identify the parameters. To our knowledge, there is
no generic result on the upper bound for Nq but it should be large enough to
minimize the influence of measurement noises. However, as mentioned earlier,
this bound can be established using the plateau reached by the observability
criterion when Nq increases [14].

To solve the problem, different approaches have been proposed [22, 39, 40].
However, the maximization of a non-linear criterion, such as O1(q), is sensitive
to local minima. Nowadays, it is generally accepted that iterative search algo-
rithms should be used to solve this problem leading to the determination of a
sub-optimal set, noted q⋆ [27, 9].
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Algorithm 1 Function COCP[q]

Input: a set of N calibration poses q0

Output: a set of N optimized calibration poses q
Result: Improves the observability for a set of N calibration postures.
q = q0; k = −1
repeat

1: kprev = k
2: k = worstIndex(q)
3: q = partialOptim({k},q)

until kprev == k;
return q

The method consists in fixing a set of N > Np random feasible calibration
postures denoted by q0 = (q01, . . . , q0N ). Then function partialOptim is iter-
atively called with the set of indices being defined as the singleton containing
the output of function worstIndex. The method stops when the same index is
returned twice by function worstIndex (see algorithm 1).

The results obtained are generally good but can be improved. Indeed, the ob-
tained postures generally produce a local maximum for the O1 criterion. Meth-
ods to tackle this issue have been proposed. For example, the algorithm IOOPS
uses a Tabu Search approach to force the exit of the local maximum by for-
bidding the stopping of the algorithm [10]. This greatly improves the value of
the criterion until it reaches a plateau where the maximum is close to its global
value. However, this approach is purely numerical and does not take advantage
of the structure of the Jacobian Ψb.

3.5. Our proposed algorithm

We propose an alternative inspired by a geometrical observation of the struc-
ture of the Jacobian Ψb indirectly proposed in [35], in which, the authors intro-
duced two indices based on the orthogonality of the rows (figuring calibration
postures) and columns (figuring calibration parameters) of Ψb.

In an ideal case, where Ψb is a square matrix, the index O1 is maximal
(volume of the ellipsoid, see subsection 3.3) when the rows and columns of
Ψb are orthogonal to each other. In this case, an additional row, provided
by a new calibration pose, cannot be orthogonal to all the previous ones and
will contribute little to the increase of O1. There is therefore a pattern that
consists of a minimal number of calibration postures to identify the parameters
for which the index O1 is maximal. Because of the conditions on the feasibility of
calibration postures (Cfeasible), it would be difficult to obtain purely orthogonal
patterns.

Block optimization: In the studied case, the over-constrained system of
equations provides a rectangular JacobianΨb. Ideally, a novel approach consists
in constructing this matrix by adding several near-square block matrices figuring
patterns of calibration postures. To do this, we use Function partialOptim
to generate the near square matrix blocks (Np = 4) that we concatenate to
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construct the Jacobian Ψb. The randomized initialization of the function leads
to different solutions for each execution of the function.

3.5.1. Modified approach, NOCP

Because

1. the number of rows brought about by each new posture (3Nm) does not
allow to obtain a square matrix,

2. feasibility constraints (Cfeasible) limit the orthogonality of the Jacobian
rows,

we use the following algorithm 2 to better assess the interactions between cali-
bration postures.

Algorithm 2 Function q⋆ = NOCP. Iteratively add Np random feasible pos-
tures (line 3,4), optimize O1 over those new postures only (line 5), and call
Function COCP. Stop when optimization criterion reaches a plateau.

Result: a set of (k + 1)Np (Np = 4) calibration postures q⋆

0 : k = 0

1 : q0 ∈ R0(empty vector)

2 : Repeat

3 : r = vector of Np feasible postures

4 : qk+1 = (qk, r)

5 : qk+1 = partialOptim({kNp + 1, . . . , (k + 1)Np},qk)

6 : qk+1 = COCP(qk+1)

7 : k = k + 1

until |O1(qk−1)−O1(qk)| < ϵ

3.5.2. Random postures and optimization

The generation of feasible random postures (see algorithm 2) was performed
using random Cartesian poses of the end-effector respecting inequalities (10).
For each pose, a corresponding joint configuration was calculated using a cus-
tom QP approach. If a collision was detected the shoulder or hip joints was
slightly moved iteratively to get to the next feasible random joint configuration.
The proposed non-linear constrained optimization problem was solved using the
classical interior-point method [6].

