
HAL Id: hal-04222825
https://hal.science/hal-04222825v1

Submitted on 29 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Batch-less stochastic gradient descent for compressive
learning of deep regularization for image denoising

Hui Shi, Yann Traonmilin, J-F Aujol

To cite this version:
Hui Shi, Yann Traonmilin, J-F Aujol. Batch-less stochastic gradient descent for compressive learning
of deep regularization for image denoising. Journal of Mathematical Imaging and Vision, 2024. �hal-
04222825�

https://hal.science/hal-04222825v1
https://hal.archives-ouvertes.fr

Batch-less stochastic gradient descent for compressive
learning of deep regularization for image denoising

Hui Shi1, Yann Traonmilin1* and Jean-François Aujol1

1Univ. Bordeaux, Bordeaux INP, CNRS, IMB, UMR 5251, F-33400, Talence, France.

*Corresponding author(s). E-mail(s): yann.traonmilin@math.u-bordeaux.fr;
Contributing authors: hui.shi@u-bordeaux.fr; jean-francois.aujol@math.u-bordeaux.fr;

Abstract
We consider the problem of denoising with the help of prior information taken from a database of clean
signals or images. Denoising with variational methods is very efficient if a regularizer well adapted to
the nature of the data is available. Thanks to the maximum a posteriori Bayesian framework, such
regularizer can be systematically linked with the distribution of the data. With deep neural networks
(DNN), complex distributions can be recovered from a large training database. To reduce the computa-
tional burden of this task, we adapt the compressive learning framework to the learning of regularizers
parametrized by DNN. We propose two variants of stochastic gradient descent (SGD) for the recovery
of deep regularization parameters from a heavily compressed database. These algorithms outperform
the initially proposed method that was limited to low-dimensional signals, each iteration using infor-
mation from the whole database. They also benefit from classical SGD convergence guarantees. Thanks
to these improvements we show that this method can be applied for patch based image denoising.

1 Introduction
At the heart of imaging inverse problems, having
a precise prior information on the distribution of
the unknown image is crucial for efficient recovery
of said image. In particular, consider the denoising
problem, i.e. finding an accurate estimate u? of the
original image u0 ∈ Rd from the observed noisy
image v ∈ Rd:

v = u0 + ε, (1)

where the noise ε (assumed to be additive white
Gaussian noise of standard deviation σ) is inde-
pendent of u0. Recovering u0 from its degraded
version v is an ill-posed problem and we need
to use additional (prior) information about the
unknown image u0 to obtain meaningful solutions.
A common strategy [2] for solving inverse prob-
lems is to define an estimator u? which is the

minimizer of a functional:

u? ∈ arg min
u

F (u) + λR(u), (2)

where F is the data fidelity term making the
solution consistent with the observation y and R
is the regularization term that incorporates the
prior information, weighted by the regularization
parameter λ > 0. The choice of R depends on
the statistics of the signal of interest which is not
always available in real-life applications.

The maximum a posteriori (MAP) Bayesian
framework provides a useful tool to interpret such
methods. The MAP estimator is given by:

u?MAP ∈ arg min
u

‖v − u‖22 − λ log(µ(u)) (3)

1

2 Comp. Learn. deep reg.

where µ denotes a prior probability law (of density
µ(·)) of the unknown data u. In this context, the
regularizer is related to the prior distribution of
the data, i.e., R(u) = −log(µ(u)).

Defining an accurate prior model in the form
of a regularizer or distribution of the images of
interest is one of the main difficulties for designing
efficient estimation methods. Classical Bayesian
approaches, e.g. in image processing, rely on
explicit priors such as total variation or Gaussian
mixture models (GMM) [21] trained on a database
of image patches. Recently, researchers proposed
to use DNN to design the regularizer. Methods
such as the total deep variation [11], adversarial
regularizers [12, 15], as well as the Plug & Play
approach and its extensions [20, 9] deliver remark-
ably accurate results. However, such models are
typically learned from large datasets. Estimating
their parameters from such a large-scale dataset is
a serious computational challenge.

Compressive learning
One possibility to reduce the computational
resources of learning consists in using the com-
pressive learning (CL) framework [4, 5, 7]. The
main idea of CL, coined as sketching, is to com-
press the whole data collection into a fixed-size
representation, a so-called sketch of data, such
that enough information relevant to the consid-
ered learning task is captured. Then the learned
parameters are estimated by minimizing a non-
linear least-square problem built with the sketch.
The size of the sketch m is chosen proportional
to the intrinsic complexity of the learning task.
Consequently, the cost of inferring the parameters
of interest from the sketch does not depend on
the size of the training database but on the num-
ber of parameters we want to estimate. Hence, it
is possible to exploit arbitrarily large datasets in
the sketching framework without demanding more
computational resources.

During the sketching phase, a huge collection
of n d-dimensional data vectors X = {xi}ni=1 is
summarized into a single m-dimensional (m� n)
vector ẑ with:

ẑ =
1

n

n∑
i=1

Φ(xi) = S(µ̂n), (4)

where µ̂n := 1
n

∑n
i=1 δxi is the empirical prob-

ability distribution of the data, δxi is the Dirac
measure at xi and the function Φ : Rd → Cm is
called the feature map (typically random Fourier
moments). The sketch ẑ is the mean of the feature
map over the whole database.

Sketching can be interpreted as a linear oper-
ation S on measures µ defined by Sµ :=
EX∼µΦ(X). An estimate of a distribution µθ (or
of distributional parameters θ of interest) can be
calculated from the sketch by solving:

µ?θ ∈ arg min
µθ

G(θ) = arg min
µθ

‖ẑ − Sµθ‖22. (5)

In practice, this "sketch matching" problem can be
solved by greedy compressive learning Orthogonal
Matching Pursuit (OMP) algorithm and its exten-
sion Compressive Learning-OMP with replace-
ment [10] when µθ is a mixture of elementary
distribution (i.e. a GMM). When the distribu-
tion µ is a GMM in high-dimension with flat
tail covariances, the problem can also be solved
by the Low-Rank OMP algorithm (LR-OMP). It
was shown that the prior model learned with LR-
OMP can be used to perform image denoising [18]
with no loss of performance compared to the non
compressive approach, and with faster training
time.

These greedy algorithms are suitable for any
sketching operator S and any distribution density
µ, as long as the sketch Sµ and its gradient ∇θSµ
with respect to the distributional parameters θ of
interest have a closed-form expression: the core
of these OMP-based algorithms is computing the
expression of Sµ and ∇θSµ. However, for some
more general distributions, the sketching feature
map may not have a closed form. This limits the
use of the sketching framework.

