
HAL Id: hal-04222884
https://hal.science/hal-04222884

Submitted on 29 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Semantics of Core Erlang with Handling of Signals
Aurélie Kong Win Chang, Jerome Feret, Gregor Gössler

To cite this version:
Aurélie Kong Win Chang, Jerome Feret, Gregor Gössler. A Semantics of Core Erlang with Handling
of Signals. Erlang 2023 - 22nd ACM SIGPLAN International Workshop on Erlang, Sep 2023, Seattle
WA, United States. pp.31-38, �10.1145/3609022.3609417�. �hal-04222884�

https://hal.science/hal-04222884
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Semantics of Core Erlang with Handling of Signals∗

Aurélie Kong Win Chang
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France

Jérôme Feret
Département d’Informatique de l’ENS, ENS, CNRS, PSL University, Inria

Paris, France

Gregor Gössler
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France

Abstract

We introduce a small step semantics for a subset of Core Erlang modeling its monitoring
and signal systems. The goal of our semantics is to enable the construction of causal expla-
nations for property violations, which will be the object of future work. As a first axis of
reflection, we chose to study the impact of the order of messages on a faulty behavior. We
present our semantics and discuss some of our design choices. This work is a part of a broader
project on causal debugging of concurrent programs in Erlang.

1 Introduction
Debugging concurrent systems is a difficult task, for which causal explanations of observed faults
are a precious help. More precisely, our work is motivated by the goal of explaining errors made
by choices of the scheduler that lead to incorrect interleavings, also known as concurrency bugs.
In this paper we formalize a semantics of Core Erlang that preserves the pertinent information for
such a causal analysis.

Most importantly, we want to investigate the impact of the order of messages on a faulty
behavior. We thus need a semantics modeling precisely how message handling, signals, and mon-
itoring affect the outcome. None of the existing semantics presented all of these characteristics at
the same time. However, when possible, we adapt some ideas from them, and use observations
made on the implementation.

Our small step semantics focuses on the order of messages. It models signal handling and
come monitoring behaviors, but presents simplifications: its spawn never fails, it cannot represent
continuous time — hence we do not support timers —, and nodes, try-catch expressions, or the
ability to dynamically update code are not modeled.

This work is a part of a broader project called DCore, whose objective is to develop a seman-
tically well-founded form of concurrent debugging, which we call causal debugging, that aims to
alleviate the deficiencies of current debugging techniques for large concurrent software systems.

DCore encompasses two main work directions. First, the design of a reversible execution engine
that allows programmers to backtrack and replay a concurrent or distributed program execution,
in a way that is both precise and efficient (only the exact threads involved by a return to a target
anterior or posterior program state are impacted) [10, 11].

The second axis of DCore is the development of a causal analysis engine that allows program-
mers to analyze concurrent executions by asking questions of the form “what caused the violation
of this program property?”, and that allows for the precise and efficient investigation of past and

∗This work has been funded by the ANR grant ANR-18-CE25-0007 DCore.

1

potential program executions. Our causal analysis will be based on the semantics presented in
this paper.

After a short overview of existing semantics, we expose the result of our work and the choices
we made. We conclude with a discussion about the differences of our semantics.

2 Related Work
Our semantics is by no means the first one for Core Erlang. [6] is the most recent official specifi-
cation of Core Erlang we found, but whilst useful it is informal and partly obsolete. [14] proposed
a small step semantics of a subset of Core Erlang, making some choices such as the order of eval-
uation of function arguments based on its implementation rather than the official documentation.
[4] formalized a subset of Core Erlang with a big step semantics, following [14] in some aspects,
and validated it with Coq. [5] introduced the concept of medium step semantics, which considers
as a step not only assignments, but also some events of interactions between processes. However,
all these semantics lack the signal handling and monitoring part. The only semantics we found
that finely modeled signals [15] treats them as side effects of operations that are instantaneously
treated, which implies a strong hypothesis on their order of reception.

3 Design Choices
Erlang offers numerous functionalities and shortcuts in order to help its users, but can ultimately
be translated, via an official tool, to a language with less syntactic sugar: Core Erlang. We thus
chose, for our future analysis, to use a subset of Core Erlang. Both languages are still evolving,
hence we tried to base our choices on concrete elements. We are using the initial, though somewhat
outdated, specification of Core Erlang [6], and the official documentation available on the Erlang
website [1] as far as possible. When a choice we made directly refers to this documentation, we
will provide the clickable reference in the form [ERM, page, section] (Erlang Reference Manual
[2]) or [ERTS, page, section] (Erlang Run-Time System Application reference manual [3]).

When these sources lack vital information, we search in the official implementation. If there
is a conflict between both, as it is the case in the evaluation order of a function call arguments,
we follow the former. For now, we put the concept of node aside. In our model, an Erlang system
consists of a set of processes which interact through signal exchanges.

4 Execution Model
Our first goal is to formalize the different behaviors emerging from the non-deterministic order of
the messages treatment. Thus, our model represents how processes send and handle signals, how
they evaluate instructions and how they manage some parts of the monitoring aspect of Erlang.

Each process has a unique identifier pid . The state of a process is defined by the state of its ex-
ecution task, its outbox, and the set of its links with others processes. They evolve asynchronously,
but are synchonized when the processes interact.