3.6. Generation of stable trajectories

Once all the exciting postures were obtained for each kinematic chain, they
were sorted out to minimize the Euclidean distance in joint space. Joint tra-
jectories corresponding to the joints of the investigated kinematic chain were
interpolated over a fixed time of 5s between two consecutive OCP using 5th
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order B-Splines. This allowed us to impose zero condition for initial and final
velocity and acceleration thus reducing the robot’s oscillations. Five way point
values were optimized to minimize the joint velocity while avoiding autocolli-
sion. Finally, to avoid any manual intervention during the calibration process,
dynamical balance was ensured using a last optimization process on the leg
joints that were not being calibrated. Depending on the chain being calibrated
the dynamical balance was ensured by either one or two legs. To do so, for each
time sample, the deviation of the ZMP with the center of the base of support
ZMP0 was minimized by determining either 6 or 12 stabilizing leg joint angles
qS :

Find q∗
S = argmin

qS∈RNJ

|| ZMP− ZMP0 ||22 +α || q̇ ||2

subject to q− ≤ qS ≤ q+

|q̇|≤ q̇+

|Γ|≤ Γ+

µFX,Y ≤ FZ

0 ≤ dvertex

(13)

where α = 10−3 is a regularisation term. q̇+ is the vector containing the maxi-
mal joint velocities. The constraint µF̄X,Y ≤ F̄Z , with µ = 0.5, guarantees that
the friction forces are acting within the friction cone. FX , FY and FZ being the
estimate of the external wrenches under each foot [4].

4. Experimental Setup

The proposed method was used to calibrate the humanoid robot TALOS
shown in Fig. 1 (1.75m, 90kg, PAL Robotics, Barcelona, Spain). It can measure
joint positions thanks to 19bits joint encoders. The red cylinders in Fig. 1
indicate the location of the 24 joints equipped with a torque sensor. A SS (20
Miqus M3 cameras, Qualisys) consisting of twenty cameras was used to collect
the 3D positions of 60 retro-reflective markers located on the whole structure
of the TALOS robot. The complete experimental setup is shown in Fig. 3.a.
The longest part of the experiment was positioning the cameras and internal
parameters setting. Camera specific gains/thresholds had to be tuned manually
to enhance the robustness of marker identification. The TALOS covers reflected
the infra-red beams from the cameras as shown in Fig.3.b.

Depending on the geometry of the robot’s cover, markers were located in
clusters of three either directly taped onto the robot’s cover or using a custom
made rigid cluster. The rigid clusters were used for practical purposes to speed
up preparation time. They were located on each possible cover to monitor
independently as many joints as possible. Double sided tape was used to firmly
attach the clusters to the covers and prevented wobbling. No special attention
was paid, beside avoiding collision of markers with adjacent links, to locate the
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markers on the covers. Note that the marker’s local positions were identified
during the calibration process. Marker positioning took less than five minutes.

As illustrated in Fig. 3.a, 3 clusters were located at the head, trunk and
waist, 6 on each arm and 9 on each leg. For the arm, the shoulder, elbow and
one DoF of the wrist, joints were fully monitored and one cluster was attached
to two wrist DoF. For the leg it was not possible to monitor separately the
action of each joint except for the knee joints. For the head-trunk chain, a
cluster monitored the trunk joints and another was attached to the head.

(a) (b)

Infra-red cameras

Figure 3: (a) Experimental setup and retro-reflective marker locations and (b) infra-red view
of a SS camera.

