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Abstract Catalytic characteristics of metal nanoparticles
heavily depend on their global shapes and sizes as well as
on the structure and environment of catalytic sites. On
the computational chemistry side, calculations of thermo-
dynamic and kinetic data involve a high calculation cost
which can be significantly lowered by the use of a trained
machine learning (ML) model. This paper outlines a pre-
liminary approach that aims at classifying the shape of the
metal core of nanoparticles. Four different supervised Ar-
tificial Neural Networks (ANN) were trained, tested and
submitted to a challenging dataset. They are based on two
different structural descriptors, Coulomb Matrices (CM)
and Radial Distribution Functions (RDF). Each model is
trained with hundreds of 3D models of nanoparticles that
belong to eleven structural classes. The best model clas-
sifies a NP according to its discretized RDF profile and its
first derivative. 100% accuracy is reached on the test stage
and up to 70% accuracy is obtained on the challenging
dataset. It is mainly made of compounds that have global
shapes significantly different from the training set. But
some non obvious structural patterns make then related
to the eleven classes learned by the ANNs. Such strategy
could easily be adapted to the recognition of NPs based
on experimental neutron or X-ray diffraction data.
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1 Introduction

The structure of nanomaterials can directly influence their
physical and chemical properties, that can be of inter-
est for applications in various fields ranging from biol-
ogy, medicine, optoelectronics, catalysis, energy, etc [1].
Among nano-objects, colloidal transition metal nanoparti-
cles (TMNPs) exhibit unique properties, often located be-
tween those of bulk materials and small clusters [2, 3], and
related to their size, shape, surface composition, surface
or core defects. Thanks to the art of chemical synthesis,
the metal core of TMNPs exhibit a fascinating variety of
shapes, most of them being in fact Platonic (Figure 1),
Archimedean, or Catalan solids, or even concave or convex
polyhedra. Magic numbers and other structural character-
istics of such NPs are listed for example in refs. 4 or 5.
Noble-metal nanocrystals can be considered as a paragon
of this structural versatility, which is ruled out by kinetic
or thermodynamic effects involved by synthesis conditions
[6, 7].

Nanocatalysis has now become a major application
which involves the use of nanomaterials of metals, oxides
or semiconductors for transforming molecules into added-
value compounds [1, 8]. TMNPs are valuable complement
to conventional homogeneous and heterogeneous catalysts
[9], potentially showing high activities and selectivities.
The interest in colloidal TMNPs not only relies on their
high surface area-to-volume ratio [3], but also on the high
concentration of potential and different active metal sites.
It is not only a matter of global shape, apexes, edges,
and of diversity of crystallographic planes within the same
nanocrystal, but a special site can also be related to the
very nature of the surface species (hydrides, ligands, ...)
that stabilize the NP [10]. In other words, and in line with
the so-called Sabatier principle, it is possible to modulate
the catalytic activity of a nanocatalyst by a modification of
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Fig. 1 Platonic solids : 286-atoms fcc regular tetrahedron, a; 666-
atoms fcc cube, b; 670-atoms fcc octahedron, c; 427-atoms dodec-
ahedron, d; 561-atoms icosahedron, e; optimized 427-atoms dodec-
ahedron, f (geometries a-e are not relaxed, interatomic distances
are set to 2.7 Å, a typical metal-metal bond length; Sutton-Chen
potential for Pt used to optimize compound f).

its surface composition [11]. In this context, and in opposi-
tion with trial-and-error approaches, the rational design of
heterogeneous or nano- catalysts relies on correlations be-
tween descriptors and catalytic performance data like ac-
tivity and selectivity. Thanks to density functional theory
(DFT), it is possible to derive electronic structure descrip-
tors and atomic structure descriptors. Catalytic activities
and selectivities can be understood and predicted by asso-
ciating DFT energy descriptors with microkinetic models,
in the framework of the Sabatier-Balandin volcano plots
[12–14], using Brønsted-Evans-Polanyi and scaling rela-
tionships [15]. This is for example the case of the search
for alternatives to platinum electrodes for the hydrogen
evolution reaction (HER). According to the seminal study
of Nørskov and co-workers [16], the best catalysts are char-
acterized by a dissociative hydrogen adsorption standard
Gibbs free energy close to zero, i.e. the closer to zero
∆dG

◦(H2), the higher the measured exchange current i0
involved by hydrogen evolution. A lot of recent studies
still rely on this strategy, which involves to multiply ex-
pensive electronic structure calculations on a wide variety
of materials and active sites.