In this paper, our goal is to recover a good
approximation of the probability distribution of
any unknown data from its sketch (i.e. beyond
GMM). As neural networks (NN) have great
expressive power [8, 14], we propose to tackle the
problem by adapting the sketching to NN. More
precisely, we propose to define the regularizer Rθ
parametrized by a DNN fθ (precisely a ReLU
network) as

Rθ(·) = ‖fθ(·)‖22. (6)

Such a regularization corresponds to the paramet-
ric distribution density µθ ∝ e−‖fθ(·)‖22 . Thus it

Comp. Learn. deep reg. 3

can be viewed as a generalized Gaussian distri-
bution, where the bilinear form induced by the
covariance matrix is replaced by a network. Due
to the fact that NN have good generalization
properties, the proposed regularization should be
capable of encoding complex probability distribu-
tions. Unfortunately, a direct practical application
of existing tools is not possible as closed-form
expressions of Sµ are not available for sketching
operator S based on random Fourier features. In
[19], it was shown on low-dimensional (2D and 3D)
data that it was possible to estimate a deep regu-
larizer by approximating S by a sampled version
on a regular grid Sd. Unfortunately the use of a
grid limits the extension of this method to data in
higher dimension such as image patches.

Contributions and outline
In this work, we propose novel approaches to
learn deep regularizers from sketches beyond
our initial method from [19]. Instead of relying
on a grid-based discretization of the sketching
operator S, we propose an adaptation of the
stochastic gradient descent method (that we call
compressive learning stochastic gradient descent,
CL-SGD), dynamically generating descent direc-
tions from the whole training dataset with the
help of a random discretization of the sketch-
ing operator performed at each iteration. This
strategy not only makes the approach suitable
for higher-dimensional problems but also substan-
tially enhances the efficiency and flexibility of the
sketching process, requiring far fewer grid points
and delivering considerably faster results com-
pared to its predecessor. Once the neural network
is trained denoising can be performed using clas-
sical variational methods. The method is tested
using both synthetic and real audio and image
data, demonstrating that a deep prior can be
learned to perform patch based denoising. More-
over we provide a theoretical analysis ensuring the
convergence of our compressive learning stochastic
gradient method.

The rest of this article is organized as follows.
We start by introducing the sketching frame-
work, ReLU networks and some related works in
section 2. In section 3, we describe the proposed
framework: the adaptation of the compressive
learning framework to the learning of regularizers

parametrized by ReLU networks. Section 4 illus-
trates the performance of the proposed methods
on both synthetic data and real-life data. Finally,
conclusions are drawn in section 5.

2 Background, related works
We suppose that data samples xi are modeled as
independent and identically distributed random
vectors having an unknown probability distribu-
tion with density µ ∈ M(D) (whereM(D) is the
set of measures having a (Gateaux)-differentiable
density supported on a domain D ⊂ Rd). For sim-
plicity we identify µ with its density µ : Rd → R+.
Hence we can evaluate µ on any point pi ∈ Rd
with µ(pi). For a collection of points p = (pi)

P
i=1,

we write µ(p) = (µ(pi))
P
i=1 ∈ RP . We define the

linear sketching operator S that maps µ to the
m-dimensional sketch vector z:

S :M(D)→ Cm

z = Sµ :=

∫
Rd
µ(x)Φ(x)dx.

(7)

When the transformation (sketching feature map)
Φ(·) is built with random frequencies of the
Fourier transform, the l-th component of the
sketch is

zl =

∫
Rd
e−j〈ωl,x〉µ(x)dx, for l = 1, . . . ,m,

(8)
where {ωl}ml=1 ∈ Rd are frequencies drawn at
random. Taking a statistical perspective, the com-
ponents zl can be seen as samples of the char-
acteristic function of µX . Accordingly, given a
dataset X = {xi}ni=1, the empirical sketch ẑ can
be computed from the samples of the database as

ẑl =
1

n

n∑
i=1

e−j〈ωl,xi〉, for l = 1, . . . ,m. (9)

The compression ratio r is m/nd. It was shown
[10, 6, 5] that when the probability distribution µ
has a low dimension structure, e.g. a GMM, one
can recover it (with high probability) from enough
randomly chosen samples of its Fourier transform.
The required size of the sketch is typically of the
order of the number of parameters we need to
estimate.

4 Comp. Learn. deep reg.

ReLU network
A ReLU network, denoted by fθ, is defined as a
fully connected, feed-forward network (multi-layer
perceptrons) with rectified linear unit (ReLU)
activations. This activation has grown in popular-
ity in feed-forward networks due to the success of
first-order gradient based heuristic algorithms and
the improvement in convergence to the approxi-
mated function for training [13].

Related works
The sketching framework has been successfully
applied to parametric models including GMMs
[10, 5, 18], K-means clustering [10, 5] and clas-
sification [16]. These methods are limited to the
models for which the sketch function has a closed
form. In our work, we apply the sketching to
neural networks to encode more complex and high-
dimensional probability distributions. Sketching
techniques have found applications in neural net-
works, as evidenced by their use in [17] and [19]. In
[17], the integration of sketching with generative
networks enables the generation of data samples,
while [19] pursues the goal of developing a deep
regularizer for solving inverse problems. Notably,
in [17], the authors suggest an approximation of
the sketching map using Monte-Carlo sampling,
whereas in [19], we chose for a discrete sketching
operator for the approximation. It is worth high-
lighting that the sketching framework outlined
earlier emphasizes data-independent approxima-
tion, specifically obtaining sketches through the
averaging of random features.

3 Proposed method
In this section, we explain how we adapt the
sketching framework to estimate regularizations
by DNN. We then provide a theoretical analysis
of our method and we detail the implementation
of our algorithms.

3.1 Previous work
We start by explaining why there are no explicit
closed-form expressions of the sketching function
available in the context of prior parametrized
by DNN. Intuitively, since ReLU networks define
piecewise affine functions, we can indeed express

a ReLU network fθ as:

fθ(x) =

NR∑
γ=1

1Rγ (x)(Wγx+ bγ), (10)

where 1Rγ is the indicator function of each of the
NR affine regions Rγ , with parameters (Wγ , bγ).

Given a dataset X, we aim at learning, from
only the sketch ẑ, an approximation µθ∗ of the
probability distribution µ generating X. We con-
sider a regularizer of the form Rθ(·) = ‖fθ(·)‖22
which corresponds to parametric densities of the
form µθ(·) ∝ e−Rθ(·). Ideally, with the definition
(8), the sketch would have to be calculated as

zl =

∫
Rd
e−j〈ω,x〉e−‖fθ(x)‖22dx

=

∫
Rd
e−j〈ω,x〉e−

∑d
p=1(

∑NR
γ 1Rγ (x)((Wγx)+bγ))2dx.

(11)

This would require Fourier Transforms on the
individual regions Rγ . However, to the best of
our knowledge, there is no analytic expression
of such Fourier transform (Fourier transform on
polygons).

