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Abstract
This manuscript introduces trident, an R package for performing dental microwear texture analysis and subse-
quently classifying variables based on their ability to separate discrete categories. Dental microwear textures
reflect the physical properties of the food, the feeding ecology of a given species, and niche partitioning when
considering multi-specific communities. The trident package comes with independent functions and a user in-
terface, trident, enabling easy and fast proficiency. It can import .SUR files, then remove aberrant peaks and
possibly polynomial surfaces. Next, it can measure up to 24 texture parameters and their statistics of hetero-
geneity, generating 384 variables. It also ranks any number of variables using five different methods, displays
the results in multivariate analyses, and exports the results into R, providing access to its large asset of libraries.
We then present these features in three case studies, showing how trident helps answer questions commonly
investigated by paleontologists and archaeologists. In the first case study, we separate four groups of domestic
pigs based on their dietary composition. In the second case study, we identify microwear texture patterns in a
large database of 15 primate species and relate these patterns to biomechanical and ecological factors. The
third case study investigates the dental microwear textures of four extant ruminants to infer the diet of an
extinct antelope from the Pleistocene of Greece. These case studies show how trident can leverage dental
microwear texture analysis results.
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Introduction 

Fifty shades of dental microwear 
Dental microwear analysis has been a prominent method for investigating the diet of extant and 

extinct species during the last 40 years (e.g., Walker et al., 1978; Kay, 1981; Teaford, 1985, 

1988; Ungar, 1996; Teaford et al., 1996; Solounias &Semprebon, 2002; Merceron et al., 2005; 

Merceron, Blondel, et al., 2005; Scott et al., 2005; Ungar et al., 2008; Rivals et al. 2011). It is 

based on the observation that food leaves microscopic wear marks on dental wear facets, and 

that those marks fade as the tooth wears, only to be replaced by new microwear marks (Walker 

et al., 1978; Gordon, 1982; Teaford & Oyen, 1989; Winkler et al., 2020). The nature (scratches 

or pits), size (small to large), and frequency of microwear depend on the food's physical 

properties, mostly hardness, and abrasiveness, while their spatial distribution and their 

anisotropy are related to chewing motions and food toughness (Teaford, 1988; Scott et al., 2006; 

Teaford et al., 2020; Kubo & Fujita, 2021). This allows us to infer an animal's diet during the last 

few weeks before its latest meal (Teaford & Oyen, 1989; Winkler et al., 2020). Apart from diet, 

the role of exogenous soil mineral particles and environmental conditions in dental microwear 

formation should not be minimized (Schulz-Kornas et al., 2019; Schulz-Kornas et al., 2020). 

Grit is indeed reportedly harder than enamel tissue and more abrasive than food particles 

(Sanson et al., 2007; Lucas et al., 2013). Still, controlled feeding experiments on sheep have 

shown that differences in dental microwear texture better reflect diet than the amount of 

exogenous particles (Merceron et al., 2016). Their digestive anatomy explains this as ruminants 

remove the largest external grit from food while the finest particles mimic organic amorphous 

silica (Clauss et al., 2023). 

 



 

Initially, microwear analysis used scanning electronic or light microscopes to count pits and 

scratches left by the food on the enamel surface. But despite a proven ability to separate 

surfaces according to diet, this method is reliant on the tuning of light orientation, the counting 

method, the observer experience, etc. (Grine et al., 2002; Galbany et al., 2005; Mihlbachler et 

al., 2012). With the advent of high-resolution digitization techniques, new methods for 

quantifying the three-dimensional surface texture have emerged. Scale Sensitive Fractal 

Analysis (SSFA) uses surface parameters strongly correlated to food material properties, such 

as surface scale roughness estimated from area-scale fractal complexity (Asfc) that correlates 

to food hardness, or anisotropy (epLsar) that correlates to food toughness (Ungar et al., 2003; 

Scott et al., 2005; Hua et al., 2020). A second approach, Surface Texture Analysis (STA) 

consists of computing ISO-25178 area parameters (Schulz et al., 2010; Kaiser et al., 2015). 

Both SSFA and STA methods belong to the larger field of dental microwear texture analysis 

(DMTA). They have been used to investigate the diet of animals from a broad range of species, 

including insectivorous mammals (Purnell et al., 2013) but also selachians (Weber et al., 2021), 

lepidosaurians (Winkler et al., 2019) or dinosaurs (Sakaki et al., 2022; Winkler et al. 2022). 

New methods, new challenges 
Despite their reliability, DMTA approaches are facing several methodological challenges. First, 

they sometimes fail to separate specimens that an expert eye could visually tell apart using the 

number of specific microwear marks (Fig. 1). This can be mitigated by using filters to enhance 

the microwear versus the raw shape of the tooth surface, for instance by removing the 2nd or 

8th order polynomial of the surface using least square approximation (Francisco et al., 2018a, 

2018b). Failure to tell surfaces apart can also come from distinct structures concealed in the 

average signal. One of the SSFA parameters can solve this issue by estimating heterogeneity 

of complexity (HAsfc, Scott et al., 2005, 2006). An alternative approach is to consider a grid of 



 

standard number and size of cells and to measure every parameter for each cell: the presence 

of distinct structures would increase the dispersion of values, and could be detected using 

percentiles, minimal or maximal values, etc. (Francisco  et al., 2018a). 

 

Figure 1. Biplot showing variations of dental microwear texture anisotropy (epLsar) and complexity (Asfc) on 
crushing molar facets of wild-caught specimens belonging to three species of extant monkeys: the leaf-eating 
colobine Colobus guereza, the fruit/seed-eating mangabey Lophocebus albigena, and the opportunistic vervets 
Chlorocebus aethiops. There are quite notable overlaps between specific ranges. This is due to several specimens 
for which although an expert eye can visually differentiate surfaces (200 × 200 µm), dental microwear texture 
analysis cannot. For example, experts will count more wide scratches on the leaf-eating colobine (MNHN 1969-
384) than on the opportunistic vervets (MNHN 1972-336). In contrast, DMTA fails to discriminate using both 
anisotropy (epLsar) and complexity (Asfc). Using trident and specifically the subsampling method to explore 
heterogeneity for all variables solves the issue. 
 
Computing heterogeneity of DMTA variables helps track the most elusive structures, but it tends 

to generate a “jungle of parameters” (Francisco et al., 2018b), that is, too many variables to 



 

keep track of a given phenomenon. One way to bypass this issue is to compare the variables’ 

ability to discriminate groups, for instance using analyses of variance (ANOVAs) to find which 

groups can be separated using post-hoc analysis such as Tukey’s HSD or Fisher’s LSD. This 

analysis pipeline is very efficient and could separate animals according to their diet in several 

studies (Francisco et al., 2018a, 2018b; Louail et al., 2021; Merceron  et al., 2021b). 

