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A conditional tail expectation type risk measure for time series

We consider the estimation of the conditional expectation EpX h |X 0 ą Q X p1 ´pqq at extreme levels, where pX t q tPZ is a strictly stationary β´mixing time series, Q X its associated quantile function, p P p0, 1q and h a positive integer. We use the multivariate regular variation framework and start to consider the case of non-negative time series. A two-step method is used in order to propose an estimator of this risk measure: first, by introducing an estimator in the intermediate case and, then, by extrapolating outside the data by a Weissman-type construction. Under suitable assumptions, we prove the weak convergence of the estimator of this risk measure. Subsequently, we extend our approach to the case of real-valued time series by using the decomposition of the original time series into the positive and negative parts and we prove again the weak convergence of the proposed estimator under additional assumptions.

Introduction

In many situations it is of interest to study the occurrence of extremes in time series data. For instance, heat waves combined with high levels of pollutants can cause adverse health effects, and eventually lead to increased demand for emergency services and mortality, while in finance clusters of losses on investments occurring over several consecutive days pose a serious risk for financial institutions. It is thus of utmost importance to have risk measures available that focus on the risk in the tail of a distribution and that can also handle the temporal dependence aspect.

Our aim is to estimate, for some positive integer h,

θ h,p :" E ˆXh ˇˇX 0 ą U X ˆ1 p ˙˙(1)
in the context of pX t q tPZ being a strictly stationary time series such that all finite-dimensional marginal distributions are regularly varying, and where U X denotes the tail quantile function, defined as U X pxq " inftz : F X pzq ě 1 ´1{xu, x ą 1, with F X the marginal distribution function (df) of X t , t P Z. This is equivalent to assuming that, for each s, t P Z, s ď t, there exists a non-degenerate measure µ s,...,t on pR t´s`1 , B t´s`1 q such that lim uÑ8 Ppu ´1pX s , . . . , X t q P Aq Pp|X 0 | ą uq " µ s,...,t pAq, for all continuity sets A of µ s,...,t that are bounded away from zero. Thus F |X| is of Pareto-type, i.e., it satisfies the model:

F |X| pxq :" 1 ´F|X| pxq " x ´1 γ |X| pxq, (2) 
where γ is a positive parameter and |X| a slowly varying function at infinity, i.e., a measurable positive function such that

lim xÑ8 |X| pλ xq |X| pxq
" 1, @λ ą 0.

We have then that U |X| admits the following model

U |X| pxq " x γ U pxq, (3) 
equivalent to model ( 2), where U is also a slowly varying function at infinity.

According to [START_REF] Basrak | Regularly varying multivariate time series[END_REF] the assumption of multivariate regular variation for the times series pX t q tPZ is equivalent to the existence of a tail-process pY t q tPZ , such that

L ˆˆX s u , ..., X t u ˙ˇˇ| X 0 | ą u ˙ÝÑ L ppY s , ..., Y t qq , (4) 
as u Ñ 8, for any integer indices s ď t. The particular value t " 0 in condition (4) implies that Pp|X 0 | ą u xq{Pp|X 0 | ą uq Ñ Pp|Y 0 | ą xq as u Ñ 8 for all continuity points x ě 1 of the distribution |Y 0 |. Thus, due to (2), Pp|Y 0 | ą xq " x ´1 γ for all x ě 1. Additionally, the spectral tail process Θ t :" Y t {|Y 0 |, t P Z, is independent of |Y 0 |. Many time series models are jointly regularly varying and hence admit a spectral tail process, among them, linear processes with heavy-tailed innovations, models of the ARCH and GARCH families.

In this paper, the focus will be on the estimation of θ h,p in situations where p is small, i.e., smaller than 1{n, where n is the number of observations available for the estimation. This situation corresponds to extrapolation outside the data range.

The risk measure (1) finds its inspiration in the extremogram, introduced by [START_REF] Davis | The extremogram: A correlogram for extreme events[END_REF] also in the context of stationary multivariate regularly varying time series. The extremogram is (the limit of) the probability of an extreme event at time h given that the process was already extreme at time zero, and as such it can be considered as an analog of the classical autocorrelation function for time series, though it focuses only on the extreme events. In our work, we calculate conditional expectations, and hence our focus is on the actual values of the time series rather than on conditional probabilities.

In the extreme value literature there are several coefficients available that can be used to measure the dependence or clustering of extremes in time series, e.g., the extremal index [START_REF] Leadbetter | Extremes and related properties of random sequences and processes[END_REF] and the upper tail dependence coefficient [START_REF] Ledford | Diagnostics for dependence within time series extremes[END_REF]. The estimation of the distribution of the spectral tail process pΘ t q tPZ was considered in [START_REF] Drees | Statistics for tail processes of Markov chains[END_REF] for the case of deterministic thresholds and in [START_REF] Drees | Peak-over-threshold estimators for spectral tail processes: random vs deterministic thresholds[END_REF] for random thresholds. The work presented here has clearly also links with the classical risk measures like the conditional tail expectation (CTE), defined as EpX|X ą U X p1{pqq, and the marginal expected shortfall (MES), defined for a random vector pX, Y q as EpX|Y ą U Y p1{pqq. For the estimation of the CTE based on independent and identically distributed (i.i.d) random variables we refer to [START_REF] Brazauskas | Estimating conditional tail expectation with actuarial applications in view[END_REF] and to [START_REF] Goegebeur | Extreme-value based estimation of the conditional tail moment with application to reinsurance rating[END_REF] in an extreme value context. Also in the i.i.d. context, [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF] studied the estimation of the MES at extreme levels; see also Di [START_REF] Di Bernardino | Estimation of the multivariate conditional tail expectation for extreme risk levels: Illustration on environmental data sets[END_REF]. The estimation of the CTE for stationary regularly varying time series was considered in, e.g., [START_REF] Linton | Estimation of and inference about the expected shortfall for time series with infinite variance[END_REF]. [START_REF] Davison | Tail risk inference via expectiles in heavytailed time series[END_REF] consider estimation of the MES in the context of heavy-tailed time series, though their estimator is developed for the situation without time lags, i.e., it is based on X and Y observations that are obtained at the same time instance.

The remainder of the paper is organized as follows. In Section 2, we consider the case of nonnegative time series and derive a first order approximation for θ h,p which serves as basis for the construction of our estimator, see Section 2.1. Essentially, the estimator for θ h,p is obtained in two steps. In a first step we consider the estimation at the intermediate level p " k{n where k Ñ 8 as n Ñ 8, but in such a way that k{n Ñ 0. This is considered in Section 2.2. Then, in Section 2.3, we study the second step where the estimator is extrapolated and provide asymptotic results. In Section 3, we extend our approach to the case of real-valued time series by using the decomposition of the original time series into the positive and negative parts and we establish the weak convergence of the proposed estimator under additional assumptions. All the proofs are postponed to Section 4.

