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Abstract

About 25 years ago our article “Mourre theory for analytically fibered operators”
was published in J. of Functional Analysis. This article proposed a general con-
struction of a conjugate operator for a wide class of self-adjoint analytically fibered
hamiltonians, provided that one accepts a more accurate notion of threshold. It is
only recently that Olivier Poisson mentionned us a problem with the statement that
Ho e €°(Ag). Actually even Hy € €%(A) or Hy € €179(A}), which is crucial for the
full application of Mourre theory, is problematic with our initial construction. How-
ever the statement and the construction can be modified in order to make work all
the theory. This is explained here.

Keywords: Mourre theory, stratification of subanalytic sets and maps, unitary connec-

tions
MSC2020: 32B20, 35P25, 47A40, 53B35, 81U99.

1 Introduction

In[ 1 we introduced the notion of an analytically fibered operator

2}
H, :f Hy(k) du(k)
M

where:

(1) M is a real analytic manifold and dv(k) stands for a volume density which can be
written dv(k) = e2V®) gk .. .dkgim p in any coordinate chart with V() real analytic;

(ii) /' is a Hilbert space, Z(#') and £ *°(#') respectively denote the spaces of bounded
and compact operators in A ;

(iii) for all 2 € M, (Hy(k),D(Hy(k))) is a self-adjoint operator in #' such that M 3 & —
(Ho(B)+i)~1 € L°(#') is real analytic (actually this can be replaced by (Ho(k)+i)"!
is a real analytic section of £°°(&%) where % is a real analytic Hilbert bundle p g :
F — M with fiber &, ~ A");
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(iv) when Z ={(k,1) e M xR, A € Spec(Ho(k))} is the analytic characteristic variety in M x
R, the map py_r:Z — R given by ps_r(k,1) =1 = pr(k, ) is proper. We distinguish
by notations the natural projection pg: M x R — R from its restriction to X, ps_g =
p R|z .

After noticing that the analytic characteristic variety can be partitionned in the semi-
analytic sets according to the multiplicity u of the eigenvalue A of Ho(k), £ =1, %, the
general theory of subanalytic sets (see [ , , D tells us that there exists a

(locally finite) Whitney stratification . of X compatible with ps_.g, which means here:

* ¥ =|]scsS,where any S € .¥ is an analytic connected manifold embedded in Rx M,

e SNS'#¢ implies S'=8 or ' c3S Y 8\ 8

e for all S € # there exists ug such that S cX,;

e for all S € & either ps>_g(S) is an open interval and dpzéR|Ts does not vanish
(rank of dp2—>R|Ts is constantly equal to 1) or py_r(S) = {1pt} (rank of dpzéR|TS
is constantly equal to 0).

We refer the reader to the founding articles [ 1l land to [ 1 ] for a panoramic
or historical presentation. Another reference concerned with the analysis of subanalytic
Lipschitz functions is [ 1. The application of these general ideas to our case is given
in [ 1. We called the locally finite set 7 = |_|mnk dpzﬂm|

thresholds for Hy. Our main statement in [ ] was

_ p3—r(S) in R, the set of
TS_O

“Theorem” 3.1 in [ 1 1. There exists a discrete set T determined by Hq so that for
any interval I € R\ 1, there exists an operator Ay essentially self-adjoint on D(Ajy) =
%fgmp(M ;) satisfying the following properties:

1) For all x € €y, ,(I), there exists a constant ¢y >0 so that

x(Ho)[Ho,iA[ly(Ho) = ¢, x(Ho). 1)

ii) The multi-commutators adﬁ’h(H 0) are bounded for all k € N.

iii) The operator Ay is a first order differential operator in k whose coefficients belong to
E°(M; L(F)) and there exists y € %ggmp(u& \ 1) such that Ar = y(Ho)A; =Arx(Hyp).

As mentionned above, the second statement ii) is problematic with the construction of
[ 1. It was actually not carefully checked in [ ]. However the general idea works
after some modifications. Below is the proper statement.

Theorem 1.1. For any interval I € R\ v, there exists an operator Ay essentially self-
adjoint on D(Ay) = CoompM;F) which satisfies the following properties:

1) For all A€ there exists 6 > 0 such that

™ 1
-6, 0+60HHo, 1A -5, 1+5,1(H0) = 51[/1—5,1,/1+6;l](H0)-

11) The multi-commutators adfil(HO) are bounded for all k e N and Hy € €™°(Aj).



iii) The operator Aj is a first order differential operator in k whose coefficients belong to
€>°(M; £(F)) and there exists ) € o ,(R\T) such that Ap = y(Ho)Ar = Ary(Ho).

The construction of the new conjugate operator A; slightly differs from the one of Ay
in order to ensure the condition ii). The price to pay is about Mourre’s inequality i) which
is now only local (with a uniform constant which is here %). But we recall that such a local
inequality is sufficient for developping all the theory. Additional comments are given in
Section 5.1 after the construction of A is done.

2 Preliminary remarks and notations

The notion of vector (Hilbert) bundles although pointed out and later used in [ 1was
not accurately enough considered in [ 1. We specify its use now. The local analysis of
[ 1, putting the stress of locally scalar differential operators, was essentially correct.
But gluing all the pieces together, where the dimensions of vector subbundles change,
must be done carefully by taking into account the stratified struture of Z. Elementary
remarks and notations are collected here, while we recall the local initial construction of
the operator Ay . Its correct variation A; will be done later.

2.1 Open covering and partition of unity on X

The main idea of [ 1 which still works is that the construction and the analysis can
be localized on the characteristic variety X. Because ps_.g: X — R is proper, pgiR(f) c
2 is compact and an open covering U;c.s Q; of pgiR(f) can always be assumed finite.
A partition of unity ¥ ;e g;(1,%)? = 1 over a neighborhood of pgiR(T), subordinate to
Uies Q; , is made with g; € Q).

Like in [ 1, the open sets Q; , i € #, will be cylindrical above M , with Q,, = Ug;"l W X
Imn = UZn\;’il Qmn, 0y open set of M and J, , open interval. The finite family .# can then

. d
be either .# ={1,...,m1} or % = L(I) <f {(m,n)eN?,1<n <Ny,1<m<mj} for a more
local presentation on the energy axis. We use the convention that w is an open set of M

0
cgcomp

and Q is an open set in M xR.
It is convenient to introduce another interval I such that

IeleR\1

and all the open intervals J,, , , 1<n <N,,,1<m <my, will satisfy J, , € I. With I we
shall associate the finite (# is locally finite and pELR(T) is compact) set of strata

Sy = {Seyjmpgiﬂ(f);é ¢}~.
The assumption I < R\ 7 implies
VS € #, rankdps_g|pg = 1.