Yet, a new paradigm has emerged, based upon ma-
chine learning (ML) approaches. It is especially the case
in the heterogeneous catalysis domain, with approaches
transferable to nanocatalysis [17]. Regarding HER, and
still in the framework of the Sabatier principle which states
in this case that hydrogen should neither bind too weakly
nor too strongly, it has been shown on MoS2 and AuCu
nanoclusters that it is possible to train a model to predict
∆dG

◦(H2) energies for an arbitrary site based on its struc-
tural description [18]. Most of ML applications to atom-
istic systems need to use relevant structural local or global
descriptors, such as Coulomb Matrices (CM) [19], Many-
Body Tensor Representation (MBTR) [20], Atom-centered
Symmetry Functions (ACSF) [21] and the Smooth Over-
lap of Atomic Positions (SOAP) [22] (see also ref. 23 for a
comparison and discussion). The CM index is appealing by
its simplicity. However, it is not invariant with respect to
permutation of atomic indices, and different numbers of
atoms result in different dimensionalities of the Coulomb
matrices. The Radial Distribution Function (RDF) g(r)
is another good fingerprint for materials science that en-
codes information about the whole atomic structure. It is
experimentally obtained from high energy X-ray diffrac-
tion. It is particularly well suited to discriminate in situ
different crystalline structures and different shapes of NPs
(see refs. 24, 25 and references therein). It is unique, con-
tinuous, differentiable with respect to atomic coordinates,
invariant with respect to rotation, translation and nuclear
permutation. It is however unable to distinguish between
chiral compounds and it depends on the inter-atomic dis-
tances, i.e. it depends upon atom types. An implemen-
tation has been proposed by von Lilienfeld and coll. for
machine learning models of molecular species [26]. X-ray
absorption near-edge structure (XANES) spectroscopy can
also be used to determine particle sizes, structural motifs,
and shapes in NPs. A recent coupling of XANES with
a supervised artificial neural network (ANN) showed that
the ANN extends the sensitivity of XANES by enabling
the determination of particle sizes and shapes [27]. The
present work is related to the classification tasks in ML.
It requires the use of ML algorithms that learn how to as-
sign a class label to examples from the problem domain.
It finds several remarkable applications, such as master-
ing the game of Go [28], image classification [29], or even
cancer classification [30]. We present here an application
of ML to the structural analyzis of metal NPs. After a
presentation of the methods and of the various data sets,
we will apply four supervised ANNs, namely one CM ANN
and three RDF ANNs, to classify the shape of nanopar-
ticles described as 3D models, such as those plotted in
Figure 1.
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2 Methods and training set

3D models. All cartesian coordinates of the various NPs
considered in this work were generated using the in-house
polyhedra software [24].

Energy potentials. Sutton-Chen potentials [31] and ana-
lytical gradients are implemented in polyhedra, with pa-
rameters optimized for platinum [32] and silver [33]. It has
been used in some cases to relax the geometries generated
from geometrical considerations.

Coulomb Matrix (CM). The matrix elements of a Coulomb
matrix C [19] are given by:

Cij =

{
0.5Z2.4

i ∀ i = j
ZiZj

|Rj−Ri| ∀ i 6= j
(1)

where Zi is the nuclear charge of element i. Off-diagonal
elements correspond to the Coulomb repulsion between
atoms i and j, while diagonal elements encode a polyno-
mial fit of atomic energies to nuclear charge. To avoid
large values on the diagonal, all nuclear charges were set
up to 1. To partially overcome the ill-defined ordering of
atoms, first they were sorted in two subsets of subsurface
and surface atoms, second the matrix is permuted in such
a way that its rows and columns in each subset are or-
dered by their norm [19, 34]. In order to have the same
dimensionality d for all systems, matrices are completed
with zeros, up to the number of atoms of the largest NP
(dCM = 189 in this study).

