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Abstract

About 25 years ago our article “Mourre theory for analytically fibered operators”
was published in J. of Functional Analysis. This article proposed a general con-
struction of a conjugate operator for a wide class of self-adjoint analytically fibered
hamiltonians, provided that one accepts a more accurate notion of threshold. It is
only recently that Olivier Poisson mentionned us a problem with the statement that
H0 ∈ C ∞(AI ) . Actually even H0 ∈ C 2(AI ) or H0 ∈ C 1+0(AI ) , which is crucial for the
full application of Mourre theory, is problematic with our initial construction. How-
ever the statement and the construction can be modified in order to make work all
the theory. This is explained here.

Keywords: Mourre theory, stratification of subanalytic sets and maps, unitary connec-
tions
MSC2020: 32B20, 35P25, 47A40, 53B35, 81U99.

1 Introduction

In [GeNi] we introduced the notion of an analytically fibered operator

H0 =
∫ ⊕

M
H0(k) dv(k)

where:

(i) M is a real analytic manifold and dv(k) stands for a volume density which can be
written dv(k)= e2V (k) dk1 . . .dkdim M in any coordinate chart with V (k) real analytic;

(ii) H ′ is a Hilbert space, L (H ′) and L∞(H ′) respectively denote the spaces of bounded
and compact operators in H ′ ;

(iii) for all k ∈ M , (H0(k),D(H0(k))) is a self-adjoint operator in H ′ such that M ∋ k 7→
(H0(k)+ i)−1 ∈L∞(H ′) is real analytic (actually this can be replaced by (H0(k)+ i)−1

is a real analytic section of L∞(F ) where F is a real analytic Hilbert bundle pF :
F → M with fiber Fk ∼H ′) ;
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(iv) when Σ= {(k,λ) ∈ M×R,λ ∈Spec(H0(k))} is the analytic characteristic variety in M×
R , the map pΣ→R :Σ→R given by pΣ→R(k,λ)=λ= pR(k,λ) is proper. We distinguish
by notations the natural projection pR : M ×R→ R from its restriction to Σ , pΣ→R =
pR

∣∣
Σ .

After noticing that the analytic characteristic variety can be partitionned in the semi-
analytic sets according to the multiplicity µ of the eigenvalue λ of H0(k) , Σ= ⊔

µΣµ , the
general theory of subanalytic sets (see [Hardt, Hiro, DeLe]) tells us that there exists a
(locally finite) Whitney stratification S of Σ compatible with pΣ→R , which means here:

• Σ=⊔
S∈S S , where any S ∈S is an analytic connected manifold embedded in R×M;

• S∩S′ ̸= ; implies S′ = S or S′ ⊂ ∂S
de f= S \ S ;

• for all S ∈S there exists µS such that S ⊂ΣµS ;

• for all S ∈ S either pΣ→R(S) is an open interval and dpΣ→R

∣∣
TS does not vanish

(rank of dpΣ→R

∣∣
TS is constantly equal to 1) or pΣ→R(S) = {1pt} (rank of dpΣ→R

∣∣
TS

is constantly equal to 0) .

We refer the reader to the founding articles [Hardt][Hiro] and to [Loja][BiMi] for a panoramic
or historical presentation. Another reference concerned with the analysis of subanalytic
Lipschitz functions is [DeLe]. The application of these general ideas to our case is given
in [GeNi]. We called the locally finite set τ = ⊔

rank dpΣ→R

∣∣
TS=0

pΣ→R(S) in R , the set of

thresholds for H0 . Our main statement in [GeNi] was

“Theorem” 3.1 in [GeNi] 1. There exists a discrete set τ determined by H0 so that for
any interval I ⋐ R \ τ , there exists an operator AI essentially self-adjoint on D(AI ) =
C ∞

comp(M;F ) satisfying the following properties:

i) For all χ ∈C ∞
comp(I) , there exists a constant cχ > 0 so that

χ(H0)[H0, iAI ]χ(H0)≥ cχχ(H0)2 . (1)

ii) The multi-commutators adk
AI

(H0) are bounded for all k ∈N .

iii) The operator AI is a first order differential operator in k whose coefficients belong to
C ∞(M;L (F )) and there exists χ ∈C ∞

comp(R\τ) such that AI = χ(H0)AI = AIχ(H0) .

As mentionned above, the second statement ii) is problematic with the construction of
[GeNi]. It was actually not carefully checked in [GeNi]. However the general idea works
after some modifications. Below is the proper statement.

Theorem 1.1. For any interval I ⋐ R \ τ , there exists an operator ÃI essentially self-
adjoint on D(ÃI )=C ∞

comp(M;F ) which satisfies the following properties:

i) For all λ ∈ I there exists δλ > 0 such that

1[λ−δλ,λ+δλ](H0)[H0, i ÃI ]1[λ−δλ,λ+δλ](H0)≥ 1
2

1[λ−δλ,λ+δλ](H0) .

ii) The multi-commutators adk
ÃI

(H0) are bounded for all k ∈N and H0 ∈C ∞(ÃI ) .
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iii) The operator ÃI is a first order differential operator in k whose coefficients belong to
C ∞(M;L (F )) and there exists χ ∈C ∞

comp(R\τ) such that ÃI = χ(H0)ÃI = ÃIχ(H0) .

The construction of the new conjugate operator ÃI slightly differs from the one of AI

in order to ensure the condition ii). The price to pay is about Mourre’s inequality i) which
is now only local (with a uniform constant which is here 1

2 ). But we recall that such a local
inequality is sufficient for developping all the theory. Additional comments are given in
Section 5.1 after the construction of ÃI is done.

2 Preliminary remarks and notations

The notion of vector (Hilbert) bundles although pointed out and later used in [GeNi2] was
not accurately enough considered in [GeNi]. We specify its use now. The local analysis of
[GeNi], putting the stress of locally scalar differential operators, was essentially correct.
But gluing all the pieces together, where the dimensions of vector subbundles change,
must be done carefully by taking into account the stratified struture of Σ . Elementary
remarks and notations are collected here, while we recall the local initial construction of
the operator AI . Its correct variation ÃI will be done later.

2.1 Open covering and partition of unity on Σ

The main idea of [GeNi] which still works is that the construction and the analysis can
be localized on the characteristic variety Σ . Because pΣ→R : Σ→ R is proper, p−1

Σ→R
(I) ⊂

Σ is compact and an open covering
⋃

i∈I Ωi of p−1
Σ→R

(I) can always be assumed finite.
A partition of unity

∑
i∈I g i(λ,k)2 ≡ 1 over a neighborhood of p−1

Σ→R
(I) , subordinate to⋃

i∈I Ωi , is made with g i ∈C ∞
comp(Ωi) .

Like in [GeNi], the open sets Ωi , i ∈I , will be cylindrical above M , with Ωm =⋃Nm
n=1ωm×

Jm,n =⋃Nm
m=1Ωm,n , ωm open set of M and Jm,n open interval. The finite family I can then

be either I = {1, . . . ,mI } or I = L(I)
def= {

(m,n) ∈N2, 1≤ n ≤ Nm, 1≤ m ≤ mI
}

for a more
local presentation on the energy axis. We use the convention that ω is an open set of M
and Ω is an open set in M×R .
It is convenient to introduce another interval Ĩ such that

I ⋐ Ĩ ⋐R\τ

and all the open intervals Jm,n , 1≤ n ≤ Nm , 1≤ m ≤ mI , will satisfy Jm,n ⋐ Ĩ . With I we
shall associate the finite (S is locally finite and p−1

Σ→R
(I) is compact) set of strata

SI =
{
S ∈S , S∩ p−1

Σ→R(I) ̸= ;
}

.

The assumption I ⊂R\τ implies

∀S ∈SI , rankdpΣ→R

∣∣
TS ≡ 1.

Proposition 2.1. Let I , Ĩ , be two open intervals such that I ⋐ Ĩ ⋐ R \ τ . There ex-
ists open sets ωm ⋐ M , for 1 ≤ m ≤ MI , and open intervals Jm,n ⋐ Ĩ for (m,n) ∈ L(I) ={
(m,n) ∈N2,1≤ n ≤ Nm ,1≤ m ≤ MI

}
such that:

(1) setting Ωm,n =ωm × Jm,n ,
⋃

(m,n)∈L(I)Ωm,n is an open covering of p−1
Σ→R

(I) ;
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(2) Jm,n ∩ Jm,n′ =; for n ̸= n′ , 1≤ n,n′ ≤ Nm ;

(3) for any (m,n) ∈ L(I) there exists a unique stratum Sm,n ∈ SI (rank dpΣ→R

∣∣
TSm,n

≡ 1)

and Ωm,n ∩Σ is a (finite) union of Ωm,n ∩S′ , S′ ∈ SI , Sm,n included in every S′ (i.e.
S′ = Sm,n or Sm,n ⊂ ∂S′ = S′ \ S′);

(4) 1Jm,n (H0(k)) has a constant rank µm,n for k ∈ ωm and there exists another interval
J′

m,n ⋐ Jm,n such that 1Jm,n (H0(k))= 1J′
m,n

(H0(k)) for all k ∈ωm ;

(5) for all (m,n) ∈ L(I) there exists a real analytic section Wm,n of L (Cµm,n ;F
∣∣
ωm

) with
Wm,n(k) :Cµm,n →Ran1Jm,n (H0(k)) unitary for all k ∈ωm so that

Wm,n(k)∗H0(k)1Jm,n (H0(k))Wm,n(k)= H̃m,n(k)

is a real analytic µm,n ×µm,n matrix with respect to k ∈ωm,n ;

(6) there exists a real analytic vector field Xm,n on ωm,n such that

∀k ∈ωm,n , Xm,nH̃m,n(k)≥ 1
2

IdCµm,n ,

[Wm,n ◦ Xm,n ◦W∗
m,n]H0(k)1Jm,n (H0(k))≥ 1

2
1Jm,n (H0(k)) ;

(7) if Ωm,n ∩Ωm′,n′ ∩Σ ̸= ; and µm,n ≥µm′,n′ then

∀k ∈ωm ∩ωm′ , 1Jm,n (H0(k))1Jm′ ,n′ (H0(k))= 1Jm′ ,n′ (H0(k)) ,

and


Sm,n ⊂ ∂Sm′,n′

or Sm′,n′ ⊂ ∂Sm,n and µm,n =µm′,n′

or Sm′,n′ = Sm,n and µm,n =µm′,n′ .