Proposition 2.1. Let I, I, be two open intervals such that I € I € R\ 1. There ex-
ists open sets w,, € M, for 1 =m < M, and open intervals J,, , € I for (m,n)e L() =
{(m,n)ENz,ISnSNm,lsmSMI} such that:

(1) setting Qmp = Wm % I n, Um,neLd) 2m,n is an open covering oprLR(T) ;



@) JupnNdmup =0 forn#n', 1<n,n' <Np;

(3) for any (m,n) € L(I) there exists a unique stratum Sy, , € ¥ (rank de*R|TSm,, =1
and Qm , NZ is a (finite) union of Qy,NS’, S' € 1, S included in every S’ (i.e.
S"=8mn0r SmycdS =8'\8);

(4) 1;,,,(Ho(k)) has a constant rank p;,, for k € wy, and there exists another interval
Jpun € Im,n such that 15, ,(Ho(k)) = 1y, (Ho(k)) for all k € wpm ;

(5) for all (m,n) € L(I) there exists a real analytic section Wy, , of ZL(CHm»; F | wm) with
Wi n(R): CHmn — Ran1y,,  (Ho(k)) unitary for all k € wy, so that

Wi n(k)*Ho(k)1,,, ,(Ho(R) Wi, (k) = Hpp 1 (R)
is a real analytic iy, n X tm,n matrix with respect to k € Wy, 5 ;

(6) there exists a real analytic vector field X, , on wp, n, such that

. 1
VhE€Omn,  XmnHnak)= Jldom,

1
(Wi © X Wy, o JHo(B) L, (Hok) 2 5 1, (Ho(k);

(7) if QuaNQp NZ# @ and fmp = U o then

VRewmNwn, 1y, ,(Hok)1y,, (Ho(k) =1y, (Ho(k)),
Smn COSy n
and or Sy <08y, and pmp=Hm'
or Syn=8Smn and Hmnp=Htm -

Proof. The construction of the open covering will be done in several steps. Actually be-
cause K7 = ppy( pgi R(T)) is compact in M it suffices to consider carefully the situation in
a neighborhood wg € M of any kg € p M(pELR(T)). We use the index m = 0 for this local
analysis and in the different steps the open set wg 3 k¢ will be reduced in order to fulfill
all the properties. So let us fix kg € pp( pgiR(f)). We start with three remarks:

* The set Spec(Ho(ko)) N1 is finite and is written {1,,,1 < n < Np}.

¢ With m =0, the properties 3 (uniqueness is imposed by (29, 1,) = So,»),4,5,6 hold
in any open neighborhood w' < wg of ky. So these properties are hereditary after
reducing the neighborhood wy .

¢ Locally the real analytic vector bundle % | 0o ? for wg small enough, is transformed
by a unitary transform Uy(k) : &, — A’ , real analytic with respect to % € wq, into
the trivial bundle wg x #”’. So working with the trivial real analytic vector bundle
wo x €' is not a restriction here.

For a fixed 1, € I N Spec(Ho(ko)), there is a unique stratum Sy , € #5 and a unique o, €
N such that (ko,An) € So € Zy,, . Consider the set F, = {S'€.#,(ko,An) €S} € 7.
Because the stratification . is locally finite, there exists an open neighborhood w(l)’n X
J&n of (kg,A,) such that w(l),n X J&,n NS # ¢ is equivalent to S’ € A, (with H , < F).
Meanwhile (kg,1,) € So,, gives Son NS’ # ¢ and therefore Son =8" or Sy, S’ with

4



dim Sg, < dim S’ in this case. This is the local in energy version of the property (3)
which is hereditary for another neihborhood w% x Jy 2 s ‘”0 2 *Jon I . In particular we

may assume Jgn € I for every 1 <n <Ny and J2 nJgn, =@ forn ;é n’, l1=<n,n'=Ny.
From now the intervals Jy , = Jg ns 1=n=<Nj are fixed and the properties (2) and (3) as
well as Jo , € I are granted.

Again for n fixed there exists a path in yq , in C around Jj , such that

dz

1,1 (Ho(ko)) = 14,,,(Ho(ko)) = %21 Yon z—Hoy(ko)

With the last formula the spectral projector

1 dz
(k)= —
7o) = 2mf7/0nz Hy(k)

is analytic in an open neighborhood ‘”0 c ‘”0 of £y . Additionally choosing wO small
enough implies [|77g , (k) — 7o (ko) £y < 1 and Nagy’s formula (see e.g. [ 1 D

Wo,n(k) = (1= (Pg - P1)?) Y2[PoP1 +(1-P2)(1-P1)]  with Py = mg ,(ko), P2 = 70 n(k),

provides a unitary operator Wy ,(k) in #', which depends analytically on % € wg, and
such that Wy ,(k)mo n(ko) = mo n(k) . Therefore

1 zdz
Ho(k)o,n(k) = 70,0 (k) Ho (k)00 (k) = anyom

is unitarily equivalent to ﬁo,n(k) = no’n(ko)W(;‘,n(k)Ho(k)Wo,n(k)no,n(ko) € L (CHor) after

identifying Ranng , (ko) with CHo» . Again this property, which is the condition (5) is hered-

2
o,n*

The local version of condition (4) in Jy, is almost done: the rank of 1, (Ho(k)) is con-

itary for any neighborhood wg » X Jon of (ko, A,) with wg L, Cw

stantly equal to o , for & € ‘”0 c wo . The function maxSpec(H(k))NJp , and min Spec(H(k))
are continuous functions of & € wo,n , equal to 19, when & = kg belonging to the open
interval Jy ,. Hence the neighborhood wg’n of kg can be chosen small enough so that

1J0’n (Hy(k)) = lJ(’) n(H o(k)) with J(’)’n € Jo,, and this will be true for any neighborhood of k¢

wg,n < wg,n : | 5 5

The local problem is thus reduced to the case of a self-adjoint matrix Hy ,,(k) = Hp ,(k)* €

M, ,(C) which is real analytic with respect to & € w‘é’n

Because Tr[Ho (k)] = Tr [Ho(k)1;,,(Ho(k))] is analytic on wg , , the set

5 nz{(k, ! Tr[ﬁo,n<k)]),kew3n}
Ho,n ’

is an analytic submanifold of a)é x Jo n diffeomorphic to wg , Vvia the projection pyy :

wg n XJon — wo . Since So , N (w0 » XJon) is a real analytlc manifold contained in SO ns

pm(So,nN (w0 » < Jon)) is a real analytic submanifold of wO . For wé small enough,
there exists real analytic coordinates (%/,k") € R4™ Son x Rdim M—dim So,.” round kg such

that So,, N (W, x Jon) = {(k',0), Z-TrlHo k', 0),(',0) € w} )} . Our assumption that
rank d pz_,[R|TSOn =1 implies that the image of -2 31 by the prOJection from T'(M x IR)| Sos

dim Son 1 ) .
o1 a;(k ’O)Wj , with

k= (kl, .»kdim 8,,,) » such that Xo, nHon(k',0) = Idcro, . Because (k',k") are coordinates
on wo , this vector field is a real analytic vector field on wo and X, nHo »(k) is a real

to T'Sy, is a non vanishing real analytic vector field X¢, =}

5



analytic self-adjoint matrix. By continuity the open set wg , can be reduced such that
XO,nI:I on(k) = %Idcuo,n . This proves the condition 6 and the vector field Xy , can be taken
unchanged, except the restriction, for any neighborhood of ¢ contained in wé 0

Finally for any open neighborhood
Ny 4
W, & n wO,n
n=1
of ko the inclusion Jy , @ I and the conditions (2), (3),(4),(5),(6) are satisfied by the family

(Qo0,n = w0 % Jo,n,S0,n5 10,1, Wo,n, Hon, Xon)1<n<N, With wo=wg,.

Without condition (7), we could conclude with (1) by extracting a finite covering out of
K1 cUpyek, Wp, of the compact set K7 = pM(pgi[R(T)).