2 Non-negative time series

Construction of the estimator

In this section we will introduce an estimator for θ h,p when interest is in extrapolation. We assume throughout that F X is continuous on p0, 8q. In order to motivate the construction of the estimator we give as a first result a theoretical approximation of θ h,p when p OE 0. Since the parameter of interest involves X 0 and X h , we need to introduce a measure for the right-hand upper tail dependence between these two variables. For Borel sets A and B let µ p0,hq pA ˆBq :" µ 0,...,h pA ˆRh´1 ˆBq. Note that multivariate regular variation along with the continuity of F X on p0, 8q implies the convergence

R r px 0 , x h q :" r P ! F X pX 0 q ď x 0 r , F X pX h q ď x h r ) Ñ Rpx 0 , x h q (5)
as r Ñ 8, for all px 0 , x h q P r0, 8s 2 ztp8, 8qu, where Rpx 0 , x h q :" µ p0,hq ppx ´γ 0 , 8q ˆpx ´γ h , 8qq.

The function R is often referred to as the tail copula function, see, e.g., [START_REF] Schmidt | Non-parametric estimation of tail dependence[END_REF] and [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF].

The next lemma provides a theoretical approximation for θ h,p .

Lemma 2.1 Assume that pX t q tPZ is a non-negative strictly stationary regularly varying time series, with continuous marginal distribution function F X on p0, 8q with γ ă 1. Then, for p OE 0 we have θ h,p U X p1{pq ÝÑ

ż 8 0 R ´1, z ´1{γ ¯dz.
Since this lemma is valid for any p OE 0, if we consider an intermediate sequence k, i.e., a sequence such that k " k n Ñ 8 and k{n Ñ 0, we have

θ h,p {U X p1{pq θ h,k{n {U X pn{kq ÝÑ 1,
from which we deduce by a Weissman-type construction (see [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF])

θ h,p » U X p1{pq U X pn{kq θ h,k{n » ˆk np ˙γ θ h,k{n , by (3). 
If p γ k and θ h,k{n denote estimators for γ and θ h,k{n , respectively, then we obtain our final estimator for θ h,p given by p θ h,p :"

ˆk np ˙p γ k θ h,k{n . (6) 
Note that in the definition of the estimator p θ h,p , we could have used a different intermediate sequence in the estimation of the extreme value index γ and in the risk measure at an intermediate level θ h,k{n . However, this complicates the practical use of the resulting estimator since in that case an algorithm for selecting these two sequences is required. For simplicity, we therefore use the same sequence k.

Estimator in the intermediate case

We consider the estimation of θ h,p in the intermediate case, i.e., for p " k{n. Let u n :" U X pn{kq which is estimated by p u n :" X pn´kq , where X p1q ď . . . ď X pnq are the order statistics of X 1 , . . . , X n . A natural estimator for θ h,k{n is then given by θ h,k{n :"

1 k n ÿ i"1 X i`h 1l tX i ąp unu ,
where 1l A denotes the indicator function on the set A. In order to handle the random p u n we will use empirical process techniques, and introduce, for s ą 0, the statistic

θ n psq :" 1 k n ÿ i"1 X i`h u n 1l ! X i un ąs
) , so that

θ h,k{n " u n 1 k n ÿ i"1 X i`h u n 1l ! X i un ą p un un ) " u n θ n ˆp u n u n ˙.
The asymptotic behavior of the process related to θ n psq, s P r1 ´ε, 1 `εs, ε P p0, 1q, can be studied with the theory for empirical processes of cluster functionals from [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF]. We introduce

X n,i " pX n,i,1 , X n,i,2 q :" ˆXi u n , X i`h u n ˙1l ! X i un ą1´ε
) .

The idea of this transformation is to keep only the largest values of the time series, renormalized, whereas all the other non-extreme values are reduced to 0. We can remark that, since s P r1 ´ε, 1 `εs, θ n psq can be rewritten as

θ n psq " 1 k n ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) 1l $ & % X i un 1l " X i un ą1´ε * ąs
, .

-

" 1 k n ÿ i"1 X n,i,2 1l tX n,i,1 ąsu ": 1 k n ÿ i"1 φ s pX n,i q,
where, for z :" pz 1 , z 2 q P r0, 8q 2 φ s pzq :" z 2 1l tz 1 ąsu .

We start by obtaining a process convergence result. In order to obtain ultimately the asymptotic behavior of (6) we need the joint convergence of θ n psq, p u n and p γ k , where for the latter we use the well-known Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], given by

p γ k :" 1 k k ÿ i"1 log X pn´i`1q ´log X pn´kq . (7) 
This requires, besides φ s , the following additional functions φ D,s pzq :" 1l tz 1 ąsu , φ H,s pzq :" log ´z1 s ¯1l tz 1 ąsu , which are related to p u n and p γ k , respectively. Our aim is to study the process

Z n pψq :" ? k ˜1 k n ÿ i"1 ψpX n,i q ´n k E pψpX n,1 qq " c n k F X pp1 ´εqu n q d 1 n F X pp1 ´εqu n q n ÿ i"1 tψpX n,i q ´EpψpX n,i qqu ,
where ψ is one of the functions φ s , φ D,s or φ H,s . More precisely, we want to establish sufficient conditions for Z n to converge towards a Gaussian process in the space of bounded functions indexed by Φ :" tφ s , φ D,s , φ H,s ; s P r1 ´ε, 1 `εsu, denoted 8 pΦq.

This requires some assumptions, listed below.

Let

β n,k :" sup 1ď ďn´k´1 E # sup BPB n n, `k`1
ˇˇPpB|B n,1 q ´PpBq ˇˇ+ , where B j n,i denotes the σ´field generated by pX n, q iď ďj . We assume that there exist sequences of integers n , r n Ñ 8 such that the following conditions hold:

(A) As n Ñ 8, we have n " opr n q, r n " op ? kq, r n k n Ñ 0 and β n, n n rn Ñ 0; (B) For all 0 ď i ď r n ´1, there exists

s n piq ě E " max " X h u n 1l ! X 0 un ą1´ε
) , log

X 0 p1 ´εqu n , 1l ! X 0 un ą1´ε ) * ˆmax " X i`h u n 1l ! X i un ą1´ε
) , log

X i p1 ´εqu n , 1l ! X i un ą1´ε ) * ˇˇX 0 u n ą 1 ´ε , (8) 
such that s 8 piq " lim nÑ8 s n piq exists, and lim nÑ8 ř rn´1 i"0 s n piq " ř 8 i"0 s 8 piq ă 8. Moreover there exists δ ą 0 such that, as n Ñ 8

rn´1 ÿ i"0 " E "ˆm ax " X h u n , log X 0 p1 ´εqu n * 1l ! X 0 un ą1´ε ) ˆmax " X i`h u n , log X i p1 ´εqu n * 1l ! X i un ą1´ε ) ˙1`δˇˇˇX 0 u n ą 1 ´εff+ 1 1`δ " Op1q. (9) 
Note that, by the Cauchy-Schwarz inequality, the right-hand side of ( 8) is finite as soon as γ ă 1{2, and for a similar reason, the conditional expectation in ( 9) is also finite, this time as soon as γ ă 1{p2p1 `δqq.

