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Abstract—In this paper, we present a new algorithm for
fast, online 3D reconstruction of dynamic scenes using times of
arrival of photons recorded by single-photon detector arrays.
One of the main challenges in 3D imaging using single-photon
lidar in practical applications is the presence of strong ambi-
ent illumination which corrupts the data and can jeopardize
the detection of peaks/surface in the signals. This background
noise not only complicates the observation model classically
used for 3D reconstruction but also the estimation procedure
which requires iterative methods. In this work, we consider
a new similarity measure for robust depth estimation, which
allows us to use a simple observation model and a non-iterative
estimation procedure while being robust to mis-specification
of the background illumination model. This choice leads to a
computationally attractive depth estimation procedure without
significant degradation of the reconstruction performance. This
new depth estimation procedure is coupled with a spatio-temporal
model to capture the natural correlation between neighboring
pixels and successive frames for dynamic scene analysis. The
resulting online inference process is scalable and well suited for
parallel implementation. The benefits of the proposed method
are demonstrated through a series of experiments conducted
with simulated and real single-photon lidar videos, allowing the
analysis of dynamic scenes at 325 m observed under extreme
ambient illumination conditions.

Index Terms—3D reconstruction, Single-photon lidar, Robust
estimation, Bayesian filtering, Variational methods

I. INTRODUCTION

Fast and reliable reconstruction of 3D scenes using single-
photon light detection and ranging (lidar) is extremely im-
portant for a variety of applications, including environmental
monitoring [1], [2], autonomous driving [3] and defence [4],
[5]. While 3D profiles can be obtained from a range of
modalities, single-photon lidar (SPL) offers appealing advan-
tages, including low-power imaging, a capability for long-
range imaging [6]–[8] or imaging in complex media such as
fog/smoke [5] and turbid underwater environments [9] with
excellent range resolution (of the order of millimetres [10]).

Over the last few years, a wide range of reconstruction
algorithms has been proposed to reconstruct individual depth
images from SPL data, e.g., [11]–[18]. Several algorithms have
also been proposed to analyze distributed objects [16], [19]–
[23], i.e., when multiple surfaces are visible within each pixel.
Irrespective of the number of surfaces visible in each pixel,
one of the main goals of these algorithms is to reconstruct
high quality depth profiles from as small a photon budget
as possible (see also [10], [24]–[26]) and it was shown that

reconstruction from as few as one photon per pixel is possible
under favorable observation conditions. Since single-photon li-
dar technology consists of illuminating the scene with a pulsed
laser and analyzing the time of arrival (ToA) of reflected
photons, successful reconstruction from a few return photons
enables the consideration of shorter integration/acquisition
times and thus the analysis of highly dynamic scenes. Note
that most existing methods are to be used offline since the
computational time required to reconstruct a point cloud is
usually longer than the acquisition time allocated for a single
frame. However, a recent study has presented results of the
reconstruction of complex scenes at video frame rates [23].

A shared property of all the algorithms mentioned above
is that they concentrate on the reconstruction of one point
cloud per time frame, processing a video as a sequence of
independent frames. While a method was recently proposed
in [27] to jointly process batches of SPL frames, it remains
computationally intractable for long video sequences due to
memory requirements. Thus, there is a clear need for scalable
and reliable methods able to adaptively process the increasing
amount of single-photon data recorded by new single-photon
avalanche diode (SPAD) detector arrays [28], [29], offering
a growing number of pixels. In [30], we proposed an online
reconstruction method, relying on individual photon-detection
events, e.g., binary frames, which was used to reconstruct
sequentially a series of depth images using at most one photon
per pixel and frame. However, this method is not adapted to
situations where the ambient illumination levels lead to low
signal to background ratio. This is precisely the problem we
address in this work.

Here, we consider lidar data acquired using SPAD arrays
and investigate a new 3D reconstruction algorithm that ac-
counts for the temporal correlation between successive point
clouds to be reconstructed. More precisely, we address the
problem of the reconstruction of a temporal series of point
clouds, where each point cloud is associated with a different
integration period, over which the pulsed laser emits an arbi-
trary number of pulses. This integration period is user-defined
and we assume that the scene is quasi-static during that period.
The most basic and fastest method to estimate the distance of
an object from a SPL histogram is via log-matched filtering
but this method fails if the background level due to ambient
illumination and light scattering is too high. In such cases
where the background cannot be neglected, it is traditionally
included in the observation model and is estimated to improve
the depth estimation. However, the resulting model makes
the estimation process more complicated and slower iterative
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schemes (optimization-based [19] or simulation-based [24])
are classically used. Strong ambient levels are encountered in
many practical applications, for instance in long-range imaging
applications in free-space [6]–[8] and challenging imaging ap-
plications through scattering media such as turbid underwater
environments [9], [31], [32] and through fog/smoke [5]. It is
thus extremely important to develop methods adapted to such
challenging observation conditions.

In contrast to existing reconstruction methods, we propose a
depth estimation method that does not require the background
level to be modeled while allowing robust depth estimation
when the background cannot be neglected. Instead of defining
a likelihood function based on an observation model assumed
fully specified and accurate, we define a pseudo-likelihood
which only depends on the target depth. Adopting a Bayesian
approach, this pseudo-likelihood is coupled, for each pixel and
each frame, with a depth prior model to derive the so-called
pseudo-posterior distribution of the position of each surface.
This distribution is then used to perform surface detection (i.e.,
deciding if a surface is actually visible or not) and to define
the prior distribution of the point cloud in the next frame, in
an adaptive fashion.

The main contributions of this work are:

• A new pseudo-Bayesian model for robust 3D reconstruc-
tion using streams of photon detection events in the
presence of high ambient illumination levels

• An efficient depth estimation strategy which presents a
fixed and predictable computational cost (in contrast to
most existing methods which are iterative and which
require a convergence criterion to be reached).

• A new online/sequential estimation strategy, proposed
to the best of our knowledge for the first time, for
reconstruction of dynamic 3D scenes from streams of
photon detection events. This method based on assumed
density filtering is highly scalable and computationally
attractive. It also includes an automatic and principled
surface detection method originally proposed in [33].