5. Identification Process

The final step in the calibration consists in identifying error parameters. The
objective is to identify the model error parameter δ (see eq.7) that minimizes the
least-square difference between the vectors corresponding to the estimated y and
measured ŷ marker 3D positions. The measurement vector ŷ of dimension 3×
NM×NS was obtained using all the samplesNS of the 3D position measurements
of the markers in the global system of reference. For the leg identification, a
special constraint has to take into account the fact that the position of the foot
supporting the robot weight should remain constant over all the measurements.
The following identification problem was then solved:

Find δ∗ = min
δ∈RNb

|| ŷ − y(δ) ||2

subject to F(qi, δ) = F(q1, δ) ∀i ∈ {2, · · · , NS}
(14)

where F(q, δ) ∈ SE(3) is the pose of the support foot when the robot is in
configuration q with parameter δ.
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5.1. Elaboration of experimental data

Raw position data from the SS were low-pass filtered at 5Hz (zero-phase lag
5th order Butterworth filter) as shown in Fig. 4. Better identification results can
be obtained with several samples of the same calibration postures [38]. Since the
SS was sampled at 100Hz, it should be possible to use hundreds of samples for
the same posture. Only those exhibiting the most stable marker positions were
selected using a thresholding method based on the magnitude of each marker
velocity. To avoid weight bias in the identification process, the same number of
samples for all markers of a kinematic chain was selected using the thresholding
method. For both legs, the number of selected stable samples were Ns = 144
and Ns = 168, respectively. For the left and right arms, it was Ns = 256 and
for the head-trunk chain, it was Ns = 72, respectively.
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Figure 4: Marker data filering and example of stable samples selection.

Also, owing to the tree kinematic structure of the robot and to the fact that
the error parameters are of different types, i.e. geometric or elastic, the mea-
sured marker positions obtained during different experiments should be con-
catenated. Specifically, the arm and head poses are due to the trunk joint
configurations. Thus, the marker data of the three experiments related to the
head-trunk, left arm and right arm were concatenated in the same vector of
marker positions ŷ of dimension 3× 328.

For leg trials, when one leg is performing OCP, the opposite leg is naturally
supporting the robot weight and handling balance. This will apply very large
efforts onto the leg joints. This is interesting particularly if one intends to
identify the joint and link flexibilities. Thus, we concatenated marker data
corresponding to the leg OCP and to the support leg. It boils down to a vector
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of marker positions ŷ of dimension 3 × 288 for the left leg and of dimension
3× 336 for the right leg.

Right arm OCP  Head-Trunk OCP Left leg OCP

Figure 5: Representative OCP played onto the TALOS robot and simultaneous motion capture
measurements.

6. Results

6.1. Results of OCP calculation

The calculated OCP are shown in the support video and in Fig. 5.
The total number of OCP was empirically determined, as described in Fig.

6, by analyzing the evolution of O1 with respect to the number of postures.
From this figure, it is clear that O1 value does not increase after 24 postures.
Thus, the number of OCP used for leg calibration was set to Nq = 24. Based
on similar analysis the total number of postures was set to Nq = 8 for the
head-trunk chain, and Nq = 32 for the arms.

Fig. 6 also shows a comparison of O1 evolution when using the proposed
modified version of the IOOPS algorithm and when iteratively applying algo-
rithm 1 as classically done in the literature. Clearly, modified IOOPS leads to
better results avoiding local minima which in turn allows to reduce the number
of calibration postures required.

6.1.1. Robot repeatability assessment

Prior to performing the calibration of the TALOS robot it is important to
assess repeatability as it will define, with the accuracy of the measurement
system, the accuracy value that the calibration process can achieve. To do so,
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Figure 6: Comparison of the evolution of O1 criterion for the leg when OCP were calculated
using the proposed modified IOOPS (black) relative to a conventional classical approach
(gray).

five repetitive motions of the legs and of the arms that are representative of
walking and reaching tasks were carried out. Ten samples corresponding to the
marker positions of the end-effector and of the waist in the initial and final
static postures were averaged. The Euclidean distance between waist and end-
effector marker clusters was calculated for each static posture. For the legs,
the distance variation between waist cluster and feet was 0.066±0.040mm. For
the arms it was 0.041±0.016mm. These values are much smaller than the SS
accuracy. Thus, the robot repeatability should not affect the calibration results.