In our previous work [19], it was proposed to
perform the following minimization

θ∗ ∈ arg min
θ∈Θ

‖Spµθ − ẑ‖22 , (12)

where Sp is a discretization on a regular grid p =
(pi)

P
i=1 ⊂ Rd over the domain of the data, i.e.

(Spµθ)l ∝
P∑

pi=1

e−j〈ωl,pi〉µθ(pi) (13)

This optimization problem is then solved through
gradient descent based methods. Considering the
data at iteration t as θt, the update step can be
expressed as follows:

θt = θt−1 − η2Re ((∇Spµθ)∗ (Spµθ − ẑ)) (14)

where η > 0 represents the learning rate.
With the discretization, if µθ is differentiable

at point pi, the gradient of Spµθ with respect to
the parameters θ can be computed easily by using

Comp. Learn. deep reg. 5

the automatic differentiation. Note that the dis-
cretization is used only in the estimation of the
regularizer from the sketch. It thus only impacts
the calculation time and memory requirement of
the estimation of the regularizer and not the size
of the compressed dataset itself. Of course, the
major pitfall of this approximation is the limi-
tation for applications in high dimension as the
number of points is exponential with respect to
the dimension d. The required boundedness (or
approximate boundedness such as in the Gaus-
sian case) of the data is a valid assumption in
many practical applications in signal and image
processing.

3.2 Compressive learning stochastic
gradient descent (CL-SGD)

Instead of discretizing the forward operator S once
on a grid, we propose to perform a stochastic
gradient descent where descent directions are gen-
erated with the help of a different random uniform
discretization of S at each step. We first introduce
a naïve discretization which we then adadapt to
a CL-SGD method with theoretical convergence
guarantees.

As an approximation of the minimization of
G, first consider the discretized operator on a ran-
dom grid p where pi ∼ U(D) (U(D) is the uniform
distribution on D) and the corresponding function

Gp(θ) = ‖Spµθ − ẑ‖22 . (15)

We remark that Spµθ can be written as

Spµθ = Bpµθ(p) (16)

where µθ(p) is the density of µθ evaluated on the
grid p and where Bp,l,i = e−j〈ωl,pi〉

P . It is shown
in Section 3.4 that EBp(µθ(p)) = Sµθ, i.e. this
random discretization is consistent with the sketch
in expectation. Consider the minimization of Gp

min
θ∈Θ
‖Bpµθ(p)− ẑ‖22 . (17)

where θ ⊂ Rd0 is the set where the parameters
(weights and bias) of the DNN live. This is a sim-
ple non-linear least square problem. We calculate
the directional derivative of this functional with
respect to θ in a direction h (the gradient is the

evaluation of these derivatives in the directions
formed by the canonical basis of Rd0):

1

2
∂hGp(θ) = Re〈Bp∂hµθ(p), Bpµθ(p)− ẑ〉 (18)

Recall that the directional derivatives of G are
given by

1

2
∂hG(θ) = Re〈S∂hµθ,Sµθ − ẑ〉. (19)

Recall that we supposed that µθ is differentiable
with respect to θ in any direction h (usually
referred as Gateaux differentiability). We link the
expectation of these derivatives with the direc-
tional derivatives of the original sketch matching
functional G with the following Lemma.

Lemma 3.1. Consider S constructed with fre-
quencies (ωl)

m
l=1. Let p = (pi)

P
i=1 with pi ∈ U(D),

µθ ∈ M(D) and h ∈ Rd0 such that ‖h‖2 = 1.
Then,

Ep∂hGp(θ) = ∂hG(θ)

+
2

P
(m〈∂hµθ, µθ〉L2(D) − 〈S∂hµθ,Sµθ〉).

(20)

Proof Thanks to Lemma 3.5, we calculate the expec-
tation.

1

2
Ep∂hH(θ) = Ep〈Bp∂hµθ, Bpµθ − ẑ〉

= E〈Bp∂hµθ, Bpµθ〉 − 〈S∂hµθ, ẑ〉

=
m

P
〈µ1, µ2〉L2(D) +

P − 1

P
〈Sµ1,Sµ2〉

− 〈S∂hµθ, ẑ〉
= 〈S∂hµθ,Sµθ − ẑ〉

+
1

P
(m〈∂hµθn , µθ〉L2(D) − 〈S∂hµθ,Sµθ〉).

(21)

�

Remark that, unfortunately, there is a bias
term that converges to 0 when P → ∞. Hence
this method will permit to obtain an approxima-
tion of the true gradients of G when P is large
enough (note that the quality of the approxima-
tion does not depend on the size of the training
database). The corresponding theoretical naïve
SGD algorithm is given in Algorithm 1.

6 Comp. Learn. deep reg.

Algorithm 1: Naive CL-SGD algorithm
Data: Sketch ẑ, K iterations, γ step size

1 z0 ← ẑ;
2 θ0 randomly initialized;
3 for k = 0, ...,K do
4 Generate a grid p of P points

pi ∼ U(D);
5 θk+1 = θk − γ∇Gp(θk, zk, p);
6 end

Looking at the origin of the bias term in
the proof of Lemma 3.1, we are able to propose
another approximation of the directional deriva-
tive, which is unbiased. Using two i.i.d random
grids p and q, we define the directions

dh,p,q = 2〈Bp∂hµθ(p), Bqµθ(q)− ẑ〉 (22)

Its expectation is exactly the gradient of the
sketch matching problem.

Lemma 3.2. Consider S constructed with fre-
quencies (ωl)

m
l=1. Let p = (pi)

P
i=1,q = (qi)

P
i=1 with

pi, qi ∈ U(D) i.i.d., µθ ∈M(D) and h ∈ Rd0 such
that ‖h‖2 = 1, then

Ep,q (dh,p,q) = ∂hG(θ). (23)

Proof We calculate the expectation.

Ep,q(dh,p,q) = Ep,q〈Bp∂hµθ(p), Bqµθ(q)− ẑ〉 (24)

As p,q are i.i.d we have

Ep,qdh,p,q = 〈EpBp∂hµθ(p),EqBqµθ(q)− ẑ〉 (25)

Using Lemma 3.4 we have Ep (Bp∂hµθ(p)) = S∂hµθ
and Eq (Bqµθ(q)) = Sµθ. This gives

Ep,qdh,p,q = 〈S∂hµθ,Sµθ − ẑ〉. (26)

�

With this expression we can build a stochastic
descent direction with expectation being exactly
the gradient of G:

Dp,q = (dei,p,q)d0i=1 (27)

where ei are the elements of the canonical basis of
Rd0 ⊃ Θ. We have

Algorithm 2: Unbiased CL-SGD algo-
rithm
Data: Sketch ẑ, K iterations, τ step size

1 z0 ← ẑ;
2 θ0 randomly initialized;
3 for k = 0, ...,K do
4 Generate a grid p of P points

pi ∼ U(D);
5 Generate a grid q of P points

qi ∼ U(D);
6 θk+1 = θk − τDp,q;
7 end

Lemma 3.3. Under the hypotheses of Lemma 3.2,
we have

Ep,q (Dp,q) = ∇G(θ). (28)

Proof Use Lemma 3.2, for h = ei where the ei form
the canonical basis of Rd0 . �

We also have that a direct application of
Lemma 3.6 permits to bound the variance of this
estimator of ∇G(θ):

Ep,q‖Dp,q −∇G(θ)‖22 = O

(
1

P

)
(29)

This leads to the second theoretical method
Algorithm 2.