The remainder of the paper is organized as follows. Section
II recalls the classical observation models for 3D reconstruc-
tion using SPL measurements in the photon-starved regime,
introduces the new similarity measure based on β-divergences
for robust estimation, and demonstrates its benefits for the
analysis of a single frame. The spatio-temporal model and
new online reconstruction method are detailed in Section
III. Results of simulations conducted with real and synthetic
sequences of frames/histograms are presented and discussed
in Section IV and conclusions are finally reported in Section
V.

II. ROBUST DEPTH ESTIMATION

A. Observation models

In this work, we consider a sequence of N temporal frames
which consist of P pixels. More precisely, for each frame, the
data associated with each pixel consists of a set of photon
ToAs. This paper addresses the reconstruction of dynamic
3D scenes where the N frames are processed sequentially to

reduce data storage requirements and account for the tem-
poral correlation between successive frames. In this section,
we discuss observation models and estimation strategies for
analysis of a pixel of a single frame. For now, we assume that
one surface is visible in each pixel and we do not introduce
pixel/frame indices in this section to keep notation clear.

1) Ideal model: Assuming that the ambient illumination
and detector dark counts can be neglected, the recorded ToAs
are only associated with photons originally emitted by the laser
source. For a given pixel, the probability density function of
a photon ToA y ∈ (0, T ), where T is the repetition period of
the laser source, is given by

f0(y|d) = s0

(
y − 2d

c

)
, (1)

where d is the distance between the imaging system and the
surface of interest and c is the light speed in the medium. In
(1), we assume that the scene is approximately static (within
each frame) and s0 (·) is the normalized instrumental response
function (IRF) of the lidar system which can be measured
during calibration of the imaging system. To simplify notation,
we assume that s0 (·) is the same for all the pixels but the
method proposed also applies if the shape of the IRF is pixel-
dependent. Note that we also assume that the shape of s0 (·)
remains the same for all the admissible values of d.

When K photons are detected, if the dead-time of the
detector can be neglected, the photon ToAs are mutually
independent (given d) and the joint likelihood is given by
f(y|d) =

∏
k f0(yk|d) with y = {yk}k. Due to the finite

timing resolution of SPAD detectors, the recorded ToAs are
not continuous variables but instead live on a grid, whose
resolution depends on the system used. Thus, the photon-
starved regime it is possible to consider a model equivalent
to (1), based on Poisson noise and which can be expressed as

zt|r, d ∼ P
(
rs̃0

(
t− 2d

c

))
, t = 1, . . . , NT (2)

where NT is the number of non-overlapping time bins span-
ning (0, T ), s̃0

(
t− 2d

c

)
=
∫ tT/NT
y=(t−1)T/NT s0

(
y − 2d

c

)
dy, and

zt is the number of photons detected in the tth time bin. In (2),
P(λ) denotes the Poisson distribution with mean λ. Moreover,
r ≥ 0 is an amplitude parameter which mainly depends on the
number of laser pulses sent during the frame, the efficiency of
the detector and the reflectivity of the object. In this case, we
obtain the joint likelihood f(z|r, d) =

∏
t f(zt|r, d), where

z = [z1, . . . , zNT ]
T is the ToA histogram constructed from y

and the maximum likelihood estimator of d can be computed
by maximizing the cross-correlation between the logarithm of
s̃0 = [s̃0

(
1− 2d

c

)
, . . . , s̃0

(
T − 2d

c

)
]T and z [34].

2) Accounting for background detections: In many practical
applications however, the models in (1)-(2) are not well
adapted as background illumination cannot be neglected. De-
tection events arising from dark counts and additional sources
(e.g., solar background) often present a uniform distribution
and a more accurate observation model is the following
mixture of distributions originally proposed in [13].

f(y|d,w) = ws0

(
y − 2d

c

)
+ (1− w)U(0;T )(y), (3)
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where w is the pixel and frame dependent probability of a
detected photon to be a “signal” photon originally emitted by
the laser source. Note however that other distributions could be
used to account for the nature of the background photons. This
probability relates to the signal-to-background ratio (SBR)
defined by SBR = w/(1 − w). In that case, estimating d
from the joint likelihood f(y|d,w) =

∏
k f(yk|d,w) becomes

more challenging since w is usually unknown and needs to be
estimated jointly with d. Even if w is known, the estimation
of d is challenging as the evaluation of f(y|d,w) consists of
a product of K mixtures. Similarly, the model in (2) becomes

zt|r, d ∼ P
(
rs̃0

(
t− 2d

c

)
+ b

)
, t = 1, . . . , NT , (4)

where b ≥ 0 represents the average background level. The
relationship between r, b and w is obtained through the SBR,
i.e., SBR = w/(1− w) = r/(bNT ).

Although the models described in (3)-(4) are more appro-
priate than those in (1)-(2), they can still fail to describe the
data accurately, in particular in scattering media where the
distribution of the background photons is not uniform [32].
Moreover, the joint estimation of (w, d) or (r, b, d) requires
iterative algorithms (e.g., [11], [13], [24], [28]) which can
result in a significant computational bottleneck. For these
reasons, we investigate robust estimation of d based on (1),
whereby robustness relates to the mismatch between to the
postulated model and the actual distribution of the ToAs.

B. Robust estimation using β-divergences

Modern methods for depth estimation from single-photon
data are statistical methods which use the data likelihood
either in a maximum penalized likelihood fashion or within
a Bayesian framework [11], [13], [24], [28]. Maximum
likelihood estimation (MLE) in this context is equivalent to
minimizing the Kullback-Leibler (KL) divergence

DKL(f̂(y)||f(y|θ)) =
∫
f̂(y) log

(
f̂(y)

f(y|θ)

)
dy,

= Const.− 1

K

∑
k

log (f(yk|θ)) (5)

between the empirical distribution of the ToAs, denoted as

f̂(y) =
1

K

∑
k δ(y − yk), with δ(·) the Dirac delta function,

and the distribution f(y|θ), where θ is the set of parameters of
the postulated model (i.e., θ = d if (1) is used, and θ = (d,w)
if (3) is used). Moreover, maximum penalized likelihood
approaches can be seen as methods aiming at minimizing a
penalized KL divergence (see discussion in Section II-C).