6.1.2. Robot calibration results

The marker tracking residue, obtained during calibration, was relatively low
with an average RMSE of 1.5±0.2mm. Specifically, it was 1.3mm for the head-
arms-trunk and 1.7mm and 1.5mm for the left and right legs, respectively. The
identifiable and identified joint parameters are given in Table I.

For clarity, parameters related to local marker positions are not displayed.
One can see that most of the geometric parameters are small except for the head
and wrist joint offsets. This can be accounted for by the fact that the robot
manufacturer does not provide a calibrated version of its robot as is the case
with corporations producing industrial serial manipulators.

For the torso and arms, the identified joint stiffness was very large. For the
legs, Cartesian stiffness values were diag(Kwr) = [320 120 450 7.2e4 2.1e4 5.0e5]T
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Table 1: Identified elasto-geometrical parameters of the joint parameters described in Fig.1.

Joint δθ δd δr δα δβ Kθ

name [deg] [mm] [deg] [mm] [deg] [N.m/rad]

LLEG1 - - - - - -
LLEG2 -0.09 -0.00 -0.47 0.00 - -
LLEG3 0.02 -1.48 0.56 -0.21 - -
LLEG4 0.12 -3.33 0.56 -0.14 0.00
LLEG5 -1.09 0.99 0.55 -0.23 - -
LLEG6 - - - - - -
RLEG1 - - - - - -
RLEG2 0.00 -0.03 0.5 0.00 - -
RLEG3 -0.05 -0.98 -0.68 0.50 - -
RLEG4 -0.12 -2.45 -0.73 0.41 0.01 -
RLEG5 -1.19 0.64 -0.72 0.13 - -
RLEG6 - - - - - -
TORSO1 - - - - - 0.50e5

TORSO2 -0.47 1.17 -0.02 -0.15 - 0.335

HEAD1 -2.75 -0.80 -2.77 -0.11 0.00 -
HEAD2 - - - - - -
LARM1 1.73 -0.24 0.75 0.25 - 2.26e5

LARM2 1.13 -0.75 0.35 0.13 - 5.10e5

LARM3 -1.04 -0.24 -0.23 -0.04 - 2.95e5

LARM4 -0.02 -0.05 -0.36 0.35 - 0.48e5

LARM5 1.24 -1.7 1.14 0.18 - -
LARM6 -0.61 0.24 1.33 -0.22 - -
LARM7 - - - - - -
RARM1 -1.38 -1.67 0.62 0.34 - -
RARM2 -0.99 -0.62 -0.05 0.12 - 1.24e5

RARM3 0.21 0.07 -1.65 -0.03 - 0.44e5

RARM4 -1.83 -0.67 -0.31 0.72 - 0.61e5

RARM5 1.76 -0.66 -0.13 0.16 - -
RARM6 1.86 0.19 -0.39 0.32 - -
LARM7 - - - - - -

and diag(Kwl) = [350 110 300 5.9e4 9.2e4 3.6e5]T for the right and left legs,
respectively.

As expected these values demonstrate that most of the waist deviation ap-
pears in the frontal and sagittal planes of the robot were most of the efforts
are exerted. Cartesian stiffnesses may seem large. However, when multiplied by
the very large efforts expressed in the Cartesian space they result in relatively
large displacements. As shown in section VII.4, the waist can be inaccurately
positioned by values as high as one centimeter.
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Figure 7: Comparison of the estimated joint offsets of the right arm with the proposed cali-
bration method performed at different times.

6.1.3. Comparison between right arm calibrations performed at different times

Fig. 7 exemplifies the need for humanoid robots to be regularly calibrated.
It shows the results of joint offsets of the right arm estimated from the cali-
bration procedure performed at different times with the proposed method. The
so-called former-calibration was performed before the robot was returned to the
manufacturer to be updated and re-calibrated following an harmonic drive mal-
function. Of course, the first shoulder joint and the wrist joints display very
large offsets that were visually observable on the robot.