Proof. The construction of the open covering will be done in several steps. Actually be-
cause K I = pM(p−1

Σ→R
(I)) is compact in M it suffices to consider carefully the situation in

a neighborhood ω0 ⋐ M of any k0 ∈ pM(p−1
Σ→R

(I)) . We use the index m = 0 for this local
analysis and in the different steps the open set ω0 ∋ k0 will be reduced in order to fulfill
all the properties. So let us fix k0 ∈ pM(p−1

Σ→R
(I)) . We start with three remarks:

• The set Spec(H0(k0))∩ I is finite and is written {λn,1≤ n ≤ N0} .

• With m = 0, the properties 3 (uniqueness is imposed by (k0,λn) ⊂ S0,n),4,5,6 hold
in any open neighborhood ω′ ⊂ ω0 of k0 . So these properties are hereditary after
reducing the neighborhood ω0 .

• Locally the real analytic vector bundle F
∣∣
ω0

, for ω0 small enough, is transformed
by a unitary transform U0(k) : Fk → H ′ , real analytic with respect to k ∈ ω0 , into
the trivial bundle ω0 ×H ′ . So working with the trivial real analytic vector bundle
ω0 ×H ′ is not a restriction here.

For a fixed λn ∈ I ∩Spec(H0(k0)) , there is a unique stratum S0,n ∈SI and a unique µ0,n ∈
N such that (k0,λn) ∈ S0,n ⊂ Σµ0,n . Consider the set S0,n =

{
S′ ∈S , (k0,λn) ∈ S′

}
⊂ SI .

Because the stratification S is locally finite, there exists an open neighborhood ω1
0,n ×

J1
0,n of (k0,λn) such that ω1

0,n × J1
0,n ∩S′ ̸= ; is equivalent to S′ ∈ S0,n (with S0,n ⊂ SI ) .

Meanwhile (k0,λn) ∈ S0,n gives S0,n ∩S′ ̸= ; and therefore S0,n = S′ or S0,n ⊂ ∂S′ with
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dim S0,n < dim S′ in this case. This is the local in energy version of the property (3)
which is hereditary for another neihborhood ω2

0,n × J2
0,n ⊂ ω1

0,n × J1
0,n . In particular we

may assume J2
0,n ⋐ Ĩ for every 1 ≤ n ≤ N0 and J2

0,n ∩ J2
0,n′ = ; for n ̸= n′ , 1 ≤ n,n′ ≤ N0 .

From now the intervals J0,n = J2
0,n , 1 ≤ n ≤ N0 are fixed and the properties (2) and (3) as

well as J0,n ⋐ Ĩ are granted.
Again for n fixed there exists a path in γ0,n in C around J0,n such that

1{λn}(H0(k0))= 1J0,n (H0(k0))= 1
2iπ

∫
γ0,n

dz
z−H0(k0)

.

With the last formula the spectral projector

π0,n(k)= 1
2iπ

∫
γ0,n

dz
z−H0(k)

is analytic in an open neighborhood ω2
0,n ⊂ ω1

0,n of k0 . Additionally choosing ω2
0,n small

enough implies ∥π0,n(k)−π0,n(k0)∥L (H ′) < 1 and Nagy’s formula (see e.g. [MaSo][NeSo])

W0,n(k)= (1− (P2 −P1)2)−1/2 [P2P1 + (1−P2)(1−P1)] with P1 =π0,n(k0) , P2 =π0,n(k) ,

provides a unitary operator W0,n(k) in H ′ , which depends analytically on k ∈ ω0,n and
such that W0,n(k)π0,n(k0)=π0,n(k) . Therefore

H0(k)π0,n(k)=π0,n(k)H0(k)π0,n(k)= 1
2iπ

∫
γ0

zdz
z−H0(k)

is unitarily equivalent to H̃0,n(k) = π0,n(k0)W∗
0,n(k)H0(k)W0,n(k)π0,n(k0) ∈ L (Cµ0,n ) after

identifying Ranπ0,n(k0) with Cµ0,n . Again this property, which is the condition (5) is hered-
itary for any neighborhood ω3

0,n × J0,n of (k0,λn) with ω3
0,n ⊂ω2

0,n .
The local version of condition (4) in J0,n is almost done: the rank of 1J0,n (H0(k)) is con-
stantly equal to µ0,n for k ∈ω3

0,n ⊂ω3
0,n . The function maxSpec(H0(k))∩J0,n and minSpec(H0(k))

are continuous functions of k ∈ ω3
0,n , equal to λ0,n when k = k0 belonging to the open

interval J0,n . Hence the neighborhood ω3
0,n of k0 can be chosen small enough so that

1J0,n (H0(k))= 1J′
0,n

(H0(k)) with J′
0,n ⋐ J0,n and this will be true for any neighborhood of k0

ω4
0,n ⊂ω3

0,n .
The local problem is thus reduced to the case of a self-adjoint matrix H̃0,n(k)= H̃0,n(k)∗ ∈
Mµ0,n (C) which is real analytic with respect to k ∈ω4

0,n .
Because Tr[H̃0,n(k)]=Tr

[
H0(k)1J0,n (H0(k))

]
is analytic on ω4

0,n , the set

S̃0,n =
{

(k,
1

µ0,n
Tr[H̃0,n(k)]),k ∈ω4

0,n

}
is an analytic submanifold of ω4

0,n × J0,n diffeomorphic to ω4
0,n via the projection pM :

ω4
0,n × J0,n →ω4

0,n . Since S0,n ∩ (ω4
0,n × J0,n) is a real analytic manifold contained in S̃0,n ,

pM(S0,n ∩ (ω4
0,n × J0,n)) is a real analytic submanifold of ω4

0,n . For ω4
0,n small enough,

there exists real analytic coordinates (k′,k′′) ∈ Rdim S0,n ×Rdim M−dim S0,n around k0 such
that S0,n ∩ (ω4

0,n × J0,n) =
{
((k′,0), 1

µ0,n
Tr[H̃0,n(k′,0)]) , (k′,0) ∈ω4

0,n)
}

. Our assumption that

rank dpΣ→R

∣∣
TS0,n

= 1 implies that the image of ∂
∂λ

by the projection from T(M ×R)
∣∣
S0,n

to TS0,n is a non vanishing real analytic vector field X0,n = ∑dim S0,n
j=1 a j(k′,0) ∂

∂k j
, with

k′ = (k1, . . . ,kdim S0,n ) , such that X0,nH̃0,n(k′,0) = IdCµ0,n . Because (k′,k′′) are coordinates
on ω4

0,n , this vector field is a real analytic vector field on ω4
0,n and X0,nH̃0,n(k) is a real
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analytic self-adjoint matrix. By continuity the open set ω4
0,n can be reduced such that

X0,nH̃0,n(k)≥ 1
2IdCµ0,n . This proves the condition 6 and the vector field X0,n can be taken

unchanged, except the restriction, for any neighborhood of k0 contained in ω4
0,n .

Finally for any open neighborhood

ωk0 ⊂
N0⋂

n=1
ω4

0,n

of k0 the inclusion J0,n ⋐ Ĩ and the conditions (2),(3),(4),(5),(6) are satisfied by the family

(Ω0,n =ω0 × J0,n,S0,n,µ0,n,W0,n, H̃0,n, X0,n)1≤n≤N0 with ω0 =ωk0 .

Without condition (7), we could conclude with (1) by extracting a finite covering out of
K I ⊂⋃

k0∈K I ωk0 of the compact set K I = pM(p−1
Σ→R

(I)) .
The condition (7) requires an additional specification of the open neighborhood ωk0 of k0 .
It is a global property of the extracted finite covering p−1

Σ→R
(I) ⊂ ⋃

(m,n)∈L(I)Ωm,n because
it is about all the possible intersections . It is actually obtained by a connectedness argu-
ment after choosing a specific family of local connected neighborhoods (ωk0)k0∈K I with all
intersections connected. This is possible on a manifold. Let us fix any riemannian metric
γ on M . Then:

• any geodesically convex set is arcwise connected and the intersection of geodesically
convex sets is geodesically convex;

• for any k0 ∈ M there exists εγ,k0 > 0 such that for all ε ≤ εγ,k0 the geodesic ball
Bγ(k0,ε) is geodesically convex (see [Lee]-Exercise 6-4)

Take for any k0 ∈ K I= pM(p−1
Σ→R

(I))

ωk0 = Bγ(k0,ε0) , 2ε0 < εγ,k0

Bγ(k0,2ε0)⊂
N0⋂

n=1
ω4

0,n

and let K I ⊂ ⋃mI
m=1ωm be the finite extracted covering with ωm = Bγ(km,εm) . The cov-

ering (1) is given by Ωm,n = ωm × Jm,n . And Ωm,n ∩Ωm′,n′ ∩Σ ̸= ; implies Bγ(km,εm)∩
Bγ(km′ ,εm′) ̸= ; and therefore dγ(km,km′) < εm + εm′ ≤ 2max(εm,εm′) . By symmetry we
can focus on the case max(εm,εm′) = εm for which km′ ∈ Bγ(km,2εm) ⊂ ω4

m . On the con-
nected set Bγ(km,2εm)∩ωm′ ⊂ω4

m∩ω4
m′ , the spectral projector 1Jm,n (H0(k))1Jm′ ,n′ (H0(k)) is

real analytic with respect to k with a constant rank ≤ min(µm,n,µm′,n′) . Because this set
contains km′ for which Jm,n∩Jm′,n′ ∩Spec(H0(km′))= {