The next theorem states the weak convergence, denoted by , of the process Z n indexed by Φ.

Theorem 2.1 Let pX t q tPZ be a non-negative strictly stationary β´mixing and regularly varying time series, with continuous marginal distribution function F X on p0, 8q with γ ă 1. Assume also that Conditions (A) and (B) are fulfilled. Then, for any ε P p0, 1q, we have, for ψ P Φ,

Z n pψq p1 ´εq ´1 2 γ Z ε pψq ": Zpψq,
in 8 pΦq, where Z ε is a centered Gaussian process with covariance function given by

Cov pZ ε pψ 1 q, Z ε pψ 2 qq " E " ψ 1 pp1 ´εqY 0 qψ 2 pp1 ´εqY 0 q ‰ `8 ÿ i"1 E " ψ 1 pp1 ´εqY 0 qψ 2 pp1 ´εqY i q ‰ `E " ψ 1 pp1 ´εqY i qψ 2 pp1 ´εqY 0 q ‰( , for ψ 1 , ψ 2 P Φ, with Y i :" pY i , Y i`h q 1l tY i ą1u .
Before looking at the weak convergence of our estimator θ h,k{n , we need first to study the intermediate quantile estimator X pn´kq . To state this result, we need to impose some more structure on the slowly varying function X appearing in (2). Let RV α denote the class of regularly varying functions at infinity with index α, i.e., positive measurable functions f satisfying f ptxq{f ptq Ñ x α , as t Ñ 8, for all x ą 0.

Assumption pDq The survival function of X satisfies

F X pxq " A x ´1{γ ˆ1 `1 γ δ X pxq ˙,
where A ą 0, γ ą 0, and |δ X p.q| P RV ´β , β ą 0.

The Assumption pDq is slightly more general than the Hall class of distribution functions [START_REF] Hall | On some simple estimates of an exponent of regular variation[END_REF][START_REF] Hall | Adaptive estimates of parameters of regular variation[END_REF] and the distributions that satisfy this assumption also satisfy the second-order condition in univariate extreme value statistics (see, e.g., Theorem 2.3.9 in de [START_REF] De Haan | Extreme value theory. An introduction[END_REF]. Examples are Fréchet, student t, F , generalized Pareto and Burr distributions. Under Assumption pDq, the associated tail quantile function U X satisfies

U X pxq " A γ x γ p1 `aX pxqq ,
where a X pxq :" δ X pU X pxqqp1 `op1qq, and thus |a X p.q| is regularly varying with index ´βγ.

Corollary 2.1 Let pX t q tPZ be a non-negative strictly stationary β´mixing and regularly varying time series, with continuous marginal distribution function F X on p0, 8q satisfying Assumption pDq. Assume also that Conditions (A) and (B) are fulfilled. Then, if

? k δ X pu n q Ñ 0, we have ? k " X pn´kq U X pn{kq ´1* γ Zpφ D,1 q.
Now, to obtain the weak convergence of our estimator θ h,k{n , we need to strengthen the convergence in ( 5) by specifying the uniform rate of convergence of R r px 0 , x h q towards its limit Rpx 0 , x h q as r Ñ 8. This assumption can be expressed as follows.

Assumption pSq There exist κ ą γ and τ ă 0 such that, as r Ñ 8

sup x 0 Pr 1 2 ,2s x h ą0 |R r px 0 , x h q ´Rpx 0 , x h q| x κ h ^1 " Opr τ q.
We have now all the ingredients to state the weak convergence of our estimator in the intermediate case.

Theorem 2.2 Let pX t q tPZ be a non-negative strictly stationary β´mixing and regularly varying time series, with continuous marginal distribution function F X on p0, 8q satisfying Assumption pDq with γ ă 1. Assume also that Conditions (A), (B) and pSq are fulfilled. Then, if k " tn a u with

0 ă a ă min ˆ2γ 2 pβ ´ε0 q 2γ 2 pβ ´ε0 q `1 `βγ `ξγ , ´2τ 1 ´2τ ˙,
for ε 0 P p0, βq and ξ P p0, β `p1 ´γq{γq, we have

? k ˜θh,k{n θ h,k{n ´1¸ Zpφ 1 q ş 8 0 R ´1, v ´1 γ ¯dv
`pγ ´1q Zpφ D,1 q.

Estimator under extrapolation

In this section we study the asymptotic properties of the estimator p θ h,p defined in (6). To this aim, we need first to look at the asymptotic properties of the Hill estimator p γ k given in ( 7). The consistency of this estimator has been established in the case of quite general time series models by [START_REF] Hsing | On tail index estimation using dependent data[END_REF] and [START_REF] Resnick | Tail index estimation for dependent data[END_REF], whereas the asymptotic normality for specific models was considered in [START_REF] Resnick | Asymptotic behavior of Hill's estimator for autoregressive data[END_REF]. Here, we need to establish the limiting distribution of the Hill estimator, properly normalized, in terms of the stochastic process Z appearing in Theorem 2.1 in order to combine this result with Theorem 2.2.

Theorem 2.3 Let pX t q tPZ be a non-negative strictly stationary β´mixing and regularly varying time series, with continuous marginal distribution function F X on p0, 8q satisfying Assumption pDq. Assume also that Conditions (A) and (B) are fulfilled. Then, if ? k δ X pu n q Ñ 0, we have ?

k pp γ k ´γq Z pφ H,1 q ´γ Z pφ D,1 q .
We can now state the main result of the paper, namely the weak convergence of p θ h,p , properly normalized.