In this work, we propose to investigate a robust divergence
instead of the classical KL divergence when estimating d to
account for the mismatch between f̂(y) and the postulated
observation model. Moreover, since (1) is simple, i.e., it
involves a single parameter, and yields satisfactory results in
the low to moderate background regime, it seems reasonable
to use this model f0(y|d) in our 3D imaging strategy instead
of (3).

Among the different families of divergences, we concentrate
on β-divergences defined by

Dβ(g||h) =
1

β

∫
g(y)1+βdy

−β + 1

β

∫
g(y)h(y)βdy +

∫
h(y)1+βdy, (6)

with β > 0, which generalize the KL divergence [35].
In addition to being robust to model mismatch (as will be
shown in Section II-D), this family of divergences allows a
computationally attractive estimation of d, since the evaluation
and minimization of the β-divergence is simple (e.g., simpler
than γ-divergences [36]). Note that the KL divergence is
asymptotically recovered when β → 0. For our problem, we
obtain

Dβ(f̂(y)||f0(y|d)) = Const.− β + 1

βK

∑
k

f0(yk|d)β (7)

where the constant (which depends on β) does not depend on
d since we assume that the shape and the integral of s0(·)
does not depend on d, i.e.,

∫
f0(y|d)1+βdy does not depend

on d, for any d in its admissible set.
An interesting result is that using the histogram z instead

of y in (7), i.e., using discretized ToAs, minimizing the β-
divergence reduces to maximizing the cross-correlation be-
tween z and s̃β0 , where the exponential function is applied
element-wise. Indeed, the sum on the left-hand side of (7)
becomes zTsβd . In particular, when β = 1, the resulting
estimator reduces to the depth estimator obtained via matched
filtering. Matched filtering is a classical method for peak local-
ization, and is optimal in the presence of white Gaussian noise.
Nonetheless, it has been widely used in single-photon lidar
analysis [37] and it has been shown empirically to provide
similar or even better results than log-matched filtering. By
reinterpreting (for the first time in the SPL context to the best
of our knowledge), the matched filter based depth estimator
as an estimator derived from the β-divergence, we provide
new insights on why this method performs relatively well in
practice. In this paper, we focus on Bayesian estimation of
the depth. Thus, detailed analysis of the minimum divergence
estimator, i.e., using only (7) to estimate d (without additional
prior information), is out of scope of this work and is left for
future work.

C. Pseudo-Bayesian estimation

While robust depth estimation using only point estimates
is interesting, we are interested in computing measures of
uncertainty about d as such information can also be propagated
to estimate the object depth in future frames. Thus, we adopt
a Bayesian viewpoint and use the β-divergence to construct a
pseudo-Bayesian method. Let us assume that d is assigned a
prior distribution f(d). Note that this assumption is consistent
with the method discussed in Section III, where the depth
parameters of a given frame will be assigned a product of P
independent distributions.
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When considering the KL divergence as a similarity mea-
sure, the classical posterior distribution of d, can be obtained
by solving

min
p(d)∈P

L(p(d)), (8)

where P is the set of all probability distributions, −L(p(d))
is the evidence lower-bound (ELBO),

L(p(d)) = KEp(d) [CEKL(d)] +DKL(p(d)||f(d)), (9)

with Ep(d) [·] the expectation with respect to p(d) and where

CEKL(d) = − 1

K

∑
k log (f(yk|d)) is the cross-entropy be-

tween f̂(y) and f0(y|d) [36]. Note that in (9), the term
DKL(p(d)||f(d)) acts as a penalty enforcing the solution p(d)
to be similar to the prior distribution f(d). Indeed the solution
of (8) yields

p(d) = f(d|y) ∝ f(d) exp−KCEKL(d) . (10)

As expected in (10), exp−KCEKL(d) is indeed proportional to
the likelihood f(y|d).

In a similar fashion, we build a pseudo-posterior distribu-
tion, which maximize the β-ELBO −Lβ(p(d)), i.e.,

min
p(d)∈P

Lβ(p(d)), (11)

where

Lβ(p(d)) = KEp(d) [CEβ(d)] +DKL(p(d)||f(d)), (12)

and where

CEβ(d) = −
β + 1

βK

∑
k

f(yk|d)β (13)

is the β-cross-entropy between f̂(y) and f0(y|d) [36]. The
solution of (11) yields

p(d) = f̃(d|y) ∝ f(d) exp−KCEβ(d) . (14)

The solution f̃(d|y) of (11) and the traditional posterior
distribution f(d|y) in (10) present very similar expressions,
the main difference being the likelihood term in (10) which
is replaced by exp−KCEβ(d) in (14). Thus, f̃(d|y) is referred
to as pseudo-posterior distribution, as it relies on the pseudo-
likelihood exp−KCEβ(d).

While f̃(d|y) is generally non-standard, its mean and vari-
ance can be efficiently computed via numerical integration,
e.g., by discretizing the admissible domain of definition of
d, especially since the expected support of d is bounded in
practice. Thus, we use as depth point estimate the mean of the
pseudo-posterior f̃(d|y) and as measure of the uncertainty the
variance of f̃(d|y). In addition to providing summary statistics
about the current depth, the mean and variance of the posterior
distribution in (14) can also be incorporated in the prior model
of the next frame, as will be discussed in Section III.

One special case worth mentioning is when s0(·) is Gaus-
sian such that f(y|d)β remains Gaussian (with a variance
scaled by 1/β) and when the prior model f(d) consists
of a finite mixture of Gaussian distributions. In that case,
(14) reduces to a finite mixture of Gaussian distributions,

whose moments can be computed analytically [30]. As will
be discussed in Section III, this can simplify the sequential
estimation procedure.