λm′,n′
}

with the multiplicity µm′,n′ ,

µm′,n′ ≤µm,n and 1Jm,n (H0(k))1Jm′ ,n′ (H0(k))= 1Jm′ ,n′ (H0(k))

must hold for all k ∈ Bγ(km,2εm)∩Bγ(km′ ,εm′)⊃ωm∩ωm′ . Because in this case (km′ ,λm′,n′) ∈
Sm′,n′ we get

Sm′,n′ ∩ω4
m,n × Jm,n ⊃ Sm′,n′ ∩B(km,2εm)× Jm,n ⊃ {

(km′ ,λm′,n′)
} ̸= ;

and the property (3) implies Sm,n ⊂ ∂Sm′,n′ or (Sm′,n′ = Sm,n and µm,n =µm′,n′). By symme-
try with εm′ = max(εm,εm′), the equality µm,n = µm′,n′ is compatible with Sm′,n′ ∈ ∂Sm,n .
Although the ordering of εm and εm′ does not appear in the final statement, the condition
(3) says that εm = εm′ is possible only when Sm,n = Sm′,n′ .
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Once the open covering p−1
Σ→R

(I) ⋐
⋃

(m,n)∈L(I)Ωm,n is chosen according to Proposi-
tion 2.1 with Ωm,n =ωm × Jm,n , several objects can be associated with it.
Take a partition of unity

MI∑
m=1

g2
m(k)≡ 1 on a neighborhood of K I = pM(p−1

Σ→R(I)) . (2)

Because Spec(H0(k))∩ I ⊂⊔Nm
n=1 Jm,n for k ∈ωm and all m ∈ {1, . . . ,mI } , we obtain:∑

(m,n)∈L(I)
g2

m(k)1Jm,n (λ)≡ 1 on a neighborhood of p−1
Σ→R(I) .

With (m,n) ∈ L(I) we associated the interval J′
m,n ⋐ Jm,n in Proposition 2.1-(4) such that

1Jm,n (H0(k)) = 1J′
m,n

(H0(k)) for all k ∈ωm . By taking χm,n ∈ C ∞
comp(Jm,n) with χm,n ≡ 1 on

a neighborhood of J
′
m,n , we obtain the smooth partition of unity∑
(m,n)∈L(I)

gm(k)2χ2
m,n(λ)≡ 1 on a neighborhood of p−1

Σ→R(I) , (3)

with ∀k ∈ωm , gm(k)1Jm,n (H0(k))= gm(k)χm,n(H0(k)) . (4)

Definition 2.2. With the open covering of Proposition 2.1, the set of pairs (m,n) ∈ L(I) is
naturally endowed with an asymmetric relation ◁ (asymmetric means that (x◁ y and y◁
x) never happens). Actually (m,n)◁ (m′,n′) is defined by:

(i) (ωm × Jm,n)∩ (ωm′ × Jm′,n)∩Σ ̸= ; ;

(ii) dim Sm,n < dim Sm′,n′ .

Lemma 2.3. For (m,n), (m′,n′) ∈ L(I) the relation (m,n)◁ (m′,n′) implies

(1) m ̸= m′ and Sm,n ⊂ ∂Sm′,n′ ;

(2) for all k ∈ωm∩ωm′ , all the operators χm,n(H0(k))χm′,n′(H0(k)) , 1Jm,n (H0(k))1Jm′ ,n′ (H0(k)) ,
1Jm′ ,n′ (H0(k)) and χm′,n′(H0(k)) are equal.

The result (2) still holds when the assumption (m,n) ◁ (m′,n′) is replaced by the more
general condition (Ωm,n ∩Ωm′,n′ ∩Σ ̸= ; and Sm,n ⊂ Sm′,n′) .

Proof. If m = m′ with Ωm,n ∩Ωm,n′ ̸= ; then Jm,n ∩ Jm,n′ ̸= ; , where Proposition 2.1-(2)
implies n = n′ and Proposition 2.1-(3) implies Sm,n = Sm′,n′ in contradiction with Defini-
tion 2.2-ii). In the second statement the equality 1Jm,n (H0(k))1Jm′ ,n′ (H0(k))= 1Jm′ ,n′ (H0(k))
is given by the classification of Proposition 2.1-(7) where dim Sm,n < dim Sm′,n′ eliminates
the cases µm,n <µm′,n′ and Sm,n = Sm′,n′ . The choice of the cut-off χm,n was done such that
χm,n(H0(k))= 1Jm,n (H0(k)) for all k ∈ωm and all (m,n) ∈ L(I) .
The more general condition includes the additional case Sm,n = Sm′,n′ where all the oper-
ators of (2) are equal to 1Jm,n (H0(k)) .

The classification of Proposition 2.1-(7) says that Ωm,n∩Ωm′,n′∩Σ ̸= ; is classified into
the three mutually exclusive cases

Sm,n ◁ Sm′,n′ or Sm′,n′ ◁ Sm,n or Sm,n = Sm′,n′ ,

while the last case does not mean (m,n)= (m′,n′) . It can be summarized as

(Ωm,n ∩Ωm′,n′ ∩Σ ̸= ;)⇒ (Sm,n ⊂ Sm′,n′ or Sm′,n′ ⊂ Sm,n)

while we recall that S ⊂ S′ , which means S = S′ or S ⊂ ∂S′ = S′ \ S′ , is an order relation
on S . This leads to the following useful result.
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Proposition 2.4. Any family (mℓ,nℓ)1≤ℓ≤L of L(I) such that
⋂L
ℓ=1Ωmℓ,nℓ

∩Σ ̸= ; can be
ordered such that Smℓ,nℓ

⊂ Smℓ+1,nℓ+1 .
With such an order, all the operators χmℓ,nℓ

(H0(k))χmℓ′ ,nℓ′ (H0(k)) , 1Jmℓ ,nℓ
(H0(k))1Jm

ℓ′ ,nℓ′
(H0(k)) ,

1Jm
ℓ′ ,nℓ′

(H0(k)) and χmℓ′ ,nℓ′ (H0(k)) are equal for k ∈ωmℓ
∩ωmℓ′ when 1≤ ℓ≤ ℓ′ ≤ L . In par-

ticular all the operators χmℓ,nℓ
(H0(k))χmL,nL (H0(k)) , 1Jmℓ ,nℓ

(H0(k))1JmL ,nL
(H0(k)) , 1JmL ,nL

(H0(k))
and χmL,nL (H0(k)) are equal for k ∈⋂L

ℓ′=1ωmℓ′ for all ℓ ∈ {1, . . . ,L} .

2.2 Unitary connections

A connection ∇ , on a Hilbert bundle pF : F → M is a R (or C)-linear map from C ∞(M;F )
to C ∞(M;T∗M⊗F ) with the Leibniz rule

∀ f ∈C ∞(M;R),∀s ∈C ∞(M;F ) , ∇( f s)= (d f )s+ f (∇s)

or in terms of covariant derivatives

∀X ∈C ∞(M;TX ), ∀ f ∈C ∞(M;R),∀s ∈C ∞(M;F ) , ∇X ( f s)= (X f )s+ f (∇X )s .

The curvature R∇ ∈ is given by

R∇(X ,Y )=∇X∇Y −∇Y∇X −∇[X ,Y ]

and it defines an element of C ∞(M;Λ2T∗M⊗End(F )) , where in all our cases dim Fk <∞
or dim Fk =∞ , End(F )=L (F ) .
In a local chart open set ω ⊂ M , there exists a unitary map U(k) in H ′ with depends
analytically on k ∈ω such that

u(k) 7→ e−V (k)U(k)u(k)

defines a unitary map from L2(ω,dk;H ′) to F
∣∣
ω endowed with the metric 〈 , 〉H ′ e2V (k) .

Hence on F
∣∣
ω there always exists a flat unitary connection given by

∇ω = e−V (k)U(k)[
dim M∑

i=1

∂

∂ki
dki]eV (k)U(k)−1 =U(k)

[
dim M∑

i=1

∂

∂ki
dki

]
U(k)−1 +dV ⊗ IdF (5)

Here flat means R∇ω ≡ 0 while the unitarity of the Hilbert bundle with fiber H ′ and the
metric 〈 , 〉H ′ e2V (k) means

X
[
〈s , s′〉H ′ e2V (k)

]
= 〈∇ωX s , s′〉H ′ e2V (k) +〈s , ∇ωX s′〉e2V (k) .

In particular when X =∑dim M
i=1 X i∂ki ∈C ∞(ω;TM) , ∇ωX+1

2div X , with div X =∑dim M
i=1 ∂ki X i ,

is an antisymmetric operator on C ∞
comp(ω;F ) .