Yet two more limitations can be identified. The first one concerns the repeatability of measures, 

as the code was not accessible in previous works. The second limitation is the ease of use 

since the pipeline made use of a combination of Fortran, Python, and R to collect the data. 

Consequently, fine-tuning the nature of data collection and analysis was only possible for 

people familiar with those languages. An open-source graphical user interface would solve both 

issues and make measuring, analyzing, and untangling DMTA data easier, faster, and more 

intuitive for beginners.  

Here, we introduce trident, a graphical user interface, and its associated R source package 

trident for measuring dental microwear textures and analyzing the discriminant ability of DMTA 

variables. It can load .SUR files, remove abnormal peaks and measure 16 variables from 24 

DMTA parameters (for a total of 384 variables) on batches. The computed DMTA variables 

(along with variables possibly added by the user on the source .txt file) can be classified 

according to their ability to discriminate discrete categories such as species, diet, and any other 

categorical variable. trident also comes with tools to perform univariate, bivariate, and 

multivariate analysis. All the functions can be performed from the user interface. It is worth 

noting that trident is free of access and the code is available to the scientific community.  

We then showcase its functionalities using three case studies, representative of research 

questions that could be answered using dental microwear analysis: 

Case study A. Diet-related differences in dental microwear: The first case study is based 

on a controlled feeding experiment involving a single omnivorous species (Sus 



 

domesticus). Similarly to Louail et al. (2021), animals participated in trials only differing 

in the dietary composition of their daily ration. The influence of diet on DMTA was then 

quantified using trident. 

Case study B. Meta-analysis of a large multi-species sample: The second case study is 

based on a large sample grouping 260 specimens from 15 species of cercopithecid 

primates of Asia and Africa. We used trident to detect patterns related to species, their 

tribe (Cercopithecini, Colobini, Papionini, and Presbytini), or their general diet according 

to the literature. 

Case study C. Comparison with extant species to infer the diet of extinct species: The 

third case study is based on four sympatric species of ruminants from the Bauges Natural 

Regional Park, French Alps. In a previous study, SSFA variables could find differences 

between species, reflecting differences in dietary behavior and spatial use (Merceron et 

al., 2021a). We used trident to explore the dental microwear textures of this community 

and then used the most discriminating variables to make inferences on the diet of 

Gazellospira torticornis, an extinct antelope from Greece (Hermier et al., 2020). 

Material and Methods 

Material 

Case study A: Diet-related differences in dental microwear 

The first case study is based on three of the feeding trials with domestic pigs (Sus domesticus) 

detailed in Louail et al. (2021), to which was added another trial. The control group (N = 5) was 

fed exclusively with a base diet composed of ground cereal and soy seeds. The three other 

groups were also fed this base diet, with a supplement depending on their group: 

• The barley group (N = 5) was fed 30 % of barley seeds. 



 

• The corn kernel group (N = 5) was 20 % of corn (Zea mays) flour, supplemented with 

20 % (as dry matter weight) of corn kernels. 

• The corn silage group (N = 5) was fed 100 % of the base diet but had access to corn 

silage at will. 

We analyzed the deciduous upper fourth premolars of pigs aged between 6.5 and 9.5 months. 

See Louail et al. (2021) for more details on the experiment. 

Case study B: Meta-analysis of a large multi-species sample 

The second case study is based on skulls and jaws of extant cercopithecids from osteological 

collections of Europe, Asia, and Africa (for a detailed listing of institutions, see Supplementary 

Materials 1). A total of 260 casts of upper and lower second molars from 15 extant species were 

obtained as detailed in previous studies (Merceron et al., 2021b; Thiery et al., 2021). Each tribe 

of extant cercopithecids (Cercopithecini, Colobini, Papionini, and Presbytini) is represented by 

at least 2 species (Supplementary Materials 1). Overall, the selected taxa encompass a broad 

range of diets, from a large geographic range (see Rowe et al., 1996 and citations therein). 

Case study C Comparison with extant species to infer the diet of extinct species 

The Bauges Natural Regional Park is a typical subalpine massif located in the French Alps. In 

the third case study, four extant ruminants from the Bauges have been investigated: Cervus 

elaphus, a mixed-feeding species; Capreolus capreolus, a selective browser; Ovis gmelini 

musimon, and Rupicapra rupicapra, two bovid species known to be mixed feeders. Mandibles 

were collected at the same locality, during a short period (for more details, see Merceron et al., 

2021a), representing a hypothetical fossil assemblage composed of different species occupying 

different small-scale habitats (open alpine grassland, bushland, shrubland, deciduous, mixed, 

coniferous forests) in a common geographical range. 



 

These four extant species were then compared to the extinct antelope Gazellospira torticornis 

(Bovidae), from the Early Pleistocene of Greece. Specimens come from the site of Dafnero and 

have been described by Hermier et al. (2020). 

Surface acquisition 
Each tooth surface was cleaned and molded as described in previous works (Louail et al., 2021; 

Merceron et al., 2021a; Merceron et al., 2021b) and on the TRIDENT website (http://anr-

trident.prd.fr/v/). For case study A, we investigated both the shearing (phase I) and crushing 

(phase II) dental facet of the very same tooth, whereas we focused on crushing facets for case 

study B (primates) and on shearing facets for case study C (ruminants). Each facet was 

scanned separately using a white-light confocal profilometer Leica DCM8, named “TRIDENT”, 

with a 100× objective housed at the PALEVOPRIM lab, CNRS and University of Poitiers, France 

(Leica Microsystems). All surfaces analyzed in the current study were pre-processed with 

LeicaMap (v. 8.2; Leica Microsystems) following Merceron et al. (2016). The procedure resulted 

in the obtention of .SUR files (saved as SUR version 7.2 or older), which were then imported 

into trident. It is worth noting that alternative free-of-access software, such as Gwyddion 

(http://gwyddion.net/) could be used to generate similar pre-treatments.  

DMTA with trident 

Presentation of trident 

Here we introduce the R package trident, which is devoted to measuring microwear textures 

and classifying variables according to their discriminant power. It was implemented on two 

levels: 

(1) Functions that can be launched from the R console, for which detailed instructions can 

be found in the metadata and the help files of the package. 

http://anr-trident.prd.fr/v/
http://anr-trident.prd.fr/v/
http://gwyddion.net/


 

(2) A shiny app named trident, which is launched from the console using the line 

trident.app(). The app is a wrapper for the package functions, connecting them to 

other packages for statistical analyses, multivariate analyses, or graphical rendering. 