Theoretical Radial Distribution Functions (RDF). The RDF
function g(r) has been calculated from atomic coordi-
nates, i.e. directly in the real space, using (it is different
from von Lilienfeld’s approach [26]):

g(r) = A
∑
i

∑
j

[
bibj

< b >2
δ(r − rij)

]
(2)

where rij is the interatomic distance between two atoms
i and j belonging to the model crystal, bi is the scatter-
ing power of atom i, < b > is the average scattering
power of the sample and A is a parameter for the ampli-
tude of the signal. In the case of X-rays, bi is simply the
number of electrons of atom i [35]. Eq. 2 is the so-called
chemists definition [36] (another formula is often used,
where g′(r) = g(r)/r). The delta function, δ(r − rij) is
replaced by a Gaussian distribution function of the form:

δ(r − rij) =
1√

2πσ(rij)
exp

[
−1

2

(
r − rij
σ(rij)

)2
]

(3)

We have considered the r-independent formulation of
the peak width σ(rij), which has been is set up to a con-
stant value σ0 = 0.2 Å. Note that in its usual definition,
and for the purpose of comparison with the experimental
RDF function gexp(r) – which is the sine Fourier transfor-
mation of the normalized scattering intensity S(Q) pro-
vided by X-Ray or neutron diffraction – the 4πr2ρ0 term
is subtracted from eq. 2, where ρ0 is the average number
density of the material. Since we were only interested in
a global fingerprint of TMNPs for structural analyzis, this
term has not been taken into account in the present study.
RDF profiles of two identical structures made of different
atom types (e.g. Ag and Pt) will not coincide given that
equilibrium bond lengths differ. To circumvent this issue,
we considered g(r̃) where r̃ = r/RNN1, and RNN1 is the
position of the first peak of the RDF profile that charac-
terizes nearest neighbours. g(r̃) is then discretized, with a
r̃-step of 0.002 for r̃ ≤ 3, which is increased to 0.02 for
r̃ > 3. It means that a strong weight is put on the bond-
ing scheme of an atom with its neighbors that belong to a
sphere of radius 3RNN1 centered on each atom. Moreover,
the intensity of the first peak is normalized to 1 in order to
make the intensity of the first peaks weakly dependent on
the NP size. To reinforce the information, the first deriva-
tive, g′(r̃) = dg(r̃)/dr̃, was also used to train two ANNs,
namely RDF2-ANN and RDF3-ANN (vide infra).

Training set. Eleven classes were considered, with two
to four different sizes according to the class. For some
of them, the sizes correspond to the well-known structural
magic numbers in cluster science [5, 37–39]. The 30 result-
ing compounds are shown in Figure 2. Each class is identi-
fied by an acronym, with -C and -S that stand for cubic and
spherical shapes. The training set is made of (i) Platonic
NPs: fcc and bcc cubes (FCC-C and BCC-C), fcc octa-
hedra (OH), fcc regular tetrahedra (RTD), dodecahedra
(DD), Mackay icosahedra (IC) [40]; (ii) Archimedean NP:
fcc cuboctahedra (CB); (iii) spherical fcc, hcp and β-Mn
NPs (FCC-S, HCP-S, BMN-S); (iv) pentagonal bipyra-
mid decahedron (DC). On the contrary to the ten other
classes made only from building principles, dodecahedra
were fully optimized given the very low packing efficiency
of such structure before optimization. The resulting ge-
ometries are concave (see also Figure 1). As evidenced by
high-energy X-Ray diffraction technique, several NPs ex-
hibit a β-Mn-type crystal structure [41, 42], which turns
out to be a very interesting polytetrahedral packing of
atoms. They are for example encountered in Frank-Kasper
phases [43, 44] and in some bare transition metal clusters,
such as 55-atoms species [45].

Characteristics of the ANNs. The supervised neural net-
work models are multi-layer perceptrons (MLP) imple-
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Fig. 2 Training set made of 30 structures divided into eleven classes. Core atoms appear in magenta below surface facets. CB: cuboctahedron;
FC: decahedron; FCC-C: cubic fcc shape; FCC-S: spherical piece of fcc system; HCP-S: spherical piece of hcp system; IC: icosahedron; BMn-S:
spherical piece of β-Mn system; OH: octahedron; RTD: regular tetrahedron; BCC-C: cubic bcc shape; DD: regular dodecahedron (optimized).
Core atoms appear in dark magenta, beneath the triangular and square facets.

mented in the scikit-learn project [46], which trains us-
ing back-propagation. The Adam stochastic optimizer was
chosen given its robustness for relatively large datasets
[47]. For classification, MLP minimize the cross-entropy
loss function. For a given compound j, ANNs returns Pj(Ck)

– with k = 1, 11 –, the probability number per class Ck.
After an adjustment stage, the ANNs’ architecture was set
up to three hidden layers of 40 neurons each. It appeared
appropriate to avoid overfitting or underfitting.