3.3 Practical implementation of
CL-SGD

In practice, we implement the theoretical Algo-
rithms 1 and 2 wih slight differences.

For Algorithm 1,we estimate the normalization
constant of µθ that best matches µθ to the sketch
in the least square sense at the current iteration
i.e. we minimize for αp the objective ‖Bpαµθ−ẑ‖22.
This gives the update

αp =
|〈Bpµθ, ẑ〉|
‖Bpµθ‖22

. (30)

This yields the practical implementation of Algo-
rithm 1 described in Algorithm 3.

For Algorithm 2, we remark that at a given
step the important fact is that we have two inde-
pendent random grids. Hence we just generate
one grid at each iteration and use the grid from

Comp. Learn. deep reg. 7

Algorithm 3: Practical implementation
of naive CL-SGD Algorithm 1
Data: Sketch ẑ, K iterations, τ step size

1 z0 ← ẑ;
2 θ0 randomly initialized;
3 for k = 0, ...,K do
4 Generate a grid p of P points

pi ∼ U(D);

5 αp =
|〈Bpµθk ,ẑ〉|
‖〈Bpµθk‖

2
2
;

6 Set H1(θ) = ‖Bpαpµθ − ẑ‖;
θk+1 = θk − τ∇H1(θ);

7 end

the previous iteration to generate our descent
direction. Morevover the descent direction is eas-
ily implemented with automatic differentiation by
remarking that

Dp,q = ∇θ〈Bpµθ(p), lq〉 (31)

where lq = Bqαpµθ(q) − ẑ is fixed. This leads
to Algorithm 4 (which is the practical implemen-
tation of Algorithm 2). For this algorithm the
previous automatic normalization of the gradient
has a tendency to fall in a local minimum (clip-
ping effect due to the fact that µθ(p) is bounded
in [0, 1]), however manually setting this parameter
yields good results.

Algorithm 4: Practical implementation
of Unbiased CL-SGD Algorithm 2
Data: Sketch ẑ, K iterations, τ step size,

normalization α
1 z0 ← ẑ;
2 θ0 randomly initialized;
3 Generate a grid q of P points qi ∼ U(D);
4 for k = 0, ...,K do
5 Generate a grid p of P points

pi ∼ U(D);
6 lq = Bqαµθ(q)− ẑ;
7 Set H2(θ) = Re〈Bpαµθ(p), lq〉;
8 θk+1 = θk − τ∇H2(θ);
9 q = p;

10 end

Both algorithms update the DNN with infor-
mation synthetized from the whole database at

each iteration. The computational cost of each
iteration is similar to the cost of computing the
gradient of a typical `2 loss with a dataset of
size m (size of the sketch instead of size of the
dataset). The advantage of this method is that the
number of iterations required to converge to the
sketch matching problem does not depend on the
size of the original database compared to tradi-
tional learning with batches where passes (epochs)
through the whole database are required.

3.4 Consistency of CL-SGD with
the sketch matching problem

In this section, we give the necessary lemmas to
link our stochastic descent directions with the
original sketch matching problem (summarized by
the Lemmas of Section 3.2). The central idea of
our method is that we can generally approximate
Sµθ with Bpµθ(p), which will translate to the
chosen stochastic gradients.

Lemma 3.4. Consider S constructed with fre-
quencies (ωl)

m
l=1. Let Bp ∈ Cm×P with general

term Bp,l,i = e−j〈ωl,pi〉

P and µ ∈M(D). Then

Ep (Bpµ(p)) = Sµ. (32)

Proof The expectation yields for l ∈ {1, . . . ,m}

[Ep(Bpµ(p))]l = Ep

P∑
r=1

e−j〈ωl,pr〉µ(pr)
P

. (33)

As the pr are i.i.d, we have

[EpBpµ(p)]l = PEp
e−j〈ωl,p1〉µ(p1)

P

=

∫
p1∈D

e−j〈ωl,p1〉µ(p1)dp1 = [Sµ]l.

(34)

�

This shows that on average random discretiza-
tion of the data domain for the forward sketching
operator is consistent with the original sketch.

To calculate the expectation of our stochas-
tic gradients, we provide the following Lemma
which gives the expectation of the discretized
cross product between two measures. We write
〈µ1, µ2〉L2(D) :=

∫
D µ1(x)µ2(x)dx the cross prod-

uct between two densities µ1 and µ2.

8 Comp. Learn. deep reg.

Lemma 3.5. Consider S constructed with fre-
quencies (ωl)

m
l=1. Let Bp ∈ Cm×P with general

term Bp,l,i = e−j〈ωl,pi〉

P and µ1, µ2 ∈ M(D). We
have

Ep (〈Bpµ1(p), Bpµ2(p)〉) =
m

P
〈µ1, µ2〉L2(D)

+
P − 1

P
〈Sµ1,Sµ2〉.

(35)

Proof We have
Ep〈Bpµ1(p), Bpµ2(p)〉

= Ep(µ2(p)
TB∗pBpµ1(p))

=
1

P 2
Ep

P∑
t=1

µ2(pt)

m∑
g=1

ej〈ωg,pt〉
P∑
r=1

e−j〈ωg,pr〉µ1(pr)

=
1

P 2

P∑
t=1

m∑
g=1

P∑
r=1

Epe
j〈ωg,pt−pr〉µ2(pt)µ1(pr).

(36)

The diagonal terms in the sum pt = pr are

D =
1

P 2

P∑
t=1

m∑
g=1

Epµ2(pt)µ1(pt) =
m

P
〈µ1, µ2〉L2(D).

(37)

The non diagonal terms pt 6= pr give (with the fact
that the pi are i.i.d.):

N =
1

P 2

P∑
t=1

m∑
g=1

P∑
r=1,r 6=t

Epe
j〈ωg,pt−pr〉µ2(pt)µ1(pr)

=
P − 1

P

m∑
g=1

(
Epe

j〈ωg,p1〉µ2(p1)
)(

Epe
−j〈ωg,p1〉µ1(p1)

)

=
P − 1

P

m∑
g=1

(Sµ2)
∗
g(Sµ1)g

=
P − 1

P
〈Sµ1,Sµ2〉.