Let M =⋃
i∈I ωi be a locally finite open covering of M , with ωi compact, and let

∑
i∈I χ2

i ,
χi ∈ C ∞

comp(ωi) be a subordinate partition of unity with
∑

i∈I χ2
i ≡ 1 . When (∇i)i∈I is a

family of unitary connections on F
∣∣
ωi

then

∇M = ∑
i∈I

χi∇iχi (6)

is a unitary connection on F .
A connection ∇M on pF : F → M , allows to define a connection still denoted by ∇M on
pL (F ) : L (F )→ M via

(∇M
X A)s =∇M

X (As)− A(∇M
X s)
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which ensures the Leibnitz rule ∇M(As)= (∇M A)s+A(∇M s) . The unitarity of ∇M implies
(∇M

X A)∗ = −∇M
X (A∗)+λX A∗ where the factor λX A∗ is due to the differentiation of the

volume form dv(k) in the integration by part.
Remember also that the difference between two connections on pF : F → M is given
by ∇2 −∇1 = L ∈ C ∞(M;T∗M ⊗L (F )) . This holds true when F is finite dimensional
and when dim F =∞ the considered connections ∇2 are the ones for which the property
holds for a given fixed connection ∇1 , e.g. ∇1 = ∇M = ∑

i∈I χi∇iχi . A typical example is
when ∇2 is given by the same formula as ∇1 =∇M but with a different partition of unity∑

i∈I χ2
2,i ≡ 1 subordinate to M =⋃

i∈I ωi . The induced connections on pL (F ) : L (F )→ M
satisfy (∇2

X −∇1
X )A = [LX , A] . In particular, the factor e2V (k) in the metric 〈 , 〉H ′ e2V (k) can

be forgotten while considering the connection ∇ω induced on pL (F ) : L (F ) → ω with ∇ω
given by (5) because LX = (dV (X ))IdH ′ . When both ∇2 and ∇1 are unitary connections,
L∗

X = (∇2
X −∇1

X )∗ =−(∇2
X −∇1

X )=−LX and LX is anti-symmetric.
In a local coordinate system (k1, . . . ,kd) in ω⊂ M , the following relations[

∇ ∂
∂ki

,∇ ∂
∂k j

]
= R∇(

∂

∂ki
,
∂

∂k j
) ∈C ∞(ω;L (F )) , (7)

∇2
∂
∂ki

−∇1
∂
∂ki

∈C ∞(ω;L (F )) , (8)

ensure that the following objects are well defined.

Definition 2.5. Let ω be an open set of M . A differential operator B of order µ with
coefficients in C ∞(ω;L (F )) is a local operator which can be written in any local coordinate
system

B = ∑
|α|≤µ

Bα(k)∇α1
∂

∂k1

· · ·∇αd
∂

∂kd

. (9)

It is initially defined with the domain D(B)=C ∞
comp(ω;F ) and it is said symmetric accord-

ing to the general definition

∀ϕ,ψ ∈C ∞
comp(ω;F ), 〈ϕ , Bψ〉L2(M;F ) = 〈Bϕ ,ψ〉L2(M;F ) .

A first order differential operator B with C ∞(ω;L (F )) coefficients, is said to have a scalar
principal part if there exists X ∈C ∞(ω;TM) and B0 ∈C ∞(ω;L (F )) such that

B =∇X +B0 . (10)

In (9) the covariant derivatives do not commute but (7) ensures that the form (9) is
preserved, after modifying the coefficients Bα , when the order is changed. The relation
(8) ensures that the general forms (9) and (10) are not changed when the connection ∇ is
changed.
We will focus on first order differential operators with C ∞(ω;L (F )) coefficients where ω
and the fiber bundle will be specified further.
When ω is a local chart open set with F

∣∣
ω = e−V (.)U(.)L2(ω;H ′) and ∇ω defined by (5), a

first order differential operator can be written

B = e−V (k)U(k)

 d∑
i=1

B1,i(k)X i(k)︸ ︷︷ ︸
=B̃1,i(k)

∂

∂ki

+B0(k)

 eV (k)U(k)−1

with B1,i,B0, B̃1,i ∈ C ∞(ω;L (H ′)) and X = ∑k
i=1 X i(k) ∂

∂ki
∈ C ∞(ω;TM) . It has a scalar

principal part when all the B1i ’s equal IdH ′ .
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The compositions BA or AB with B = B1∇ωX+B0 , B1,B0 ∈C ∞(ω;L (F )) and A ∈C ∞(ω;L )
equal

BA = B1 A∇ωX + (B1(∇ωX A))+B0 A and AB = AB1∇ωX + AB0 ,

and the commutator [B, A] belongs to C ∞(ω;L (F )) when [B1, A]= 0 , which is the case if
B has a scalar principal part.
When [B1

1,B2
1]= 0 , the commutator (on C ∞(ω;F )) [B1,B2] with Bk = Bk

1∇ωX k +Bk
0 is a first

order differential operators with C ∞(ω;L (F ))-coefficients:

[B1,B2] = (B1
1(∇ωX1 B2

1))∇ωX2 − (B2
1(∇ωX2 B1

1))∇ωX1 + (B1
1B2

1)∇ω[X1,X2]

+[B1
0,B2

0]+ (B1
1∇ωX1 B2

0)− (B2
1∇ωX2 B1

0)+B1
1B2

1R∇ω

(X1, X2) ,

and this is not true in general when [B1
1,B2

1] ̸= 0 .
When ∇ω is a unitary connection the formal adjoint of B = B1∇ωX +B0 equals

B∗ =−∇ωX B∗
1 − (div X )B∗

1 +B∗
0 =−B∗

1∇ωX +B∗
0 − (∇ωX B∗

1 + (div X )B∗
1 ) .

First order differential operators and their adjoint are fully understood by their local de-
scription with a unitary connection ∇ω and we can start with (5). This will be applied
with ω=ωm , 1≤ m ≤ MI . In order to use the localization on Σ in the variables (k,λ) , it is
convenient to associate a new unitary connection with a finite orthogonal decomposition
of the fiber bundle pF : F →ω . Namely assume that (πn(k))0≤n≤N are orthogonal projec-
tions in the fiber Fk , with

∑N
n=0πn(k) = IdFk , which depend analytically on k (actually

C ∞-regularity is only used here). The latter means that π̃n(k) = U(k)−1πn(k)U(k) is an
orthogonal projection in H ′ which is analytic with respect to k ∈ω , while we know

πn(k)2 =πn(k)=πn(k)∗ ,
N∑

n=0
πn(k)= IdFk .

When ∇ω is a unitary connection on pF : F → ω , endowed with the metric 〈 , 〉H ′ e2V (k) ,
this induces a natural connection ∇ω,n on pπnF :πnF →ω simply given by

∇ω,n =πn ◦∇ω ◦πn = (∇ω− (∇ωπn)
)∣∣

C ∞(ω;πnF ) =
(∇− [

(∇ωπn),πn
])∣∣

C ∞(ω;πnF ) ,

and sometimes called the adiabatic connection. The last equality is actually due to

∇ωX (πn)=∇ωX (π2
n)= (∇ωXπn)πn +πn(∇ωXπn)

which implies
πn(∇ωXπn)πn = 0.

Then

∇ω,π =⊕N
n=0∇ω,n =⊕N

n=0πn∇ωπn =∇ω−
N∑

n=1
(∇ωπn)πn

is a new unitary connexion, ∇ω,π , such that for any block diagonal A ∈ C ∞(ω;L (F )) ,
A =∑N

n=1πn Anπn ,

∇ω,πA =
N∑

n=0
πn∇ωAnπn =

N∑
n=0

πn∇ω,n Anπn , (11)

and ∇ω,π
X A remains block diagonal for any X ∈C ∞(ω;TM) .

Actually any finite collection of unitary connections (∇ω,n)0≤n≤N on the fiber bundles
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pπnF : πnF → ω , endowed with the metric 〈 , 〉H ′ e2V (k) , gives rise to a unitary con-
nection ∇ω,π =∑N

n=1πn∇ω,nπn on pF : F →ω with the same property (11). Such a unitary
connection ∇ω,π or alternatively ∇ω =∇ω,π is characterized by

∀n ∈ {1, . . . , N} , ∇ωπn = 0 in C ∞(ω;L (F ))

if we notice π0 = IdF −∑N
n=1πn .

A first version of the operator AI , essentially as presented in [GeNi] is done as fol-
lows. We use the open covering

⋃
(m,n)∈L(I)Ωm,n , Ωm,n = ωm × Jm,n , of p−1

Σ→R
(I) given

by Proposition 2.1. Above the open set ωm , 1 ≤ m ≤ MI , use the decomposition IdFk =
⊕Nm

n=11Jm,n (H0(k))⊕1Jm,0(H0(k))=⊕Nm
n=0πm,n(k) , with Jm,0 =R\

⋃Nm
n=1 Jm,n and

πm,n(k)= 1Jm,n (H0(k)) , 0≤ n ≤ Nm , 1≤ m ≤ MI . (12)

Consider the unitary connection ∇ωm,π =∑Nm
n=0πm,n∇m,nπm,n , with ∇m,n a unitary connec-

tion defined on pπm,nF :πm,nF →ωm by

• for n = 0 , ∇m,0 =πm,0∇ωmπm,0 with ∇ωm defined by (5) with ω=ωm ,

• for n ∈ {1, . . . , Nm} , ∇m,n
X = Wm,nXW∗

m,n + dV (X ) where Wm,n(k) is the unitary map
from Cµm,n ∼πm,nFk0 to πm,nFk introduced in Proposition 2.1-(5).

We consider the operator

Am = i
Nm∑
n=0

gm(k)
[
∇m,n

Xm,n
+ 1

2
(div Xm,n)πm,n

]
gm(k) (13)

= i
Nm∑
n=1

gm(k)χm,n(H0(k))
[
∇ωm,π

Xm,n
+ 1

2
(div Xm,n)

]
χm,n(H0(k))gm(k) (14)

where Xm,0 = 0 and Xm,n for 1 ≤ n ≤ Nm is the real analytic vector field introduced in
Proposition 2.1-6) such that

∀k ∈ωm , ∇m,n
Xm,n

(
H0(k)1Jm,n (k)

)≥ 1
2

1Jm,n (H0(k)) . (15)

The right-hand side of (13) shows that Am is a first order differential operator with
C ∞

comp(ωm;L (F )) coefficients according to the general setting of Definition 2.5. Because
∇ωm,π is a unitary connection, Am is symmetric on C ∞

comp(M;F ) while the commmutator
[H0, iAm] satisfies

[H0, iAm]= gm(k)

[
Nm∑
n=1

∇m,n
Xm,n

(
H0(k)1Jm,n (H0(k)

)]
gm(k)≥ 1

2
g2

m(k)1I (H0(k)) .