4.1 Execution Task
A task e executes instructions. It is represented as a tuple Se = (Ie, θ, τ, m, st, r) where Ie is the
next expression being evaluated, θ maps free variables to their values (as bound by lets or pattern
matching), while τ does the same for variables that are bound to recursive functions by letrec.
In this model, modules are named sets of functions used during the initialization of τ . We will
not focus on the rules around letrec, which can be found in appendix. We also store information
dedicated to generate signals: m is the name of the current module, st stores the execution stack
and r stores the reason of the end of the process if known. Notice that the only role of st is to
store the information needed to build error messages.

2

4.2 Sent Signals
We followed [5] in their choice of an outbox per process, and no inbox. It is a good way to keep
the order guarantees given by the language, allowing to represent the local knowledge of a process
when it sends signals without making presuppositions about when the signal is actually received
[ERM, processes, delivery-of-signals].

There are two kinds of signals.
Messages. Messages content can be any constant in Core Erlang. We tag them as msg, and

store the identifier of the process they are sent to. They are read and consumed only when their
recipient evaluates a receive expression.

Other signals. Other signals are automatically processed: as stated in [ERM, processes,
signals], "there is nothing a process must do to handle the reception of signals, or can do to prevent
it". We tag them with not_msg and the identifier of their recipient. Their content depends on
the nature of the signal, associated with specific flags ranging over link, unlink, unlinkAck,
monitored_by, demonitor, and down. Links between processes are created and removed thanks
to signals whose content is tagged with the flags link, unlink, and unlinkAck. More precisely,
a signal with content (link, pid source , pid target) is generated by a process pid source to generate a
link with the process pid target . A signal with content (unlink, pid source , pid target) is generated to
remove this link, while a signal with content (unlinkAck, pid source , pid target) is used if the link
did not already exist.

Core Erlang has another kind of links with their own signals, namely, monitor links. They are
created and removed thanks to signals whose content is tagged with the flags link and demonitor.
These signals also contain information about the pid of the process that has created the monitor
link. Furthermore, each monitor link has its own identifier. Link identifiers take the form of terms
built with the constructor #Ref on a quadruple of integers typically standing for the identifier of
the node, the identifier of the source process, the identifier of the target process, and a unique
integer. This way, there may be two monitor links between the same pair of processes. The set of
monitor link identifiers is denoted as RefL. A signal with the content (link, pid source , lid) is used
by the source process pid source to initiate a monitor link with id lid , whereas the signals of with
the content (SigDemonitor, pid source , lid) are used to removed them.

When a process terminates, it sends signals describing the reason of its termination to the
processes with which it shares links. The content of these signals is tagged with the flag down.
A signal with content (down, f l, pidended , lid , r) where fl either the flag monitored_by or link
according to the kind of the link to be removed, pidended is the pid of the process that has
terminated its execution, lid is either the pid of the target process or the monitor link id according
to the kind of links, and r is the reason of the process termination.

The set of signals that are not messages is denoted by SigOther. In our model, the pro-
cess outbox stores its sent signals in their order of sending. The set of its possible states is
({msg, not_msg} × (Id] N)× {Const] SigOther})∗.

4.3 Links
One of the main caracteristics of Erlang is the ability to implement easily a whole monitoring
system between processes. This is done by linking them in order to suitably react when one of
them dies. The language proposes two types of linking: link, associated with a tag link, and
monitor, associated with tags monitored_by and monitoring.

When two processes are bound with a link, if one of them dies, so does the other one. Only
one link can exist for a pair of processes. We model that a process of identifer pid1 has a link
with the process of identifier pid2 with the tuple (link, pid2 , pid1). On the other hand, monitor
links are asymmetric: one process is monitoring the other one. When the monitored process dies,
it sends to the monitoring one a signal that is transformed into a message. This message can then
be handled with a receive expression. A pair of processes can have multiple monitor links, hence
we identify them through a unique reference in the set RefL. When a process of identifier pid2

3

https://www.erlang.org/doc/reference_manual/processes.html#delivery-of-signals
https://www.erlang.org/doc/reference_manual/processes.html#signals
https://www.erlang.org/doc/reference_manual/processes.html#signals

Module ::= module atom [Fnamei1 , . . . ,Fnameik]
attributes [atom1 = Cst1, . . . , atomm = Cstm]
Fdef 1 . . .Fdef n

Fdef ::= Fname = Fun
Fname ::= atom/integer
Cst(c) ::= Lit | [Cst1 | Cst2]

| { Cst1 , . . . ,Cstn } | Fun
Val(v) ::= Cst | < Cst1, . . . ,Cstk > | EoP | ended

Lit ::= integer |float |atom|char |string | []
Fun ::= fun (var1, . . . , varn) − > Exprs

Exprs ::= Expr | < Expr1, . . . ,Exprn >
Expr ::= var | Fname | Lit | Fun

| [Expr1, . . . ,Exprn] | { Expr1, . . . ,Exprn }
| let Vars = Exprs1 in Exprs2

| do Exprs1 Exprs2

| letrec Fdef 1 . . . Fdef n in Exprs
| apply Exprs0 (Exprs1, . . . , Exprsn)

| call Exprs1 : Exprs2 (Exprs3 , . . . , Exprsn+2)
| primop atom (Exprs1, . . . , Exprsn)

| case Exprs of Cls1 . . . Clsn end
| receive Cls1 . . . Clsn after Exprs1 − > Exprs2