(38)
�

We also calculate the variance of the unbi-
ased estimator of the gradient of G thanks to the
following Lemma.

Lemma 3.6. Consider S constructed with fre-
quencies (ωl)

m
l=1. Let Bp ∈ Cm×P with general

term Bp,l,i = e−j〈ωl,pi〉

P and µ1, µ2 ∈ M(D). We
have

Ep,q|〈Bpµ1(p), Bqµ2(q)− z〉|2

− |Ep,q〈Bpµ1(p), Bqµ2(q)− z〉|2

=
1

P 2
〈|µ1|2, |µ2|2〉L2,|S∗1|2 +

1

P
C(µ1, µ2, z)

(39)

where we define S∗z : p →
∑

g zge
j〈ωg,p〉,

and for a kernel K (a function from D to R),
〈ν1, ν2〉L2(D),K :=

∫
x,y

ν1(x)ν2(y)h(x − y)dxdy.
and where

C(µ1, µ2, z)

:=
P − 1

P
(〈|S∗Sµ1|2, |µ2|2〉L2 + 〈|S∗Sµ2|2, |µ1|2〉L2)

+Re〈|S∗z|2 − 2S∗z(S∗Sµ2)∗, |µ1|2〉L2

+ 2Re (〈Sµ1, z〉〈Sµ1,Sµ2〉∗)− |〈Sµ1, z〉|2

− 2P − 1

P
|〈Sµ1,Sµ2〉|2

(40)

Proof We need to calculate a few terms separately. For
y ∈ Cm, using the fact that

〈Bpµ1(p), z〉 =
m∑
g=1

P∑
t=1

ej〈ωg,pt〉µ1(pt)zg,

we have

Ep〈Bpµ1(p), z〉〈Bpµ1(p), y〉∗

=
1

P 2

∑
g,t

∑
g̃,t̃

Ep

(
ej〈ωg,pt〉−j〈ωg̃,pt̃〉µ1(pt)µ1(pt̃)zgy

∗
g̃

)
=

1

P 2

∑
g,g̃

zgy
∗
g̃

∑
t,t̃

Ep

(
ej〈ωg,pt〉−j〈ωg̃,pt̃〉µ1(pt)µ1(pt̃)

)
.

(41)

As the pt are i.i.d., we have∑
t,t̃

Epe
j〈ωg,pt〉−j〈ωg̃,pt̃〉µ1(pt)µ1(pt̃)

= PEp[e
−j〈ωg̃−ωg,p1〉|µ1(p1)|2]

+ P (P − 1)(Sµ1)
∗
g(Sµ1)g̃.

(42)

We obtain

Comp. Learn. deep reg. 9

Ep〈Bpµ1(p), z〉〈Bpµ1(p), y〉∗

=
1

P 2

∑
g,g̃

(
zgy
∗
g̃PEp[e

−j〈ωg̃−ωg,p1〉|µ1(p1)|2]

+ P (P − 1)(Sµ1)
∗
g(Sµ1)g̃zgy

∗
g̃

)
=

1

P
Ep[B

∗
pz(B

∗
py)
∗](p1)|2|µ1(p1)|2]

+
P − 1

P
〈Sµ1, z〉〈Sµ1, y〉∗

=
1

P
〈S∗z(S∗y)∗, |µ1|2〉L2 +

P − 1

P
〈Sµ1, z〉〈Sµ1, y〉∗

(43)

where S∗z is defined in the hypotheses of the Lemma.
For y = z we obtain

Ep|〈Bpµ1(p), z〉|2

=
1

P
〈|S∗z|2, |µ1|2〉L2 +

P − 1

P
|〈Sµ1, z〉|2

(44)

We now calculate the following expectation:

Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

=
1

P 4
Ep,q|

m∑
g=1

∑
t=1

∑
r=1

ej〈ωg,pt−qr〉µ1(pt)µ2(qr)|2

=
1

P 4

∑
g,t,r

∑
g̃,t̃,r̃

Ep,q

(
ej〈ωg,pt−qr〉e−j〈ωg̃,pt̃−qr̃〉

µ1(pt)µ2(qr)µ1(pt̃)µ2(qr̃)
)

(45)
As p and q are i.i.d.,

Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

=
1

P 4

∑
g,t,r

∑
g̃,t̃,r̃

(
Epe

j〈ωg,pt〉−j〈ωg̃,pt̃〉µ1(pt)µ1(pt̃)
)

Eq

(
e−j〈ωg,qr〉+j〈ωg̃,qr̃〉µ2(qr)µ2(qr̃)

)
=

1

P 4

∑
g,g̃

∑
t,t̃

Epe
j〈ωg,pt〉−j〈ωg̃,pt̃〉µ1(pt)µ1(pt̃)

∑
r,r̃

Eqe
−j〈ωg,qr〉+j〈ωg̃,qr̃〉µ2(qr)µ2(qr̃)

=
1

P 4

∑
g,g̃

A1,g,g̃A
∗
2,g,g̃

(46)
where, with the decomposition of the sum into diago-
nal and off-diagonal terms,

Ai,g,g̃ =
∑
t,t̃

Epe
j〈ωg,pt〉−j〈ωg̃,pt̃〉µi(pt)µi(pt̃)

= PEpe
−j〈ωg̃−ωg,pt〉|µi(pt)|2

+ P (P − 1)(Sµi)∗g(Sµi)g̃.

(47)

We obtain

P 2Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

=
∑
g,g̃

(Epe
−j〈ωg̃−ωg,pt〉|µ1(pt)|2Eqe

j〈ωg̃−ωg,qr〉|µ2(qr)|2

+ (P − 1)(Sµ1)
∗
g(Sµ1)g̃Eqe

j〈ωg̃−ωg,qr〉|µ2(qr)|2

+ (P − 1)(Sµ2)g(Sµ2)
∗
g̃Epe

−j〈ωg̃−ωg,pt〉|µ1(pt)|2

+ (P − 1)2(Sµ1)
∗
g(Sµ1)g̃(Sµ2)g(Sµ2)

∗
g̃

(48)

with

∑
g,g̃

(Epe
−j〈ωg̃−ωg,pt〉|µ1(pt)|2Eqe

j〈ωg̃−ωg,qr〉|µ2(qr)|2

= EpEq

∑
g,g̃

e−j〈ωg̃−ωg,pt〉ej〈ωg̃−ωg,qr〉

 |µ1(pt)|2|µ2(qr)|2

(49)

We have inside the expectation,∑
g,g̃

ej〈ωg̃,qr−pt〉e−j〈ωg,qr−pt〉

 |µ1(pt)|2|µ2(qr)|2

=

∑
g̃

ej〈ωg̃,qr−pt〉
∑
g

e−j〈ωg,qr−pt〉

 |µ1(pt)|2|µ2(qr)|2

=

∑
g̃

ej〈ωg̃,qr−pt〉
∑
g

e−j〈ωg,qr−pt〉

 |µ1(pt)|2|µ2(qr)|2

(50)

This gives

P 2Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

= Ep,q|[S∗1](qr − pt)|2|µ1(pt)|2|µ2(qr)|2

= 〈|µ1|2, |µ2|2〉L2(D),|S∗1|2 .