Below are summarized the functionalities of the interface used in the three case studies. The 

reader can find a more detailed description of the interface in the user manual, provided as 

supplementary materials (Supplementary Materials 2). 

Beside R (R Core Team, 2021), trident was built using the following dependencies: car 

(Weisberg & Fox, 2011), DescTools (Signorell et al., 2024), doSNOW (Daniel et al., 2022a), 

dplyr (Wickham et al., 2023a), DT (Xie et al., 2024), factoextra (Kassambara & Mundt, 2020), 

FactoMineR (Lê et al., 2008), foreach (Daniel et al., 2022b), ggpubr (Kassambara, 2023), 

ggplot2 (Wickham et al., 2023b), MASS (Venables & Ripley, 2002), nortest (Gross and Ligges, 

2015), plyr (Wickham, 2011), shiny (Chang et al., 2024), shinyjs (Attali, 2021), shinyFiles 

(Pedersen et al., 2022), snow (Tierney et al., 2021) and stringr (Wickham, 2023) 

Dental microwear texture analysis (DMTA) 

Surfaces were first enhanced using the polynomial removal procedure; all procedures 

mentioned below are detailed in Francisco, Brunetière et al. (2018). The primary surface S1 

was first numerically and automatically cleaned of any abnormal peaks. Then, considering the 

large-scale tooth surface geometry as an 8th-order polynomial (PS8), the latter was subtracted 

via a least square approximation. This procedure was performed on surfaces of the same size, 

as subtracting PS8 from smaller surfaces would remove larger amounts of relief. The software 

also allows to remove of the 2nd order polynomial (PS2). 

Afterward, DMTA variables were computed. The program can currently compute four families 

of parameters (Table 1). The first one is complexity i.e., an estimation of the density of 

microwear textures across scales. The second family is height, or parameters describing the 



 

average height, its dispersion, and its variation over the surface whatever the location. The third 

family is spatial parameters, which describe the distribution and nature of the textures. The last 

family is topology, a combination of height and spatial parameters, measuring the proportion of 

the surface above or below determined heights. A comparison of the height parameter values 

found for trident and the DigitalSurf Mountains software (here the Mountains-derived software 

LeicaMAP is used) is provided in the supplementary information 

(supplementaryMaterial_Software comparisons.txt).  

  



 

Table 1. DMTA parameters measured in trident 
Parameter Family Significance Description 

Asfc2 Complexity Area scale fractal complexity (#) 
Asfc2 estimates roughness through scale-sensitive fractal analysis. 

Asfc2 would be low for smooth dental surfaces of leaf-eating colobine 
monkeys and high for rough surfaces frequent in hard seed-eating 

cercopithecine monkeys. 

Sdar Complexity Relative area (developed area/projected 
area -1) 

Sdar is higher for rough surfaces frequent in hard seed-eating 
cercopithecine monkeys than for smooth dental surfaces (of leaf-eating 

colobine monkeys; Sdar = 0 for a perfect horizontal plane surface) 

Sa Height Arithmetic mean of the absolute of the 
heights (*) 

Sa assesses surface roughness with low values for smooth dental 
surfaces of leaf-eating colobine monkeys and higher ones for rough 

surfaces frequent in hard seed-eating cercopithecine monkeys. 
Sp Height Absolute of the largest height (*) Sp is the height of the highest peaks, which is expected to be higher for 

rough surfaces found in species eating hard and brittle food items.  
Sq Height Height standard deviation (*) Sq is also expected to be higher for rough surfaces than smooth ones, 

such as the ones found for leaf-eating colobine monkeys. 
Sv Height Absolute of the smallest height (*) Sv is the height of the deepest pit, which is still expected to be higher for 

rough surfaces frequent in species eating hard and brittle food items. 

Ssk Height Height skewness (*) 
Ssk tends to be more negative for a surface with few deep pits as 

expected on dental surfaces of soft foliage and closer to 0 when a rough 
surface has many peaks and pits found in species eating hard and brittle 

food items.  

Sku Height Height kurtosis (*) 
Sku is expected to be higher (>>3) when the surface is smooth with few 
deep pits or/and high peaks, and close to 3 when peaks and pits have a 

wider range of height values around the mean 
Sm Height Mean height (0 for the whole surface, 

but non-zero for its samples) 
Useful when associated with statistics. It tells how the subsurface heights 

are distributed. Differences are expected with stepped surfaces 

Smd Height Median height Useful when associated with statistics. It tells how the subsurface heights 
are distributed. 

Rmax Spatial Semi-major axis of the fACF ellipsis (**) 
Rmax is higher for surfaces with long and parallel scratches usually 

found on molar facets of mammals avoiding hard and brittle foods that 
would require orthogonal crushing motion 

Sal Spatial Semi-minor axis of the fACF ellipsis (**) Sal is higher for wide and parallel scratches  
Stri(*) = 

Str-1 Spatial Rmax/Sal ratio (**) Stri is high when there are numerous and long scratches.   

b.sl Spatial Highest slope of fACF (**) at the 
distance rs from the origin β 

Another way of quantifying the anisotropy. Highly correlated to Sal. 

r.sl Spatial b.sl/s.sl ratio (**) Another way of quantifying the anisotropy. Highly correlated to Stri. 

s.sl Spatial Smallest slope of fACF (**) at the 
distance rsβ from the origin 

Another way of quantifying the anisotropy. Highly correlated to Rmax. 

Std EX Spatial Texture direction 
Std provides main orientation direction. Useful when combined with 

statistics, it shows how the direction of texture changes from one part of 
the surface to another. 

Sk1, Sk2 Topology Relative area of the surface above h1ββ 
and h2ββ respectively 

Sk1 and Sk2 are higher for surfaces with many high heights. 

Smc1, 
Smc2 Topology 

Median relative area of the cells with 
heights exceeding h1ββ and h2ββ 

respectively 
Smc1, Smc2 are higher for surfaces with many high heights arranged in 

large peaks. 

Snb1, 
Snb2 Topology Number of cells with heights exceeding 

h1ββ and h2ββ respectively 
Snb1, Snb2 are higher for surfaces with many high heights arranged in 

thin peaks. 

Sh Topology Percentage of quasi-horizontal faces 
(normal within a 4° cone) 

Sh is low for rough surfaces and high for flat surfaces 
EX, parameters available in trident, but excluded from the three case studies; * ISO 25178; ** autocorrelation 
function at z=0.5 (Francisco et al., 2018a; 2018b); β maximum slope radius; ββ h1 = 85% of total height (Sv+Sp) 
and h2 = 95% of total height (Sv+Sp); #, Area Scale Fractal Complexity is labeled Asfc2 because its calculation 
mode slightly differs from the Asfc computed in Scott et al., 2006).  