Although this paper focuses on robust depth estimation
from single-wavelength SPL, the approach proposed here can
also be used when multispectral lidar data are available. The
resulting β-divergence and pseudo-posterior distribution are
detailed in Appendix.

D. Preliminary comparative study

Fig. 1: Top: Real (red) and Gaussian (blue) IRFs used to
simulate synthetic data. The position of the peak is bin 600
for each IRF. Bottom: Example of expected (red) and noisy
(blue) histogram of photon counts, using the real IRF, for 300
signal photons and SBR = 10−2 (the peak is located at bin
600).

Prior to applying the proposed robust depth estimation
strategy to online 3D imaging, we assess the depth estimation
quality for a single pixel. For this study, we consider two
normalized IRFs with unitary integrals, depicted in Fig. 1
(top). We generated synthetic data using T = 1500 and
NT = 1500 time bins. The first IRF (red curve) in Fig. 1
is a real IRF measured in [38], [39] (473 nm) and presents
a full width at half maximum (FWHM) of 28 bins. Each
time bin corresponds to a 2 ps time interval. The second IRF
(blue curve) presents a Gaussian shape with the same FWHM.
This second IRF allows us to investigate the impact of the
asymmetry of the IRF on the depth estimation. For simplicity,
we assume the position of the surface is associated with the
time instant where the IRF has the highest amplitude. Given
the high resolution of the discretization grid (compared to the
shape of the IRF), using (3) or (4) yields similar results thus we
do not distinguish the two models. For each IRF, we generated
data from (4) and investigated various illumination scenarios
with SBR in the interval [10−4, 102] and mean signal counts
(MSC) (in each pixel) ranging from 10 to 1000. To illustrate
the difficulty of the problem, an example of histogram with
300 signal photons and SBR of 0.01 is depicted in Fig.
1 (bottom). For each couple of SBR/signal photon values,
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we generated NMC = 2000 histograms, drawing each depth
parameter from a Gaussian distribution with mean 600 and
variance 2500.

The depth estimation performance for a single pixel is
assessed through a comparison of (pseudo-)posterior means
using a depth prior distribution. For such estimators, the prior
distribution used is the Gaussian distribution with mean 600
and variance 2500 used to generate the data, which is a
relatively weakly informative prior distribution. The reference
estimator, referred to as “Oracle”, is the minimum mean
squared error (MMSE) estimator of d associated with (4),
assuming that (r, b) is perfectly known. Similarly the MMSE
estimator associated with (2) is referred to as “BF” for
background-free. We also include a non-parametric estimator
of d, namely the half-sample mode estimator [40], denoted
by “HSM”. Additional robust estimators could be considered,
such as the Huber estimator [41], [42]. However, the latter
requires sensitive parameter tuning (depending on the SBR)
and did not provide satisfactory results in the low SBR
regime of interest here, where the photon detections considered
as outliers can represent more than 99% of the detected
photons. Thus, we only report the results of HSM. Finally, we
consider the pseudo-posterior mean (pseudo-MMSE estimator)
obtained from (14). It is referred to as “PB” for pseudo-
Bayesian.

To assess if the competing methods can accurately estimate
the depth parameters, we define the empirical probability of
“satisfactory” detection [33] as

pd =
1

Niter

Niter∑
n=1

I
(
|d̂n − dn| < η

)
(15)

where dn (resp. d̂n) is the actual (resp. estimated) depth
estimate and I(·) is the indicator function, which is equal
to 1 if |d̂n − dn| < η and 0 otherwise. Moreover, η is a
parameter reflecting which error is deemed acceptable. Here
we set η = 28 (the FWHM of the IRFs).

Fig. 2 compares the depth estimation performance of HSM,
Oracle, BF and PB for five values of β. This figure displays,
for each method, the curve of satisfactory detection (pd =
85%) as a function of the SBR and signal photon counts.
On the right-hand side of each curve, each method yields
pd > 85%. As mentioned above, the prior distribution has been
set to be weakly informative to better highlight the behavior of
the different methods. If the prior distribution was more infor-
mative and correct (e.g., properly centered around the actual
depth value), it would dominate the (pseudo-)likelihood factors
in the (pseudo-)posterior distributions and all the methods
would present similar behaviors and improved performance.
Fig. 2 thus illustrates how the different methods perform when
limited information is available about the unknown depth. As
expected, the Oracle provides the best results for both IRFs.
The BF estimator is significantly less accurate for low SBRs.
Using the PB estimators, the curves approach those of BF for
small values of β, while they tend to converge towards the
Oracle curves when increasing β, provided that the MSC is
large enough. This figure also shows that performance of all
the estimators depends on the skewness of the IRFs.

Fig. 2: Curves of satisfactory detection (pd = 85%, with
η = 28) as a function of the SBR and mean signal count
(MSC) using the real IRF (top) and Gaussian IRF (bottom).
This figure compares HSM and (pseudo-)MMSE estimators
using the same Gaussian prior distribution with mean 600 and
variance 2500.

Overall, the HSM method leads to less accurate results than
the other methods, partly because it does not leverage the
shape of the underlying IRF, and because it does not use ad-
ditional prior information. Note also that HSM is not accurate
when the MSC is low since the mode of the distribution then
becomes difficult to estimate (see Fig. 2 (top)).

Irrespective of the IRF shape, the parameter β of the
divergence plays a key role in the working region of the
resulting algorithm. For a given MSC level, increasing the
value of β allows a reduction of the limiting SBR below which
the algorithm starts to fail. This limiting SBR however remains
bounded by the limiting SBR of the Oracle. On the other hand,
increasing β also increases the minimum MSC required for
the algorithm to perform satisfactorily. For instance, in Fig. 2
(top), with β = 0.5 it is still possible to estimate the depth
accurately for SBR > 1 and 35 signal photons while setting
β = 0.7 in such scenarios leads to poor results, potentially
worse than BF. Setting β depends on shape of the IRF but also
on the expected SBR/MSC. Note that if the SBR is sufficiently
large, the background effect is not significant and the depth
reconstruction does not require a robust method. These first
results show near-optimal results can be obtained with PB
for large values of β (provided that MSC is large enough),
without estimating additional model parameters and with a
fixed computational budget.