(51)

where we define for a kernel K (a function from D to
R), 〈ν1, ν2〉L2(D),K =

∫
x,y ν1(x)ν2(y)h(x− y)dxdy.

We calculate the second term (and similarly the
third term) of the right hand side of (48).∑
g,g̃

(Sµ1)
∗
g(Sµ1)g̃Eqe

j〈ωg̃−ωg,qr〉|µ2(qr)|2

Eq

∑
g,g̃

e−j〈ωg,qr〉(Sµ1)
∗
ge
j〈ωg̃,qr〉(Sµ1)g̃|µ2(qr)|2

= Eq

(
|S∗Sµ1|2qr |µ2(qr)|2

)
= 〈|S∗Sµ1|2, |µ2|2〉L2(D).

(52)

The fourth term of the right hand side of (48)
yields

10 Comp. Learn. deep reg.

∑
g,g̃

(Sµ1)
∗
g(Sµ1)g̃(Sµ2)g(Sµ2)

∗
g̃

=
∑
g

(Sµ1)
∗
g(Sµ2)g〈Sµ1,Sµ2〉 = |〈Sµ1,Sµ2〉|2.

(53)

Going back to (46), we have using the expres-
sions (51), (52) and (53) in (48)

Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

=
1

P 2
〈|µ1|2, |µ2|2〉L2(D),|S∗1|2

+
P − 1

P 2
〈|S∗Sµ1|2, |µ2|2〉L2(D)

+
P − 1

P 2
〈|S∗Sµ2|2, |µ1|2〉L2(D)

+
(P − 1)2

P 2
|〈Sµ1,Sµ2〉|2.

(54)

By developing expressions, we have

Ep,q|〈Bpµ1(p), Bqµ2(q)− z〉

− Ep,q〈Bpµ1(p), Bqµ2(q)− z〉|2

= Ep,q|〈Bpµ1(p), Bqµ2(q)− z〉|2 − |〈Sµ1,Sµ2 − z〉|2

= Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

− 2Ep,qRe
(
〈Bpµ1(p), z〉〈Bpµ1(p), Bqµ2(q)〉∗

)
+ Ep,q|〈Bpµ1(p), z〉|2 − |〈Sµ1,Sµ2 − z〉|2

= Ep,q|〈Bpµ1(p), Bqµ2(q)〉|2

− 2Ep,qRe
(
〈Bpµ1(p), z〉〈Bpµ1(p),Sµ2〉∗

)
+ Ep,q|〈Bpµ1(p), z〉|2 − |〈Sµ1,Sµ2 − z〉|2

(55)

Using equation (54) and the fact that
Ep,qRe〈Bpµ1(p), z〉 = Re〈Ep,qBpµ1(p), z〉 =
Re〈Sµ1, z〉 with Lemma 3.4, equation (43), we have

Ep,q|〈Bpµ1(p), Bqµ2(q)− z〉

− Ep,q〈Bpµ1(p), Bqµ2(q)− z〉|2

=
1

P 2
〈|µ1|2, |µ2|2〉L2(D),|S∗1|2

+
P − 1

P 2
〈|S∗Sµ1|2, |µ2|2〉L2(D)

+
P − 1

P 2
〈|S∗Sµ2|2, |µ1|2〉L2(D)

+
(P − 1)2

P 2
|〈Sµ1,Sµ2〉|2

− 2
1

P
Re〈(S∗z)(S∗Sµ2)

∗, |µ1|2〉L2

− 2
P − 1

P
Re
(
〈Sµ1, z〉〈Sµ1,Sµ2〉∗

)
+

1

P
〈|S∗z|2, |µ1|2〉L2(D)

+
P − 1

P
|〈Sµ1, z〉|2

− |〈Sµ1, z〉|2

+ 2Re
(
〈Sµ1, z〉〈Sµ1,Sµ2〉∗

)
− |〈Sµ1,Sµ2〉|2

(56)

Regrouping terms yields

Ep,q|〈Bpµ1(p), Bqµ2(q)− z〉

− Ep,q〈Bpµ1(p), Bqµ2(q)− z〉|2

=
1

P 2
〈|µ1|2, |µ2|2〉L2,|S∗1|2

+
P − 1

P 2

(
〈|S∗Sµ1|2, |µ2|2〉L2 + 〈|S∗Sµ2|2, |µ1|2〉L2

)
+

1

P
Re〈|S∗z|2 − 2S∗z(S∗Sµ2)

∗, |µ1|2〉L2

+
2

P
Re
(
〈Sµ1, z〉〈Sµ1,Sµ2〉∗

)
− 1

P
|〈Sµ1, z〉|2

− 2P − 1

P 2
|〈Sµ1,Sµ2〉|2

(57)

�

We have that the variance converges to 0 at
the typical rate 1/P .

3.5 Convergence analysis
The advantage of Lemma 3.3 showing the consis-
tency in expectation of our CL-SGD update with
the gradient of the ideal sketch matching problem
is that we can use out of the box results of the
convergence of SGD. Under some hypotheses on

Comp. Learn. deep reg. 11

the stochastic descent direction, it is possible de
to show that

lim
k→∞

inf E‖∇G(θk)‖22 = 0 (58)

i.e., in expectation, our estimate converges to a
critical point of G (a point θ such that∇G(θ) = 0)
which is the best we can hope for in this non-
convex setting (with minimal hypotheses).

Specifically, we can use results in the non-
convex setting from the review article [1, Theorem
4.9]. We suppose that G has Lipschitz gradient,
G is lower bounded, that the expectation of our
descent direction is exactly the gradient of G and
the variance is bounded by M1 + M2‖∇G(θ)‖22
(which is verified withM2 = 0 as long as the µθ are
bounded in L2 norm thanks to Lemma 3.6). Then
with a sequence of diminishing step sizes τk > 0
such that ‖

∑
k τk‖ =∞ and ‖

∑
k τ

2
k‖ <∞ (tipi-

cally one may choose τk = 1
k), we have that the

equation (58) is verified. With fixed step sizes the
convergence results include the variance.

4 Experimental results

4.1 Synthetic data
We first test our proposed approaches with 2-D
synthetic data. The used training dataset is made
of n = 106 samples which are generated from a
spiral with a radius of circular curve from 0.3 to
1 and spiral length 2π (shown as (a) in Fig. 1).
The ReLU network fθ with 3 hidden layers, each
layer contains 64, 64, 128 neurons respectively.
The dataset is compressed into a sketch of size
m = 500, i.e. with a compression ratio r = 2000.