Vars(x) ::= var | < var1, . . . , varn >
Cls(cl) ::= Pats when Exprs1 − > Exprs2

Pats ::= Pat | < Pat1, . . . ,Patn >
Pat(p) ::= var | Lit | _ | [Pat1 | Pat2] | var = Pat

| { Pat1, . . . ,Patn } | Fun end

Figure 1: Our subset of Core Erlang syntax (based on [14], expanded with [6]). When a category
is followed by a string in parentheses, this string denotes an element of this category in the rest
of the paper.

is monitored by a process of identifier pid1 through a monitor link of identifier lid , it stores the
tuple (monitored_by, pid1 , lid), and the monitoring process stores (monitoring, pid2 , lid).

The state of the of links with other processes is a set SL ∈ (FL × Id × {RefL, Id})∗.
The state of a process π1, of identifier pid1 , is thus described as the tuple Sp = (pid1 , Se, Ssigsent, SL).

The state of a system is the set of the states of the processes constituting it.

5 Syntax
We are using a subset of Core Erlang described in Figure 1. It has one major difference with the
Core Erlang code obtained from Erlang code with the official compiler: the receive instruction
no longer exists since the OTP 23 update and is replaced with the code presented in appendix.
Replacing this code with the old receive during parsing allows us to keep receive as a shorter
and equivalent expression.

We added two elements to Val : EoP signals that the process is terminating, and ended signals
a terminated one.

4

https://www.erlang.org/eeps/eep-0052#translating-receive-to-core-erlang

match_cls(p, [cl1, . . . , cln], θ, τ) = (θ
′
, ei) θ

′ 6= no_match

Π ∪ {(pid, (ei, θi, τ, m, st · (case p of cl1 . . . cln end, θ, m), r), sigsent , L)} aux−→ Π ∪ {(pid, (e′, θ′, τ ′, m′, st, r′), sigsent ′, L′)
Case_ok

Π ∪ {(pid, (case p of cl1 . . . cln end, θ, τ, m, st, r), sigsent , L)} aux−→ Π ∪ {(pid, (e′, θ, τ, m′, st, r′), sigsent ′, L′)}

match_cls(p, [cl1, . . . , cln], θ, τ) = no_match
Case_ko

Π ∪ {(pid, (case p of cl1 . . . cln end, θ, τ, m, st, r), sigsent , L)} aux−→ Π ∪ {(pid, (EoP, θ, τ, m, st, end_reason(r, {(case_clause, p), st})), sigsent , L)}

Figure 2: Successful and failing case.

J = {i | 1 ≤ i ≤ n ∧ fli ∈ {monitored_by, link}} M = {(not_msg, pid j , (down, flj , lid j , end_reason(r,normal))) | j ∈ J}
sigs ∈ permutations(M) v 6= ended

Val
Π ∪ {(pid, (v, θ, τ, m, st, r), sigsent , {(fli, pid i , lid i)|1 ≤ i ≤ n ∧ lid i ∈ {Id,RefL}})}

term−→ Π ∪ {(pid, (ended, θ, τ, m, st, r), sigsent · sigs, {(fli, pid i , lid i)|1 ≤ i ≤ n ∧ lid i ∈ {Id,RefL}})}

Figure 3: End of a process. The function permutations returns the set of permutations of its
argument converted into a list.

6 Semantics

6.1 Transition Relations
A transition relation term−→ models small steps of execution. This relation is defined by means
of inference rules. The evaluation of expressions is performed step-wise and bottom-up while
respecting the policy about evaluation order (see 6.5). Yet, the evaluation of sub-expressions
offers fewer capabilities than the evaluation of expressions at the top level. For instance, when a
process terminates, an expression EoP is generated (see for instance Fig. 2), propagated at the
top level of the expression (the rule is omitted), and only then signals are sent to warn the other
processes (see Fig. 3). No signal can be emitted while the EoP expression has not reached the top
level. This ensures that these signals are sent only once.

For this purpose, an auxiliary transition relation aux−→ is used. Auxiliary transitions are not
proper transitions, but they may occur in the inference proofs of the proper transitions. They
describe only what can be done when evaluating sub-expressions. They can then be propagated
by means of an evaluation context (see 6.5) and promoted as proper transitions term−→ (see Fig. 4).

Π ∪ {(pid, (e1, θ, τ, m, st · (e1, θ, m), r), ssent , L)} aux−→ Π
′ ∪ {(pid, (e′1, θ

′
, τ
′
, m′, st, r′), s′sent , L

′
)}

expr_term
Π ∪ {(pid, (e1, θ, τ, m, st, r), ssent , L)} term−→ Π

′ ∪ {(pid, (e′1, θ, τ
′
, m′, st, r′), s′sent , L

′
)}

Figure 4: Promotion from aux−→ to term−→ .