Theorem 2.4 Let pX t q tPZ be a non-negative strictly stationary β´mixing and regularly varying time series, with continuous marginal distribution function F X on p0, 8q satisfying Assumption pDq with γ ă 1. Assume also that Conditions (A), (B) and pSq are fulfilled. Then, if k " tn a u with

0 ă a ă min ˆ2γ 2 pβ ´ε0 q 2γ 2 pβ ´ε0 q `1 `βγ `ξγ , ´2τ 1 ´2τ ˙,
for ε 0 P p0, βq and ξ P p0, β `p1 ´γq{γq, we have for p satisfying k np Ñ 8 and

log k np ? k Ñ 0 ? k log k np ˜p θ h,p θ h,p ´1¸ Z pφ H,1 q ´γ Z pφ D,1 q .
As is clear from Theorem 2.4, the estimator p θ h,p inherits its limiting distribution from the estimator p γ k of the extreme value index.

Real-valued time series

We come back to our initial aim, that is the estimation of θ h,p on the original time series.

The idea is to decompose pX t q tPZ into the positive and negative parts, i.e., X t " X t ´Xt , where X t :" maxpX t , 0q and X t :" ´minpX t , 0q and to use the estimator of our risk measure evaluated on the positive part of the time series, that is

p θ h,p :" ˆk np ˙p γ k 1 k n ÿ i"1 X ì`h 1l tX ì ąX pn´kq u
as an estimate of θ h,p . More precisely, if we consider the decomposition

p θ h,p θ h,p " p θ h,p θ h,p θ h,p θ h,p , (10) 
where θ h,p :"

E ´Xh ˇˇX 0 ą U X `´1
p ¯¯, we apply our previous section on non-negative time series to deal with the first ratio on the right-hand side of (10), and we impose additional assumptions in order to show that the second ratio is negligible. To this aim, we need to assume that the lower tail of the marginal distribution function F X is regularly varying at infinity with an index α larger than 1{γ, i.e., for x ą 0,

PpX 0 ă ´xq " x ´α pxq, with α ą 1{γ, (11) 
where is slowly varying at infinity. This condition (11) implies that

lim uÑ8 Pp|X 0 | ą uq PpX 0 ą uq " 1, (12) 
and thus the multivariate regular variation property along with the continuity of F X on p0, 8q implies (5) for the original pair pX 0 , X h q. To obtain the weak convergence of our estimator, we need again to strengthen this convergence (5) into a second order condition, Assumption pSq, but this time assumed on the original pair pX 0 , X h q. This result is formalized in the theorem below.

Theorem 3.1 Let pX t q tPZ be a strictly stationary β´mixing and regularly varying time series, with continuous marginal distribution function F X on p0, 8q satisfying (11). Assume also that Assumptions pSq and pDq with γ ă 1 holds on the original pair pX 0 , X h q and that Conditions (A), (B) are fulfilled for pX t q tPZ . Then, if k " tn a u with

0 ă a ă min ˆ2γ 2 pβ ´ε0 q 2γ 2 pβ ´ε0 q `1 `βγ `ξγ , ´2τ 1 ´2τ ˙,
for ε 0 P p0, βq and ξ P p0, β `p1 ´γq{γq, we have for p satisfying k np Ñ 8,

log k np ? k Ñ 0 and k " Opp 2τ p1´γq q ? k log k np ˜p θ h,p θ h,p ´1¸ Z pφ H,1 q ´γ Z pφ D,1 q .
Note that assumption (11) should not be seen as a strict assumption since if we have a time series pX t q tPZ with a lower tail dominating, then we can apply our theory to p´X t q tPZ and in the case where α " 1{γ, then we have to apply the theory of our Section 2 separately on each tails. Remark also that this assumption (11) can be actually slightly relaxed by assuming E " pX h q 1{γ ‰ ă 8 and a limit in ( 12) equal to a constant c instead of 1. In this case our theorem can be applied to a slightly larger number of distributions (e.g., symmetric distributions which satisfy these two conditions), but with some adjustments to the theory due to the fact that we have a new limit in (5), namely lim rÑ8 R r px 0 , x h q " c µ p0,hq ppx ´γ 0 , 8q, px ´γ h , 8qq, for all px 0 , x h q P r0, 8s 2 ztp8, 8qu.

Proofs

Proof of Lemma 2.1. By definition, we have θ h,p U X p1{pq "

ż 8 0 P pX 0 ą U X p1{pq, X h ą xq P pX 0 ą U X p1{pqq dx U X p1{pq " ż 8 0 1 p P ˆX0 ą U X ˆ1 p ˙, X h ą U X ˆ1 p ˙z˙d z " ż 8 0 1 p P ˆF X pX 0 q ă p, F X pX h q ă F X ˆUX ˆ1 p ˙z˙˙d z.
We use now the dominated convergence theorem. Note first that according to (5) combined with model (2), we have

lim pOE0 1 p P ˆF X pX 0 q ă p, F X pX h q ă F X ˆUX ˆ1 p ˙z˙˙" R ´1, z ´1 γ ¯.
Then, according to Proposition B.1.9.5 in de [START_REF] De Haan | Extreme value theory. An introduction[END_REF], for r ε, r δ ą 0, there exists a p 0 such that for p ă p 0 we have

1 p P ˆF X pX 0 q ă p, F X pX h q ă F X ˆUX ˆ1 p ˙z˙˙ď min $ & % 1, F X ´UX ´1 p ¯zF X ´UX ´1 p ¯¯, . - ď 1l tzď1u `F X ´UX ´1 p ¯zF X ´UX ´1 p ¯¯1l tzą1u ď 1l tzď1u `p1 `r εq z ´1 γ `r δ 1l tzą1u ": gpzq.
This function g is integrable on r0, 8q, for p ă p 0 and r δ P ´0, 1 γ ´1¯. Hence, Lemma 2.1 follows.

Proof of Theorem 2.1. First remark that, under model ( 2)

n k F X pp1 ´εqu n q " F X pp1 ´εqu n q F X pu n q ÝÑ p1 ´εq ´1 γ .
Thus, to prove Theorem 2.1, it remains to show that

Z n,ε pψq :" d 1 n F X pp1 ´εqu n q n ÿ i"1 tψpX n,i q ´EpψpX n,i qqu Z ε pψq, (13) 
in 8 pΦq. As we will show, this convergence follows from Theorem 2.10 in [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF]. To this aim, we have to check all the assumptions of the latter. To facilitate understanding, we will keep the same labels of the conditions as in their theorem, but with a reformulation adapted to our context. In a first step we will show the process convergence (13) for the function class Φ ε :" tφ s ; s P r1 ´ε, 1 `εsu. Subsequently we argue for the process convergence when all functions are considered simultaneously. This is motivated by the fact that the process convergence (13) for the function class Φ D,H,ε :" tφ D,s , φ H,s ; s P r1 ´ε, 1 `εsu was already considered in [START_REF] Drees | Peak-over-threshold estimators for spectral tail processes: random vs deterministic thresholds[END_REF], so in our second step we only perform the additional verifications needed for the whole function class Φ.