Figure 1 (b) shows the prior model learned
using the initial method, i.e. the method from [19]
described in equation (14), with a sketch of size
m = 500, P = 900 points uniformly generated on
the grid of the data domain. Figure 1 (c) and (d)
shows the prior model learned with Algorithm 3
and 4. We use P = 1600 points randomly gen-
erated on the data domain for algorithm 3. For
algorithm 4, we use P = 1000 points and fix the
value of α = 50. The proposed algorithms are
capable of recovering good approximations of the
probability distribution of sample data while tak-
ing about half the training time (about 6 minutes)
of the initial method.

(a) (b)

(c) (d)

Fig. 1 Results for the learning of densities. (a) The
training data. The prior model learned with (b) regu-
lar discretization (previous work [19]), (c) Naïve CL-SGD
Algorithm 3 and (d) Unbiased SL-SGD Algorithm 4.

Denoising results
Similar to [19], we apply the learned regularization
term to solve the variational problem defined in
equation (3). This results in the minimization of:

G(u) = ‖u− v‖22 + λ‖fθ(u)‖22. (59)

Furthermore, we can conveniently compute the
gradient using automatic differentiation. It is
important to mention that this denoising approach
can be seamlessly extended to address diverse lin-
ear inverse problems (beyond the scope of this
article). It is indeed now well known with plug
and play approach that denoisers capture enough
information on the data for the solving of inverse
problems.

The effectiveness of the learned regularizers is
evaluated within the context of denoising white
Gaussian noise. Specifically, the noisy dataset
consists of 500 samples generated with a noise
level of σ2 = 0.15. We manually select the opti-
mal hyperparameter values, including the gradient
step size and the regularization parameter λ, for
each individual model.

Figure 2 visually illustrates the 2-D denoising
results with different noise levels σ2 = 0.15, 0.2.
From top to bottom, the figure shows the denois-
ing results using regularizers learned from the
compressed dataset 2000 times smaller with the

12 Comp. Learn. deep reg.

initial method [19], Algorithm 3 and 4 respec-
tively. Table 1 shows the average gain on SNR
(Signal to Noise Ratio) of denoising results using
different models. We observe unbiased CL-SGD
yields the best performance. However it must be
noted that its parametrization is much harder
than Naïve SGD in practive.

Fig. 2 Denoising results with noise level σ = 0.15 (left)
and σ = 0.2 (right). Regularizers learned from 2000 times
compressed dataset (m = 500) with initial method [19] (1st
row), Algorithm 3 (2nd row) and Algorithm 4 (3rd row).

Table 1 Average gain on SNR

Gain SNR Inital method Algo 3 Algo 4
σ2 = 0.15 +2.065 +1.954 +2.89
σ2 = 0.2 +1.613 +1.583 +2.45

4.2 Audio denoising
To illustrate the advantages of the proposed meth-
ods in the same setting as [19] on real data (as we
were unable to deal with dimensions larger than 3
with the regular discretization of S), we perform
experiments on recorded musical notes (mono-
phonic 16kHz audio snippets) from the NSynth

dataset [3]. To compare, we use the same com-
pressed dataset as in the previous work. That
is, the training dataset comprises 0.125 seconds
of audio extracted from an acoustic guitar. After
filtering the normalized audio data s by two 4th-
order Butterworth low-pass filters h1 and h2 with
a cutoff frequency of 1.5kHz and 3.75kHz, three
frequency responses are constructed with s1 =
h1∗s, s2 = h2∗(s−s1), and s3 = s−s1−s2. Then
the frequency responses are concatenated, hence
the training set is of dimension 2000× 3; i.e. 2000
samples in dimension 3. The regularizer is learned
from a sketch of size m = 200, i.e. the dataset is
compressed by a factor of 30. Once the regular-
izer is learned, it is applied to denoise the audio
that has been corrupted by Gaussian white noise
at noise level σ2 = 0.1.

Figure 3 and Figure 4 demonstrate the audio
denoising results. We gain 1.49dB on SNR with
Algorithm 3 and 1.97dB with Algorithm 4 in the
case of small noise (σ2 = 0.1). Worse denois-
ing results (gain 1.36dB) are achieved by using
the initial approach (14) in the previous work
[19]. Compared to the initial method, which use
P = 8000 points to discretize the sketching opera-
tor, the results displayed in the figure is achieved
with a model learned with P = 4000 points. Con-
sequently, the new proposed algorithms exhibits
enhanced efficiency (4 times faster) compared to
the initial approach.

Fig. 3 Audio denoising results with regularizers learned
from a 30 times compressed dataset with Algorithm 3 (left)
and 4 (right).

4.3 Image denoising results
We show that our proposed method can be applied
in the higher dimensional context of patch-based
image denoising. The initial training data com-
prises n = 4 × 106 patches of size 3 × 3 (i.e.

Comp. Learn. deep reg. 13

Fig. 4 Audio results with regularizers learned from a 30
times compressed dataset with Algorithm 3 (top) and 4
(bottom).

d = 9). These patches are compressed into a sketch
of size m = 104. Figure 5 shows test images (1st
row) and their noisy version (2nd row) used in the
experiment (with a noise level of σ = 0.07.

It also shows the denoising result achieved by
using a regularizer learned via Algorithm 3 (4th
row). The regularizer is trained using a ReLU
network consisting of 5 hidden layers, with respec-
tively 64, 64, 128, 196, 196 neurons in each layer.
We use P = 8 × 104 random points on the data
domain and the Adam optimizer with a learning
rate of 10−3. The learning process takes 5.7 hours
on a machine with 2 * AMD EPYC 7452 32-Core
Processor and 256 GB RAM.

We compare the denoising results with that
achieved with a GMM regularizer learned from the
same sketch using the method from [18] (shown
in the 3rd row in Figure 5). Note that only one
iteration of the denoising method is used with an
optimal choice of regularization parameter for all

methods. Hence we observe directly the denois-
ing effect of the two different regularizers. This
comparison demonstrates that Algorithm 3 yields
similar result as the GMM method, thus show-
ing that CL-SGD can be used successfully for
the learning of a deep prior from a sketch in
high dimension. We attribute the fact that the
denoising performance is not increased to the lim-
ited denoising possibilites on independent 3 × 3
patches. Further work on accelerating our algo-
rithms to manage bigger patches should show the
improved representation capabilities of DNN.