6.1.4. Robot cross validation results

Cross validation experiments were performed with slow sinusoidal motions at
a frequency of 0.5Hz spanning most of the range of motion of each joint. Beside
auto-collision and dynamic balance, the end-effector of the legs and arms were
not constrained to remain within the calibration workspaces shown in Fig.2.
On the other hand, a series of 20 static random joint postures not used for
the calibration process was also used for cross validation. The latter postures
comply with the calibration workspaces shown in Fig.2. Cross validation was
also performed with the motions used for the repeatability test performed with
the right arm and leg. For each cross validation, the comparison was made with
the fully calibrated model, using only the geometrical parameters (without joint
and link flexibilities) and with the non calibrated model using only the estimated
local marker positions. Table II lists the results of the estimated marker tracking
errors for the different cases and chains considered. Head, Arms and Trunk
(HAT) errors were reported together as the model base is located at the waist
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and thus the trunk joints affect the overall accuracy of the head and arms
positioning. With respect to all trials the marker tracking average RMSE was
2.2mm for the calibrated model and 7.1mm when the model was not calibrated.
The calibration allowed to reduce by 3 the RMSE. A typical representation of
the tracking error, when playing separately low frequency sine wave motions,
on each joint of the head arms and truck chains, is visible in Fig.8.a. The
motions spanned each joint range of motion, and the zoomed image shows that
the calibrated model allows for a much better tracking of the markers specially
when the joint reaches its limits. Fig.8b. shows a similar analysis performed
with the right arm only and with static random poses. Note that random
postures are generated so that the robot’s wrist remains within the calibration
workspace shown in Fig.2. Fig.8c shows a typical RMSE error distribution for
each marker of the right leg during the repeatability motion. One can see on this
trial that the RMSE was reduced dramatically for all considered markers after
calibration. When no calibration was used some of the RMSE were very large
with values up to 10mm. Moreover, the error is distributed over all markers.
This highlights the importance of calibrating accurately all link 3D poses to
avoid auto-collisions and not only the end-effectors. The RMSE was larger
for the sine wave motions. The fact that these trials are continuous motions
does not account for the larger RMSE as they were relatively slow. The larger
RMSE can likely be explained by the fact that these motions span most of the
joint range and thus markers and links can be far away from the calibration
workspaces. When no elastic or calibration parameters are used larger RMSE
were observed at the leg level. This was expected as the link flexibilities largely
impact the pose of the floating base of the robot. A final test was conducted to
show the importance of compensating for the elastic deformations. When only
the joint geometrical parameters were used in the model the average RMSE for
the tracking of the leg markers of all the investigated motions was 4.8mm. It
was 2.7mm with the compensation for the elasto-geometrical parameters.

7. Conclusion

In this paper a new automated and practical method for estimating the
whole-body elasto-geometrical parameters of a large-size humanoid robot from
a stereophotogrammetric system and joint torque sensors has been proposed.
Stereophotogrammetric systems are relatively common in laboratories and joint
torque sensors are increasingly embedded in the new humanoid robots. Con-
sequently the proposed method could be routinely used to calibrate humanoid
robots. The contribution given by elasto-geometrical and purely geometric mod-
els were compared and validated using cross validation trials. Static and slow
motions positioning accuracy was improved for each link. Better results were
obtained at the leg level when Cartesian stiffnesses were used. In contrast, joint
flexibilities did not show improvements for tracking arm markers. Compensa-
tion for flexibilities was satisfactory when using a simple linear model. A more
realistic modeling using beam geometry [21] for example, could have produced
better results. However, these models incur a higher computational cost and are
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Figure 8: Marker tracking during cross validation experiments with and without calibrated
parameters. (a) HAT system’s markers estimation during a sinusoidal motion at 0.5Hz. (b)
Right arm’s markers estimation during random postures generated to be within the calibration
workspace. (c) RMSE distribution of marker tracking for the right leg.
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Table 2: Results of the cross validation obtained with Sinusoidal Motions (SW), Random
Postures (RP) and Repeatability Motion (RM) performed with the Full Calibration Model
(FCM) , the Geometrically Calibrated Model (GCM) and with the Non Calibrated Model
(NCM) using the identified parameters.