First, we state and verify the assumptions from [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF] for the class Φ ε . Let r0, 8q Y :" Ť rPN r0, 8q 2r , the set of all vectors with non-negative entries and arbitrary length, and F ε :" tf s ; s P r1 ´ε, 1 `εsu with f s pzq :"

r ÿ i"1 φ s pz i q,
for z " pz 1 , . . . , z r q P r0, 8q 2r and r P N. So F ε contains arbitrary long sums with summands coming from Φ ε .

Assumption pD1q: E " t ř rn i"1 φ s pX n,i qu 2 ı has to be finite for all s P r1 ´ε, 1 `εs and all n ě 1, and the envelope function

F ε pzq :" sup f PFε f pzq,
has to be finite for all z P r0, 8q Y .

Assumption pD2 1 q: We have, @ r ε ą 0

E » - - - # rn ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) + 2 1l $ & % ř rn i"1 X i`h un 1l " X i un ą1´ε * ąr ε ? nF X pp1´εqunq
, .

fi ffi ffi fl " o ˆrn k n

˙.

Assumption pD3q: There exists a semi-metric ρ such that lim

r δ OE0 lim sup nÑ8 sup 1´εďs,tď1`ε ρps,tqă r δ 1 r n F X pp1 ´εqu n q E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ąs ) ´rn ÿ i"1 X i`h u n 1l ! X i un ąt ) ¸2fi
fl " 0.

Assumption pD5q: Let r X n,j :" p r X n,j,i q 1ďiďrn be independent copies of pX n,i q 1ďiďrn , for 1 ď j ď tn{r n u. The map sup 1´εďs,tď1`ε ρps,tqă r δ

tn{p2rnqu ÿ j"1 e j # rn ÿ i"1 " φ s p r X n,j,i q ´φt p r X n,j,i q ı + k ,
is measurable, @ r δ ą 0, n P N, pe j q 1ďjďtn{p2rnqu P t´1, 0, 1u tn{p2rnqu and k P t1, 2u.

Assumption pD6 1 q: The envelope function F ε is measurable with

E » - # rn ÿ i"1 φ 1´ε pX n,i q + 2 fi fl " O ˆrn k n ˙(14)
and

ż 1 0 sup QPQ g f f e log N ˜ζ ˆż F 2 ε dQ ˙1{2 , F ε , L 2 pQq ¸dζ ă 8,
where N denotes the covering numbers and Q ranges over the set of discrete probability measures Q.

Proof of Assumption pD1q. We have

E » - ˜rn ÿ i"1 φ s pX n,i q ¸2fi fl ď E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) ¸2fi fl ď rn ÿ i"1 rn ÿ j"1 E " X i`h u n 1l ! X i un ą1´ε ) X j`h u n 1l ! X j un ą1´ε )  ď 2 r n rn´1 ÿ i"0 E " X h u n 1l ! X 0 un ą1´ε ) X i`h u n 1l ! X i un ą1´ε )  ď 2 r n F X pp1 ´εqu n q rn´1 ÿ i"0 E " X h u n X i`h u n 1l ! X i un ą1´ε ) ˇˇX 0 u n ą 1 ´ε . ( 15 
)
According to Condition (B), this yields

E » - ˜rn ÿ i"1 φ s pX n,i q ¸2fi fl ď 2 r n F X pp1 ´εqu n q rn´1 ÿ i"0 s n piq " O `rn F X pp1 ´εqu n q ˘" O ˆrn k n ˙" op1q, (16) 
by Condition (A). Since additionally φ s pzq ď φ 1´ε pzq ă 8, @z, Assumption pD1q is established.

Proof of Assumption pD2 1 q. We have, for r ε ą 0, using Holder's and Markov's inequalities

E » - - - # rn ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) + 2 1l $ & % ř rn i"1 X i`h un 1l " X i un ą1´ε * ąr ε ? nF X pp1´εqunq
, .

fi ffi ffi fl

" rn ÿ i"1 rn ÿ j"1 E » - - - X i`h u n X j`h u n 1l ! X i un ą1´ε, X j un ą1´ε ) 1l $ & % ř rn i"1 X i`h un 1l " X i un ą1´ε * ąr ε ? nF X pp1´εqunq
, .

fi ffi ffi fl

ď rn ÿ i"1 rn ÿ j"1 # E « ˆXi`h u n X j`h u n ˙1`δ 1l ! X i un ą1´ε, X j un ą1´ε ) ff+ 1 1`δ ˆ#P ˜rn ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) ą r ε b nF X pp1 ´εqu n q ¸+ δ 1`δ ď 2 r n rn´1 ÿ i"0 # E « ˆXi`h u n X h u n ˙1`δ 1l ! X i un ą1´ε, X 0 un ą1´ε ) ff+ 1 1`δ ˆ$ & % 1 r ε 2 n F X pp1 ´εqu n q E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) ¸2fi fl , .
- Proof of Assumption pD3q. Let s, t P r1 ´ε, 1 `εs, and without loss of generality, assume

δ 1`δ ď 2 r n rn´1 ÿ i"0 # E « ˆXi`h u n X h u n ˙1`δ 1l ! X i un ą1´ε ) ˇˇX 0 u n ą 1 ´εff F X pp1 ´εqu n q + 1 1`δ ˆ# 1 r ε 2 n F X pp1 ´εqu n q 2r n F X pp1 ´εqu n q rn´1 ÿ i"0 s n piq + δ 1`δ " O ˆrn " F X pp1 ´εqu n q ‰ 1 1`δ ´rn n ¯δ 1`δ ˙rn´1 ÿ i"0 # E « ˆXi`h u n X h u n ˙1`δ 1l ! X i un ą1´ε ) ˇˇX 0 u n ą 1 ´εff+ 1 1`δ " O ¨rn F X pp1 ´εqu n q ¨rn b n F X pp1 ´εqu n q ' δ 1`δ ¨1 b n F X pp1 ´εqu n q ' δ 1`δ ‹ ' " O ˜rn k n ˆrn ? k ˙δ 1`δ ˆ1 ? k ˙δ 1`δ " o ˆrn k n using ( 
s ă t. Then E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ąs ) ´rn ÿ i"1 X i`h u n 1l ! X i un ąt ) ¸2fi fl " E » - ˜rn ÿ i"1 X i`h u n 1l ! să X i un ďt ) ¸2fi
fl