 

Lastly, we estimated the heterogeneity of complexity, height, spatial, and topology variables. 

The heterogeneity of a (dental) surface is related to the spatial distribution of its features: for 

instance, a single pit in the enamel implies more heterogeneity than several pits uniformly 

distributed through the enamel surface (Scott et al., 2006). Following Francisco, Brunetière et 

al. (2018), trident uses a fast and intuitive approach for estimating heterogeneity: the surface is 

divided into n grid cells, and DMTA parameters are computed for each grid cell. Then, the 

distribution of DMTA parameters across grid cells is used to compute heterogeneity variables 

e.g., mean Asfc2, maximal Asfc2, or 25th percentile of Asfc2 (Table 2). Note that this way of 

assessing heterogeneity differs from SSFA parameters such as HAsfc (Box 1). In the end, a 

total of 384 variables can be computed, giving a highly detailed description of dental microwear 

textures. Out of these, 24 variables correspond to the 24 parameters from Table 1 measured 

on the whole surface, but the remaining 360 are estimates of surface heterogeneity (Table 2). 

trident does not allow to compute SSFA variables. Still, the user can find equivalents 

among the 384 variables available in trident. For instance, Asfc can be approximated from Asfc2, 

which also strongly correlates with Sdar. EpLsar, which is an SSFA estimate of anisotropy, is 

related to spatial variables in trident. It is especially correlated with Rmax, Sal, and Stri (Str-1), 

which are calculated with s = 0.5; value adapted for enamel wear surface (Francisco et al. 

2018a, 2018b). Note that trident can open and manage any other variables (e.g.. SSFA, furrows, 

d13C …) that a user might want to add to the source .txt file. This way, it is easy to compare 

trident’s variables with other parameters. 

In each of the three case studies, all variables except minimal and maximal values were 

calculated on 23 parameters (Std was excluded because it is scanning orientation-dependent), 

for a total of 322 variables: this avoids measuring the effect of a single feature. To assess the 

heterogeneity, the resampling statistics were calculated for a grid of 256 cells (16×16) 



 

measuring 33 × 33 µm each (256 × 256 pixels) from the original surface measuring 200 × 200 

µm (1551 × 1551 pixels). 

 

Table 2. Heterogeneity variables. 

Statistics Description 

minEX Minimal value 

maxEX Maximal value 

sd Standard deviation 

mean Arithmetic mean 

med Median 

fst.05 5th percentile 

lst.05 95th percentile 

min.05 Mean of values under the 5th percentile 

max.05 Mean of values above the 95th percentile 

fst.25 1st quartile 

lst.25 3rd quartile 

min.25 Mean of values under the 1st quartile 

max.25 Mean of values above the 3rd quartile 

skw Skewness of the histogram of distribution 

kurt Kurtosis of the histogram of the distribution 

EX, variables excluded from the analysis. 

Multichecks 

The second most important part of trident relates to the classification of variables according to 

their ability to separate informed categories, such as diet, species, etc. In case study A, the 



 

factor is diet whereas in case study B and C, the factor is species. The software proposes 

functions for adding a factor variable by combining variables from different datasets, by entering 

it manually or automatically (see Supplementary Materials 2). 

Afterward, the discriminant ability of variables is calculated using a pipeline of analysis initially 

designed by Francisco and colleagues (Francisco, Blondel, et al., 2018; Francisco, Brunetière, 

et al., 2018): 

(a) Normality: the normality of the data is tested using the Shapiro-Wilk test. If unsuccessful, 

we compute the skewness ratio, computed as the skewness divided by its confidence 

interval. If the skewness ratio is inferior to 2, the distribution is considered nearly normal. 

(b) Homoscedasticity: for normally distributed data, the homogeneity of variances is tested 

using the Bartlett test. If the test fails, the groups are still nearly homoscedastic if the 

variance ratio, computed as the maximum variance divided by the minimum variance for 

each group, is lower than 3. For nearly normal data, Levene’s test is performed to check 

the group variance homogeneity. 

(c) Ability to separate categories: If both normality and homoscedasticity assumptions are 

respected, or if no more than one condition is nearly respected, then the discriminant 

ability of variables is tested using an ANOVA. Otherwise, the discriminant ability of 

variables is tested using a non-parametric test, the Kruskal-Wallis test. 

All these tests are implemented with a default alpha of 0.05. They have been grouped in a ‘multi 

check’ function (Supplementary Materials 2). If data are not normally distributed, they can also 

be transformed using either a base 10 logarithm function or a Box-Cox transformation 

(Supplementary Materials 2). 

Classification of variables 

We implemented five different classification methods, which can be used depending on the 

situation: 



 

(1) Rank based on ANOVA: Performs an ANOVA and arranges variables by ascending p-

value. The purpose here is to separate discriminant from non-discriminant variables. To 

make things easier for users, variables are ranked by the p values of the ANOVA. One 

could be interested to have a first glance at the discriminant variables and most 

discriminating ones whatever the number of groups involved in the study. 

(2) Rank based on Kruskal-Wallis: Performs a Kruskal-Wallis rank-sum test and arranges 

variables by ascending p-value; in case the sample is far from normality or in case of 

small samples. This way of ranking is equivalent to the first mode but adapted for 

variables whose distribution does not respect conditions required for parametric tests, 

meaning that variables are ranked by the p values of the Kruskal Wallis analysis.  

(3) Rank based on post-hoc (average): Performs an ANOVA and arranges by decreasing 

the number of significant p-values per pair and then ascending mean p-value from post-

hoc tests. The mean p-value can be either arithmetic or geometric, and the user can 

choose to use only significant p-values to calculate it (this is the default option). This 

mode allows the users to go further in classifying discriminant variables. The aim is to 

target the variables that discriminate the highest number of groups. Then, among 

variables discriminating a same number of groups, we ordered them by the increasing 

values of the mean of the significant p-values of the post hoc tests (here we have chosen 

the Tukey test). For instance, with 4 discriminant groups among 7, the mean of the 6 p 

values of the 6 pairs of significantly different samples is computed for each discriminant 

variable. They are then ordered. One could then run a PCA on trident or export the 

dataset with only variables showing differences on the six or five pairs. 

(4) Rank based on post-hoc (pairwise): Performs an ANOVA and then for a given pair, 

arranges variables by ascending pairwise post-hoc p-value. This mode of classification 

is similar to the former one. However, it differs in targeting variables that discriminate 



 

groups of interest. For instance, it can be used for a study including several species for 

which two of them overlap when considering traditional dental microwear textures 

although differences were expected because these two species have different feeding 

preferences. In such a case, trident can select the variables that discriminate the two 

species at priority. 