Four different implementations for the recognition of
the shape of 3D models of NPs have been achieved: (i)
CM-ANN, based on flattened Coulomb matrices (schema-
tized in Figure S1 for the 105-atoms decahedron); (ii)
RDF1-ANN, based on discretized g(r̃) RDF profiles; (iii)
RDF2-ANN based on the discretized first derivate g′(r̃) of
RDF profile; (iv) RDF3-ANN based on concatenated – and
still discretized – g(r̃) and g′(r̃) fingerprints (schematized
in Figure S2). RDFi-ANNs are designed in the same spirit
as the shape recognition based on XANES experimental
spectra [27], the machinery of this application being also
based on the discretization of the continuous and differ-
entiable experimental XANES signal I(E) as well as on
the discretization of its theoretical counterpart.

Data augmentation and training of the ANN. The training
set summarized in Figure 2 is obviously too small to train
an ANN, a process which usually requires several thou-
sands of data. To enlarge the datasets, 1000 structures,
together with their CM, their RDF function g(r̃) as well
as g′(r̃), have been generated for each of the 30 nanoclus-
ters used for training. Each new geometry is obtained by
a random displacement by 0.1 Å in all directions of each
atom of the parent geometry.

Ten structures per class were separated to make the
test set. The remaining 990 structures were randomly split
in a 80%-structures per class subset, used to train the

ANN, and in a 20%-structures per class subset, used to
validate the ANN performance. g(r̃) RDF profiles of se-
lected fully symmetric and randomly modified fcc struc-
tures are plotted in Figure S3. One can see that these
random displacements preserve the structural fingerprint
of the structures. Such training will also make the ANNs
able to classify the shape of the metal core of ligand-pro-
tected NPs, which interatomic metal-metal bond lengths,
sensitive to electron donation or back-bonding effects of
ligands and to surface coverage, differ from bare NPs.

Fig. 3 RDF functions g(r̃) and coulomb matrices for the largest NP
in each class. Same labels as in Figure 2.

Cross-validation. The stratified 5-folds cross-validator of
scikit-learn was used [48]. It provides an average perfor-
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mance of the models, with folds made by preserving the
percentage of samples for each class.

Challenging dataset and scoring of the related performance
of the ANNs. Another dataset will be presented in sec-
tion 3. It aims at evaluating the performance of the ANNs
when confronted with structures that significantly differ
from the training set: truncated NPs, alloys, other metal
than Pt with different interatomic bond lengths, coalesced
NPs, new bcc shape different from the only learned bcc
cubic shape, oblate and prolate structures whereas the
training set is made of structures that exhibit only small
deviations from spherical shape, NPs larger than those of
the training set, closely-related structures (cuboctahedra
vs. truncated octahedra). Some of them can be seen as
decoys, made to deceive the optimized ANNs. In other
words, the capability of the ANNs to identify some a pri-
ori non obvious structural patterns is evaluated through
this dataset, hereafter named a challenging dataset. It is
not straightforward, in this context, to evaluate the per-
formance of the ANNs defined and optimized in this study.
Performance is often conveniently assessed through RMS
deviations between target and estimated values. It is less
obvious to define in such structure recognition application.
This is why a gross scoring has been defined by consid-
ering for each compound s =

∑
j Pj(Cx)/N , where N

is the total number of compounds submitted to the ANN
(CM-ANN: N = 27; RDF-ANNi : N = 32) and Pj(Cx) is
the probability associated to the expected class Cx.

3 Results

Validation of the ANN performance. It is done on the 11
× 20% validation subsets. The cross-validation and test
scores for each of the three schemes are reported in Table
1. The RDF-based ANNs perform very well. They never fail
to identify the classes the structures of the validation sets
belong to. After analysis, it turns out that the CM-ANN
is unable to classify 13-atoms cuboctahedra and icosahe-
dra in the appropriate CB and IC classes. So far, it can
be considered as an insignificant disagreement. Given the
similarity of g(r̃) and g′(r̃) for fcc structures (see examples
in Figure S4 and Figure S5), the ability of all RDF-based
ANNs to discriminate between classes CB, FCC-C, FCC-
S and OH is quite rewarding. On the contrary, the pat-
terns of their CM (see Figure S6) seem different enough
to unambiguously assign these compounds to our shape
classification on the basis of this descriptor.