The condition (7) requires an additional specification of the open neighborhood wg, of k¢ .
It is a global property of the extracted finite covering piiR(T) < Uim,myeL) Qm,n because
it is about all the possible intersections. It is actually obtained by a connectedness argu-
ment after choosing a specific family of local connected neighborhoods (wg,)z,cx, With all
intersections connected. This is possible on a manifold. Let us fix any riemannian metric
Y on M. Then:

* any geodesically convex set is arcwise connected and the intersection of geodesically
convex sets is geodesically convex;

* for any ko € M there exists €, , > 0 such that for all ¢ < ¢, the geodesic ball
B, (ko,¢) is geodesically convex (see [Lec]-Exercise 6-4)

Take for any kg€ K;= pM(p;,R(T))
wko :B}/(k(),‘g()) ’ 250 < E}/,ko

Ny
By (ko,2e0) < [ w5,

n=1
and let K; c UZ ! ,0m be the finite extracted covering with w, = By(kn,&n). The cov-
ering (1) is given by Qp = 0 X I . And Qp n N QN Z # @ implies By(kp,,€x,) N
By(km,em) # @ and therefore dy(kp,km') < €p + € < 2max(en,,&x) . By symmetry we
can focus on the case max(ey,,em) = €5, for which &y, € By(kp,2¢,) wﬁl . On the con-
nected set By (kp,2en)Nwp © w‘,fl ﬂw;, , the spectral projector 1Jm’n (H()(k))lJm,,n, (Ho(k)) 1s
real analytic with respect to & with a constant rank < min(u,, ,, ttm’ /). Because this set
contains kp,’ for which Jp, , NSy NSpec(Ho(k ) = {/lmr,nr} with the multiplicity ym, .,

Hott < fimyn and 1, (HoGkD1y,, ,(Ho(k) =1y, (Ho(k))

must hold for all 2 € B (kp,,26,)NBy (R, €m) D 0 Ny . Because in this case (ky,/, Ay pr) €
S We get

Sm’,n’ nwfn,n X Jm,n > Sm’,n’ NB(ky,,26m) x Jm,n > {(km’ﬂlm’,n’)} 0

and the property (3) implies Sy, , €08 n' or (Spyr . =S and U, = ' p7). By symme-
try with €, = max(e,,, ), the equality p,, , = pm n' is compatible with Sy, € 0SSy,
Although the ordering of €,, and ¢,,’ does not appear in the final statement, the condition
(3) says that €, = €, is possible only when S, , =S,/ ' . O



Once the open covering pgiR(f) € U n)er) 2m,n is chosen according to Proposi-
tion 2.1 with Q,, , = W, x Iy, , several objects can be associated with it.
Take a partition of unity

My _
Y g% (k) =1 on a neighborhood of K1 = pp(p3L.p(D). 2)
m=1

Because Spec(Hy(k)) nlc |_|],:];"1 Jmn for k€ wy, and all me{1,...,my}, we obtain:

Z g%n(k)lJm’n(/l) =1 on a neighborhood oprLR(T).
(m,n)eL(I)
With (m,n) € L(I) we associated the interval J;n,n € J o, in Proposition 2.1-(4) such that
1,,,,(Ho(k)) = 1J,/n’n(H0(k)) for all £ € w,, . By taking yp,n € %ggmp(Jm,n) with Y, =1 on

a neighborhood of j:nﬂ , we obtain the smooth partition of unity

Y. &m(k)?x% (1) =1 on a neighborhood of p5! (1), (3)
(m,n)eL(I)
with  Vke€wnm, gmk)lg,,[Hok)=gmn(k)xmaHok)). 4)

Definition 2.2. With the open covering of Proposition 2.1, the set of pairs (m,n) € L(I) is
naturally endowed with an asymmetric relation <1 (asymmetric means that (x <y and y <
x) never happens). Actually (m,n) <(m’,n’) is defined by:

(1) (Wm xJImp)N(Wp X I ))NZ#B;
(it) dim Sy <dim Sy .
Lemma 2.3. For (m,n),(m',n') € L(I) the relation (m,n) <\(m',n’) implies
(D) m#m'and Sy <0Sm s
(2) forall k € wmNwn, all the operators Ymn(Ho(R)Xm n(Ho(R), 1., ,(Ho(k)1y,, . (Ho(k)),
1y, (Ho(R)) and ym' n(Ho(k)) are equal.
The result (2) still holds when the assumption (m,n) < (m',n’) is replaced by the more
general condition (U NQpp NZ# @ and Sy ©Spn).

Proof. If m =m' with Qp, , N Q' # @ then Jp, n NSy ' # @, Where Proposition 2.1-(2)
implies n = n’ and Proposition 2.1-(3) implies S, , = Sy »' in contradiction with Defini-
tion 2.2-ii). In the second statement the equality 1., ,(H O(k))lJm,’n, (Hy(R)) = 17, (Hy(k))
is given by the classification of Proposition 2.1-(7) where dim S, ,, <dim S, ,/ eliminates
the cases iy n < Um' n» @and Sy, =Sy n' . The choice of the cut-off y,, , was done such that
Amn(Ho(R)) =17, ,(Ho(k)) for all k € wy, and all (m,n) € L(I).

The more general condition includes the additional case S, , = Sy, - where all the oper-
ators of (2) are equal to 1, ,(Ho(k)). O

The classification of Proposition 2.1-(7) says that Q,, , NQp  NZ # @ is classified into
the three mutually exclusive cases

Sm,n < Sm’,n’ or Sm’,n’ < Sm,n or Sm,n = Sm’,n’,

while the last case does not mean (m,n) = (m',n'). It can be summarized as

(Qm,n N Qm’,n’ NZ#@)= (Sm,n < Sm’,n’ or Sm’,n’ = Sm,n)

while we recall that S = S’, which means S =S’ or S €4S’ =S’\ §’, is an order relation

on . . This leads to the following useful result.



Proposition 2.4. Any family (m¢,n¢)1<e<r, of L(I) such that ﬂé‘lem[,n[ NZ # @ can be
ordered such that Sp, n, ©Sm,.1.np. -

With such an order, all the operators Ym,n,(Ho(R)Xm . (Ho(k)), 17, ., (HO(k))lJm[“n” (Ho(R)),
lJmﬂW (Ho(R)) and ¥m 1 n,(Ho(k)) are equal for k € 0y, Nwp, when 1< £ < ¢ <L. In par
ticular all the operators Xm, n,(Ho(R) Xm n, (Ho(k)), 1Jm[,n[(H()(k))1JmL’nL (Ho(R)), IJMML (Hy(k))

and Ym; n, (Ho(k)) are equal for k € ﬂIZ,lem[, forall ¢€{1,...,L}.

2.2 Unitary connections

A connection V, on a Hilbert bundle p g : & — M is a R (or C)-linear map from €°°(M ;%)
to €°(M;T* M ® &) with the Leibniz rule

VfeE€C(M;R),Vs e 6€°(M;F), V(fs)=(df)s+[f(Vs)
or in terms of covariant derivatives
VX € €°(M;TX),Vf e €°(M;R),Vs € €°(M;F), Vx(fs)=X[f)s+[f(Vx)s.
The curvature RV € is given by
RY(X,Y)=VxVy - VyVx - Vixy]

and it defines an element of €°(M; A2T* M ® End(%)) , where in all our cases dim %}, < co
or dim &, =00, End(¥) = L(F).

In a local chart open set w = M, there exists a unitary map U(k) in /' with depends
analytically on k& € w such that

uk)— e VEU(R)u(k)

defines a unitary map from L%(w,dk;#") to & | » endowed with the metric (, ) eV

Hence on & | . there always exists a flat unitary connection given by

w_ V(&) M g 1, V(R -1_ dimMi . -1
VY =e Uk E Y2 dkile"\"WUR) - =U(k) Z Py dk;|UR) " +dVeldes (5)
i-1 i i=1 i

Here flat means RV" = 0 while the unitarity of the Hilbert bundle with fiber .#’ and the

2V (k)

metric (, ) e means

2V (k)

X (s, s"Y e W 4 (s, V§8/>62V(k).

=(Vys,s) e
In particular when X = Y3 ¥ X6, € ¢%°(w; TM), V4 +3divX , with divX = Y3m Mg, x;
is an antisymmetric operator on 6.7, ,(w; F).

Let M =U;c.# w; be a locally finite open covering of M , with w; compact, and let } ;¢ » X? ,
Xi € %fgmp(wi) be a subordinate partition of unity with } ;c s )(lz =1. When (V;)jcs is a
family of unitary connections on & | w; then

V=Y niVix 6)
182
is a unitary connection on & .
A connection VM on pg : & — M, allows to define a connection still denoted by V¥ on
P L(F)— M via
(V¥ A)s = V¥ (As) - A(VY )



which ensures the Leibnitz rule VM (As) = (VM A)s + A(VMs) . The unitarity of VM implies
(V% A)F = —V% (A*)+ AxA* where the factor AxA™* is due to the differentiation of the
volume form dv(k) in the integration by part.