(5) Top 3: For each pair of categories, arranged by the number of significant pairwise p-

values from Tukey’s HSD, then by the mean of significant p-values. The function returns 

the 3 best-classified variables. Because this function makes a new classification for each 

pair of groups, computation time and length of results increase exponentially as the 

number of categories goes up. Although it remains possible to use this function on any 

number of categories, we do not recommend using this approach for more than 5 

categories (10 pairs). In most cases when comparing a few groups, three parameters 

appear to be the easiest and fastest way to find out which and how variables discriminate 

the groups. 

 

Note that all these tests are implemented with a default alpha of 0.05. Regardless of the chosen 

workflow, it is possible to visualize variables using boxplots and violin plots. It is also possible 

to perform a principal component analysis (PCA) on a selection of variables. It provides a 

histogram of the percentage of variance explained by each principal component (scree plot), 

as well as buttons for saving and exporting the PCA results, a bivariate diagram of the selected 

principal components, and circles of correlations. Graphics can be saved as images.  



 

Case-specific analysis 

 

Figure 2. Flowchart depicting the analysis for the three case studies; var. = variables; black boxes refer to step 
done on R without the use of the graphic interface.  



 

Case study A: Diet-related differences in dental microwear between controlled-fed pigs. 

For each wear facet (crushing and shearing), data were analyzed separately. They were Box-

Cox transformed, then checked for normality, homoscedasticity, and their ability to discriminate 

categories (Fig. 2A). Variables that passed the multi check were classified using the mean of 

the significant p-values from Tukey’s HSD post-hoc analysis of an ANOVA with diet as factor. 

They were ranked according to (1) the number of groups discriminated and (2) the arithmetic 

mean of Tukey’s HSD discriminant p-values (the p-value of non-discriminated groups were 

ignored for calculating this arithmetic mean). Among these variables, we retained only the 3 

best-ranked variables (Top3). Afterward, all the retained variables for both crushing and 

shearing facets were combined. We performed a Principal Component Analysis (PCA) to 

explore their influence on data distribution. All analyses were done exclusively in trident. 

Case study B: Meta-analysis of a large multi-species sample of cercopithecids. 

Data were Box-Cox transformed, then checked for normality, homoscedasticity, and their ability 

to discriminate categories (Fig. 2B). Variables that passed the checking step were classified 

using the results of a post-hoc analysis of an ANOVA with species as a factor. They were ranked 

according to (1) the number of groups discriminated and (2) the geometric mean of Tukey’s 

HSD discriminant p-values (the p-value of non-discriminated groups were ignored for 

calculating this geometric mean). Then, for each parameter (e.g., Asfc2), the best-ranked 

variable out of 14 (central + heterogeneity statistics, see Table 2) was selected. Afterward, we 

selected parameters with a correlation of Pearson below 0.70: variables correlated to more than 

70 % with a better-ranked variable were systematically removed (calculated independently with 

R). The remaining variables were used for a PCA. All analyses were done in trident, but the 

boxplots of the first two principal components were modified for the purposes of this article in 

R using the ggplot2 package (Wickham et al., 2021). 



 

Case study C: Comparison with extant species to infer the diet of extinct ruminants 

First, the Bauges data were log-transformed (base 10), then checked for normality, 

homoscedasticity and their ability to discriminate species (Fig. 2C). Variables which passed the 

checking step were classified using (1) the number of groups discriminated by the post-hoc 

analysis of an ANOVA and (2) the geometric mean of Tukey’s HSD discriminant p-values (the 

p-value of non-discriminated groups were ignored for calculating this geometric mean). Just 

like case study B, for each parameter (e.g., Asfc2, Sa), the best-ranked variable out of 14 

(central + heterogeneity statistics) was selected, and variables correlated to more than 70 % 

with a better-ranked variable were systematically removed (calculated independently with R). 

The remaining variables were used for a PCA. At this point, the surfaces of Gazellospira 

torticornis were added as supplementary individuals to the PCA. All analyses were done in 

trident, but the boxplots of the first two principal components were modified in R using the 

ggplot2 package. Afterward, the principal components were exported to R and used for an 

analysis of variance (ANOVA). The post-hoc analysis was performed using Tukey’s HSD test.  



 

Results 

Case study A: Diet-related differences in dental microwear between controlled-fed 
pigs. 
The first analysis, a top-3 classification performed on crushing facets after Box-Cox 

transformation (Table 3), revealed that the most discriminant variables are central height 

skewness (Ssk), central topology variables (Sk1, Sk2, Smc1, Snb1) and heterogeneity 

variables for complexity (Asfc2), height (Sq, Sv, Smd) and topology parameters (Sh). In contrast, 

the same analysis performed on shearing facets (Table 4) revealed that the most discriminating 

variables are central height kurtosis (Sku), the standard deviation of central height skewness 

(Ssk.sd), mean and median of Smd, as well as skewness and kurtosis of spatial variables (Sal, 

r.sl). There are no common variables between the top 3 of crushing and shearing facets. 

When combining the most discriminating variables from both crushing and shearing facets in a 

principal component analysis (Fig. 3), the first and second principal components (PCs) explain 

38.2 % and 21.1 % of the variances, respectively. Along PC1 and PC2, the control category 

overlaps with corn kernels and corn silage categories, but other groups are distinctly separated 

(Fig. 3A). In fact, PC1 separates barley-fed pigs from other categories, whereas PC2 separates 

seed-fed pigs (barley and corn) from silage-fed pigs. Other PCs failed to separate categories 

and were not pictured, but are available as supplementary materials (Supplementary Materials 

1).  