Clearly the operator [H0, iAm] = ∑Nm
n=1πm,nBm,nπm,n with Bm,n ∈ C ∞

comp(ωm;L (πm,nF )) ,
suppBm,n ⊂ supp gm , and iterated commutators adk

iAm
preserve this class.

By summing AI =∑MI
m=1 Am we obtain

[H0, iAI ]≥ 1
2

MI∑
m=1

gm(k)21I (H0(k))= 1
2

1I (H0) .

So everything seems to be done here, and this is where we definitely omitted an argu-
ment in [GeNi] . Actually when ωm1 ∩ωm2 ̸= ; or more precisely when gm1 gm2 ̸≡ 0 , the
block diagonal decomposition ⊕Nm

n=01Jm,n (H0(k)) do not coincide for m = m1 and m = m2 .
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While considering the iterated commutator [Am j , [Am1 ,H0]] , j = 1,2 , we must check that
[Am1 ,H0] has the local structure

∑Nm
n=1πm,nBm,nπm,n , Bm,n ∈C ∞

comp(ωm;L (πm,nF )) , both
for m = m1 and m = m2 . And this is not true in general. This can be corrected by mod-
ifying the unitary connections ∇ωm,π. But the additional terms deteriorate Mourre’s in-
equality which can be finally recovered only on a small energy interval [λ−ε,λ+ε] , λ ∈ I
and ε> 0 small enough. This is done in the following sections.

3 Modified unitary connection

Here we change the unitary connection ∇ωm,π = ∑Nm
n=0πm,n∇ωmπm,n into a new unitary

connection ∇̃ωm,π = ∑Nm
n=0πm,n∇̃m,nπm,n whose the construction depends on the partition

of unity (2)(3)(4). Remember the definition (12) of πm,n . Actually it suffices to specify
the new connection ∇̃m,n on the fiber bundle pπm,nF : πm,nF → ωm , for every fixed pair
(m,n) , but all the possible non empty intersections ωα =⋂

m′∈αωm′ , for m ∈α⊂ {1, . . . , MI } ,
; ̸=ωα ⊂ωm , must be considered. The new operator ÃI defined like AI = ∑MI

m=1 Am with
this new unitary connection will satisfy for all pairs (m′,n′) ∈ L(I) ,

adÃI
Bm′,n′ ∈C ∞

comp(ωm′ ;L (πm′,n′F )) with suppadÃI
Bm′,n′ ⊂ supp gm′ (16)

for any Bm′,n′ ∈ C ∞
comp(ωm′ ;L (πm′,n′F )) , with suppBm′,n′ ⊂ supp gm′ ⋐ ωm′ , and we will

deduce
∀k ∈N , adk

iÃI
H0 ∈L (L2(M;F )) .

For the moment we still work with first order differential operators with C ∞(M;L (F ))
coefficients (see Definition 2.5), acting on C ∞

comp(M;F ) . The question of their self-adjoint
realizations as well as the functional analytic meaning of commutators will be discussed
later.
By expanding (16) with

ÃI = i
∑

(m,n)∈L(I)
gm(k)

(
∇̃m,n

Xm,n
+ (div Xm,n)

2
πm,n

)
gm(k) (remember Xm,0 = 0)

the commutator equals

[i ÃI ,Bm′,n′]=− ∑
(m,n)∈L(I)

gm(k)
[(
∇̃m,n

Xm,n
+ (div Xm,n)

2
πm,n

)
,Bm′,n′

]
gm(k)

=− ∑
Ωm,n ∩Ωm′ ,n′ ∩Σ ̸= ;

(m,n) ∈ L(I)

gm(k)
[(
∇̃m,n

Xm,n
+ (div Xm,n)

2
πm,n

)
,πm′,n′Bm′,n′πm′,n′

]
gm(k) .

for any (m′,n′) ∈ L(I) , where we recall Ωm,n = ωm × Jm,n for (m,n) ∈ L(I) as in Propo-
sition 2.1 with supp gm ⊂ ωm and 1Jm,n (H0(k)) = πm,n(k) for k ∈ ωm . In the above sum,
expand the commutator [∇̃m,n

Xm,n
,πm′,n′Bm′,n′πm′,n′] as:

[∇̃m,n
Xm,n

,πm′,n]Bm′,n′πm′,n′ +πm′,n′[∇̃m,n
Xm,n

,Bm′,n]πm′,n′ +πm′,n′Bm′,n[∇̃m,n
Xm,n

,πm′,n′]

while, as operator valued differential operators on ωm ∩ωm′ ,

[∇̃m,n
Xm,n

,πm′,n′] = πm,n∇̃m,n
Xm,n

πm,nπm′,n′ −πm′,n′πm,n∇̃m,n
Xm,n

πm,n

=
[
∇̃m,n

Xm,n
,πm,nπm′,n′

]
= ∇̃m,n

Xm,n
(πm,nπm′,n′) .
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Therefore the condition (16) is satisfied when

∇̃m,n(πm,nπm′,n′)= 0 above supp gm ∩supp gm′ , (17)

for all pairs (m,n) and (m′,n′) in L(I) such that Ωm,n ∩Ωm′,n′ ∩Σ ̸= ; . This can be dis-
cussed by using the order introduced in Proposition 2.4 after the classification of cases in
Proposition 2.1-(7) and Definition 2.2.

Proposition 3.1. Let I and Ĩ be fixed intervals such that I ⋐ Ĩ ⊂R\τ and let the partition
of unity given by (2) (3) (4) after Proposition 2.1 be fixed.
The unitary connections (∇̃m,n)(m,n)∈L(I) on the vector bundles pπm,nF : πm,nF → ωm can
be defined such that (17) holds true for all pairs (m,n) and (m′,n′) in L(I) . These con-
nections satisy the additional property that when (k0,λ0) ∈Ωm,n ∩ pΣ→R(I)⊂Σ and the set{
(m′,n′) ∈ L(I) , (k0,λ0) ∈Ωm′,n′

} = {(mℓ,nℓ) ,1≤ ℓ≤ L} is ordered like in Proposition 2.4 ,
there exists an open neighborhood Vk0 of k0 such that

πmL,nL ◦ ∇̃m,n ◦πmL,nL =πmL,nL ◦∇m,n ◦πmL,nL on Vk0 .

The proof will be done in several steps. It can be done for any fixed pair (m,n) ∈
L(I) . We firstly construct a unitary connection ∇α on the restricted vector bundle pπm,nF :
πm,nF →ωα where m ∈α⊂ {

1, . . . , MI1

}
and ωα =∩m′∈αωm′ ̸= ; . Then we use a partition

of unity in order to glue all these connections ∇α .

Lemma 3.2. Let PI = {πi, i ∈I } be a finite non empty set of self-adjoint projectors π2
i =

πi = π∗
i in a unital commutative C ∗-algebra A . For γ ⊂ I set πγ = ∏

i∈γπi with the
convention π; = 1A . Assume that π ∈ PI implies 1−π ∈ PI . Then the C ∗-algebra
generated by PI , C ∗(PI ) , is finite dimensional and a basis is given by the family, Γ ,
made of πγ ̸= 0 such that for all i ∈I , πiπγ = 0 when i ̸∈ γ . In particular for any i ∈I , πi

admits a unique decomposition πi =∑
γ∈Γ ci,γπγ with ci,γ ∈ {0,1} .

Proof. The commutative C ∗-algebra generated by PI is the set of linear combinations∑
γ⊂I

cγπγ , cγ ∈C ,

where all the πγ’s are self-adjoint projectors.
For any γ⊂I and any i ∈I we can write

πγ =πiπγ+ (1A −πi)πγ =πiπγ+πi′πγ

with πi′ = 1A −πi ∈PI . We deduce that any πγ , γ⊂I , can be written as a finite sum of
πγ′ , γ′ ⊂I , such that πiπγ′ = 0 for all i ∈I \γ′ .
Our family Γ , is thus a linear generating family of C ∗(PI ) . It is linearly independent
because

∑
γ∈F cγπγ = 0 implies cγ1πγ1 = πγ1

[∑
γ∈F cγπγ

] = 0 and therefore cγ1 = 0 for all
γ1 ∈Γ .

We now construct the connection ∇α on pπm,nF :πm,nF →ωα when ωα =⋂
m′∈αωm′ ̸= ;

for m ∈α⊂ {1, . . . , MI } .

Proposition 3.3. Fix α ⊂ {1, . . . , MI } and (m,n) ∈ L(I) . Assume m ∈ α ⊂ {1, . . . , MI } with
ωα = ⋂

m′∈αωm′ ̸= ; . There exists a linearly independent finite family (πγ)γ∈Γα of spectral
projections πγ(k) = 1Jγ(H0(k)) , Jγ ⊂ Jm,n , which are analytic with respect to k ∈ ωα , and
such that
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• πγπγ′ = 0 if γ ̸= γ′ , γ,γ′ ∈Γα ,

• for all pairs (m′,n′) , m′ ∈ α , 0 ≤ n′ ≤ Nm′ , the spectral projection πm,nπm′,n′ admits
a unique decomposition

πm,nπm′,n′ = ∑
γ∈Γα

cm′,n′,γπγ , cm′,n′,γ ∈ {0,1} .

The unitary connection ∇α =∑
γ∈Γα πγ ◦∇m,n ◦πγ on pπm,nF :πm,nF →ωα then satisfies

∀m′ ∈α ,∀n′ ∈ {
0, . . . , Nkm′

}
, ∇α(πm,nπm′,n′)= 0 on ωα .

If Jγ∩I ̸= ; for γ ∈Γα , then
{
(m′,n′) ,m′ ∈α,0≤ n′ ≤ Nm′ , Jγ ⊂ Jm′,n′

}⊂ L(I) can be ordered
like in Proposition 2.4 and written

{
(mℓ,nℓ) ,1≤ ℓ≤ Lγ

}
with

Jγ =
Lγ∩
ℓ=1

(Jm,n ∩ Jmℓ,nℓ
)= Jm,n ∩ JmLγ ,nLγ

, πγ =πm,nπmLγ ,nLγ
.