6.2 Pattern Matching
Numerous functionalities are based on pattern matching, represented here as the function match.
Upon success, pattern matching binds new variables by unification. This is the purpose of the
disjoint union operator t that takes two arguments θ1 and θ2 that are either a map or the symbol
no_match. θ1 t θ2 is defined as

{d 7→ v | d ∈ dom θ1 ∧ θ1(d) = v ∨ d ∈ dom θ2 ∧ θ2(d) = v}

when θ1 6= no_match ∧ θ2 6= no_match ∧ ∀d ∈ dom(θ1) ∩ dom(θ2) : θ1(d) = θ2(d), and as
no_match otherwise.

The function match takes four arguments, an expression e, a pattern p, a map θ and a functions
table τ , and returns either a map or the symbol no_match. The function match(e, p, θ, τ) is defined
as:

• if v ∈ var and v is not bound, match(v, p, θ, τ) = ∅

5

• if p =′ _′, match(e,′_′, θ, τ) = ∅

• if p ∈ Lit\′_′ or p = {} or p = [], match(p, p, θ, τ) = ∅

• if p ∈ Fun with arity np and name Fnamep:

– if v ∈ Fun with arity nv, name Fnamev and τ(Fnamep, np) = τ(Fnamev, nv),
match(v, p, θ, τ) = ∅

– if v ∈ var and τ(Fnamep, np) = θ(v),match(v, p, θ, τ) = ∅

• if p ∈ var :

– if p is bound, match(e, p, θ, τ) = match(e, θ(p), θ, τ)

– if p is not bound, v ∈ var , θ(v) ∈ Fun with arity n and name Fnamev,
match(v, p, θ, τ) = [(p 7→ τ(Fnamev, n))]

– if p is not bound and v ∈ Val\Fun,match(v, p, θ, τ) = [(p 7→ θ(v))]

• if p and v are respectively of the form {p0, . . . , pn} and {v0, . . . , vn}, or [p0, . . . , pn] and
[v0, . . . , vn], or < p0, . . . , pn > and < v0, . . . , vn >, with vi ∈ Val and pi ∈ Pat for 0 ≤ i ≤ n,

match(v, p, θ, τ) = match(v0, p0, θ, τ) t . . . t match(vn, pn, θ, τ)

• if p is of the form [p0, . . . , pn−1|pn] and v is of the form [v0, . . . , vm] with 2 ≤ n < m and
vi ∈ Val , for 0 ≤ i ≤ m:

match([v0, . . . , vm], [p0, . . . , pn−1|pn], θ, τ) =

match([v0, . . . , vn−1], [p0, . . . , pn−1], θ, τ) t [(pn 7→ [vn, . . . , vm])]

• if p is of the form valias = p0 with valias ∈ var and p0 ∈ Pat ,

match(v,< valias = p0 >, θ, τ) = match(v, p0, θ, τ) tmatch(valias , v, θ, τ)

• for all other cases, match(v, p, θ, τ) = no_match. Notice that when a function is defined,
Erlang generates a name for it if needed. Furthermore, in the case where e is an unbound
variable, match should return a special value treated as ∅ and generating a warning, but as
we are not modeling this behavior, we simply return ∅.

6.3 Variables and End Reason
Variable assignments are done through unification thanks to the function match. When a corre-
spondance can be made, the context θ is updated accordingly. Variables are local and they cannot
be reassigned before exiting their scope [ERM, expressions, variables]. When the unification fails,
the process ends while explaining the reason of the failure, unless the process was already termi-
nated for a previous reason. This is the purpose of the function end_reason(r, rnew), which output
the reason r whenever it is not equal to ⊥, or the reason rnew otherwise.

Such behavior occurs in local binding and switch cases. For example, see Fig. 2, where
match_cls is a function looking for the first clause, of a list of clauses, which matches with a
given pattern. It then returns its expression and the unification context. Otherwise, it returns
no_match.

A variable x already associated with a value is simply read from θ(x). This rule is omitted for
the sake of brevity.

6

https://www.erlang.org/doc/reference_manual/expressions.html#variables

6.4 Calling a Function
Calls to external and built-in functions are idealized. Their code is replaced by black-boxes which
abstract their behavior. An example of the call of a built-in function is in appendix.

The instructions apply and call are used to call the functions that are defined in the program,
respectively in the current module, or in arbitrary any module. For instance, see the rule Call
in Fig. 5 where bodyFunc(Mname,Fname, n) takes three arguments, a value Mname, a value
Fname and an integer n, and returns an expression, which is the body of the function named
Fname, of arity n, coming from the module named Mname.

Rules for the external functions and the instruction apply works similarly, they are omitted
for the sake of brevity

Mname ∈ Val\BIM
Π ∪ {(pid, (bodyFunc(Mname,Fname, n), θ[a1 7→ v1, . . . , an 7→ vn], τ, st · (bodyFunc(Mname,Fname, n),

θ[a1 7→ v1, . . . , an 7→ vn],Mname), r), ssent , L)} aux−→ Π
′ ∪ {(pid, (e′, θ′, τ ′, st, r′), s′sent , L

′
)}

Call
Π ∪ {(pid, (call Mname : Fname(v1, . . . , vn), θ, τ, m, st, r), ssent , L)} aux−→ Π

′ ∪ {(pid, (e′, θ, τ, m′, st, r′), s′sent , L
′
)}

Figure 5: Calling a function.