 

Table 3. Case study A: Diet-related differences in dental microwear on crushing molars facets between controlled-
fed pigs, pairwise top 3 variables for each pair of compared groups ranked by the post hoc p values. All variables 
were box-Cox transformed. Ba, barley; Co, control; CK, corn kernel; CS, corn silage (see Figure 2 and method 
section). 

pair i TOP3 variables for the pair i rank F p value ANOVA Post hoc p values 

Ba-Co 

Snb1 1 9.02 <0.01 0.09 

Asfc2.fst.25 2 5.58 0.02 0.09 

Sh.min.05 3 3.69 0.06 0.10 

Ba-CK 

Sv.lst.25 1 4.47 0.03 0.03 

Sv.max.25 2 4.83 0.03 0.04 

Smc1 3 6.88 0.01 0.04 

Ba-CS 

Snb1 1 9.02 <0.01 0.02 

Sk1 2 8.33 0.01 0.07 

Asfc2.min.25 3 4.69 0.03 0.07 

Co-CK 

Smd.kurt 1 4.82 0.03 0.26 

Sk2 2 4.58 0.04 0.39 

Ssk 3 5.45 0.02 0.57 

Co-CS 

Ssk 1 5.45 0.02 0.15 

Sq.kurt 2 5.21 0.03 0.45 

Smd.kurt 3 4.82 0.03 0.54 

CK-CS 

Smd.kurt 1 4.82 0.03 0.02 

Sq.kurt 2 5.21 0.03 0.07 

Sk2 3 4.58 0.04 0.35 



 

Table 4. Case study A: Diet-related differences in dental microwear between controlled-fed pigs, pairwise top 3 
variables for the shearing facets. All variables Box-Cox transformed. Ba, barley; Co, control; CK, corn kernel; CS, 
corn silage (see Figure 2 and method section). 

pair i TOP3 variables for the pair i rank F p value ANOVA Post hoc p values 

Ba-Co 

Sal.kurt 1 3.68 0.06 0.01 

r.sl.skw 2 5.49 0.02 0.28 

Smd.mean 3 5.18 0.03 0.28 

Ba-CK 

Smd.mean 1 5.18 0.03 0.05 

Sal.kurt 2 3.68 0.06 0.06 

Smd.median 3 5.76 0.02 0.07 

Ba-CS 

r.sl.kurt 1 5.68 0.02 0.11 

Sku 2 3.85 0.05 0.13 

r.sl.skw 3 5.49 0.02 0.17 

Co-CK 

r.sl.skw 1 5.49 0.02 0.12 

r.sl.kurt 2 5.68 0.02 0.13 

Ssk.sd 3 6.01 0.02 0.62 

Co-CS 

Sku 1 3.85 0.05 0.03 

Sal.kurt 2 3.68 0.06 0.24 

Ssk.sd 3 6.01 0.02 0.36 

CK-CS 

Sku 1 3.85 0.05 0.02 

r.sl.kurt 2 5.68 0.02 0.03 

Ssk.sd 3 6.01 0.02 0.04 

  

 
 



 

 
 
Figure 3. Case study A: Diet-related 
differences in dental microwear 
between controlled-fed pigs, from 
crushing and shearing facets of upper 
deciduous fourth premolar. Principal 
component analysis from the top 3 
variables for each pair of dietary 
categories (A & B) compared with the 
classical SSFA biplots. A, correlation 
circle, PC1 versus PC2; B, bivariate 
graph of individuals along PC1 versus 
PC2; C, bivariate graph of individuals 
with SSFA parameters Asfc and 
epLsar.  



 

Case study B: Meta-analysis of a large multi-species sample of cercopithecids. 
The analysis, a rank by post-hoc (mean) classification performed on crushing facets after Box-

Cox transformation (Table 5), revealed that the most discriminant variables were a mix of central 

and heterogeneity variables. After removing variables correlated with the best ranked variables, 

the majority of variables are heterogeneity variables related to the highest percentiles among 

subsampled tiles (Sh.lst.05, Asfc2.max.05, Smc2.lst.25, s.sl.lst.05, b.sl.max.05 and Sku.lst.25).  

The major influence of the highest percentile variables is confirmed by the PCA (Fig. 4). Indeed, 

these variables contribute significantly to the first and second components, which explain 42.8 % 

and 22.6 % of the variance, respectively (Fig. 4B). This is also consistent with the difference in 

absolute surface height, which is clear on the maps: along the first component, the highest 

value has a height amplitude of 10.95 µm (Fig. 4C, 4D) while the lowest value has a height 

amplitude of 0.71 µm (Fig. 4C, 4E). 

The bivariate graph of individuals for components 1 and 2, as well as the boxplot of component 

1, show that there is a large overlap between categories, both at the species and the tribe level 

(Fig. 4A, 4C). This is due to the broad dispersion of values. When comparing the means 

between species (Fig. 4C), the most folivorous species (Trachypithecus auratus, Colobus 

guereza and Piliocolobus badius) have the lowest PC1 values. They are followed by terrestrial 

graminivorous papionines Papio hamadryas and Theropithecus gelada, then Nasalis larvatus, 

Semnopithecus entellus and Trachypithecus cristatus. The latter three are also folivorous but 

present higher Asfc2 values in our sample, indicating the opportunistic consumption of seeds 

(Thiery et al., 2021). This is supported by the surprisingly large breadth of PC1 value dispersion 

for these three species, especially T. cristatus. Then, opportunistic terrestrial cercopithecines 

and papionines show higher PC1 values, with the highest values found in the hard seed 

predator Lophocebus albigena (Lambert et al., 2004) and Macaca sylvanus, one of the most 

granivorous macaque (Kato et al., 2014).  



 

Table 5. Case study B; Meta-analysis of a large multi-species sample of cercopithecids, the most discriminant 
variables for each family, classified by the number of pair (N) that shows significant differences with the Tukey’s 
HSD p-value. 

 

Variable 

 

Position 

ANOVA Tukey’s HSD 

F p value mean p-value geometric mean p-value N (among 105 pairs) 

Sh.lst.05 1 11.29 <0.01 0.01 <0.01 37 

Asfc2.max.05 5 7.62 <0.01 0.01 <0.01 32 

Sp.max.25 12 9.48 <0.01 0.01 0.01 24 

Sa 13 9.39 <0.01 0.01 <0.01 23 

Sq 15 9.03 <0.01 0.01 0.01 23 

Sv.fst.05 16 6.11 <0.01 0.01 0.01 23 

Sdar.max.05 18 6.37 <0.01 0.01 <0.01 22 

Smd.max.25 25 5.84 <0.01 0.01 <0.01 17 

Smc2.lst.25 29 6.58 <0.01 0.01 <0.01 15 

Smc1.min.25 30 5.73 <0.01 0.02 <0.01 15 

Sk2.mean 33 4.51 <0.01 0.02 0.01 15 

Sm.min.25 36 6.41 <0.01 0.02 0.01 14 

s.sl.lst.05 45 4.71 <0.01 0.02 0.02 13 

b.sl.max.05 49 6.37 <0.01 0.01 <0.01 12 

Snb2.mean 60 3.53 <0.01 0.02 0.01 12 

Sal.min.05 73 5.85 <0.01 0.01 <0.01 10 

Sku.lst.25 83 3.42 <0.01 0.01 <0.01 9 

Sk1.mean 92 4.72 <0.01 0.03 0.02 9 

r.sl 99 4.88 <0.01 0.01 <0.01 7 

Stri 101 4.89 <0.01 0.01 <0.01 7 

Ssk.fst.05 103 4.08 <0.01 0.02 0.01 7 

Snb1.sd 149 3.30 <0.01 0.02 0.01 4 

All variables Box-Cox transformed.  For each parameter (e.g., Sh), only the variable with the best positioning was 
selected (e.g., Sh.lst.05). Highlighted in grey are the best-positioned variables which are little correlated to each 
other (threshold: 0.7). 
 