Proof. Let us work in the unital commutative C ∗-algebra, A , of continuous functions of
f (k,H0(k)) , k ∈ωα , such that πm,n(k) f (k,H0(k))= f (k,H0(k)) with the unit πm,n .

For any m′ ∈α , we know the fiberwise identity ⊕Nkm′
n′=0 πm′,n′(k)= IdFk for k ∈ωα ⊂ωm′ and

Nkm′∑
n′=0

πm,nπm′,n′ =πm,n = 1A .

By setting I0 = {
(m′,n′) ,m′ ∈α,0≤ n′ ≤ Nkm′

}
and PI0 = {

πm,nπm′,n′ , (m′,n′) ∈I0
}

and
PI =PI0

⋃{
1A −πm,nπm′,n′ , (m′,n′) ∈I0

}
, I =I0 × {0,1} , we deduce

C ∗(PI0)=C ∗(PI ) .

The family PI is stable by π→ 1A −π and Lemma 3.2 can be applied.
By construction the basis (πγ)γ∈Γα of C ∗(PI0)=C ∗(PI ) , is made of products∏

(m′,n′)∈γ0

(πm,nπm′,n′)◦ ∏
(m′,n′)∈γ1

(πm,n −πm,nπm′,n′) (18)

for γ0,γ1 ⊂ I0 . They can be written 1Jγ(H0(k)) with Jγ ⊂ Jm,n and they are all analytic
with respect to k ∈ωα .
The property of the unitary connection ∇α is due to πγ(πm,nπm′,n′) ∈ {

πγ,0
}

for all γ ∈ Γα ,
m′ ∈α and all n′ ∈ {

0, . . . , Nkm′
}

.
When Jγ ∩ I ̸= ; with πγ = 1Jγ(H0(k)) , the pairs (m′,n′) involved in the first factor of
(18) must satisfy n′ ≥ 1 while in the second factor the pairs must be (m′,0) . With πm,n −
πm,nπm′,0 =πm,n

∑Nm′
n′=1πm′,n′ , this implies that πγ is a positive linear combination of prod-

ucts of πm′,n′ , m′ ∈α , (m′,n′) ∈ L(I) . But the two properties of the basis (πγ)γ∈Γα says that
it must be the product of the all the πmℓ,nℓ

, 1 ≤ ℓ ≤ Lγ with mℓ ∈ α , (mℓ,nℓ) ∈ L(I) and
Jγ ⊂ Jmℓ,nℓ

. For such pairs (m′,n′) we have

∀k ∈ωα , 0 ̸=πγ(k)≤πm′,n′(k) ,

and the intersection
⋂Lγ

ℓ=1Ωmℓ
∩Σ⊃ (ωα×Jγ)∩Σ ̸= ; . By ordering the set

{
(mℓ,nℓ) ,1≤ ℓ≤ Lγ

}
like in Proposition 2.4 we get Jγ = JmLλ ,nLγ

and πγ(k)=πmLγ ,nLγ
(k) for k ∈ωα .
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Proof of Proposition 3.1. Fix m ∈ {1, . . . , MI } . The set K = ⋃
m′ ̸=m supp(gm ∩ supp gm′) is a

compact subset of ωm . For any α⊂ {1, . . . , MI } such that m ∈α , ♯α≥ 2 , set

ω̃α =ωα \ ∪
m′ ̸∈α

supp gm′ = ∩
m′∈α

ωm′ \ ( ∪
m′ ̸∈α

supp gm′) .

These are open sets and they make an open covering of K ,

K ⊂ ∪
α⊂ {

1, . . . , MI
}

m ∈α
♯α≥ 2

ω̃α .

Therefore there exists a partition of unity∑
m∈α⊂{1,...,MI }

Θ2
α ≡ 1 on ωm

with

• Θα ∈C ∞
comp(ω̃α) when ♯α≥ 2 ,

• Θ{m} ∈C ∞(ωm) and suppΘ{m} ⊂ωm \ K .

The unitary connection ∇̃ on pπm,nF :πm,nF →ωm is defined as

∇̃m,n = ∑
m∈α⊂{1,...,MI }

Θα∇αΘα

where ∇α is the connection above ωα ⊃ ω̃α introduced in Proposition 3.3. For any m′ ∈
{1, . . . , MI } such that supp gm ∩supp gm′ ̸= ; we get

∇̃m,n = ∑
{m,m′}⊂α⊂{1,...MI }

Θα∇αΘα

with
∑

{m,m′}⊂α⊂{1,...MI }
Θ2
α ≡ 1

on a neighborhood of Vm,m′ of supp gm ∩supp gm′ . This implies for any n′ ∈ {1, . . . , Nm′} ,

∇̃m,n(πm,nπm′,n′)= ∑
{m,m′}⊂α⊂{1,...MI }

Θ2
α∇α(πm,nπm′,n′

∣∣
ωα

) on Vm,m′ ,

where Proposition 3.3 says ∇α(πmπm′
∣∣
ωα

)= 0 when m′ ∈α .
Therefore (17) holds true for all pairs (m,n) and (m′,n′) in L(I) .
For the second property we again fix m ∈ {1, . . . , MI } , (k0,λ0) ∈ Ωm,n ∩ p−1

Σ→R
(I) ⊂ Σ , and

consider the set {
(m′,n′) ∈ L(I) , (k0,λ0) ∈Ωm′,n′

}= {(mℓ,nℓ) , 1≤ ℓ≤ L} .

The intersection
⋂L
ℓ=1Ωmℓ,nℓ

∩Σ ∋ (k0,λ0) and the family ((mℓ,nℓ))1≤ℓ≤L can be ordered
according to Proposition 2.4.
Define

α0 = {mℓ , 1≤ ℓ≤ L}

where obviously m ∈ α0 and k0 ∈ ωα0 . A stronger property says that k0 ∈ ωα for m ∈ α ⊂
{1, . . . , MI } , implies α⊂α0 : Actually if k0 ∈ωm′ , then the condition (k0,λ0) ∈Σ∩ (ωm′ × I)
implies the existence of (m′,n′) ∈ L(I) such that λ0 ∈ Jm′,n′ . Thus k0 ∈ωm′ implies m′ ∈α0
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and therefore k0 ̸∈ ωα for α ̸⊂ α0 . Because suppΘα ⋐ ωα for m ∈ α ̸⊂ α0 , Vk0 = ωα0 \
∪m∈α̸⊂α0 suppΘα is an open neighborhood of k0 . We now write

∇̃m,n = ∑
m∈α⊂α0

Θα∇αΘα on Vk0 ,

and
∑

m∈α⊂α0

Θ2
α ≡ 1 on Vk0 .

With the notations of Proposition 3.3, for m ∈ α ⊂ α0 there exists γ ∈ Γα such that Jγ
contains λ0 ∈Spec(H0(k0))∩ I . For such a γ , Proposition 3.3 provides a pair (mα,γ,nα,γ) ∈
L(I) , mα,γ ∈α such that πγ =πm,nπmα,γ,nα,γ , (k0,λ0) ∈Ωmα,γ,nα,γ , and πmα,γ,nα,γ◦∇α◦πmα,γ,nα,γ =
πmα,γ,nαγ

◦ ∇m,n ◦ πmα,γ,nα,γ on ωα and therefore on Vk0 ⊂ ωα0 ⊂ ωα . Because (k0,λ0) ∈
Ωmα,γ,nα,γ , there exist ℓ ∈ {1, . . .L} such that (mα,γ,nα,γ) = (mℓ,nℓ) and the ordering of
Proposition 2.4 says πmα,γ,nα,γπmL,nL =πmℓ,nℓ

πmL,nL =πmL,nL and

πmL,nL ◦ ∇̃m,n ◦πmL,nL

∣∣
Vk0

= ∑
m∈α⊂α0

ΘαπmL,nLπmα,γ,nα,γ∇απmα,γ,nα,γπmL,nLΘα

∣∣
Vk0

= πmL,nL ◦
[ ∑

m∈α⊂α0

Θα∇m,nΘα

]
◦πmL,nL

∣∣
Vk0

= πmL,nL ◦∇m,n ◦πmL,nL

∣∣
Vk0

.

4 The operator ÃI

We specfify here the construction and properties of ÃI and finish the proof of Theorem 1.1.
As mentionned in the beginning of Section 3 the operator ÃI is given as a first-order
differential operator with C ∞

comp(M;L (F ))-coefficients by

ÃI = i
MI∑

m=1

Nm∑
n=1

gm(k)
(
∇̃m,n

Xm,n
+ (div Xm,n)

2
πm,n

)
gm(k)

where

•
∑MI

m=1 g2
m(k)≡ 1 in a neighborhood of pM(p−1

Σ→R
(I)) , is the partition of unity subordi-

nate to pM(Σ∩ p−1
Σ→R

(I1))⊂⋃MI
m=1ωm , introduced in (2)(3)(4) after Proposition 2.1;

• Xm,n is a vector field such that (15) holds, of which the local construction was given
in Proposition 2.1-(6);

• ∇̃m,n is the modified unitary connection given by Proposition 3.1.