To better illustrate the impact of the β-divergence in the
various MSC/SBR scenarios, we show in Fig. 3 how the
parameter β affects the pseudo likelihood term and in turn
the pseudo-posterior distribution. In these two examples, we
generated data with (MSC, SBR) = (10, 10) and (MSC, SBR)
= (300, 0.01). The actual position of the object is at bin 620
and the Gaussian prior distribution has a mean of 600 and
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Fig. 3: Comparison of the log-likelihood (BF) and log-pseudo-
likelihood terms (PB) for (MSC, SBR) = (10, 10) (top) and
(MSC, SBR) = (300, 0.01) (bottom), as a function of d ∈
[200, 500]. The dashed black lines represent the actual position
of the object (d = 620). The scale of the y-axis in the two
plots are different.

variance 2500. The curves in Fig. 3 represent the logarithm
of the (pseudo)-likelihood terms for different values of β, the
likelihood term assuming no background (BF) and the log-
prior. All the curves are normalized such that the maximum of
each curve is 0 since vertical offsets do not affect the posterior
distribution.

When (MSC, SBR) = (10, 10) (Fig. 3, top plot), the
likelihood (1) is similar to the actual distribution of the data
and the maximum of the log-likelihood is located around the
actual depth value. When β increases, the pseudo-likelihood
term becomes flatter, which gives more weight to the prior dis-
tribution in the pseudo-posterior distribution in (14). Thus the
mean of the pseudo-posterior distribution tends to the mean of
the prior distribution. In this regime, small values of β should
be preferred. When (MSC, SBR) = (300, 0.01) (Fig. 3, bottom
plot), the likelihood (1) becomes very concentrated, potentially
around a value that is far from the actual depth due to the
mismatch between the background-free observation model and
the actual distribution of the data. This likelihood term is more
concentrated than the prior and thus dominates the posterior
distribution, leading to a poor MMSE depth estimate. In a
similar fashion to the previous scenario, when β increases,
the pseudo-likelihood term becomes flatter, which gives more
weight to the prior distribution in the pseudo-posterior distri-
bution in (14). Note that the mode of the pseudo-likelihood
can also change when β changes. For instance, the mode for
β = 0.3 is much closer to the actual depth than when using
the likelihood (1). As discussed when analyzing Fig. 2, in this
regime, larger values of β are preferred.

For practical applications, it is thus important to select β
sensibly based on the expected observation conditions, bal-
ancing performance at low MSCs and low SBRs. Fortunately,

it is possible to pre-compute performance bounds as in Fig.
2, for any real instrumental response. Moreover, from the
preliminary experiments we conducted, it seems that using
β ∈ [0.3, 0.6] leads to a good trade-off for both the low SBR
and low MSC regimes.

E. Target detection and additional parameter estimation

It has been previously proposed a robust estimation proce-
dure to estimate the depth of a surface in a given pixel based
on (1). This model assumes that an object is actually present
in the pixel considered, which is not always true, especially
for long range imaging applications. Thus, it is important
to be able to decide whether a surface is actually present
and this cannot be achieved directly using (14). To address
this problem, we use the Bayesian object detection algorithm
proposed in [43]. This method uses the Poisson likelihood
model in (4) and assigns prior distributions f(r), f(b) and
f(d), to the reflectivity r of the target, the background
level b and the target depth, respectively. The detection is
finally seen as a binary hypothesis test where the background,
and the target reflectivity and depth are marginalized. More
precisely, the algorithm decides, a posteriori, whether r = 0
(no surface) or r > 0 (surface present). The output of the
algorithm is π, the posterior probability of target presence,
which can then be thresholded to derive a detection map (the
interested reader is invited to consult [33], [43] for additional
details about the detection method). Note that the algorithm
also incorporates the prior probability of target presence π0

(through a spike-and-slab prior model f(r)). This point will
be further discussed in Section III-B, together with the choice
of the other prior distributions used for object detection.

After the pixel-wise detection procedure, it is possible (if
needed) to estimate the average background level and the target
reflectivity (if a target is detected), for instance using (4). To
keep the computational overhead low, we only report a fast
method here, but more complex schemes, as in [6], [11], [24]
could be used. If no target is detected, the background level is
estimated by dividing the photon count K by T . If an object
is detected, we use as depth point estimate the mean of the
pseudo-posterior distribution in (14), and the target reflectivity
is estimated together with the background by MLE using (4).

III. APPLICATION TO ONLINE RECONSTRUCTION

In this section, we consider a set of N sequential temporal
periods during which a ToA histogram is recording for each
for the P pixels. We denote by yn,p the set of photon ToAs
and dp,n the depth of the object in the pixel p and frame n.

A. Approximation using Assumed Density Filtering

As mentioned in the introduction, our online estimation pro-
cedure consists of leveraging the temporal correlation between
successive frames by incorporating the posterior distribution
of the depth profile at time (n− 1) in the inference problem
at time n. As described in [30], estimating the posterior mean
and variance of dp,n presents a significant advantage beyond
simply providing summary statistics about the current range
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profile. It allows the derivation of tractable adaptive estimation
procedures. A classical choice for modeling relatively slowly
evolving parameters is the Gaussian random walk (RW), i.e.,

ft(dp,n|dp,n−1) ∝ exp

{
− (dp,n − dp,n−1)2

2σ2
RW

}
, (16)

controlled by the variance σ2
RW. This RW mostly allows

displacements smaller than 3σRW along the direction of the
observation (using the 3-sigma rule of thumb). Whilst this
approach is simple, it does not allow for rapid changes as
might occur when the imaging system or the scene moves
orthogonally to the direction of observation. To alleviate issues
associated with such changes while keeping the estimation
strategy tractable, we define as in [30], for each pixel, a local
neighborhood Vp of M neighbors (including the current pixel)
and define the following prior model
f(dp,n)