Other scores obtained with CM-ANN and RDF3-ANN
are reported in Table S1 as a function of their architecture,
i.e. the number of hidden layers and the number of neurons
per hidden layer. A good validation is already obtained
with 1 hidden layer made of 11 neurons, whereas 2 neurons

is obviously not enough. Regarding CM-ANNs, increasing
the number of neurons does not help improving the 0.96
test score.

CM RDF1 RDF2 RDF3

cv score 0.97 1.00 1.00 1.00
test score 0.96 1.00 1.00 1.00

Table 1 Test and cross-validation (cv) scores of the four considered
ANN (CM and RDFi ANNs are defined in section 2).

Classification of similar or new shapes. The 32 structures
submitted to the four ANNs are reported in Figure 4. On
the contrary to the training and validation sets, most of
the structures were fully optimized without any symmetry
constraints, using Sutton-Chen potentials. This is what
makes structure 1 (Pt147) different from the IC-147 com-
pound shown in Figure 2. The 32 structures are classified
in nine new classes, that we shall now briefly review. The
1-8 Mackay icosahedra-based structures are either magic
number clusters, i.e. with closed atomic shells (1, 4, 7,
and the bimetallic core-shell 8) or partially filled atomic
shells (2 and 3). Compounds 5 and 6 are short metal rods
made of bound icosahedral Pt13 and Pt55 clusters. Struc-
tures 9-12 are rectangular cuboid, spherical, oblate and
prolate spheroid fcc clusters, respectively. Two trigonal
bipyramids, 13 and 14, were also added to the challenging
dataset. Structures 15-21 are five-fold twinned NPs [49].
These so-called Ino’s [50] and Marks’ [51] decahedra have
non spherical shapes, built from decahedra. Two Boerdijk-
Coxeter-Bernal (BCB) helices [52–55], 22 and 23, were
also added to the challenging dataset. They are made of
linearly stacked regular fcc tetrahedra, they are chiral, and
they experimentally appear as either left-handed spirals or
right-handed ones. Compounds 24 and 25 are bcc rhom-
bic dodecahedra. Such structures are Catalan solids. The
in-house polyhedra software also allows to excavate poly-
hedra with emporte-pièces. Concave cubic and icosahedral
NPs 26, 27 and 29 were made with square-pyramidal and
icosahedral tips, respectively. Compound 28 is made by
digging through a Pt147 icosahedron with a cylinder. Fi-
nally, three fcc-based truncated polyhedra were added to
the challenging dataset, namely two truncated octahedra
(30 and 31) and a truncated regular tetrahedron (32).
Given that structures 4, 26, 29, 31 and 32 contain more
atoms than the largest structure of the training set (i.e.
189 atoms), and owing to the imposed limitation of CM-
ANN to dCM = 189 (see section 2), this machine cannot
classify them.

The expected classification of the 32 compounds to
the eleven classes known by the ANNs is subjectively color-
coded in Figure 5 (green for a priori easy classifications,
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Fig. 4 Structures of the challenging dataset. All structures marked with a * were fully optimized with Sutton-Chen potentials optimized for
Pt and Ag (see Methods and datasets section). Core atoms appear in dark magenta, beneath the triangular and square facets.

5

Fig. 5 Expected classification Cx of the 32 compounds that belong to the challenging dataset, into one of the eleven classes known by
the ANNs. A color-coded subjective point of view is proposed: green/orange/red = easy/not that obvious/challenging classification (see
justification in the text). Same classes as in Figure 4 (BP: bipyramids, DC: decahedra, BCB: Boerdijk-Coxeter-Bernal, DD: dodecahedra, tr.:
truncated).

orange for less obvious classifications, red for challenging
classifications). We did not include shapes that can be
assigned to all eleven learned classes. As already said in
section 2, some of these classes (CB, HCP-S, BMN-S, DD)
are decoys that may deceive ANNs. Compounds 1-4, 7-8
should be easily identified as icosahedra. Given their elon-
gated shape and the repetition pattern, it may be uneasy
for the CM-ANN to assign them to the IC class. Although
the ANNs have only been confronted with cubic shapes, it
should not be uneasy to assign compound 9 to the FCC-
C class. The number of atoms of this species (n: 147),
identical to the IC and CB magic numbers, should not be
a problem. Whereas compound 10 is just another FCC-
S shape, the significantly oblate and prolate shapes of 11
and 12 may perturb the ANNs. It is obvious for a reader fa-