Chain name Case FCM GCM NCM
RMSE [mm] RMSE [mm] RMSE [mm]

HAT
SW 2.9 2.9 6.6
RP 1.9 1.9 6.6
RM 1.9 1.9 5.7

Left Leg
SW 2.4 3.8 8.4
RP 1.9 4.8 7.6

Right Leg
SW 2.5 4.8 7.8
RP 1.8 5.4 8.4
RM 2.2 5.5 7.8

more difficult to implement in the control scheme of the robot. Another possible
solution could have been to monitor directly the deformation using constraint
gauges directly mounted on the parts subject to the largest efforts. However,
this would require more cablings and electronics for the robot. During cross ex-
perimental validation the average marker tracking error was reduced by a factor
3 between the fully calibrated and non-calibrated robot.

Practical decomposition of the problem, addressing the generation of optimal
calibration postures of each kinematic chain separately, beside reducing the scale
of the optimization problem allows to handle dynamical balance. Thus, the
proposed calibration method does not require any manual intervention onto the
robot once it has started. To the best of our knowledge this paper is the first
to address the complete calibration process of a humanoid robot. We believe
that the proposed method can be used for any humanoid robot equipped with
joint torque sensors. The proposed method chooses to have the robot standing
on its feet but if one had a smaller, more robust, robot it is possible to have
the robot laying down or crawling. This would alleviate the burden of having
to control dynamical balance and could help in the early stages of the model
identification. In case the links and joints are perfectly rigid, the estimated
stiffness parameters would simply tend toward infinity. Thus, they will not
have any influence on the kinematics. This was exemplified in Table II as the
use of elastic parameters for the joints of the head-arms-torso sub-chains did not
improve the tracking of the considered markers. However, since the proposed
elastic deformation compensation involves joint torque sensors a very dynamic
motion might overcompensate for the 3D waist pose estimation.

For OCP generation, we proposed an original numerical algorithm that iden-
tifies sets of robot configurations that form calibration patterns. This approach
is based on iterative block optimization; each block consisting of a minimal num-
ber of postures required to identify the parameters. As shown in Fig. 6, this
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circumvents local minima and a better optimum is obtained. The good results
observed confirm the interest of looking for calibration patterns and rather than
isolated configurations [24]. Moreover, we observed a localization of these pos-
tures at the limit of the workspace, see support video, which confirms previous
works [10], in that the excitation of the parameters on the whole workspace
provided a better global performance of the robot. Nevertheless, our approach
allows, via the constraints on the search space, to limit the calibration to a
subspace so as to locally improve the robot performance. Note that criterion
01 was chosen from the literature for being invariant under any non-singular
linear transformation but the proposed method should give similar results with
a different criterion.

For a calibration routine, it could be interesting to always locate the marker
clusters in the same exact location. This could reduce the setup time, while
remaining robust to occlusions and allowing for tracking possible errors. We
believe that new manufactured humanoid robots should include calibration land-
marks easily accessible for this purpose.

It is always better to use OCP to improve accuracy and help minimise the ex-
perimental time. However, in case one would not like to redevelop the proposed
algorithm, we believe that thanks to the large number of available measure-
ments from the stereophotogrammetric system any large set of random feasible
postures should provide a correct estimate of the geometrical parameters. The
criterion 01 can be used to assess the quality of the randomly generated cali-
bration postures.

In the future, we will also extend the proposed calibration method to deter-
mine the transformation matrix from the floating base to the IMU [37]. Indeed,
the latter is used to estimate the robot’s state together with the FKM. The
results of the calibrated model will also be used for gait pattern generation and
whole-body control of the TALOS robot.
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G., 2016. Optimal exciting dance for identifying inertial parameters of an
anthropomorphic structure. IEEE Transactions on Robotics 32, 823–836.

[5] Borm, J.H., Menq, C.H., 1989. Experimental study of observability of pa-
rameter errors in robot calibration, in: 1989 IEEE International Conference
on Robotics and Automation, IEEE Computer Society. pp. 587–588.

[6] Byrd, R., Hribar, E.M., Nocedal, J., 1999. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization 9,
877–900.

[7] Carrillo, H., Birbach, O., Taubig, H., Bäuml, B., Frese, U., Castellanos,
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