Remember also that the difference between two connections on pg : &% — M is given
by VZ_Vli=Le€>M T*M ® £(%)). This holds true when & is finite dimensional
and when dim & = co the considered connections V? are the ones for which the property
holds for a given fixed connection V!, e.g. V1 =VM =¥, 1, Viy;. A typical example is
when V2 is given by the same formula as V! = VM but with a different partition of unity
Yies X%,i = 1 subordinate to M =;e.s w; . The induced connections on p ¢(z): L(F)— M
satisfy (V% —V;,)A =[Lx,A]. In particular, the factor e2V®) in the metric (, ) ze2V® can
be forgotten while considering the connection V* induced on p () : L(¥) — w with V¥
given by (5) because Lx = (dV(X))Id 7 . When both V2 and V! are unitary connections,
L} = (V§( - V}f)* = _(V.%( - V}() = —-Lx and Ly is anti-symmetric.

In a local coordinate system (k1,...,k4) in w € M , the following relations

V 00
[Vaigvazj (ﬁ £)e% (03 L(FY), )
V2, -V, € €®(w; L(F)), (8)

ok;

i Ok;

ensure that the following objects are well defined.

Definition 2.5. Let w be an open set of M. A differential operator B of order u with
coefficients in €°°(w; L(F)) is a local operator which can be written in any local coordinate
system
B= ) BaR)V V% . (9)
lal=p k1 kg
It is initially defined with the domain D(B) =
ing to the general definition

Coomp(W; F) and it is said symmetric accord-

VO, ¥ € Coomp(@; F), (P, BY)20a,9) = (BP, W)12(0,5) -

A first order differential operator B with €°*°(w; L (%)) coefficients, is said to have a scalar
principal part if there exists X € €°°(w; TM) and By € €*°(w; L(F)) such that

B =Vx+By. (10)

In (9) the covariant derivatives do not commute but (7) ensures that the form (9) is
preserved, after modifying the coefficients B, , when the order is changed. The relation
(8) ensures that the general forms (9) and (10) are not changed when the connection V is
changed.

We will focus on first order differential operators with €°*°(w; £(%)) coefficients where w
and the fiber bundle will be specified further.

When w is a local chart open set with 9|w = e‘V(')U(.)Lz(w;Jf’) and V¥ defined by (5), a
first order differential operator can be written

B=e¢V®U(k) ZBl i(B)X; (k)— +Bok)| " PUR)!
=1~ k
—Bl L(k)
with Bl,i,Bo,E’Li € €°(w; L(A")) and X = ZleXi(k)a% € €°(w;TM). It has a scalar
principal part when all the By;’s equal Id 5 . l



The compositions BA or AB with B = Blvg’( +Bgy,B1,By€ €°(w; L(F)) and A € €°(v; L)
equal
BA = B1AV§’( + (Bl(Vg’(A)) +BOA and AB-= ABlvgJ( +ABO s

and the commutator [B, A] belongs to €°°(w; £ (%)) when [B1,A] =0, which is the case if
B has a scalar principal part.
When [B},B}]=0, the commutator (on ¢(w; %)) [B',B*] with B* = B¥V%, + B} is a first
order differential operators with €*°(w; £(&))-coefficients:

[B1,B*] = (Bi(V:BDVy. —(BI(VEBDIVE: +(BIBDVix: x,
+[B§, B3]+ (B1V%,B3) - (BIV%,B}) + B1BIRY" (X', X?),

and this is not true in general when [B 1,B%] #0.
When V? is a unitary connection the formal adjoint of B = B1V% + By equals

B* = -V%B! —(divX)B} + B} = -B}V% + B} — (V4B} +(divX)B?).

First order differential operators and their adjoint are fully understood by their local de-
scription with a unitary connection V¥ and we can start with (5). This will be applied
with w = w,, , 1 <m < M. In order to use the localization on X in the variables (k, 1), it is
convenient to associate a new unitary connection with a finite orthogonal decomposition
of the fiber bundle p# : % — w. Namely assume that (;,,(k))o<,<n are orthogonal projec-
tions in the fiber &, , with ZZXZO n,(k) =1dg, , which depend analytically on & (actually
€>°-regularity is only used here). The latter means that 7, (k) = U(k) 'n,(k)U(k) is an
orthogonal projection in .7’ which is analytic with respect to & € w, while we know
N

Tn(k)? = (k) = ma(R)* (k) =1dg, .
n=0
When V® is a unitary connection on pg : # — w, endowed with the metric (,) ;ﬂezwk),

this induces a natural connection V*" on py,  : 7, % — w simply given by
VO =0V o, = (VY = (V97y)) €W, F) (V= [(V7n),m2]) |<goo(w;nnff) )
and sometimes called the adiabatic connection. The last equality is actually due to
Vo () = Ve(2) = (Vor,)mn + (Vi)

which implies
T (Vymn)m, =0.
Then N
ver =N ven = e n,vn, =V - Y (Vor,)m,
n=1
is a new unitary connexion, V*" | such that for any block diagonal A € €*°(w; £(%)),
A= Zflvzl TnAnTty,
N N
VOTA =Y 1, VA, = ) 1,V Apmy, (11)
n=0 n=0
and V;;.’”A remains block diagonal for any X € €°°(w; TM).

Actually any finite collection of unitary connections (V“"*)y<,<y on the fiber bundles
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DPn,7 : ThF — w, endowed with the metric ( , Y e2V®

, gives rise to a unitary con-
nection V7" = zﬁlennvw’”nn on pg : &% — w with the same property (11). Such a unitary

connection V7 or alternatively V¢ = V*7 is characterized by
Vnefl,...,N}, Vn,=0 in E®(0;L(F))

if we notice g =Idg — Zi,,v:l Ty .

A first version of the operator Ay, essentially as presented in [ ] is done as fol-
lows. We use the open covering Ugmn,n)er)2mpn> Qmpn = Om X Iy, of pgiR(f) given
by Proposition 2.1. Above the open set w,, 1 <m < My, use the decomposition Idg, =
o 15 (Ho(k)® 17, (Ho(k) = &2 1, 5 (k) , with J 9 = R\UN™ oy, and

Hm,n(k)z 1Jm’n(HO(k)), OSnSNm, ISmSMI. (12)

N,

Consider the unitary connection V¥»7"* =Y ""m 7 V™y with V™" a unitary connec-
n=0’tm,n m,n >

tion defined on py,, & : Tm nF — W by
e forn=0,Vm™0= om0V T, 0 with V7 defined by (5) with w = w,, ,

e for n€{l,...,Np}, Vy" = Wi n XW,  +dV(X) where Wy, »(k) is the unitary map
from CH»» ~ 1, n Fp,, to 7y n P, introduced in Proposition 2.1-(5).

We consider the operator

Am

N,
n 1
iy gm(k) [v)”g;"n + SV X | & () (13)

n=0

Ny, 1
n=1 ’

where X, 0 =0 and X, , for 1 = n < N,, is the real analytic vector field introduced in
Proposition 2.1-6) such that

1
Vkewn, Vi (Ho®)ly,,®)2 517, Hok). (15)

The right-hand side of (13) shows that A,, is a first order differential operator with

Coomp(Wm; L(F)) coefficients according to the general setting of Definition 2.5. Because

V@mT is a unitary connection, A, is symmetric on €, ,,(M;F) while the commmutator
[Hy,iA,,] satisfies

N, 1
[Ho,iAm]=gmk) | ). V;Z’nnn (Ho(k)1y,, ,(Ho(R)) | gm(k) = §ggn(k)17(Ho(k)).
n=1 ’

Clearly the operator [Hy,iA,,] = Zg:l TmaBmnTmn With By, 5 € %fgmp(wm;jf(nm,ng)),
suppB, » ©suppgm , and iterated commutators adf ", preserve this class.