miliar with polyhedra that the trigonal bipyramids 13 and
14 are three-fold twinned regular tetrahedra (RTD class).
However, it could be less easy for the CM-ANN, and even
for the RDFi-ANNs that may wrongfully assign them to
another fcc class. Ino’s decahedra (15-17) and Marks’ dec-
ahedra (18-21) are five-fold twinned nanoparticle built by
appropriate truncations of the edges of parent decahedra.
Let us remind that NPs that exhibit decahedra shapes are
five-fold multiply twinned (MTP) fcc NPs [49]. Similarly
to icosahedra, they are composed of tetrahedral sub-units
joined along twin boundaries and sharing axes of five-fold
symmetry. In both types or structures, tetrahedra are in-
herently strained due to twinning. The illustration that
five regular fcc tetrahedra form an imperfect decahedron
with a gap of 7.35° is provided in Figure S7. Given these
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comments, Ino’s and Marks’ decahedra may not be that
easy to assign to the DC class. By the way, a reader unfa-
miliar with MTPs could also hesitate between the DC and
IC classes. But a conveniently trained ANN is expected to
do better than that. If you visualize the quite long Pt126

BCB helix (22) with a molecular viewer and even if you
zoom in enough and if you rotate this compound, you will
see that it is not that easy to identify that this structure
is an helical stacking of Pt10 regular tetrahedra. Given
also that the present ANNs have been faced to several fcc
classes that do not differ that much from each other, this
RTD assignment could be challenging (it is marked in red
in Figure 5). The larger one, 23, is less elongated, and
the Pt35 RTD pattern is probably more obvious in RDF
profiles. The excavated fcc cube 26 is a concave struc-
ture that misses a lot of atoms. On top of that, its cubic
core is also reduced to a very low number of atoms. An
ANN could thus be confused with other fcc classes that
are significantly different from a cube. Given that 27 has
a Pt55 IC core, its classification to the IC class should not
be a problem. On the contrary, 28 does not have an IC
core, and that could make its classification to the IC class
very challenging. It is not immediately evident that com-
pound 29 is an excavated icosahedron. However, it could
be more obvious on the basis of its RDF profile. Its core
is nothing else than 27 and the numerous surface atoms
probably reinforce the IC pattern. Compounds 30 and 31
are highlighted in red in Figure 5, given the structural
proximity between these truncated octahedra and cuboc-
tahedra. The assignment could fall in either of the CB
and OH classes. Finally, given that the apexes of the par-
ent regular tetrahedron of 32 were moderately truncated,
its assignment to the RTD class is expected to be obvious.
Given this biased analysis, a gross score s between ∼0.5
and ∼0.8 would be acceptable, whereas s & 0.8 would be
a remarkable outcome.

The classification of structures 1-32 to the eleven classes
are summarized in Figure 6 and more detailed in Tables
S2 to S5. The performance of each ANN can be caught
at a glance: the higher the number of dark green cells, the
better the performance. With a gross score s : 0.16, the
CM-ANN miserably fails. The inability to identify com-
pounds 2 and 3 as belonging to the IC class or compound
10 to the FCC-S class are among the most prominent fail-
ures of CM-ANN. This optimized neuron network actually
shows a propensity for the DC and BMN-S classes. With
gross scores between s : 0.56 (RDF2-ANN) and s : 0.67

(RDF3-ANN), the RDFi-ANNs are by far more adapted to
this recognition task. They all succeed in assigning icosa-
hedral species 1-7 to the IC class, excepted for the biggest
one, 4. This may be because long-range information of the
g(r̃) and g′(r̃) profiles perturb the recognition. The core-
shell icosahedron 8 is identified as a decahedron by RDF1-

Fig. 6 Classification of structures 1-32 to the eleven classes learned
by the ANNs (columns: classes index, same as in Figures 2 and 4; CM
and RDFi ANNs are defined in section 2, see also Table 1). Green:
expected result; dark green: right class identification by the ANN;
burgundy: wrong identification. The probabilities Pi(Ck) calculated
for each class Ck by the ANNs are given in the SI, Tables S2-S5.
Cx: biased expectation on ANNs’ performance, same color code as
in Figure 5. Blue cells highlight answers that were not expected but
that can be considered as acceptable.

and RDF2- ANNs, whilst it is – luckily ? – assigned to the
IC class by RDF3-ANN. Yet, the RDF profiles of deca-
hedra and icosahedra are significantly different, and the
RDF fingerprint of the core-shell AgPtNP is close to the
single metal Pt147 NP, optimized or not (see Figure S8).
It is hard to understand the failure of RDF1-ANN. It is
probably a data-fitting issue of the training process, that
led to a bad weighting of some neural connections. It also
turns out that among the compounds allegedly easy to
assign, 29 is never well identified and g′(r̃) seem to al-
ter the assignation of 9 to the FCC-C class (RDF2-ANN:
P9(FCC− C) : 0.24, RDF3-ANN: P9(FCC− C) : 0.02).