6.5 Evaluation Order
The evaluation order of expressions is specified as follows.

For sequential composition do e1 e2, the expression e1 is evaluated before the expression e2. As
for the evaluation of subexpressions, we follow the documentation rather than, as other semantics
such as [14], the current implementation. Indeed, the documentation insisted on the fact that the
evaluation order of the arguments of a function is not deterministic [ERM, expressions, expression-
evaluation]; historically, it already changed once [12]; and further changes are possible.

The evaluation order is formalized by the means of evaluation contexts. An evaluation context
is an expression with a hole ’·’. Intuitively, the hole contains a subexpression that can be evalu-
ated, whereas the rest of the context remains as it is until the sub-expression is fully evaluated.
Evaluation contexts are defined by the following grammar:

c = [es1·] | {es1·} | < es1· >
| call Module : Fname(es1·) | apply Fname(es1·)

| primop atom(es1·) | let var = es1· in e2

| case es1· of cl1 . . . cln end | do · e2

where es1· denotes a list of expressions, excluding EoP , separated with commas, where exactly
one expression is replaced with a hole ’·’ at an arbitrary position. This models the cases where
the evaluation order is non deterministic, as in the apply expression, or imposed, as in the do
expression.

Applying an evaluation context c[·] to a subexpression e consists in replacing the unique oc-
currence of the hole ’·’ in the evaluation context c[·] with the expression e. This is denoted as
c[e].

The rule for the evaluation of subexpressions is then as shown in Fig. 6; Subexprok if the
evaluation goes without terminating the process, and Subexprko otherwise, which follows the
same principle as caseko. The rule for sequential composition is omitted for the sake of brevity.

eeval ∈ Expr\Val ∧ e′eval 6= EoP Π ∪ {(pid, (eeval , θ, τ, m, st · (eeval , θ, m), r), ssent , L)} aux−→ Π
′ ∪ {(pid, (e′eval , θ

′
, τ
′
, m′, st, r′), s′sent , L

′
)}

Subexpr_ok
Π ∪ {(pid, (c[eeval], θ, τ, m, st), ssent , L)} aux−→ Π

′ ∪ {(pid, (c[e′eval], θ, τ
′
, m, st, r′), s′sent , L

′
)}

Figure 6: Subexpression evaluation.

7

https://www.erlang.org/doc/reference_manual/expressions.html#expression-evaluation
https://www.erlang.org/doc/reference_manual/expressions.html#expression-evaluation
https://erlangforums.com/t/need-help-understanding-some-erlang-code/1623/15

6.6 Signals
As said in the documentation, "signals are received asynchronously and automatically" [ERM,
processes, receiving-signals]. The only guarantee about their reception order is "if an entity sends
multiple signals to the same destination entity, the order is preserved" [ERM, processes, signal-
delivery], and the documentation emphasizes the importance of not using any other kind of order
determinism based on the current implementation, as it might change in the future [ERTS, Com-
munication, implementation].

For the sake of brevity, we will designate the first received message from a process j, given an
outbox sigsent , as first_sig(sigsent , j).

6.7 Sending and Receiving Messages
In our model, processes send messages asynchronously, and never fail in doing so, as described in
rule Send in Fig. 7.

Our receive instruction is simplified in that, if no received message match with its clauses,
it waits instead of starting a timer. As for the signals, the first received message from a process
j is written first_msg(sigsent , j). A receive instruction when the message comes from another
process is then evaluated as in the rule rcv_ijok Fig. 7.

Here, the first message matching with a clause is consumed and the corresponding expression
is evaluated in the updated context.

pid1 ∈ Pid v ∈ Val
Send

Π ∪ {(pid, (call ’erlang’:’!’(pid1 , v), θ, τ, m, st, r), sigsent , L)} aux−→ Π ∪ {(pid, (v, θ, τ, erlang, st, r), sigsent · (msg, pid1 , v), L)}

first_msg((si,1, . . . , si,ni
), j) = k ∈ N i 6= j match_cls(get_sig((si,1, . . . , si,ni

), k), [cl1, . . . , cln], θj , τj) = (θ
′
j , e
′
j)

Π ∪ {(pid j , (e
′
j , θ
′
j , τj , mj , stj · (receive cl1 . . . cln, θj , mj), rj), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), (si,1, . . . , si,k−1, si,k+1, . . . , si,ni

), Li)}
aux−→ Π

′ ∪ {(pid j , (e
′′
j , θ
′′
j , τj , m

′
j , stj , r

′
j), sig

′
sent,j , L

′
j)}

rcv_ij_ok
Π ∪ {(pid j , (receive cl1 . . . cln, θj , τj , mj , stj , rj), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), (si,1, . . . , si,k, . . . , si,ni

), Li)}
aux−→ Π

′ ∪ {(pid j , (e
′′
j , θj , τj , m

′
j , stj , r

′
j), sig

′
sent,j , L

′
j)}

Figure 7: Send and receive.

6.8 Spawning a Process
Our spawn function, described in Fig. 8, is greatly simplified: we only model the case where it
always succeeds, and we omit its signal exchange protocol. However, most of the mechanisms
needed to describe it properly being already present here, it might be the object of future work. It
is based on fresh_pid, a function returning an identifier not already used by one of the processes
of the system.

fresh_pid(Π) = pidson Mname, v1, . . . , vn ∈ Val
Rspawn

Π ∪ {(pid father , (call ’erlang’:’spawn’(Mname,Fname, [v1, . . . , vn]), θ, τ, m), sigsent , L)}
aux−→ Π ∪ {(pid father , (pidson , θ, τ, m), sigsent , L); (pidson , (call Mname : Fname(v1, . . . , vn), [], τstat ,Mname), [], [])}

Figure 8: Spawn.