" E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ą1´ε ) 1l ! să X i un ďt ) ¸2fi fl " rn ÿ i"1 rn ÿ j"1 E ˆXi`h u n 1l ! X i un ą1´ε ) X j`h u n 1l ! X j un ą1´ε ) 1l ! să X i un ďt ) 1l ! să X j un ďt ) ď rn ÿ i"1 rn ÿ j"1 # E « ˆXi`h u n 1l ! X i un ą1´ε ) X j`h u n 1l ! X j un ą1´ε ) ˙1`δ ff+ 1 1`δ ˆ"P ˆs ă X i u n ď t, s ă X j u n ď t ˙* δ 1`δ ď 2 r n rn´1 ÿ i"0 # E « ˆXh u n 1l ! X 0 un ą1´ε ) X i`h u n 1l ! X i un ą1´ε ) ˙1`δ ff+ 1 1`δ ˆ"F X ps u n q ´F X pt u n q ‰ δ 1`δ ď 2 r n " F X pp1 ´εqu q ‰ 1 1`δ " F X ps u n q ´F X pt u n q ‰ δ 1`δ ˆrn´1 ÿ i"0 # E « ˆXh u n X i`h u n ˙1`δ 1l ! X i un ą1´ε ) ˇˇX 0 u n ą 1 ´εff+ 1 1`δ .
Denoting by C a positive constant, independent of s and t, that can change from one line to another, this implies, by Condition (B), that

1 r n F X pp1 ´εqu n q E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ąs ) ´rn ÿ i"1 X i`h u n 1l ! X i un ąt ) ¸2fi fl ď C " F X ps u n q ´F X pt u n q F X pp1 ´εqu n q  δ 1`δ ď C $ & % ˇˇˇˇˇF X ´s 1´ε p1 ´εqu n F X pp1 ´εqu n q ´ˆs 1 ´ε ˙´1 γ ˇˇˇˇˇ`ˇˇˇˇˇF X ´t 1´ε p1 ´εqu n F X pp1 ´εqu n q ´ˆt 1 ´ε ˙´1 γ ˇˇˇˇš 1 ´ε ˙´1 γ ´ˆt 1 ´ε ˙´1 γ ˇˇˇˇ+ δ 1`δ ": C tQ 1,n `Q2,n `Q3,n u δ 1`δ .
Note that, by regular variation, Q 1,n and Q 2,n tend to 0 uniformly for s, t P r1 ´ε, 1 `εs, see Theorem B.1.4 in de [START_REF] De Haan | Extreme value theory. An introduction[END_REF], and

Q 3,n ď C ˇˇs ´1 γ ´t´1 γ ˇˇ": C ρps, tq.
We deduce then that lim sup

nÑ8 sup 1´εďsďtď1`ε ρps,tqă r δ 1 r n F X pp1 ´εqu n q E » - ˜rn ÿ i"1 X i`h u n 1l ! X i un ąs ) ´rn ÿ i"1 X i`h u n 1l ! X i un ąt ) ¸2fi fl ď C r δ δ 1`δ .
This achieves the proof of Assumption pD3q.

Proof of Assumption pD5q.

We follow the lines of proof of Proposition 2.1 in (2020). First, each element of Φ ε is uniquely determined by s, thus if s n Ñ s, then ρps n , sq Ñ 0. Consequently Φ Q :" tφ s pzq; s P r1 ´ε, 1 `εs X Qu is a countable and dense subset of Φ ε . This implies that Φ ε is separable. By similar arguments, the function class F ε is also separable since it contains a countable and dense subset G, obtained by restricting the index sets of the function class F ε to their rational part. Now

Lps, tq :"

tn{p2rnqu ÿ j"1 e j # rn ÿ i"1 " φ s p r X n,j,i q ´φt p r X n,j,i q ı + k ,
is measurable, as is sup s,tPr1´ε,1`εs Lps, tq " sup s,tPr1´ε,1`εsXQ Lps, tq, since the supremum of countably many measurable mappings is measurable. This achieves the proof of Assumption pD5q.

Proof of Assumption pD6 1 q.

According to Remark 2.11 in [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF], this assumption is satisfied if F ε is a so-called VC-class. To establish this, first note that the class Φ ε is linearly ordered (this means, for φ s , φ s P Φ ε either φ s ď φ s or φ s ď φ s ), and hence also F ε is linearly ordered. According to van der Vaart (1998), p. 275, in order to verify the VC property of a function class, we need to consider its collection of subgraphs, defined in our context as M s " tpλ, zq P R ˆr0, 8q Y : λ ă f s pzqu , s P r1 ´ε, 1 `εs, and show that these form a VC-class of sets. The linear order of the function class F ε leads to the following inclusion of subgraphs: for s, s P r1 ´ε, 1 `εs with s ď s we have that M s Ă M s. Following Example 19.16 in van der Vaart (1998) such collection of sets forms a VC-class with VC-index 2.

We also need to verify the two following conditions of Theorem 2.10 in [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF], ensuring that all finite-dimensional distributions converge:

Assumption pC1q: We have

E " p∆ n psq ´E∆ n psqq 2 1l t|∆npsq´E∆npsq|ď ? nF X pp1´εqunqu ı " o ˆrn k n ˙, P ˆ|∆ n psq ´E∆ n psq| ą b nF X pp1 ´εqu n q ˙" o ´rn n ¯,
for all s P r1 ´ε, 1 `εs, where ∆ n psq :"

rn ÿ i"rn´ n`1 X i`h u n 1l ! X i un ąs
) .

Assumption pC3q:

We have for all s, t P r1 ´ε, 1 `εs

1 r n F X pp1 ´εqu n q Cov ˜rn ÿ i"1 φ s pX n,i q, rn ÿ j"1 φ t pX n,j q ÝÑ E " φ s pp1 ´εqY 0 qφ t pp1 ´εqY 0 q ‰ `8 ÿ i"1 E " φ s pp1 ´εqY 0 qφ t pp1 ´εqY i q ‰ `E " φ s pp1 ´εqY i qφ t pp1 ´εqY 0 q ‰( .
Proof of Assumption pC1q. The function class Φ ε admits the envelope φ 1´ε , which is measurable. Under Conditions (A) and (B), since ( 14) holds as well as Assumptions pD1q and pD2 1 q, according to Corollary 3.9 in Drees and Rootzén (2010) combined with Annex A.3 in [START_REF] Knežević | Analyse extremaler Abhängigkeiten bei Zeitreihen[END_REF], Assumption pC1q is also satisfied.