By construction
⋃MI

(m,n)∈L(I) Jm,n ⋐ Ĩ and there exists χ ∈C ∞
comp(Ĩ;R) such that

ÃIχ(H0)= ÃI = χ(H0)ÃI on C ∞
comp(M;F ) . (19)

As a differential operator we get

[H0, iA]= ∑
(m,n)∈L(I)

gm(k)πm,n(k)(∇̃m,n
Xm,n

H0(k))πm,n(k)gm(k)= ∑
(m′,n′)∈L(I)

Bm′,n′(k)

with Bm′,n′ ∈C ∞
comp(ωm′ ;L (πm,nF )) with suppBm′,n′ ⊂ supp gm′ . But because the connec-

tion ∇̃m,n satisfies (17) we deduce that for all j ∈N ,

ad j
i ÃI

[H0, i ÃI ] ∈L (L2(M;F )) .
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If ÃI is essentially self-adjoint on C ∞
comp(M;F ) and that its self-adjoint extension, still

denoted by ÃI , satisfies eitÃI D(H0)⊂ D(H0) , for all t ∈R , then H0 ∈C ∞(i ÃI ) .
The second statement is a consequence of (19) and it suffices to check the essential self-
adjointness of ÃI . Because pM(Σ∩ p−1

Σ→R
suppχ) is compact with χ chosen like in (19) ,

there exists a smooth domain ω with ω compact in M such that the coefficients of ÃI

belong to C ∞
comp(ω;L (F )) . Take a finite covering ω ⊂ ⋃nmax

n=1 ωn of coordinate open charts
ωn . When

∑nmax
n=1 θ

2
n(k) ≡ 1 in a neighborhood of ω with θn ∈ C ∞

comp(ωn;R) consider the
operator

−∆ω =−
nmax∑
n=1

θn∆ωnθn

with ∆ωn =
dim M∑

i=1
(∇M

∂
∂ki

)2 ,

where (k1, . . . ,kdim M) are coordinates on ωn and ∇M is the unitary connection defined
by (6) . In a neighborhood of ω , −∆ω is an elliptic second order operator with a scalar
principal part. Moreover there exists a constant Cω > 0 such that Cω−∆ω is non nega-
tive on C ∞

comp(ω;L (F )) . The standard elliptic regularity on the smooth domain ω (see
e.g. [ChPi]) says that the Friedrichs extension of Cω−∆ω , which is the Dirichlet realiza-
tion denoted by N = Cω−∆D

ω , is self-adjoint with domain H2(ω;F )∩H1
0(ω;F ) and that

C ∞
comp(ω;F ) is a core for N = (Cω−∆D

ω ) .
The differential operator ÃI acts on C ∞

comp(ω;F ) with

∥ÃIϕ∥ ≤ C∥N ϕ∥∣∣〈ÃIϕ , N ϕ〉−〈N ϕ , ÃIϕ〉
∣∣≤ C∥N 1/2ϕ∥2

for all ϕ ∈ C ∞
comp(ω;F ) . The second inequality is due to the fact that N is a second

order differential operator with a scalar principal part so that [N , ÃI ] is a second order
differential operator with C ∞

comp(ω;L (F )) coefficients. Nelson’s commutator theorem (see
e.g. [ReSi]) tells us that ÃI is essentially self-adjoint on C ∞

comp(ω;F ) and therefore on
C ∞

comp(M;F ) .
The final point is about the local Mourre inequality (1). Let λ0 ∈ I for any k0 ∈ M such
that (k0,λ0) ∈ Σ , Proposition 3.1 provides a neighborhood V0 of k0 and a pair (mL,nL) =
(mL(k0),nL(k0)) such that (k0,λ0) ∈ΩmL,nL

∀(m,n) ∈ L(I) , πmL,nL ◦ ∇̃m,n ◦πmL,nL =πmL,nL ◦∇m,nπmL,nL ,

while πmL,nLπm,n ∈ {πmL,nL ,0} .
For k ∈ Vk0 we deduce

πmL,nL [H0, i ÃI ]πmL,nL = πmL,nL [H0,− ∑
(m,n)∈L(I)

gm(m)πmL,nL ∇̃m,n
Xm,n

πmL,nL gm(k)]πmL,nL

= πmL,nL [H0,− ∑
(m,n)∈L(I)

gm(k)∇m,n gm(k)]πmL,nL

≥ 1
2
πmL,nL

( ∑
(m,n)∈L(I)

gm(k)2πm,n

)
πmL,nL

≥ 1
2
πmL,nL = 1

2
1JmL ,nL

(H0(k)) .

Now p−1
Σ→R

({λ0})∩Σ is compact and
⋃

(k0,λ0)∈Σ Vk0 ×JmL(k0),nL(k0) is an open covering of it. We

can find Nλ0 ∈N such that p−1
Σ→R

({λ0})∩Σ⊂⋃Nλ0
ν=1 Vkν × JmL(kν),nL(kν) . Therefore we can take
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δ> 0 such that p−1
Σ→R

([λ0 −δ,λ0 +δ])∩Σ⊂⋃Nλ0
ν=1 Vkν × JmL(kν),nL(kν) and we obtain

1[λ0−δ,λ0+δ](H0)[H0, i ÃI ]1[λ0−δ,λ0+δ](H0)≥ 1
2

1[λ0−δ,λ0+δ](H0) ,

which is (1) .

5 Comments and examples

The changes between the initial and the new versions requires several comments in par-
ticular to convince the reader that it does not change the applications which were made
e.g. in [GeNi2]. Some simple examples in dimension 2 are then given in order to illustrate
the multistep construction of ÃI .

5.1 Comments

a) The explicit form of the conjugate operator ÃI is not important but it is important for
the applications that it remains a first-order differential operator with C ∞(M;L (F ))-
coefficients. The main difference between “Theorem” 3.1 in [GeNi] and the new
version Theorem 1.1 is actually the local form (1) of Mourre’s inequality around the
energy λ . But this does not make any problem because Mourre theory is essentially
local in energy (see [Mou1][Mou2][ABG]).

b) The local in energy version of Mourre inequality is actually the stable version when
perturbations H0+V are considered. From this point of view Theorem 3.3 of [GeNi]
which was a litteral application of the general Proposition 7.5.6 in [ABG], remains
valid after replacing AI by its new version ÃI . Note that a regularity H0 ∈ C1+ε(A)
with ε > 0 , or ε = 0 interpreted as a Dini-type continuity (see [ABG]), is required.
This was definitely incorrect in our initial version with A = AI and this works now
with A = ÃI .

c) In all the examples presented in [GeNi] and in particular for the case of periodic
Schrödinger operators developed in [GeNi2], the Hilbert bundle pF : F → M is
actually a trivial one F = M×H ′ , with M =Td =Rd/Zd . The initial connection ∇M

can be taken as the trivial one and this is probably the reason why we were not very
careful about the use of connections in [GeNi]. However the now more accurate and
correct version, shows that it is important to clarify this point especially when finite
rank subbundles pπm,nF :πm,nF →ωm are considered.

d) In [GeNi2] with F = Td ×H ′ the perturbation V that we considered were L (H ′)-
valued pseudo-differential operator V (Dk) of order −µ , µ > 0 , with a scalar prin-
cipal part. The negative order −µ < 0 implies that V (Dk) is a relatively compact
perturbation of H0 while the scalar principal part implies V (Dk) ∈ C 1+µ(ÃI ) and
H0 +V (Dk) ∈ C 1+µ(AU1,I2) . All the arguments developed in [GeNi2], concerned
with the absence of singular continuous spectrum, the virial theorem or propaga-
tion estimates, work after replacing AI by ÃI . About the asymptotic completeness
of the wave operators, which is a consequence of Proposition 7.5.6 in [ABG] or The-
orem 3.3 in [GeNi] when µ> 1 , we recall that it is still an open question in the long
range case µ> 0 , as it is discussed in [GeNi2].
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e) About the absence of singular continuous spectrum for the free operator H0 away from
the set of thresholds τ , a conjugate operator is not necessary and we refer the reader
to [Kuc] for a spectral measure argument for it.

f) Theorem 1.1 and its proof were given in a global form, with ÃI constructed for the
whole energy intervals I ⋐ Ĩ ⋐ R \ τ . This was done in order to stick as much
as possible to the initial version. This imposes the treatment of possibly several
energy intervals Jm,n , 1 ≤ n ≤ Nm above ωm . Actually the construction can be
made simpler if one works from the beginning in I =]λ−δ,λ+δ[ and Ĩ =]λ−2δ,λ+2δ[
with δ > 0 small enough so that for every m ∈ {1, . . . , MI } , Nm = 1 . This simplifies
the connections ∇ωm,π = πm,1∇ωmπm,1 on pπm,1F : πm,1F → ωm with a single term
and only one vector field Xm,1 above every ωm is used in the construction of ÃI .
However while gluing the operators ∇ωm,1

Xm,1
with the partition of unity

∑MI
m=1 g2

m(k)≡ 1

in a neigborhood of pM(p−1
Σ→R

([λ−δ,λ+δ])∩Σ) , the rank of the various projections
πm,1 changes and the modification of the connections ∇m,1 into ∇̃m,1 is still necessary
in order to ensure H0 ∈C ∞(ÃI ) . This is probably a simpler way for visualizing the
whole construction, of which the generalization relies on the simple Lemma 3.2,
and this is how it will be illustrated in the examples below.

g) Generically crossings of eigenvalues of a matricial self-adjoint operators occur along
codimension 2 strata. When dim M = 2 , singular strata with dim S < M are thus
points and these singular points are removed while working in the energy intervals
I ⋐ R\ τ . So when dim M = 2 and generically, p−1

Σ→R
(I) is made of disconnected

strata of dimension 2 locally diffeomorphic to M , and H0 is locally (on Σ) a scalar
operator. The analysis is much simpler. Such two dimensional problems were con-
sidered in [FeWe] and appear in the modelling of graphene.

h) The assumption that the mapping pΣ→R : Σ → R is proper is used in a fundamen-
tal way, in order to make a stratification which is compatible with the projection
pΣ→R . In some examples where a finite stratification is obviously given it can be
forgotten and the construction of a conjugate operator ÃI can be done without this
assumption, especially when the differential of pS→R , the restriction of pΣ→R to ev-
ery stratum S , is uniformly away from 0 . Then the construction relies on the local
understanding of incidence of strata with the possible changes of the rank of the as-
sociated projectors. Another use pΣ→R : Σ→ R being proper, is for the construction
of a self-adjoint operator for Nelson’s commutator method, but this can be easy for
some non compact manifold M (e.g. M = Rd). Such a simple example is discussed
below.

i) One may wonder about the mixing of the stratification of subanalytic sets, which
makes sense in the analytic category with proper analytic mapping, with C ∞ par-
tition of unity. It works for our construction of ÃI . A question is whether the inci-
dence of strata, as well as the associated spectral projectors, could be fully handled
within the subanalytic category with the help of Lojasiewic inequalities.