By summing Ay = Zln‘f’: 1Am we obtain

1M 1
[Ho,iArl= 5 Y gm(k)1H(Ho(k)) = 5 17Ho).

m=1

So everything seems to be done here, and this is where we definitely omitted an argu-
ment in [ 1. Actually when wp,, N, # @ or more precisely when g,,, 8, Z 0, the
block diagonal decomposition @iv:OlJm!n (Ho(k)) do not coincide for m = m1 and m = may.

11



While considering the iterated commutator [A,, ,[Am,,Holl, j = 1,2, we must check that
[A,.,,Ho] has the local structure ny;”l TmnBmnaTmn, Bmn € Cgfg’mp(wm;f(nm,ng)) , both
for m =mq and m = mg. And this is not true in general. This can be corrected by mod-
ifying the unitary connections V=", But the additional terms deteriorate Mourre’s in-
equality which can be finally recovered only on a small energy interval [A—¢,A+¢], A€l
and € > 0 small enough. This is done in the following sections.

3 Modified unitary connection

Here we change the unitary connection V=" =3 " mp , V"1, , into a new unitary

connection V7 = ZZ:;”O nm,nvm’”nm,n whose the construction depends on the partition
of unity (2)(3)(4). Remember the definition (12) of 7., , . Actually it suffices to specify
the new connection V™" on the fiber bundle PrpnZ  TmaF — 0n, for every fixed pair
(m,n), but all the possible non empty intersections wq = pieqWm' ,formeac{1,...,My},
@ # wq C W, , must be considered. The new operator A; defined like Aj = Z%’: 1 Am with

this new unitary connection will satisfy for all pairs (m',n') e L(I),
adg B ' € Coomp@n; £ (Tpy wF)) with  suppadz B ' ©SUPpgm’ (16)

for any By n' € Coomp(@Wm's (T F)), With suppBpy  © SUPPEm’ € Wm , and we will
deduce
VkeN, adl; Hoe LLAM;P).

For the moment we still work with first order differential operators with €*°(M; £ (%))
coefficients (see Definition 2.5), acting on €y, ,(M; ). The question of their self-adjoint
realizations as well as the functional analytic meaning of commutators will be discussed
later.
By expanding (16) with

Ai=i Y gan(vpn 4 ma)

”m,n)gm(k) (remember Xm,O =0)
(m,n)eL(I)

the commutator equals

Y . divX,,,)
[lAI:Bm’,n’] =— Z gm(k) [(V;;:nnn + #ﬂm,n):Bm/,n/] gm(k)
(m,n)eL(I) ’
. (div Xy )
=- Z gm(k) [(v;r’:n + %ﬂm,n),ﬂm’,n’Bm’,n’”m’,n’] gm(k)
QmnnQ, s i NT£D '
(m,n)€’L(I)

for any (m’,n’) € L(I), where we recall Q,, , = W, % Jp, , for (m,n) € L(I) as in Propo-
sition 2.1 with suppgm < wy, and 1, ,(Ho(k)) = 7 1 (k) for k € w,, . In the above sum,
expand the commutator [V , 7 /By /T ] as:

=m,n =m,n =m,n
[va o ﬂmr’n]er,n/ﬂ,’mr’nr + ﬂmr,nr[va . ,er’n]ﬂm/,nr + ﬂmr,n/er’n[va L ﬂmr,nr]

while, as operator valued differential operators on w,, Nw,,,

mon _ gmon gmn
[ X anm’,n’] = TmaVxy Tmallm'n' ~Tm'n'TmnVy Tmn
m,n n m,n

m

=m,n _am,n
van;”m,n”m’,n’ = Van(ﬂm,nﬂm’,n’)-

12



Therefore the condition (16) is satisfied when
V™™ (T n T/ ) =0 above Supp g, NsSuppgn , (e%))

for all pairs (m,n) and (m’,n’) in L(I) such that Q,;, , NQp » NZ # @. This can be dis-
cussed by using the order introduced in Proposition 2.4 after the classification of cases in
Proposition 2.1-(7) and Definition 2.2.

Proposition 3.1. Let I and I be fixed intervals such that I € I c R\t and let the partition
of unity given by (2) (3) (4) after Proposition 2.1 be fixed.

The unitary connections (W’”’”)(m,n)eL(I) on the vector bundles py,, 7 : TmanF — Wm can
be defined such that (17) holds true for all pairs (m,n) and (m',n') in L(I). These con-
nections satisy the additional property that when (ko,Ao) € QO nNp s_g(I) < X and the set
{tm/,n") e L(I),(ko,A0) € Q' '} = {(my,ne),1< € <L} is ordered like in Proposition 2.4,
there exists an open neighborhood 3, of ko such that

om,n _ m,n
Tppng ©V 0Ty n, = Tmpng, ©V " 0Tmy ny, 0N Vg

The proof will be done in several steps. It can be done for any fixed pair (m,n) €
L(I). We firstly construct a unitary connection V* on the restricted vector bundle p,, , :
TmnTF — wq where m € a < {1,...,M,} and wq = Nyiecqwm' # @ . Then we use a partition
of unity in order to glue all these connections V% .

2 _
2 =
m; = 7w} in a unital commutative €*-algebra o/ . For y ¢ ¥ set my = [ljey7; with the

Lemma 3.2. Let &4 = {n;,i € ¥} be a finite non empty set of self-adjoint projectors ©

convention ng = 1. Assume that n € Py implies 1 —n € Py. Then the €*-algebra
generated by Py, €*(Py), is finite dimensional and a basis is given by the family, T,
made of my # 0 such that for all i € %, n;my =0 when i ¢y. In particular for any i € &, n;
admits a unique decomposition m; =} yer Ci Ty With c;y €{0,1}.

Proof. The commutative € *-algebra generated by & is the set of linear combinations

Z cymy, cy€C,
ha=52

where all the ,’s are self-adjoint projectors.

For any y c .# and any i € . we can write

Ty =77y + (Lo — )Ty = Ty + i1 Ty

with ;=14 —7; € 5 . We deduce that any 7y, y ©.#, can be written as a finite sum of
ny,y' <., such that m;my =0 forallie #\y'.

Our family T', is thus a linear generating family of €*(24). It is linearly independent
because Y. cg ¢y, = 0 implies ¢y, 7y, = 7y, [Lyes ¢y7y] = 0 and therefore ¢y, = 0 for all
Y1€ I. O

We now construct the connection V® on PrynZ TmaF — Wqg When g =Npreq Wm' # D
for me ac{l,...,My}.

Proposition 3.3. Fix a < {1,...,M;} and (m,n) € L(I). Assume m € a c{1,...,My} with
Wo = Nm'caWm' # @ . There exists a linearly independent finite family (7y)yer, of spectral
projections 1y (k) = 1J7(H0(k)), Jy € Jmn, which are analytic with respect to k € wq, and
such that
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* mymy =0ify#y, v,y €la,

* for all pairs (m',n"), m' € a, 0 <n' < N,y , the spectral projection Ty, nTm'  admits
a unique decomposition

Tmnltm' n' = Z Cm'n'yTy 5 Cm';ny€ {0,1}.
yelq

The unitary connection V* = Yyer,Tyo V™" omy on py, \F : TmnF — Wq then satisfies
vm'ea,¥n'€{0,...,N; ,}, V'Omalimn)=0 on w,.

Inynf;é @ foryely, then {(m/,n'),m' € a,0 =n' < Npy,Jy € Jpy v} < L(I) can be ordered
like in Proposition 2.4 and written {(m¢,n¢),1< ¢ <Ly} with

Ly
Jy = [Ql(Jm,n N Jm;,ng) = Jm,n N JmLy,nLY y Ty = ”m,n”mLy,nLY .