8

https://www.erlang.org/doc/reference_manual/processes.html#receiving-signals
https://www.erlang.org/doc/reference_manual/processes.html#receiving-signals
https://www.erlang.org/doc/reference_manual/processes.html#signal-delivery
https://www.erlang.org/doc/reference_manual/processes.html#signal-delivery
https://www.erlang.org/doc/apps/erts/communication.html#implementation
https://www.erlang.org/doc/apps/erts/communication.html#implementation

6.9 Process Monitoring
The creation of a link between processes is asynchronous. The initiating process creates it locally
and sends to the other process a signal. Once this signal has been processed, the other side of
the link is created. In the case of a link, when such a link already exists, nothing is done and the
evaluation continues. In the case of a monitor link, a new identifier is allocated as shown in Fig. 9.
The sent signal is then handled.

fresh_lid(L1) = lid
monitor

Π ∪ {(pid1 , (call erlang : monitor(process, pid2), θ, τ, m, st, r), sigsent , L)}
aux−→ Π ∪ {(pid1 , (lid, θ, τ, erlang, m, st, r), sigsent · (not_msg, pid2 , (monitored_by, pid1 , lid)), L1 ∪ {(monitoring, pid2 , lid)})}

first_sig((si,1, . . . , si,k . . . , si,ni
), j) = k si,k = (not_msg, pid j , (monitored_by, pid i , lid)) i 6= j ej /∈ {EoP, ended}

sig_monitored_by
Π ∪ {(pid j , (ej , θj , τj , mj , stj , rj), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), (si,1, . . . , si,k, . . . , si,ni

), Li)}
aux−→

Π ∪ {(pid j , (ej , θj , τj , mj , stj , rj), sigsent,j , Lj ∪ {(monitored_by, pid i , lid)}); (pid i , (ei, θi, τi, mi, sti, ri), (si,1, . . . , si,k−1, si,k+1, . . . , si,ni
), Li)}

Figure 9: Birth of a monitor link.

In the case of a link, if the linked process does not exist and when it is "cheap" to know it,
instead of executing the operation asynchronously, the calling process directly ends [ERTS, erlang,
link-1], which changes the emitted signals. As the documentation suggest that the definition of
"cheap" can evolve, we left the function is_cheap parametric (cf. Fig. 10).

pid2 ∈ Id pid2 /∈ pid(Π}) is_cheap(exists, [pid2]) = true r
′
1 = end_reason(r1, {noproc, st1})link_cheap_ko

Π ∪ {(pid1 , (call erlang : link(pid2), θ1, τ1, m1, st1, r1), sigsent,1, L1)} aux−→ Π ∪ {(pid1 , (EoP, θ1, τ1, erlang, st1, r
′
1), sigsent,1, L1)}

Figure 10: Failing link, cheap.

When the verification is costly, the link is created, and an exit signal with noproc as a reason
is sent. In the current implementation of Erlang, a hidden managing process sends the message,
but this is an implementation choice. We thus model this behavior by storing the signal in the
outbox of the calling process.

The destruction of such links is asynchronous with the guarantee that, once their destruction
completed, they have no effect anymore [ERTS, erlang, unlink-1]. Ending the calling process fails
when the argument is of wrong type: Ref for demonitor, Pid for unlink. These mechanisms are
similar, we omit their definitions in this paper.

6.10 Exit Signals
In our model, exit signals are flagged with the type of link which caused their sending. If the link
does not exist in the receiving process, the signal is simply ignored. Otherwise, when it is a link,
the process ends too, as shown in the rule sig_exit_link in Fig. 11 and when it is a monitor
link, the signal is deleted and a message is created, as described in the rule sig_exit_monitored
in Fig. 11, in which process is a a flag indicating that the exit signal comes from a monitor link
established between two processes.

9

https://www.erlang.org/doc/man/erlang.html#link-1
https://www.erlang.org/doc/man/erlang.html#link-1
https://www.erlang.org/doc/man/erlang.html#unlink-1

first_sig((si,1, . . . , si,k, . . . , si,ni
), j) = k i 6= j si,k = (not_msg, pid j , (down, link, pid i , raisonTerm))

(link, pid i , pid j) ∈ Lj ej /∈ {EoP, ended}
sig_exit_link

Π ∪ {(pid j , (ej , θj , τj , mj , stj , rj), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), (si,1, . . . , si,k, . . . , si,ni
), Li)}

aux−→
Π ∪ {(pid j , (EoP, θj , τj , mj , stj , end_reason(rj , raisonTerm)), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), (si,1, . . . , si,k−1, si,k+1, . . . , si,ni

), Li)}

i 6= j first_sig(sigsent,i, j) = k sigsent,i = (si,1, . . . , si,k, . . . , si,ni
)

si,k = (not_msg, pid j , (down, monitored_by,Ref , raisonTerm)) (monitoring, pid i , ref) ∈ Lj ej /∈ {EoP, ended}

sig
′
sent,i = (si,1, . . . , si,k−1, si,k+1, . . . , si,ni

) · (msg, pid j , ({
′
DOWN

′
, ref, process, pid i , raisonTerm}))

sig_exit_monitored
Π ∪ {(pid j , (ej , θj , τj , mj , stj , rj), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), sigsent,i, Li)}

aux−→
Π ∪ {(pid j , (ej , θj , τj , mj , stj , rj), sigsent,j , Lj); (pid i , (ei, θi, τi, mi, sti, ri), sig

′
sent,i, Li)}

Figure 11: Exit signals.