5.2 Examples

We give two examples with M = R2 and H ′ = R2 with pictures in order to visualize in
simple cases our general construction and to make more explicit the problem set by the
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initial construction of AI . Although these examples are non generic according to com-
ment g), the two dimensional case, M =R2 , allows simple pictures.
Other examples dimesion 3 with M = R3 or M = T3 , motivated by the study of Maxwell
equations were recently considered in [Poi]. In this text a more accurately designed con-
jugate operator taking into account the more specific structure of the operator allows to
consider the Limiti Absorption Principle at the threshold energies.

First example: Consider

H0(k1,k2)=
(
k2

1 +k2
2 +k2 +k1 k1k2

k1k2 k2
1 +k2

2 +k2 −k1

)
= k2

1+k2
2+k2IdR2+k1

(
1 k2

k2 −1

)
(k1,k2) ∈R2

The characteristic variety is given by

Σ=
{

k2
1 +k2

2 +k2 ±k1

√
1+k2

2, (k1,k2) ∈R2
}

and is partitionned into 15 strata given by

λ= k2
1 +k2

2 +k2 ±k1

√
1+k2

2

with the following choices

• ±k1 > 0 , ±(k2 +1/2)> 0 , dim S = 2 , multiplicity 1 , in blue or red on Figure 1;

• k1 = 0 , ±(k2 +1/2)> 0 , dim S = 1 , multiplicity 2, green on Figure 1;

• ±k1 > 0 , k2 =−1/2 , dim S = 1 , multiplicity 1, black on Figure 1;

• k1 = 0, k2 =−1/2 , dim S = 0 , multiplicity 2, black on Figure 1.

Figure 1: Stratification of Σ

There is one threshold at energy −1
4 corresponding to (k1 = 0,k2 =−1/2,λ=−1

4 ) . While
working in the energy set Ĩ ⋐]− 1

4 ,+∞[ the number of strata can be reduced to 5 the red,
blue ones (dim S = 2, multiplicity 1) and the green one (dim S = 1 , multiplicity 2) on
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dim S = 1, multiplicity 2

dim S = 2, multiplicity 1

Figure 2: Level sets λ ∈ [λ0 −δ,λ0 +δ] , λ0 = 1 , δ= 0.4 (blue), δ= 0.04 (red).

Figure 1.
The situation is better seen by considering the level sets in R2 around an energy λ0 (in
Figure 2 λ0 = 1) . Let us look more carefully around a point along the k2-axis where λ0

is an eigenvalue with multiplicity 2 . Three points km0 , dim Skm0
= 1 , km1 and km2 with

dim Skm1
= dim Skm2

= 2 , the boundaries of open set ωm j (dashed lines) and of supp gm j

(black lines) are represented for j = 0,1,2 in Figure 3.

km0

km1

km2

Figure 3: Open sets ωm (dashed lines) and supp gm (black lines) around the points km .
Level sets λ ∈ [λ0 −δ,λ0 +δ] , λ0 = 1 , δ= 0.4 (blue), δ= 0.04 (red).

In Figure 3 the projectors πm j ,1 have the minimal rank 1 for j = 1,2 and the connection
∇m j ,1 need not to be modified above ωm j . It is not the case for m0 where rankπm0,1 = 2
while supp gm0 intersect supp gm1 and supp gm2 . The connection ∇̃m0,1 differs from the
trivial connection ∇m0,1 , ∇m0,1

X = X⊗IdR2 . Above a neighborhood of supp gm j∩supp gm0 for
j = 1,2 (black areas in Figure 4), it equals ∇̃m0,1 =πm j ,1∇m0,1πm j ,1+(IdR2−πm j ,1)∇m0,1(IdR2−
πm j ,1) .
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km0

Figure 4: Localization in ωm0 (dashed limits) of supp gm0 ∩ supp gm j (in black) , j = 1,2 ,
around which the connection must be modified.

Second example: This is a simplified version of the first one, for which we will explicitely
compare the two operators AI and ÃI , with

H0(k1,k2)=
(
k2 +k1 k1k2

k1k2 k2 −k1

)
= k2IdR2 +k1

(
1 k2

k2 −1

)
.

Here the characteristic variety is

Σ=
{

k2 ±k1

√
1+k2

2 , (k1,k2) ∈R2
}

.

It does not fullfil the condition that pΣ→R : Σ→ R is proper. But as mentionned in Com-
ment h) above, it is not a problem because there is an obvious finite stratification of Σ
compatible with pΣ→R :Σ→R . It is given by the 5 strata given by

λ=λ±(k1,k2)= k2 ±k1

√
1+k2

2

with the following choices:

• ±k1 > 0 , dim S±,± = 2 , multiplicity 1, in blue or red on Figure 5;

• k1 = 0 , dim S0 = 1 , multiplicity 2, in green on Figure 5.

There is no threshold because ∂k2 k2 = 1 along pMS0 = {(0,k2),k2 ∈R} while ∇λ± =

 ±
√

1+k2
2

1± k2√
1+k2

2

k1


satisfies |∇λ±| ≥ 1 on pM(S±,±)= {(k1,k2) ,±k1 > 0} . In particular ∇λ±

|∇λ±|2 .∇ is a smooth vec-

tor field on pM(S±,±) such that ∇λ±
|∇λ±|2 .∇λ± = 1 . Notice also that

∂k2 H0 =
(

1 k1

k1 1

)
≥ 1

2
IdR2 for |k1| ≤ 1

2
.

The spectral projectors associated with the eigenvalues λ±(k1,k2) for k1 ̸= 0 are given by

π+ = 1

2
√

1+k2
2

(
1+

√
1+k2

2 k2

k2 −1+
√

1+k2

)
, π− = 1

2
√

1+k2
2

√
1+k2

2 −1 −k2

−k2

√
1+k2

2 +1

 .
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Figure 5: Stratification of Σ in the second example.

Take g0 ∈ C ∞
comp(]−1/2,1/2[;R) , g− ∈ C ∞(]−∞, 1

4 [;R) and g+ ∈ C ∞(]1
4 ,+∞[;R) such that

g2
0 + g2−+ g2+ ≡ 1 on R . The operator AI of [GeNi] is then given by

−iAI = g0(k1)
∂

∂k2
g0(k1)+ ∑

ε1,ε2∈{+,−}
gε1(k1)πε2

[ ∇λε2

|∇λε2 |2
.∇+ 1

2
div

( ∇λε2

|∇λε2 |2
)]
πε2 gε1(k1) .

Then [H0, iAI ] equals

g2
0(k1)

(
1 k1

k1 1

)
+ g2

+(k1)+ g2
−(k1)= IdR2 + g2

0(k1)k1

(
0 1
1 0

)

Because

[(
0 1
1 0

)
, π±

]
̸= 0 , the double commutator [[H0, iAI ], iAI ] is a first-order differ-

ential operator with a non vanishing principal part for k1 ∈ supp g0∩supp g± and it is not
bounded.
For ÃI we change the trivial connection in {(k1 , k2), |k1| < 1/2}: Take θ0 ∈C ∞

comp(]−1/4,1/4[;R)
and θ1 ∈C ∞(R;R) , suppθ1 ⊂R\ [−1

8 , 1
8 ] and θ2

0 +θ2
1 ≡ 1 on R . Then replace ∂

∂k2
by

∇̃ ∂
∂k2

= θ0(k1)
∂

∂k2
θ0(k1)+θ1(k1)[π+

∂

∂k2
π++π−

∂

∂k2
π−]θ1(k1)

and take

−i ÃI = g0(k1)∇̃ ∂
∂k2

g0(k1)+ ∑
ε1,ε2∈{+,−}

gε1(k1)πε2

[ ∇λε2

|∇λε2 |2
.∇+ 1

2
div

( ∇λε2

|∇λε2 |2
)]
πε2 gε1(k1) .

Computing ∇̃ ∂
∂k2

H0 gives

∇̃ ∂
∂k2

H0 = θ2
0(k1)

(
1 k1

k1 1

)
+θ2

1(k1)
[
∂λ+
∂k2

π++ ∂λ−
∂k2

π−
]

= IdR2 +θ2
0(k1)k1

(
0 1
1 0

)
+θ2

1(k1)
k2k1√
1+k2

2

(π+−π−)
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and the commutator [H0, i ÃI ] equals now

IdR2 +k1θ
2
0(k1)g2

0(k1)

(
0 1
1 0

)
+θ2

1(k1)g2
0(k1)

k2k1√
1+k2

2

(π+−π−) .

Because θ0 g0 ≡ 0 on supp g± and π+ −π− commutes with π± , the double commutator
[[H0, i ÃI ], i ÃI ] is now a zeroth order operator. It is bounded and the iterated commutator
can be checked to be bounded: Actually all the non diagonal terms with respect to the
decomposition IdR2 =π++π− , generated after every commutation with i ÃI , are supported
on suppθ0 and therefore vanish on supp g± .
Here the Mourre estimate can be written globally because

θ2
1(k1)g2

0(k1)
k2k1√
1+k2

2

(π+−π−)≥−1
2
θ2

1(k1)IdR2

and

k1 g2
0(k1)θ2

0(k1)

(
1 0
0 1

)
≥−1

2
θ2

0(k1)IdR2 .

We obtain [
H0 , i ÃI

]≥ 1
2

IdR2 .
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