Proof. Let us work in the unital commutative 6 *-algebra, </ , of continuous functions of

f(k,Hy(R)), k € wq, such that m,, ,(R)f(k,Ho(k)) = f(k,Ho(k)) with the unit 7, , .
Ny,

For any m' € @, we know the fiberwise identity & Tm' n(R)=1dg, for k € wy c wp and

n'=0
Ni,
Z Tmanltm';n = Tm,n = 1y.
n'=0

By setting % = {(m/,n'),m' € a,0=n'<N; ,} and Py = {Tpptm n,(m',n) € H} and
Py =PgU{ley = AmnTtm w,(m',n') e Ko}, F = F x{0,1}, we deduce

€ (Pg)=C (Pg).

The family & is stable by 7 — 1,y — 7 and Lemma 3.2 can be applied.
By construction the basis (7y)yer, of €*(24) = €*(2y4), is made of products

H (7'[m,n7'[m’,n’)O H (Tm,n _nm,nnm’,n’) (18)

(m/,n")eyo (m/,n")ey,

for yo,y1 < % . They can be written 1y, (H o(k)) with ), < J;, , and they are all analytic
with respect to 2 € wq .

The property of the unitary connection V¥ is due to 7y (7 n T /) € {ny,O} for all ye Ty,
m'eaand all n'€{0,...,N; ,}.

When J, NI # @ with my = 15 (Ho(k)), the pairs (m',n’) involved in the first factor of
(18) must satisfy n’ = 1 while in the second factor the pairs must be (m',0). With 7, , —
TmaTm' 0 =Tmn Zflv,’i/l Tm/n' , this implies that 7y is a positive linear combination of prod-
ucts of 7y, m' €, (m',n') € L(I). But the two properties of the basis (7ry)yer, says that
it must be the product of the all the 7,,,,,, 1<¢ <L, with my€ a, (m¢,n,) € L(I) and
Jy €m0, - For such pairs (m',n’) we have

VkEwq, O0#my(R)<my (k),

and the intersection ﬂzl Qpm,NZ D (wexJy)NZ # @ . By ordering the set {(mg,ng), l</¢< LY}
like in Proposition 2.4 we get Jy = Jm; ., and wy(k) =7m; n, (k) for k€ wq. O
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Proof of Proposition 3.1. Fix m € {1,...,M1}. The set K = Uy, supp(gm Nsuppgn) is a
compact subset of w,, . For any a c{1,...,M;} suchthat me a, fa =2, set

Dg=wq\ U suppgm' = N wp \( U suppgm).
m'da mea m'éda

These are open sets and they make an open covering of K,

Therefore there exists a partition of unity

@i =1 onowny
meac{l,...,My}

with
* Oq € Coomp(@q) When fa =2,
* O € € (wy,) and supp Oy, cw, \K .

The unitary connection V on Py F TmanF — Wy is defined as

V= Y OV,

meac{l,...,M}

where V¥ is the connection above w, > @, introduced in Proposition 3.3. For any m' €
{1,...,M;} such that supp g, Nsuppg’ # @ we get

vt = > 0,V90,
{m,m'}cac{l,..M1}
3 2 _
with Z e2=1

{m,m"}cac{1,..M;}

on a neighborhood of 7, ;v of supp g, Nsupp g . This implies for any n’ € {1,...,N,;1},

S 2
Vm’n(7l'm,n7'¢'m’,n’) = Z Gava(nm,nnm’,n’ |wa) on ¥y m/,
{m,m"}cac{1,...M;}

where Proposition 3.3 says V*(7,,, 7/ |wa) =0whenm'ea.
Therefore (17) holds true for all pairs (m,n) and (m/,n') in L(I).

For the second property we again fix m € {1,...,M;}, (ko,A0) € Qm n ﬂpgiﬂ(f) c X, and
consider the set

{(m',n/) e L(I), (ko, o) € Qm’,n’} ={(mg,ny),1<¢<L}.

The intersection ﬂé‘lem[m N X 3 (ko,Ao) and the family ((m¢,n,))1<¢<r, can be ordered
according to Proposition 2.4.
Define

ag={my,1<¢ <L}

where obviously m € g and kg € wg, . A stronger property says that kg € wq for me a c
{1,...,M;}, implies a < ag: Actually if kg € w,, , then the condition (kg,Ag) € Z N (W % I
implies the existence of (m’,n’) € L(I) such that Ay € J,y . Thus k¢ € w,, implies m' € ag
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and therefore ko ¢ w, for a ¢ ag. Because supp®, € wq for m € a & ag, ¥, = Wq, \
Umeaga, SUPP Oy is an open neighborhood of 2o . We now write

V= Y 0,V'0q on 7,

meacag

and > e2=1 on 7, .

meacag

With the notations of Proposition 3.3, for m € a < ag there exists y € I'; such that J,
contains Ag € Spec(Hy(kg)) nI. For such a Y, Proposition 3.3 provides a pair (mgq,y,nq,y) €

— a —
L(I), mg,y € asuch that m, = T n gy nay s (ko,Ag) € Qmw,nw , and nma’y,na,yov T m gy =

Tmaynay o Y O Mmgyinay ON Wq and therefore on 7, € wq, < wq. Because (kg,A9) €
Qmw,nw , there exist ¢ € {1,...L} such that (my,,nqsy) = (my,ns) and the ordering of
Proposition 2.4 says fim, ,.n,, Tmp.n, = TmeneTmyn, = Tmy,ny, and

v l, = X . |
Tmpng OV Omy ny The OaTlmpnr Tmaynay V' Tmeyne, Tmpn Oa Tho
meacag

Y. OuV™M"0,

CMmp,ng, |7/k
meacag

Tmp,ng ©

_ ,
= Tmy,ng oV™ OﬂmL,nL"l/kO :

4 The operator A;

We specfify here the construction and properties of A; and finish the proof of Theorem 1.1.
As mentionned in the beginning of Section 3 the operator A; is given as a first-order

differential operator with €, (M ; £(F))-coefficients by

comp
£ (divXym,n)
Ar=i Z ng(k)( vy %nm,n)gm(k)
m=1n=

where

o Zm 1 gm(k) =lina nelghborhood of py(p Z_,R(I )), is the partition of unity subordi-
nate to py(Z mpz_,R(Il)) c Um:1 W, , introduced in (2)(3)(4) after Proposition 2.1;

* X n is a vector field such that (15) holds, of which the local construction was given
in Proposition 2.1-(6);

e V™" is the modified unitary connection given by Proposition 3.1.

By construction UM Jm.n €I and there exists y € 6 (I;R) such that
( P

m,n)eL(I)

Apy(Ho)=A; = y(H)A; on €%, (M;ZF). (19)

comp

comp

As a differential operator we get

(m,n)eL(I) (m/,n")eL(I)

with B, € %fgmp(wmr;,%(nm,ng)) with supp B, » € suppgm’ . But because the connec-
tion V™" satisfies (17) we deduce that for all jeN,

d’ 4, Ho, iA[le LLAM;F)).
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If A is essentially self-adjoint on CeompM;F) and that its self-adjoint extension, still
denoted by A, satisfies ei*A1D(H) < D(Hy), for all ¢ € R, then Ho € €°(A;).