 

 
Figure 4. Case study B: Meta-analysis of a large multi-species sample of cercopithecids. Analysis of dental 
microwear textures from the crushing facets of upper and lower molars of cercopithecids from Asia and Africa. 
Principal component analysis was performed using the best-ranked non-correlated variables. A, bivariate graph of 
individuals along PC1 versus PC2 with ellipses depicting the confidence interval at 95 %; B, correlation circle, PC1 
versus PC2; C, Boxplot of PC1 values, ordered by ascending mean, with species as a factor compared with 
boxplots of Asfc values (individuals are not shown to make the figure easier to read.; D, height map of the surface 
from the individual with the highest PC1 value (L. albigena_NHMB-LP-2908); E, height map of the surface from 
the individual with the lowest PC1 value (S. entellus_BM30-11-1-4). 



 

Case study C: Comparison with extant species to infer the diet of extinct ruminants 
The first part of the analysis, a rank by post-hoc (mean) classification performed, after a base-

10 log transformation, on the shearing dental facets of molars of the wild-caught ruminants from 

the Bauges Natural Regional Park (Table 6), revealed once again that most discriminant 

variables were a mix of central and heterogeneity variables. After removing variables correlated 

with the best-ranked variables, what remains are variables based on spatial parameters 

(Rmax.min.25, s.sl.mean, r.sl), the standard deviation of topology parameters (Sk1.sd, Smc1.sd) 

and Sm.fst.25, which is the first quartile of the lowest parts of the surface’s height. 

The first two components of the PCA encompass 43.9 % and 27.6 % of the variance, 

respectively. On the first component, we found that G. torticornis significantly differed from both 

C. capreolus and C. elaphus (Table 7). In contrast, there was no significant difference between 

G. torticornis, R. rupicapra and O. gmelini, which is visible on the bivariate graph and on the 

boxplot (Fig. 5C, D). On the second component as well on the third and fourth components, G. 

torticornis was significantly different from all extant species whereas no difference could be 

detected between extant species. Overall, G. torticornis had on average lower values than 

extant species for both the first and second components (Fig. 5D, E). 

 

  



 

Table 6. Case study C: Comparison with extant species to infer the diet of extinct ruminants, the most discriminant 
variables for each parameter, classified by the number of pair (N) that shows significant differences with the 
Tukey’s HSD p-value.  
 
   p value  

Variable rank F ANOVA HSD arithmetic mean HSD geometric mean N (among 6 pairs) 

Rmax.min.25 1 7.93 <0.01 0.02 0.01 4 

Snb1.sd 2 9.19 <0.01 0.01 <0.01 3 

Sku.lst.25 12 6.38 <0.01 0.01 <0.01 2 

Sk1.sd 13 4.38 0.01 0.01 0.01 2 

Ssk.max.05 14 5.08 <0.01 0.02 0.01 2 

b.sl.min.25 21 5.10 <0.01 0.02 0.01 2 

Sm.fst.25 27 3.65 0.02 0.03 0.02 2 

s.sl.mean 30 5.49 <0.01 0.03 0.03 2 

Smd.min.05 32 3.36 0.03 0.03 0.03 2 

Smc1.sd 36 4.27 0.01 0.03 0.03 2 

Snb2.sd 49 5.22 <0.01 <0.01 <0.01 1 

Sal 55 4.26 0.01 0.02 0.02 1 

r.sl 63 3.00 0.04 0.03 0.03 1 

Sa.lst.25 70 3.45 0.02 0.04 0.04 1 

Stri 72 2.27 0.09 0.04 0.04 1 

All data log-transformed (base 10). For each parameter (e.g., Rmax), only the variable with the best positioning 
was selected (e.g., Rmax.min.25). Highlighted in grey are the best positioned variables which are little correlated 
to each others (threshold: 0.7). 
 

 

 

 



 

Table 7. Case study C:  Comparison between extant and extinct species to infer the diet of the extinct ruminants 
thanks to ANOVA on the first four principal components and followed by pairwise comparison of the means using 
Tukey’s HSD. 

 PC1 (43.9 %) PC2 (27.6 %) PC3 (14.6 %) PC4 (7.9 %) 

Pair Difference p adjusted Difference p adjusted Difference p adjusted Difference p adjusted 

CE-CC 0.61 0.66 1.02 0.10 -0.01 1.00 0.15 0.97 

OG-CC -1.14 0.09 0.39 0.87 -0.40 0.64 0.06 1.00 

RR-CC -1.31 0.04 1.12 0.06 0.28 0.87 0.15 0.96 

OG-CE -1.75 <0.01 -0.63 0.50 -0.39 0.63 -0.09 0.99 

RR-CE -1.92 <0.01 0.10 1.00 0.29 0.84 0.00 1.00 

RR-OG -0.17 0.99 0.73 0.34 0.68 0.11 0.09 0.99 

GT-CC -2.17 <0.01 -1.39 0.03 -1.54 <0.01 -1.97 <0.01 

GT-CE -2.78 <0.01 -2.41 <0.01 -1.53 <0.01 -2.12 <0.01 

GT-OG 1.03 0.25 1.79 <0.01 1.14 0.01 2.03 <0.01 

GT-RR 0.86 0.44 2.52 <0.01 1.82 <0.01 2.12 <0.01 

Highlighted in grey are the differences supported by a significant adjusted p value. CE, Cervus elaphus; CC, 
Capreolus capreolus; GT, Gazellospira torticornis; OG, Ovis gmelini; RR, Rupicapra rupicapra. 
 



 

 
Figure 5.  Case study C: Comparison with extant species to infer the diet of extinct species of ruminants, PCA on 
selected variables with ruminants from the Bauges as individuals and fossil specimens of Gazellospira torticornis 
as supplementary individuals. A, Bivariate graph of individuals along PC1 versus PC2, with the extinct species 
from Dafnero Gazellospira torticornis as supplementary individuals (pink); B, Correlation circle, PC1 versus PC2; 
C, Boxplot of PC1 values, ordered by ascending mean, with species as a factor in comparison with texture spatial 
parameters (Sal2; Sal calculated with s = 0.5) ; D, Boxplot of PC2 values, ordered by ascending mean, with species 
as a factor in comparison with the Sk parameter related to vertical material distribution. All data log-transformed 
(base 10).  