∝
∑
p′∈Vp

νp′

∫
ft(dp,n|dp′,n−1)qp′,n−1(dp′,n−1)ddp′,n−1, (17)

where {qp,n−1(·)}p are Gaussian distributions. Basically, the
prior model of dp,n is constructed via a Gaussian mixture
model using the the depth information in neighboring pixels
at the previous frame, convolved by a Gaussian RW. In [30],
{qp,n−1(·)}p was the set of Gaussian approximations of the
depth posterior distributions obtained at frame (n − 1). A
similar approach is adopted here since the Gaussian approx-
imations of the posterior distributions can be obtained as for
assumed density filtering (ADF) [44], [45] and expectation-
propagation [46], i.e., by minimizing the KL divergence

DKL

[
f̃(dp,n−1|yp,n−1)||qp,n−1(dp,n−1)

]
(18)

w.r.t. qp,n−1(dp,n−1) which belongs to the family of Gaus-
sian distributions and where f̃(dp,n−1|yp,n−1) is the pseudo-
posterior distribution described in Section II-C. This min-
imization reduces to matching the mean and variance of
f̃(dp,n−1|yp,n−1) and qp,n−1(dp,n−1), hence the discussion
about the estimation of the moments of f̃(dp,n−1|yp,n−1) in
Section II-C.

However, one of the main limitations of the spatio-temporal
model used in [30] is that it does not explicitly take into ac-
count whether objects were actually present in the neighboring
pixels in frame (n− 1) when building the prior model for the
frame n. To address this problem, we incorporate the results
of the detection procedure detailed in Section II-E. If an object
is detected in pixel p′ and frame (n− 1), qp′,n−1(·) is set to
the Gaussian approximation of the pseudo-posterior (14) in
that pixel, as in [30]. If no object is detected in pixel p′ and
frame (n−1), qp′,n−1(·) is replaced by a Gaussian distribution
with mean (dmin + dmax)/2 and variance (dmax − dmin)

2/12,
where (dmin, dmax) are the expected lower and upper bound
of the scene depth. This choice of mean and variance leads
to a flat prior distribution mimicking the uniform distribution
defined on (dmin; dmax). Note that in practice, T is chosen large
enough such that for any depth in (dmin; dmax), the shape of
s0(y−2d/c) remains the same. Increasing the variance of the
Gaussian distributions qp′,n−1(·) of empty pixels allows us to

better detect new objects appearing in the scene and random
depths. A similar strategy is adopted at the edges of the image
where pixels keep M neighbors, some of them being outside
the field of view and contributing to the mixture with weakly
informative Gaussian distributions.

The M weights of the mixture in (17) are set to

νp′ =

 ν0 ∈ [0, 1], if p′ = p
(1− ν0)
M − 1

otherwise,
(19)

where ν0 is a user-defined weight which controls the weight
assigned to the central pixel of each neighborhood.

B. Online target detection

ALGORITHM 1

R3DSP algorithm

1: Fixed input parameters: Variance of RW for dynamic model:
s2, Neighborhood size M , parameter of GMM ν0, indices of
faulty pixels.

2: Initialization (n = 0)
3: Set (qp,0(·), π0

p,0), ∀p.
4: for n = 1, . . . N do
5: for p = 1, . . . P do
6: Compute the prior model f(dp,n), ∀p from (17) via ADF.
7: Compute the pseudo-posterior f(dp,n|yp,n) in (14).
8: Compute qp,n(dp,n) using (18).
9: Estimate πp,n using [43].

10: if target present, i.e., πp,n > 0.5 then
11: Set the estimated depth d̂p,n as the mean of qp,n(dp,n).
12: Estimate current background level and target

reflectivity.
13: else
14: Set d̂p,n = ∅.
15: Estimate current background level.
16: end if
17: end for
18: Compute {π0

p,n+1}, ∀p using (20).
19: end for

As mentioned in Section II-E, the target detection algorithm
proposed in [43] requires, for each pixel of the frame n,
prior distributions for the background level, the target depth,
its reflectivity and a prior probability of target presence to
be refined. An exponential prior model is chosen for the
background, whose mean is given by the background estimate
obtained at that pixel in the previous frame, assuming that the
background varies slowly over time. Similarly, let {πp,n−1}p
be the probabilities of target presence estimated at frame
(n − 1). The prior probabilities of target presence {π0

p,n}p
of the frame n are computed by nonlinear local averaging

π0
p,n = σ

 ∑
p′∈Vp

νp′σ
−1 (πp,n−1)

 , (20)

where σ(x) = (1 + exp(−x))−1 is the logistic function.
Nonlinear averaging is preferred here over simple averaging as
it promotes values closer to 0.5, and is hence less informative.
As in [43], the prior model for the reflectivity (assuming a
target is present) is a gamma distribution whose parameters are
set using the calibration measurements (which provide insight
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about the expected signal photon counts when an object is
present). In contrast to the background prior, the depth prior
model used for the detection step is not set using a predictive
model such as (17). Instead, it is set in an empirical Bayes
fashion using the pseudo-posterior computed in (14).

The pseudo-code of the proposed method, referred to as
R3DSP (for Robust 3D reconstruction using Single-Photon
data) is presented in Algo. 1. While the pseudo-code includes
a loop of the P pixels for each frame, it is important to remark
that all the pixels of a frame can be processed independently
and in parallel fashion. Thus the resulting algorithm is scalable
and well adapted for GPU-based implementation. Note that
the proposed algorithm can also be applied in the presence
of faulty pixels for which no observations are available.
In that case, we simply set f̃(dn,p|ynp) = f(dp,n) and
πp,n = 0.5,∀n.