The second statement is a consequence of (19) and it suffices to check the essential self-
adjointness of A;. Because py(Z r‘lpgi[Rz supp x) is compact with y chosen like in (19),
there exists a smooth domain w with @ compact in M such that the coefficients of A
belong to €5, ,(w; £(F)). Take a finite covering w < Um% wp, of coordinate open charts
wy, . When an“ 62(k) =1 in a neighborhood of w with 0, € €7, ,(w,;R) consider the
operator

Nmax

Ay =-— Z HnAann
n=1

dim M
with A, = Y (VM)2 |
. ak

where (k1,...,kgim u) are coordinates on w, and V¥ is the unitary connection defined
by (6). In a neighborhood of w, —A, is an elliptic second order operator with a scalar
principal part. Moreover there exists a constant C, > 0 such that C, — A, is non nega-
tive on €, ,(w; £(F)). The standard elliptic regularity on the smooth domain w (see
eg. [ 1) says that the Friedrichs extension of C, — A, , which is the Dirichlet realiza-
tion denoted by A =C,, , is self-adjoint with domain H 2(Lu F)NH 1(w &) and that
Ceomp(W;F) is a core for N = (Cw AD)

The differential operator A; acts on € (w; &) with

comp

IA7pl < ClA ol
(A1, N @) — (N, A1p)| < ClN V2|2

for all ¢ € €.5,,,(w;F). The second inequality is due to the fact that .4 is a second

order differential operator with a scalar principal part so that [A',A] is a second order

differential operator with %fgmp(w; ZL(%)) coefficients. Nelson’s commutator theorem (see

eg. [ 1) tells us that A; is essentially self-adjoint on Ceomp(W;F) and therefore on
comp(M F ) _

The final point is about the local Mourre inequality (1). Let Ag € I for any k9 € M such

that (g, o) € X, Proposition 3.1 provides a neighborhood 7 of k¢ and a pair (my,nz) =

(mL(kO),nL(ko)) such that (k(),/l()) € QmL’nL
V(m,n)e L(I), Tmr,ng o V" OTNlmy,nr = Tmy,ng, oV™ nnmL,nL s

while 7, n, Tmn € Tmy 0,0t
For k € 7},, we deduce

”mL,nL[HOaiAI]nmL,nL = nmL,nL[HOa Z gm(m)ﬂmL nLVS?’ ﬂmL nLgm(k)]ﬂmL nr
(m,n)eL(I)
= ”mL,nL[H07_ Z gm(k)vm,ngm(k)]nmLynL
(m,n)eL(I)
1
= 2”mL,nL Z gm(k)zﬂm,n Tmy,ng
(m,n)eL(I)
1
= (Ho(k)).

”mL ny, =
2 ’ 2 WLL"L

Now pELR({AO})ﬂZ is compact and U, 1y)ex 7/ko x o,

M L(ko)> M L(kg)

can find N, € N such that pzﬁR({/lo}) nxc U 7/k x o

M L(ky)>TL(ky) *

is an open covering of it. We

Therefore we can take
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& >0 such that p5' ;([Ag— 6,40 +6)NZc Uivi‘i Voo * Imrgynie,, and we obtain

. x 1
1p0-6,20+61HHo,iA1]11[2,-5 2, +61(Ho) = 51[A0—5,Ao+6](HO)>

which is (1).

5 Comments and examples

The changes between the initial and the new versions requires several comments in par-
ticular to convince the reader that it does not change the applications which were made
eg. in|[ 1. Some simple examples in dimension 2 are then given in order to illustrate
the multistep construction of A .

5.1 Comments

a) The explicit form of the conjugate operator A; is not important but it is important for
the applications that it remains a first-order differential operator with €°°(M; £(%))-
coefficients. The main difference between “Theorem” 3.1 in [ ] and the new
version Theorem 1.1 is actually the local form (1) of Mourre’s inequality around the
energy A . But this does not make any problem because Mourre theory is essentially
local in energy (see [ [ 1 D.

b) The local in energy version of Mourre inequality is actually the stable version when
perturbations Hy+V are considered. From this point of view Theorem 3.3 of [ ]
which was a litteral application of the general Proposition 7.5.6 in [ ], remains
valid after replacing A7 by its new version A7. Note that a regularity Hy € C1*¢(A)
with € > 0, or € = 0 interpreted as a Dini-type continuity (see [ 1), is required.
This was definitely incorrect in our initial version with A = Aj and this works now
with A=Ag.

c) In all the examples presented in [ ] and in particular for the case of periodic
Schriodinger operators developed in [ 1, the Hilbert bundle pg : & — M is
actually a trivial one & = M x #' , with M = T¢ = R%/7% . The initial connection V¥
can be taken as the trivial one and this is probably the reason why we were not very
careful about the use of connections in [ 1. However the now more accurate and
correct version, shows that it is important to clarify this point especially when finite
rank subbundles pr,, . : Tm nF — wm are considered.

d) In | ] with & = T% x #' the perturbation V that we considered were L(A#")-
valued pseudo-differential operator V(Dp) of order —u, > 0, with a scalar prin-
cipal part. The negative order —u < 0 implies that V(D) is a relatively compact
perturbation of Hy while the scalar principal part implies V(D}) € €1**(A;) and
Hy+V(Dp)e¥ 1+“(AU1,12). All the arguments developed in [ ], concerned
with the absence of singular continuous spectrum, the virial theorem or propaga-
tion estimates, work after replacing A; by A;. About the asymptotic completeness

of the wave operators, which is a consequence of Proposition 7.5.6 in [ ] or The-
orem 3.3 in [ 1 when p> 1, we recall that it is still an open question in the long
range case >0, as it is discussed in [ 1.
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e) About the absence of singular continuous spectrum for the free operator Hy away from
the set of thresholds 7, a conjugate operator is not necessary and we refer the reader
to [Kuc] for a spectral measure argument for it.

f) Theorem 1.1 and its proof were given in a global form, with A; constructed for the
whole energy intervals I € I € R\ 7. This was done in order to stick as much
as possible to the initial version. This imposes the treatment of possibly several
energy intervals Jp, ,, 1 <n < N, above w,,. Actually the construction can be
made simpler if one works from the beginning in I =]JA—8,1+6[ and I =]A—25,1+28[
with § > 0 small enough so that for every m € {1,...,M;}, N,, = 1. This simplifies
the connections V¥ =, 1V 7, 1 0N Py 5 Tm1F — wm with a single term
and only one vector field X,, 1 above every w,, is used in the construction of A;.

Wm,1 M;

m

X with the partition of unity 3.’ g%n R)=1
in a neigborhood of p M(PELR(M —-0,1+061)nZ), the rank of the various projections

However while gluing the operators V

7m,1 changes and the modification of the connections v into V™1 is still necessary
in order to ensure Hy € €*°(A;). This is probably a simpler way for visualizing the
whole construction, of which the generalization relies on the simple Lemma 3.2,
and this is how it will be illustrated in the examples below.

g) Generically crossings of eigenvalues of a matricial self-adjoint operators occur along
codimension 2 strata. When dim M = 2, singular strata with dim S < M are thus
points and these singular points are removed while working in the energy intervals
I @R\7. So when dim M = 2 and generically, pgiR(I ) is made of disconnected
strata of dimension 2 locally diffeomorphic to M, and Hj is locally (on X) a scalar
operator. The analysis is much simpler. Such two dimensional problems were con-
sidered in [ ] and appear in the modelling of graphene.

h) The assumption that the mapping ps_g : £ — R is proper is used in a fundamen-
tal way, in order to make a stratification which is compatible with the projection
pr—pr. In some examples where a finite stratification is obviously given it can be
forgotten and the construction of a conjugate operator A7 can be done without this
assumption, especially when the differential of pg_.r, the restriction of py_.g to ev-
ery stratum S, is uniformly away from 0. Then the construction relies on the local
understanding of incidence of strata with the possible changes of the rank of the as-
sociated projectors. Another use ps_g: Z — R being proper, is for the construction
of a self-adjoint operator for Nelson’s commutator method, but this can be easy for
some non compact manifold M (e.g. M =R%). Such a simple example is discussed
below.

i) One may wonder about the mixing of the stratification of subanalytic sets, which
makes sense in the analytic category with proper analytic mapping, with € par-
tition of unity. It works for our construction of A;. A question is whether the inci-
dence of strata, as well as the associated spectral projectors, could be fully handled
within the subanalytic category with the help of Lojasiewic inequalities.