7 Discussion
The semantics we proposed here contrasts with previous small steps semantics in two ways. First,
it describes in a more precise way the Core Erlang monitoring and signal system. Second, it is
based on the official documentation, rather than the current implementation. We tried to develop
a semantics that is close enough to previous formalizations so as to make it easier to establish
links between both, which we hope will come handy for the next part of our works.

We are currently working on an implementation of this semantics in Maude [8], which will
be available, with an updated and further documented semantics, at [7]. Our next step will be
to leverage abstract interpretation in order to generate causal explanations of an observed faulty
behavior. Although not based on exactly the same language as our work, [9] and [13] seem to be
a good starting point.

References
[1] Ericsson AB. Erlang online documentation, March 2023. 2

[2] Ericsson AB. Erlang reference manual, March 2023. 2

[3] Ericsson AB. Erlang run-time system application (erts) reference manual, March 2023. 2

[4] P. Bereczky, D. Horpácsi, and S. J. Thompson. Machine-checked natural semantics for core
erlang: Exceptions and side effects. In Proceedings of the 19th ACM SIGPLAN International
Workshop on Erlang, Erlang 2020, page 1–13, New York, NY, USA, 2020. ACM Press. 2

[5] R. Caballero, E. Martin-Martin, A. Riesco, and S. Tamarit. A core erlang semantics for
declarative debugging. Journal of Logical and Algebraic Methods in Programming, 107:1–37,
2019. 2, 3

[6] R. Carlsson, T. Lindgren, B. Gustavsson, S.-O. Nystrom, R. Virding, E. Johansson, and
M. Pettersson. Core Erlang 1.0.3 language specification. page 31, 2004. 2, 4

[7] A. Kong Win Chang, J. Feret, and G. Gössler. A semantics for core erlang with handlings of
signals. https://gitlab.inria.fr/dcore-pub/erlangsemantics.git, 2023. 10, 13

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J.F. Quesada.
Maude: specification and programming in rewriting logic. Theoretical Computer Science,
285(2):187–243, 2002. Rewriting Logic and its Applications. 10

[9] E. D’Osualdo, J. Kochems, and C. H. L. Ong. Automatic verification of erlang-style concur-
rency. In F. Logozzo and M. Fähndrich, editors, Static Analysis - SAS 2013, volume 7935 of
LNCS, pages 454–476. Springer, 2013. 10

10

https://gitlab.inria.fr/dcore-pub/erlangsemantics.git

[10] G. Fabbretti, I. Lanese, and J.-B. Stefani. Causal-consistent debugging of distributed erlang
programs. In S. Yamashita and T. Yokoyama, editors, Reversible Computation - RC 2021,
volume 12805 of LNCS, pages 79–95. Springer, 2021. 1

[11] G. Fabbretti, I. Lanese, and J.-B. Stefani. Generation of a reversible semantics for erlang
in maude. In A. Riesco and M. Zhang, editors, Formal Methods and Software Engineering -
ICFEM 2022, volume 13478 of LNCS, pages 106–122. Springer, 2022. 1

[12] Erlang Forums. Need help understanding some erlang code #13. https://
erlangforums.com/t/need-help-understanding-some-erlang-code/1623/13, July 2022.
Accessed: 2023-07-18, Archived at http://web.archive.org/web/20230718093229/https:
//erlangforums.com/t/need-help-understanding-some-erlang-code/1623/13. 7

[13] F. Huch. Verification of erlang programs using abstract interpretation and model checking.
SIGPLAN Not., 34(9):261–272, sep 1999. 10

[14] M. Neuhäußer and T. Noll. Abstraction and Model Checking of Core Erlang Programs in
Maude. Electronic Notes in Theoretical Computer Science, 176(4):147–163, July 2007. 2, 4,
7

[15] H. Svensson and L.-A. Fredlund. A more accurate semantics for distributed erlang. In
Proceedings of the 2007 SIGPLAN workshop on Erlang Workshop - Erlang ’07, Freiburg,
Germany, 2007. ACM Press. 2

Appendix

A Receive
Syntax of the equivalent of a receive instruction, as generated from Erlang code after the OTP23
update. Blue expressions match with the elements of a receive before the update.

letrec ’recv$^0’/0 =
fun() ->
let <var1, var2> = primop ’recv_peck_message’()
in case var1 of
<’true’> when ’true’ ->

case var2 of
Cls1 ... Clsn
(<Other> when ’true’ ->

do primop ’recv_next’()
(apply ’recv_$^0’/0())

)
end

(<’false’> when ’true’ ->
let var3 = primop ’recv_wait_timeout’(Expr1)
in case var3 of