IV. RESULTS

To demonstrate the benefits of the proposed algorithm, we
used a bistatic transceiver system incorporating a Princeton
Lightwave Kestrel camera that was capable of providing
picosecond resolution, time-tagged, single-photon data from
its 32×32 SPAD detector array, which captures 150,400 binary
frames per second (see [23] for more details). The transceiver
system used a sub-nanosecond pulsed laser source operating
at a wavelength of 1550 nm to flood-illuminate the scene of
interest. We acquired a series of 3D videos using T = 153
histogram bins (binning resolution of 3.75 cm) and here, we
report results obtained from two videos, both measured in
daylight conditions with significant ambient light background.

In the first experiment, we integrated the binary acquisitions
into 500 lidar frames per second. At this frame rate, each lidar
frame is composed of about 300 binary frames, i.e., contains
at most 301 photons (see [23] for additional details about the
experimental setup). We considered a dynamic scene which
consists of two people, standing approximately 1.5 metres
apart, exchanging a ≈ 220 mm diameter ball at a distance
of 320 metres from the lidar system. Approximately half of
the pixels do not contain any surface and a single peak is
usually observed in the remaining pixels (either one of the
two pedestrians or the ball). In each pixel and frame, we
observe approximately 35 photons related to dark counts or
ambient illumination from solar background, and the visible
surfaces lead to 55 additional photons per pixel, on average.
For those pixels, the SBR is thus ≈ 1.6. The IRF of each
pixel was recorded during the system calibration. Although
they could have been approximated by Gaussian IRFs, we used
the actual IRFs during our analysis as they are slightly skewed.
The proposed algorithm has been applied to a series of 3000
successive frames, representing a total acquisition of 6 s. For
this scenario, we set, M = 5 neighbors, σRW =

√
3 bins,

ν0 = 0.5 and β = 0.5. However, we did not notice significant
changes when using β ∈ [0.4, 0.7]. The reconstructed point
clouds, together with a standard video of the scene recorded
by a camera located next to the two people are presented in the
Video 1. In all the videos presented in this work, the colormap
of the point cloud represents the amplitude (number of signal
photons) of the returns in the lidar data.

We compared the performance of the proposed method
to that of two methods able to handle rapidly thousand of
frames. First, we consider the classical depth MLE estimator
BF assuming (2) applied independently to each pixel, and
followed by an intensity-based thresholding step (5% of the
IRF intensity) using the intensity estimated via MLE and
(3). This thresholding step allows us to remove estimated
surfaces which present too low an intensity. The second
method is the RT3D algorithm [23] recently proposed for fast
reconstruction of complex (multi-surface) scenes. While RT3D
aims at solving a more complex problem, that is, the estimation
of an unknown number of peaks per pixel, it possesses a
surface detection capability which is of interest in our study.
The parameters of RT3D have been tuned via cross-validation
by optimizing the visual quality of the reconstruction. In
particular, although the data consists only of 32 × 32 pixels,
RT3D is set so that it reconstructs point clouds with 96× 96
pixels in the transverse direction.

Even though deep learning based algorithm such as [14]
could have been of interest for assessing the performance of
our algorithm, such study is out of scope of this paper. The
reason of this choice is motivated by the supervised reconstruc-
tion performance that are highly dependent on the training
set. Moreover, the proposed procedure aims to reconstruct
an observed scene by accounting for the possible lack of
accuracy of the postulated model, conversely to machine and
deep learning methods that will optimise a neural network
corresponding to an exhaustive but very complex model.

Fig. 4 (a), (c) and (e) depict an example of reconstruction
(Frame #1700) using R3DSP, BF and RT3D, respectively. In
this frame, the two pedestrians are in the field on view and the
ball is roughly at the midpoint between them. In this scenario,
the three methods provide similar results, as the SBR and MSC
are high enough to allow a clear identification of the empty
pixels and a satisfactory estimation of the surface depth in
the other pixels. Note that the surfaces appear smoother using
RT3D, partly because of the spatial smoothing involved but
also because the corresponding point cloud has about 9 times
more points than those of R3DSP and BF. For completeness,
the point clouds and background levels estimated by the three
methods for the whole sequence are presented in Video 2. For
visualization purposes, the video is played at actual speed,
with 50 frames per second (the intermediate frames processed
by R3DSP are not displayed). This video also compares the
estimated background levels, which are consistent across the
three methods and it presents the estimated surface presence
maps. The proposed method is able to more efficiently detect
the head of the pedestrian on the left-hand side, which presents
a low reflectivity due to the wavelength used (1550 nm).
The resolution of the 3D reconstructions displayed in Fig. 4
depends on the size of the detector array. Note that the pro-
posed algorithm is highly scalable, and then its computational
complexity growths linearly with the size of the observation.

These results are used as reference to investigate more
challenging scenarios, with lower SBRs. More precisely, we
generated additional pseudo-synthetic datasets by artificially
adding constant background levels to all the pixels of each
sequence. We created two sequences using background levels
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Examples of 3D reconstruction using the proposed
method ((a),(b)), BF ((c),(d)) and RT3D (e),(f). The left-hand
side plots correspond to actual measurements while the right-
hand side plots have been obtained from the pseudo-synthetic
data generated with additional background (b = 50). The
colormap represents the surface depth (axial direction).

of b = 20 and b = 50, leading to approximately 3060
and 7650 additional background photons per pixel and per
frame. The resulting SBRs are 1.8 × 10−2 and 7.2 × 10−3,
respectively. Examples of reconstructed point clouds in the
lowest SBR regime (b = 50) are depicted in Fig. 4 (b),
(d) and (f). When the SBR decreases, BF and RT3D, which
are based on intensity thresholding, generally present higher
false alarm rates than R3DSP which incorporates a Bayesian
test for object detection. If the thresholds of BF and RT3D
are increased, the corresponding probabilities of detection
decrease. Although R3DSP misses some surfaces (see Fig. 4
(a) and (b)), it is able to reconstruct the ball, using both the
tailored detection strategy and its ability to promote correlation
between successive frames via the spatio-temporal model.
For completeness, the sequences reconstructed by the three
methods for b = 20 and b = 50 are presented in Video 3 and
Video 4, respectively. These videos shows that although the
three methods provide similar background estimates, R3DSP

consistently yields better reconstructions (visually lower false
alarm rates and higher probabilities of detection). These results
confirm that in the presence of significant background levels
(low SBR) the proposed method is able to detect and track
dynamic surfaces more efficiently.