Proof of Assumption pC3q. We have

1 r n F X pp1 ´εqu n q Cov ˜rn ÿ i"1 φ s pX n,i q, rn ÿ j"1 φ t pX n,j q " 1 r n F X pp1 ´εqu n q rn ÿ i"1 rn ÿ j"1 Cov pφ s pX n,i q, φ t pX n,j qq " 1 r n F X pp1 ´εqu n q rn ÿ i"1 rn ÿ j"1 tE rφ s pX n,i qφ t pX n,j qs ´E rφ s pX n,0 qs E rφ t pX n,0 qsu " 1 r n F X pp1 ´εqu n q # rn´1 ÿ i"1
pr n ´iq tE rφ s pX n,0 qφ t pX n,i qs `E rφ s pX n,i qφ t pX n,0 qsu `rn E rφ s pX n,0 qφ t pX n,0 qs ´r2 n E rφ s pX n,0 qs E rφ t pX n,0 qs

+ " rn´1 ÿ i"1
ˆ1 ´i r n ˙tE rφ s pX n,0 qφ t pX n,i q| X 0 ą p1 ´εqu n s `E rφ s pX n,i qφ t pX n,0 q|X 0 ą p1 ´εqu n su `E rφ s pX n,0 qφ t pX n,0 q|X 0 ą p1 ´εqu n s `Opr n F X pp1 ´εqu n qq, since γ ă 1. Now, by ( 4) and the continuous mapping theorem (see Theorem 2.3 in van der Vaart, 1998) we have

L pX n,0 , X n,i |X 0 ą p1 ´εqu n q ÝÑ L `p1 ´εqpY 0 , Y i q ˘.
and hence also L pφ s pX n,0 qφ t pX n,i q|X 0 ą p1 ´εqu n q ÝÑ L `φs pp1 ´εqY 0 qφ t pp1 ´εqY i q ˘, for n Ñ 8. Using now the corollary of Theorem 25.12 in Billingsley (1995, p. 338), since, by Condition (B), for some δ ą 0

sup n E " tφ s pX n,0 qφ t pX n,i qu 1`δ |X 0 ą p1 ´εqu n ı ă 8,
we have

E rφ s pX n,0 qφ t pX n,i q|X 0 ą p1 ´εqu n s ÝÑ E " φ s pp1 ´εqY 0 qφ t pp1 ´εqY i q ‰ . Now, remark that 0 ď E rφ s pX n,0 qφ t pX n,i q|X 0 ą p1 ´εqu n s ď E rφ 1´ε pX n,0 qφ 1´ε pX n,i q|X 0 ą p1 ´εqu n s ď s n piq.
Again by Condition (B), we can apply Pratt's lemma (see, [START_REF] Pratt | On interchanging limits and integrals[END_REF] in order to deduce the convergence of Assumption pC3q.

This achieves the weak convergence (13) in 8 pΦ ε q.

We now briefly comment on the weak convergence in 8 pΦq. Similarly to the above we need to verify the assumptions in [START_REF] Drees | Limit theorems for empirical processes of cluster functionals[END_REF], but now for Φ " Φ ε Y Φ D,H,ε . Remember that the convergence (13) for the function class Φ D,H,ε was already established in [START_REF] Drees | Peak-over-threshold estimators for spectral tail processes: random vs deterministic thresholds[END_REF]. Assumption pC1q needs to hold for each individual element of a function class, so it is satisfied for Φ. For Assumption pC3q we only need to compute the covariances between the functions from Φ ε and those from Φ D,H,ε , but this is readily done with arguments similar to the above. Concerning the asymptotic equicontinuity (the verification of Assumptions pD1q, pD2 1 q, pD3q, pD5q and pD6 1 q), one can follow the argument on p. 48 in [START_REF] Knežević | Analyse extremaler Abhängigkeiten bei Zeitreihen[END_REF], according to which it is sufficient to verify the asymptotic equicontinuity for the subclasses Φ ε and Φ D,H,ε . As we have this, the convergence (13) in 8 pΦq follows.

In the sequel, we will make use of Skorohod's theorem, according to which there are versions of the processes from Theorem 2.1 for which the convergence holds almost surely. When doing so we will keep the same notations, but it should be kept in mind that the new processes are only in distribution equal to the original ones. According to the Skorohod theorem we have then

sup ψPΦ ˇˇˇˇ? k ˜1 k n ÿ i"1 ψpX n,i q ´n k E pψpX n,1 qq ¸´Zpψq ˇˇˇˇÑ 0 a.s.
as n Ñ 8.

Proof of Corollary 2.1. According to Theorem 2.1 we have the convergence

? k # 1 k n ÿ i"1 1l ! X i un ąs ) ´n k P ˆX0 u n ą s ˙+ Ñ Zpφ D,s q,
uniformly on r1 ´ε, 1 `εs. Now, under Assumption pDq, since ? k δ X pu n q Ñ 0, we have

n k P ˆX0 u n ą s ˙" s ´1 γ `o ˆ1 ? k ˙,
where the o-term is uniform in s P r1 ´ε, 1 `εs, from which we deduce that

? k # ´1 k n ÿ i"1 1l t X i un ąsu ´´´s ´1 γ ¯+ Ñ ´Zpφ D,s q,
uniformly on r1 ´ε, 1 `εs. We can now directly apply Vervaat's Lemma (see, e.g., Lemma A.0.2 in de [START_REF] De Haan | Extreme value theory. An introduction[END_REF], yielding the convergence

? k " X pn´t´k tuq u n ´p´tq ´γ * Ñ γ p´tq ´γ´1 Z `φD,p´tq ´γ ˘,
uniformly on " ´p1 ´εq ´1 γ , ´p1 `εq ´1 γ ı . Now, using the specific value t " ´1, Corollary 2.1 follows.

Proof of Theorem 2.2. Let E n psq :" E `θn psq ˘and S n :" p u n {u n . We have the decomposition

? k ˜θh,k{n θ h,k{n ´1¸" u n θ h,k{n ! ? k " θ n pS n q ´En pS n qq ‰ `?k rE n pS n q ´En p1qs
) ": u n θ h,k{n tQ 4,n `Q5,n u .

By Lemma 2.1 we have that θ h,k{n {u n Ñ ş 8 0 R `1, z ´1{γ ˘dz.

We now turn to the analysis of Q 4,n and Q 5,n . By Theorem 2.1 and Corollary 2.1 we have that pZ n , ? kpS n ´1qq pZ, γZpφ D,1 qq. Using Skorohod's theorem there exists also versions for which the convergence is almost surely. We will apply the Skorohod theorem throughout the proof, though without a change in notation, as mentioned before.

For Q 4,n , we have then, for n large enough, |Q 4,n ´Zpφ 1 q| ď sup sPr1´ε,1`εs |Z n pφ s q ´Zpφ s qq| `|Zpφ Sn q ´Zpφ 1 q|, and hence |Q 4,n ´Zpφ 1 q| a.s.