<’true’> when ’true’ -> Expr2
(<’false’> when ’true’ -> (apply ’recv$^0’/0 ())

end)
end

in (apply ’recv$^0’/0 ())

B Evaluation context
We give as follows the full definition of evaluation contexts :

c = [es1·] | {es1·} | < es1· >
| call Module : Fname(es1·)
| apply Fname(es1·)

| primop atom(es1·)

| let var = es1· in e2
| case es1· of cl1 . . . cln end
| do · e2

11

https://erlangforums.com/t/need-help-understanding-some-erlang-code/1623/13
https://erlangforums.com/t/need-help-understanding-some-erlang-code/1623/13
http://web.archive.org/web/20230718093229/https://erlangforums.com/t/need-help-understanding-some-erlang-code/1623/13
http://web.archive.org/web/20230718093229/https://erlangforums.com/t/need-help-understanding-some-erlang-code/1623/13

Mname ∈ BIM evalResFunc(Π, (Mname,Fname, n), (θ, τ, st, r, ssent , L)) = (Π
′
, (e
′
, θ
′
, τ
′
, st
′
, r′, s′sent , L

′
))

CallBIM
Π ∪ {(pid, (call Mname : Fname(v1, . . . , vn), θ, τ, m, st, r), ssent , L)} aux−→ Π

′ ∪ {(pid, (e′, θ, τ,Mname, st, r′), s′sent , L
′
)}

Figure 12: CallBIM.

eeval ∈ Expr\Val Π ∪ {(pid, (eeval , θ, τ, m, st · (eeval , θ, m), r), ssent , L)} aux−→ Π
′ ∪ {(pid, (EoP, θ

′
, τ
′
, m′, st, r′), s′sent , L

′
)}

Subexpr_ko
Π ∪ {(pid, (c[eeval], θ, τ, m, st, r), ssent , L)} aux−→ Π

′ ∪ {(pid, (EoP, θ, τ
′
, m, st, r′), s′sent , L

′
)}

Figure 13: Failing subexpression evaluation.

The notation es stands for a list of expressions, excluding EoP and separated with commas.
The notation es1· stands also for a list of expressions, excluding EoP and separated with commas,
except at exactly one position which contains the symbol · instead :

es = e | e, es
es1· = · | ·, es | e, es1·

C Failing subexpression
If the evaluation of a subexpression fails, it stops the execution of its process and updates r, as
seen in Fig. 13 The evaluation c[e] of an expression e under an evaluation context c is defined
inductively over the syntax of the evaluation context c as follows:

[es1·][e] = [es1·[e]],
{es1·}[e] = {es1·[e]},
< es1· > [e] = < es1·[e] >,
(call Module : Fname(es1·))[e] = call Module : Fname(es1·[e]),
(apply Fname(es1·))[e] = apply Fname(es1·[e]),

(primop atom(es1·))[e] = primop atom(es1·[e]).

(let var = es1· in e2)[e] = let var = es1·[e] in e2
(case es1· of cl1 . . . cln end)[e] = case es1·[e] of cl1 . . . cln end
(do · e2)[e] = do e e2
(·)[e] = e
(·, es)[e] = e, es
(e′, es1·)[e] = e′, es1·[e]

D Call of a built-in function
Rule CallBIM in Fig. 12, where evalResFunc returns result of such black box evaluation in the
present context.

E Failing subexpression
If the evaluation of a subexpression fails, it stops the execution of its process and updates r, as
seen in Fig. 13

letrec_1
Π ∪ (pid, (letrec Fname1\n1 = Fun1 . . . Fnamem\nm = Funm in Expr , θ, τ, m, st, r), sigsent , L)

aux−→
Π ∪ (pid, (letrec Fname2\n2 = Fun2 . . . Fnamem\nm = Funm in Expr , θ, τ [(m,Fname1\n1, m)→ Fun1], m, st, r), sigsent , L)

letrec_2
Π ∪ (pid, (letrec Fname\n = Fun in Expr , θ, τ, m, st, r), sigsent , L)

aux−→ Π ∪ (pid, (Expr , θ, τ [(m,Fname\n)→ Fun], m, st, r), sigsent , L)

Figure 14: Letrec rules.

12

F Recursive call and other rules
As we focused on presenting the signals handling and monitoring aspects of our semantics, for the
sake of briefty, we did not include our whole semantics. This explains why, in our model, some
terms are never modified by the rules of the paper. It is for example the case of the functions
table τ , only modified by the letrec expression (see Fig. 14). We are currently working on an
implementation of this semantics in Maude, which we will make public, along with the complete
semantics[7].

13

	1 Introduction
	2 Related Work
	3 Design Choices
	4 Execution Model
	4.1 Execution Task
	4.2 Sent Signals
	4.3 Links

	5 Syntax
	6 Semantics
	6.1 Transition Relations
	6.2 Pattern Matching
	6.3 Variables and End Reason
	6.4 Calling a Function
	6.5 Evaluation Order
	6.6 Signals
	6.7 Sending and Receiving Messages
	6.8 Spawning a Process
	6.9 Process Monitoring
	6.10 Exit Signals

	7 Discussion
	A Receive
	B Evaluation context
	C Failing subexpression
	D Call of a built-in function
	E Failing subexpression
	F Recursive call and other rules