8

Let us now consider the challenging species (in red in
Figure 5). As expected, no ANN is able to assign the
long BCP helix 22 to the RTD class, although a non-
zero P22(RTD) is found by RDF1-ANN and RDF2-ANN
(0.026 and 0.020). But RDF-ANN assigns it to the HCP-S
class, which has nothing in common with RTDs. Interest-
ingly, RDF1-ANN and RDF3-ANN classify it in the DC or
IC classes. Given the similar twinning patterns of tetrahe-
dra in RTDs, ICs and DCs, it can be considered as a quite
relevant identification. The RDF first derivative helps iden-
tifying the drilled icosahedron 28 to the IC class, whilst
RDF1-ANN assigns it to the DC class. Finally, none of
these RDFi-ANNs is able to see that compounds 30 and
31 are made from octahedra. They all agree to say that it
is a spherical piece of an fcc packing (FCC-S class), which
is after all an acceptable answer. With this tolerance being
shown, the s score increases to 0.20, 0.67, 0.63 and 0.73
for CM-, RDF1-, RDF2- and RDF3- ANNs, respectively.

4 Conclusion and outlook

We built the geometries of 30 fcc, bcc, hcp and polytetra-
hedral metal clusters and nano-clusters Mn (n = 13-189).
Four different ANNs, based on Coulomb matrices or RDF
profiles and their first derivative, learned to classify each
compound j in eleven different classes Ck with a given
probability Pj(Ck). The CM-ANN and RDFi-ANNs all
brilliantly passed the validation test, i.e. they successfully
classified shapes very close to the training set. We then
assessed the ability of the 4 ANNs to properly assign 32 ad-
ditional structures to the eleven classes. Let us attempt to
introduce an analogy with the cats vs. dogs classification,
although true image recognition is usually best achieved in
the framework of convolutional neural networks, a special-
ized kind of neural network for processing data that have
a known grid-like topology [56, 29]. With some of these
new 32 shapes, to some extent we checked the ability of
the ANNs to extrapolate to other felines, big cats and
canids, some of them having significant physical disabili-
ties or wearing camouflages. Regarding the fcc-type NPs,
we also evaluated the ability these ANNs to discriminate
between very similar structures such as cuboctahedra and
truncated octahedra. Despite such strong requirement, the
RDF-based ANNs do well, with scores close to 0.6 or even
0.7 – a somewhat acceptable performance –, whereas the
CM-based ANN is not adapted at all to this task, even
in the “easy” cases. Given that such scoring is not re-
lated to the test set but to the challenging test, it shall
be underlined that it cannot be analyzed as an overfitting
or underfitting evidence.. With very few exceptions, such
as compound 8, the mistakes made by the RDFi-ANNs
can usually be rationalized in terms of atomic arrange-
ments, a further indication that ANNs do not suffer from

pathological over- or underfitting. The best ANN, namely
RDF3-ANN, uses both discretized RDF profiles and their
first derivative counterpart. May be owing to the explicit
identification of critical points.

With this application of ANNs to structural chemistry,
we are far from any DFT-based and descriptors-based as-
sistance by machine learning to the rational design and
optimization of NPs with tailored-made properties. This
is a first step, that could easily find a direct application
to the analysis of experimental RDF, obtained by in situ
high-energy synchrotron X-ray diffraction or other WAXS
experiments [25, 41], after taking the average number den-
sity of the material, ρ0, into account [24]. Experimental
RDFs would be submitted to ANNs trained on theoreti-
cal RDF profiles, possibly supplemented with a collection
of well-resolved and identified experimental RDF profiles.
The RDF3-ANN could also take part to the in silico opti-
mization of nanocatalysts, among other descriptors (coor-
dination numbers, chemical hardness, d -band center, ad-
sorption energies, etc...). Other structural descriptors are
needed to introduce coordination modes (on-top, face cap-
ping, edge-bridging...) of the surface species that stabilize
metal NPs. We are currently working along these lines.
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