5.2 Examples

We give two examples with M = R? and #’ = R? with pictures in order to visualize in
simple cases our general construction and to make more explicit the problem set by the
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initial construction of A;. Although these examples are non generic according to com-
ment g), the two dimensional case, M = R?, allows simple pictures.
Other examples dimesion 3 with M = R% or M = T3, motivated by the study of Maxwell
equations were recently considered in [Poi]. In this text a more accurately designed con-
jugate operator taking into account the more specific structure of the operator allows to
consider the Limiti Absorption Principle at the threshold energies.

First example: Consider

k%+k§+k2+k1 klkz

Ho(k,kg) =
olk1,k2) ( kiks R2+ k2 +ky—ky

1
):k§+k§+k21dRz+k1(k kzl) (k1,k2) € R?
, -

The characteristic variety is given by
T = {k% +kS+ho+hi\/1+k2,(k1,ks) € [Rz}

and is partitionned into 15 strata given by

A=k3+k5+ho+ki\/1+k2

with the following choices
® +£1>0, +(ka+1/2)>0, dim S =2, multiplicity 1, in blue or red on Figure 1,
® £k1=0, +(kg+1/2)>0,dim S =1, multiplicity 2, green on Figure 1;
® +k£1>0,ky=-1/2,dim S =1, multiplicity 1, black on Figure 1;

® £k1=0,k2=-1/2,dim S =0, multiplicity 2, black on Figure 1.

Figure 1: Stratification of

There is one threshold at energy —71; corresponding to (k1 =0,ke = -1/2,A = —%) . While
working in the energy set I €] - 1, +oo[ the number of strata can be reduced to 5 the red,
blue ones (dim S = 2, multiplicity 1) and the green one (dim S = 1, multiplicity 2) on
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3 dim S = 1, multiplicity 2

dim S =2, multiplicity 1

Figure 2: Level sets A €[1g— 9,10+ 51, Ao =1, 6 =0.4 (blue), 6 =0.04 (red).

Figure 1.

The situation is better seen by considering the level sets in R? around an energy Ao (in
Figure 2 1g = 1). Let us look more carefully around a point along the k9-axis where A
is an eigenvalue with multiplicity 2. Three points %, , dim S Fmy = 1, kp, and kpy, with
dim S by = dim S By = 2, the boundaries of open set w,,; (dashed lines) and of suppgm;
(black lines) are represented for j =0,1,2 in Figure 3.

1

T T T T T T
0.3 0.2 01 0 01 02 03 04

Figure 3: Open sets w;,, (dashed lines) and supp g,, (black lines) around the points %, .
Level sets A e[Ag—5,10+5], Ao =1, 6 =0.4 (blue), § =0.04 (red).

In Figure 3 the projectors ,; 1 have the minimal rank 1 for j = 1,2 and the connection
vl need not to be modified above ®m; - It is not the case for mo where rank 7,1 = 2
while supp g, intersect suppg,,, and suppg,,,. The connection vl differs from the
trivial connection V™01 | V';O’l = X ®Idg: . Above a neighborhood of supp g, Nsupp gm, for
j =1,2 (black areas in Figure 4), it equals V™01 = nmj,lvmo’lnmj,l +(Idpe —nmj,l)VmO’l(IdRQ -

”mj,l) .
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Figure 4: Localization in wp, (dashed limits) of supp gm, Nsuppgn, (in black), j =1,2,
around which the connection must be modified.

Second example: This is a simplified version of the first one, for which we will explicitely
compare the two operators A; and A7, with

k2+k1 k1k2 1 k2
Hy(k1,k2) = =koldpe + £ .
o(k1,k2) (k1k2 kz—k1) 2ldpe 1(k2 _1)

Here the characteristic variety is
= {kQ +hi\/1+k2,(k1,ko)€ Rz} :

It does not fullfil the condition that ps_g : £ — R is proper. But as mentionned in Com-
ment h) above, it is not a problem because there is an obvious finite stratification of
compatible with py_r: X — R. It is given by the 5 strata given by

ﬂzﬂi(kl,kz)zkgikl\/l+k§

with the following choices:
* +tk1>0,dim S, ; =2, multiplicity 1, in blue or red on Figure 5;

® £1=0,dim S¢ =1, multiplicity 2, in green on Figure 5.

There is no threshold because d3,k2 = 1 along pySo = {(0,k2),k2 € R} while VA, =

satisfies [VAi|=1on py (S +)={(k1,k2),+k1 > 0}. In particular %.V is a smooth vec-
tor field on pp(Sy+ 1) such that %.Vﬂi =1. Notice also that
1 k) 1 1
0k2H0:(k1 1)2§IdR2 for |k1|$§.

The spectral projectors associated with the eigenvalues 1. (k1,k2) for k1 # 0 are given by

Ty =

1 (1+\/1+k§ ko ) 1 (1+k§—1 ks

2/1+K2\ k2 ~1+/1+ks 2. /1+k2\  —ka  \J1+RZ+1)
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1.08
-2.41

Figure 5: Stratification of X in the second example.

Take go € %ggmp(] - 1/2,12[;R), g— € €°(1- 00, 1[;R) and g, € €>(11,+ool;R) such that
g0 +g2 +g2 =1 on R. The operator A; of [GeNi] is then given by

. 0 VAe 1 .. VAe
—1Ar=golk1)—golk1) + k —2_V+-d (—2)] k1).
229 4 gO( l)ak2g0( 1) 61’62§+’_}g81( 1)”82 |V/1£2|2 2 v |V/1£2|2 nEzgfl( 1)

Then [Hy,iAf] equals

1 k 01
g2(k1) Y+ g2 (k1) + g% (k1) = 1dge + g2(k k1
k1 1 1 0

01
Because 10 ,7+ | #0, the double commutator [[H,iA;],iA;] is a first-order differ-

ential operator with a non vanishing principal part for k21 € suppgonsuppg+ and it is not
bounded.

For A; we change the trivial connection in {(%1, k2), |k1| < 1/2}: Take O € comp(] 1/4,1/4[;R)
and 61 € €°(R;R), suppf1 < R\ [—g, g] and 93 +9% =1onR. Then replace 3y by

0 0 0
=90(k1)—90(k1)+91(k1)[7[+ My +TMT_—T7_ ]Hl(kl)

v
) oky oksy oky

and take

Aey

iAr=gok)V 0 gkt Y ge (ki —V+1div(vgz)
I1=80\R1 @go 1 BerB1) ey |VA152|2. 2 |VA£'2|2

£1,62€{+,—-}

nezgel(kl)-
Computing V 2 Hj gives
2

k1
1

oAy AA_
+—7
ks " Oky

kok1

\/1+E2

V. Hy

Okg

9§<k1)(k1 )+92(k1)
1

1
Tdge +0§(k1)k1((1) 0) +03(k1) (4 —7-)
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and the commutator [Hy,iA ] equals now

01 kok
IdRz+kle§(k1)g%(k1)(1 O)+9%<k1>g3(k1) 2 12(n+—n_).
\V31+ES

Because 0pgp = 0 on suppg+ and 7, — - commutes with n., the double commutator
[[Ho,iA7l,iA ]is now a zeroth order operator. It is bounded and the iterated commutator
can be checked to be bounded: Actually all the non diagonal terms with respect to the
decomposition Idg: = 7, +7_ , generated after every commutation with iA7 , are supported
on supp 6y and therefore vanish on suppg .

Here the Mourre estimate can be written globally because

kok1

1
02(k1)g3(k1) W(m —n)= —Eef(kl)IdRz
+

2
and

1 0 1

klgg(kl)gg(kl) (0 1) > —EH(Z)(kl)IdRz .

We obtain

~ 1
[Ho, iA]] > EIdRZ.
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