The second experiment was conducted under the same
observation conditions and we recorded the movements of a
pedestrian running back and forth at about 320 m from the
detector. For this scene, we integrated the binary acquisitions
into 1000 lidar frames per second. In each pixel and frame,
we observe approximately 18 photons related to dark counts
or ambient illumination from solar background, and the visible
surfaces lead to 27 additional photons per pixel, on average.
The proposed algorithm has been applied to a series of 6000
successive frames, representing a total acquisition of 6 s. As
before, we set β = 0.5, M = 5 neighbors, σRW =

√
3 bins

and ν0 = 0.5. The reconstructed point clouds, together with a
standard video of the scene are presented in the Video 5. Fig. 5
depicts the temporal profile of the depth estimated at a central
pixel where the pedestrian is always visible. This figure shows
the mean and credible interval (±6 standard deviation interval
for visualization purposes) of the depth posterior distribution.
As expected, the depth uncertainty is larger at the beginning of
the sequence due to the limit amount of information available
about the object range. After about 300 frames (300 ms), the
uncertainty becomes more stable and the algorithm is able
to successfully track the position of the surface. Note that
such depth uncertainty measures can be used for instance
to quantify uncertainties associated with the instantaneous
velocity of moving objects.

Fig. 5: Temporal evolution of the estimated depth in pixel
(16,16) of the second experiment (running pedestrian). The red
curve represents the mean of the depth posterior distribution
obtained for each frame and the blue region represents the ±6
standard deviation credible interval.

V. CONCLUSION

In this work, we presented, to the best of our knowledge,
a first algorithm for sequential reconstruction of dynamic
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3D scenes from SPLs data, using temporal correlation. This
method primarily focuses on the estimation of the surface
depth using a model that does not involve the target reflectivity
nor the background level. The resulting depth estimation
process is particularly efficient, as is reduces to computing,
pixel-wise, the cross-correlation (either discrete or continuous)
between the measured photon ToAs and a modified IRF,
which represents a fixed and predictable computational cost.
Moreover, if the system IRF is Gaussian, the update rules
are greatly simplified as the mean and variances of the
pseudo-posterior distributions can be obtained in closed-form.
Although the 32 × 32 Princeton Lightwave Kestrel camera
provides reconstructions with limited spatial resolution, it is
still relevant in applications involving object classification
[47], [48] or detection [49]. Thanks to the proposed spatio-
temporal model, most of the steps of the algorithm can be
performed independently for each pixel, which is attractive for
parallel/distributed implementation. In this work, we focused
of the theoretical development of the method but did not fully
optimize its implementation, e.g., on GPUs, mainly because
the current implementation of the detection method [33] is not
yet optimized. This is left for future work. We also derived
the β-divergence for MSL data and the method proposed here
could also be extended for online reconstruction of colored
point clouds, provided that an efficient detection strategy
(adapted to MSL data) is used.

APPENDIX

In this appendix, we derive the expression of the β-
divergence for the estimation of the depth d in a single
pixel and frame, assuming that multispectral single-photon
lidar data (with L wavelengths) are recorded simultaneously.
We denote by y` the time of arrival of a photon at the `th
wavelength. Using the classical MSL systems, separate and
independent detectors are used such that the detection events
in the L channels are mutually independent, conditioned on
the configuration of the scene. Thus, for any set of L random
variables (y1, . . . , yL) associated with each of the L bands,
the ideal model in (1) can be extended as

f0(y1, . . . , yL|d) =
L∏
`=1

f`(y`|d) =
L∏
`=1

s`

(
y` −

2d

c

)
, (21)

where s`(·) is the impulse response of the `th band [50]. For
multivariate continuous distributions the β-divergence has the
same expression as in (6) and it can be easily shown in a
similar fashion to (7) that, under the same mild conditions as
in Section II,
Dβ(f̂(y1, . . . , yL)||f0(y1, . . . , yL|d))

= Const.− β + 1

β

L∏
`=1

1

K`

∑
k

f`(y`,k|d)β , (22)

where f̂(y1, . . . , yL) is the product of the empirical marginal
distributions of the ToAs in the L bands, i.e., f̂(y1, . . . , yL) =∏L
`=1 f̂(y`) and f̂(y`) =

1

K`

∑K`
k=1 δ(y`−y`,k), with {y`,k}k

the ToAs of the K` photons detected at the `th wavelength.

Note that in contrast to classical maximum likelihood esti-
mation which would introduce a sum (of the log-likelihood
terms) over the L bands, in (22) we obtain a product over the
L bands and sums over the detection events.

Fig. 6: Top: IRFs from [38] used to simulate MSL synthetic
data. Bottom: curves of satisfactory detection (pd = 85%, with
η = 28) as a function of (SBR,MSC) using the real IRF. This
figure compares only (pseudo-)MLEs adapted to MSL data.

To demonstrate the benefits of the proposed robust method
for MSL-based depth imaging, we generated MSL data using
the L = 4 IRFs depicted in Fig. 6 (top), using the same SBR
and same MSC for all the bands. In contrast to the results
presented in Fig. 2, for simplicity we only consider estimators
using only the observations, without regularization or addi-
tional prior information, i.e., pseudo-MLEs. More precisely,
we compared the minimum divergence estimator derived from
(22) to the BF MLE (assuming no background) for MSL
data and the Oracle estimator assuming the reflectivity and
background in each band is known. The limit of the regions
of successful depth estimation (pd > 85% with η = 28)
are depicted in Fig. 6 (bottom). As in the single-wavelength
case, increasing β allows satisfactory depth estimation at lower
SBRs than using BF and using β = 0.7 here leads to results
similar to those of the Oracle, without requiring knowledge
or estimation of the reflectivity and background parameters.
Note also that, as in the single-band case, too large values of
β (see β = 0.7) lead to poor results in the low MSC and high
SBR regime.
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