We present denoising results with Unbiased
CL-SGD in Figure 6. While Algorithm 4 per-
forms a strong denoising visually, we observe a
lack of preservation of the contrast of the original
image (hence the PSNR metric is not improved
by this method). Unfortunately, the difficulty
of parametrization that we observe in the 2D
synthetic context becomes even more harder in
dimension 9 (3×3 patches). This makes the study
of acceleration method fo unbiased CL-SGD even
more important for an easy use in the context
of image denoising. Moreover forcing some knowl-
edge on the regularizer (e.g. Rθ(u) = 0 if u
is a constant patch) might facilitate its training
process.

5 Conclusions
In this work, we adapt the sketching framework
to the learning of a regularizer parametrized by
a DNN. This is achieved with a new stochastic
gradient descent algorithm, CL-SGD, with con-
vergence guarantees where randomness is used
for the discretization of the sketching operator.
Our method outperforms the previous work based
on the deterministic discretization of the forward
operator S on a regular grid. Moreover, it must
be noted that only a database of clean images suf-
fices to learn the deep prior. Experimental results
obtained from synthetic 2-D data, audio denoising
(data in 3D), and real images validates CL-SGD
both in terms of computational efficiency and
quality of the trained regularizer.

Many questions arise from this work. While
the design of the sketching operator and its the-
oretical justification was heavily influenced by
the prior model (e.g. GMM), this design should
be revisited and generalized to DNN based pri-
ors. From a practical perspective, it would be

14 REFERENCES

PSNR: 23.08 PSNR: 23.10

PSNR: 30.11 PSNR: 28.62

PSNR: 30.21 PSNR: 28.47
Fig. 5 Original test images (1st row). Noisy test images
(2nd row) with noise level σ = 0.07. Denoised images
with 10-GMM learned from the sketch (3rd row). Denoised
images with regularizers learned with Naive CL-SGD
(Algorithm 3) (4th row).

interesting to compare denoising results with our
compressive approach on huge image databases
with plug and play approaches where a train-
ing process is performed on pairs of noisy/clean
images. Also acceleration methods (with inertia)
should be investigated to improve the learning
time of the deep prior.

Fig. 6 Denoised images with regularizers learned with
Unbiased CL-SGD (Algorithm 4).

References
[1] Bottou, L., Curtis, F.E., Nocedal, J.: Opti-

mization methods for large-scale machine
learning. SIAM review 60(2), 223–311 (2018)

[2] Demoment, G.: Image reconstruction and
restoration: Overview of common estimation
structures and problems. IEEE Transactions
on Acoustics, Speech, and Signal Processing
37(12), 2024–2036 (1989)

[3] Engel, J., Resnick, C., Roberts, A., Diele-
man, S., Norouzi, M., Eck, D., Simonyan,
K.: Neural audio synthesis of musical notes
with wavenet autoencoders. In: Int. Conf.
on Machine Learning. pp. 1068–1077. PMLR
(2017)

[4] Gribonval, R., Blanchard, G., Keriven, N.,
Traonmilin, Y.: Compressive statistical learn-
ing with random feature moments. Mathe-
matical Statistics and Learning 3(2), 113–164
(2021)

[5] Gribonval, R., Blanchard, G., Keriven, N.,
Traonmilin, Y.: Statistical learning guaran-
tees for compressive clustering and compres-
sive mixture modeling. Mathematical Statis-
tics and Learning 3(2), 165–257 (2021)

[6] Gribonval, R., Chatalic, A., Keriven, N.,
Schellekens, V., Jacques, L., Schniter,
P.: Sketching datasets for large-scale
learning (long version). arXiv preprint
arXiv:2008.01839 (2020)

[7] Gribonval, R., Chatalic, A., Keriven, N.,
Schellekens, V., Jacques, L., Schniter, P.:
Sketching data sets for large-scale learning:
Keeping only what you need. IEEE Signal
Processing Magazine 38(5), 12–36 (2021)

[8] Hornik, K., Stinchcombe, M., White, H.:
Multilayer feedforward networks are univer-
sal approximators. Neural Networks 2(5),

REFERENCES 15

359–366 (1989)
[9] Hurault, S., Leclaire, A., Papadakis, N.: Gra-

dient step denoiser for convergent plug-and-
play. In: International Conference on Learn-
ing Representations (2022)

[10] Keriven, N., Bourrier, A., Gribonval, R.,
Pérez, P.: Sketching for large-scale learning
of mixture models. Information and Inference
7(3), 447–508 (2018)

[11] Kobler, E., Effland, A., Kunisch, K., Pock, T.:
Total deep variation: A stable regularization
method for inverse problems. IEEE Trans-
actions on Pattern Analysis and Machine
Intelligence pp. 1–1 (2021)

[12] Lunz, S., Öktem, O., Schönlieb, C.B.:
Adversarial regularizers in inverse problems.
Advances in Neural Information Processing
systems 31 (2018)

[13] Nair, V., Hinton, G.E.: Rectified linear units
improve restricted boltzmann machines. In:
Int. Conf. on Machine Learning (2010)

[14] Pan, X., Srikumar, V.: Expressiveness of rec-
tifier networks. In: Int. Conf. on Machine
Learning. pp. 2427–2435. PMLR (2016)

[15] Prost, J., Houdard, A., Almansa, A.,
Papadakis, N.: Learning local regulariza-
tion for variational image restoration. In:
Int. Conf. on Scale Space and Variational
Methods in Computer Vision. pp. 358–370.
Springer (2021)

[16] Schellekens, V., Jacques, L.: Compres-
sive classification (machine learning without
learning). arXiv preprint arXiv:1812.01410
(2018)

[17] Schellekens, V., Jacques, L.: Compres-
sive learning of generative networks. arXiv
preprint arXiv:2002.05095 (2020)

[18] Shi, H., Traonmilin, Y., Aujol, J.F.: Compres-
sive learning for patch-based image denoising.
SIAM Journal on Imaging Sciences 15(3),
1184–1212 (2022)

[19] Shi, H., Traonmilin, Y., Aujol, J.F.: Compres-
sive learning of deep regularization for denois-
ing. In: International Conference on Scale
Space and Variational Methods in Computer
Vision. pp. 162–174. Springer (2023)

[20] Venkatakrishnan, S.V., Bouman, C.A.,
Wohlberg, B.: Plug-and-play priors for model
based reconstruction. In: IEEE Global Conf.
on Signal and Information Processing. pp.

945–948. IEEE (2013)
[21] Zoran, D., Weiss, Y.: From learning mod-

els of natural image patches to whole image
restoration. In: Int. Conf. on Computer
Vision. pp. 479–486. IEEE (2011)

	Introduction
	Compressive learning
	Contributions and outline

	Background, related works
	ReLU network
	Related works

	Proposed method
	Previous work
	Compressive learning stochastic gradient descent (CL-SGD)
	Practical implementation of CL-SGD
	Consistency of CL-SGD with the sketch matching problem
	Convergence analysis

	Experimental results
	Synthetic data
	Denoising results

	Audio denoising
	Image denoising results

	Conclusions