 

Discussion 
Case study A:  Diet-related differences in dental microwear between controlled-fed 
pigs 
The broad spectrum of analytic tools and exploratory methods offered by trident maximizes the 

potential for detecting diet-related differences in dental microwear. In case study A, the four 

groups could be separated, which is consistent with Louail et al. (2021), but the difference 

between categories was enhanced. Dental microwear sometimes shows large within-species 

differences, including in wild animals (Calandra & Merceron, 2016, Percher et al., 2018) and 

extinct species (Scott et al., 2005; Thiery et al., 2021). In our case study however, even the 

subtlest variations in diet, for instance between the corn silage and the control groups, could 

be detected. These results are promising for paleontological and archaeological studies 

interested in diet variation across time and space. 

In addition, trident is also compatible with other workflows, as it can easily combine multiple 

datasets, for instance microwear measured using different methods (SSFA, light microscopy…), 

from different teeth, or different parts of a tooth – as in case study A. In this case study, we 

found that shearing and crushing facets not only differ in microwear textures but also in the 

best-ranked variables diet-wise. Crushing different kinds of food influenced the skewness and 

heterogeneity of microwear height, whereas shearing different kinds of foods had a more visible 

influence on height kurtosis, on standard deviation of height skewness, on median height, as 

well as skewness and kurtosis of spatial parameters. For crushing, the presence of large and 

deep pits resulting from the processing of hard, seed-like foods is indeed expected to affect 

height and its heterogeneity. For shearing on the other hand, spatial parameters, and especially 

anisotropy, are expected to be more affected by the long shearing motions of tough, high-

energy release rate foods such as leaves, grass etc. This is consistent with our results, and 

demonstrates that trident can not only integrate multiple methods, but also leverage their input. 



 

Case study B: Meta-analysis of a large multi-species sample of cercopithecids 
Sometimes the objective is not to separate groups of individuals but to identify patterns of 

variation imputable to dietary trends. This is exactly what trident enabled in case study B: 

despite PC1 values overlapping between cercopithecid species, we can distinguish a 

continuum from strict leaf consumption to staple seed predation (Fig. 4). The most folivorous 

species (Trachypithecus auratus, Colobus guereza and Piliocolobus badius) have the lowest 

PC1 values, whereas opportunistic terrestrial cercopithecines and papionines show higher PC1 

values, with the highest values found in Lophocebus albigena and Macaca sylvanus, two 

notable seed eaters (Lambert et al., 2004; Kato et al., 2014). Detecting this pattern required 

trident for ranking variables by mean p-value of Tukey’s HSD and for performing multivariate 

analysis on the best non-correlated variables, but also the R environment for ordering species-

related boxplots by ascending mean (Fig. 4C). It shows the interest of nesting trident within the 

R environment: accessing a broad range of libraries for complementing and leveraging 

functions from the R package trident. 

The trident package in R (but not the graphic interface) also allows to inspect surfaces using 

2D and 3D maps – although these functions are not implemented into the interface, they can 

be launched from R (see Supplementary Materials 2). Here, the highest PC1 values are 

characterized by high maximal complexity, but also deeply worn surfaces (Fig. 4D). In contrast, 

the lowest PC1 values are characterized by a low complexity and shallow wear marks (Fig. 4E). 

Both a higher complexity (Ramdarshan et al., 2016) and larger, deeper pits (Teaford, 1985, 

1988) have been associated to the ingestion of large amounts of seed kernels, which is 

consistent with the pattern observed on Fig. 4C. It is also consistent with Asfc2 successfully 

separating seed-eating cercopithecids in previous studies (e.g., Thiery et al., 2021). In short, 

trident helps detect patterns in dental microwear textures, but it also and foremost helps 

interpret them in biomechanical or ecological terms. 



 

Case study C: Comparison with extant species to infer the diet of extinct ruminants 
The last key use of trident is the inference of diet, either in extant or in extinct species. In case 

study C, we could infer the diet of Gazellospira torticornis, an extinct antelope from the Early 

Pleistocene of Greece (Hermier et al., 2020). To do so, we used trident to perform a PCA on 

the best ranked, non-correlated variables regarding their ability to separate four ruminants from 

the Bauges Natural Regional Park with known differences in diet, ranging from selective 

browsing to grass-dominated mixed feeding habits. We then added G. torticornis specimens as 

supplementary individuals to the PCA. This analysis showed that G. torticornis had low values 

of anisotropy, especially the 1st quartile (Rmax.min.25, Fig. 5), which is similar to Ovis gmelini 

and Rupicapra rupicapra. Both are mixed-feeding species: O. gmelini musimon eats grasses in 

complement with dicots foliages, shrubs and herbaceous dicots (Redjadj et al. 2014; see also 

Marchand et al., 2013), while R. rupicapra alternates between grass and foliage depending on 

seasons (Redjadj et al. 2014; see also Peréz-Barberia et al., 1997). G. torticornis likely was a 

mixed feeding species, incorporating both grasses and lignified tissues in its diet. 

Once again, nesting trident in the R environment gives access to a broad range of methods for 

complementary analysis. To better understand the dietary behavior of G. torticornis, we 

performed an ANOVA on principal components to search for differences between extinct and 

extant taxa. For PC1, G. torticornis significantly differed from Cervus elaphus and Capreolus 

capreolus. C. elaphus is also a mixed-feeding species (Gebert & Verheyden-Tixier, 2001), but 

in the Bauges Natural Regional Park, its diet comprises a large proportion of grasses (Merceron  

et al., 2021a). This likely increased its dental microwear anisotropy, which explains why it differs 

from other mixed-feeders that include more lignified tissues than the red deer. C. capreolus on 

the other hand is a selective browser (Redjadj et al., 2014). 

Lastly, variables that contribute to PC2 (Smc1.sd and to some extent, Sk1.sd and s.sl.mean) 

were significantly lower in G. torticornis compared to all four extant species. This point illustrates 



 

how dental microwear textures can present original patterns in the fossil record, sometimes 

completely different to what is known for extant species – perhaps reflecting how different the 

environmental conditions were at the time. 

Conclusion 
trident, an R package for performing dental microwear texture analysis is proposed here and 

illustrated with three case studies, showing how trident helps answer questions concerning 

trophic ecology commonly investigated by paleontologists and archaeologists. In the first case 

study, we separate four groups of domestic pigs based on their dietary composition. In the 

second case study, we identify microwear texture patterns in a large database of 15 primate 

species and relate these patterns to biomechanical and ecological factors. The third case study 

investigates the dental microwear textures of four extant ruminants to infer the diet of an extinct 

antelope from the Pleistocene of Greece. These case studies show how trident can leverage 

dental microwear texture analysis results. 
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