Ñ 0 as n Ñ 8.

Concerning Q 5,n , we have, on the set tS n P r1 ´ε, 1 `εsu,

Q 5,n " n ? k rE pφ Sn pX n,0 qq ´E pφ 1 pX n,0 qqs " ? k "ż 8 0 R n{k ˆF X pu n S n q F X pu n q , F X pu n vq F X pu n q ˙dv ´ż 8 0 R n{k ˆ1, F X pu n vq F X pu n q ˙dv  " ? k "ż 8 0 " R ´S´1{γ n , v ´1{γ ¯´R ´1, v ´1{γ ¯ı dv `ż 8 0 " R ˆF X pu n S n q F X pu n q , F X pu n vq F X pu n q ˙´R ´S´1{γ n , v ´1{γ ¯ dv `ż 8 0 " R n{k ˆF X pu n S n q F X pu n q , F X pu n vq F X pu n q ˙´R ˆF X pu n S n q F X pu n q , F X pu n vq F X pu n q ˙ dv ´ż 8 0 " R ˆ1, F X pu n vq F X pu n q ˙´R ´1, v ´1{γ ¯ dv ´ż 8 0 " R n{k ˆ1, F X pu n vq F X pu n q ˙´R ˆ1, F X pu n vq F X pu n q ˙ dv * .
Using the homogeneity of the function R on the second term in the right-hand side of the above display gives then

Q 5,n " ? kS 1{γ n F X pu n S n q F X pu n q ż 8 0 « R ˜S´1{γ n , F X pu n vq S 1{γ n F X pu n S n q ¸´R ´S´1{γ n , v ´1{γ ¯ff dv `?kS 1{γ n F X pu n S n q F X pu n q ż 8 0 " R ´S´1{γ n , v ´1{γ ¯´R ´1, v ´1{γ ¯ı dv `?k " S 1{γ n F X pu n S n q F X pu n q ´1 ż 8 0 R ´1, v ´1{γ ¯dv `?k ż 8 0 " R n{k ˆF X pu n S n q F X pu n q , F X pu n vq F X pu n q ˙´R ˆF X pu n S n q F X pu n q , F X pu n vq F X pu n q ˙ dv
´?k

ż 8 0 " R ˆ1, F X pu n vq F X pu n q ˙´R ´1, v ´1{γ ¯ dv
´?k

ż 8 0 " R n{k ˆ1, F X pu n vq F X pu n q ˙´R ˆ1, F X pu n vq F X pu n q ˙ dv ": 6 ÿ i"1 Q piq 5,n .
We now analyse each of these terms in turn. First note that

? k " S 1{γ n F X pu n S n q F X pu n q ´1 " ? kδ X pu n q γ `δX pu n q " δ X pu n S n q δ X pu n q ´1 " o P p1q,
by the uniformity of the convergence in regular variation and the fact that ? kδ X pu n q Ñ 0 as n Ñ 8 under our assumptions. Hence we have already Q p3q 5,n " o P p1q. We now turn to Q p1q 5,n and we will show that sup sPr1´ε,1`εs

ˇˇˇ? k ż 8 0 " R ˆs´1{γ , F X pu n vq s 1{γ F X pu n sq ˙´R ´s´1{γ , v ´1{γ ¯ dv ˇˇˇ" op1q, (17) 
which gives then Q p1q 5,n " o P p1q. We have, with T n :" pn{kq b , 0 ă b ă 1, that

ˇˇˇ? k ż 8 0 " R ˆs´1{γ , F X pu n vq s 1{γ F X pu n sq ˙´R ´s´1{γ , v ´1{γ ¯ dv ˇˇď ´?k ż Tn 0 ˇˇˇR ˆs´1{γ , F X pu n z ´γ q s 1{γ F X pu n sq ˙´R ´s´1{γ , z ¯ˇˇˇd z ´γ ´?k ż 8 Tn ˇˇˇR ˆs´1{γ , F X pu n z ´γ q s 1{γ F X pu n sq ˙´R ´s´1{γ , z ¯ˇˇˇd z ´γ ď ´?k ż Tn 0 ˇˇˇF X pu n z ´γ q s 1{γ F X pu n sq ´zˇˇˇˇd z ´γ `2? kT ´γ n sup x 0 Prp1`εq ´1{γ ,p1´εq ´1{γ s x h ą0 Rpx 0 , x h q,
where we have used in the last step the Lipschitz property of the function R to the first integral in the right-hand side. From Assumption pDq and Proposition B.1.10 in de [START_REF] De Haan | Extreme value theory. An introduction[END_REF] we obtain the following bound, for ξ, z ą 0 and n large,

ˇˇˇF X pu n z ´γ q s 1{γ F X pu n sq ´zˇˇˇˇď C|δ X pu n q|z " pz ´γ q ´β˘ξ `zγβ `1ı
where C does not depend on s and x ˘ξ " x ξ if x ě 1 and x ˘ξ " x ´ξ if x ď 1. This implies that, for ξ P p0, β `p1 ´γq{γq and n large sup sPr1´ε,1`εs

ˇˇˇ? k ż 8 0 " R ˆs´1{γ , F X pu n vq s 1{γ F X pu n sq ˙´R ´s´1{γ , v ´1{γ ¯ dv ˇˇď C ? k|δ X pu n q|T 1´γ`βγ`ξγ n `2? kT ´γ n sup x 0 Prp1`εq ´1{γ ,p1´εq ´1{γ s x h ą0 Rpx 0 , x h q, ( 18 
) which is op1q if b is chosen such that ? kT ´γ n Ñ 0, ? k|δ X pu n q|T 1´γ`βγ`ξγ n Ñ 0.
Taking k " tn a u, with a P p0, 1q, we get then the constraints b ą a 2γp1 ´aq , b ă 2γp1 ´aqpβ ´ε0 q ´a 2p1 ´aqp1 ´γ `βγ `ξγq , where ε 0 P p0, βq. As the lower bound for b must be below the upper bound, we get then the following restriction on a: a ă 2γ 2 pβ ´ε0 q 2γ 2 pβ ´ε0 q `1 `βγ `ξγ .

Overall we have then Q p1q 5,n " o P p1q and by (17) also Q p5q 5,n " op1q.

We now turn to Q p2q 5,n . Again using the homogeneity of R gives ? k

ż 8 0 " R ´S´1{γ n , v ´1{γ ¯´R ´1, v ´1{γ ¯ı dv " ? k ż 8 0 « S ´1{γ n R ˜1, ˆv S n ˙´1{γ ¸´R ´1, v ´1{γ ¯ff dv " ? k ´S1´1{γ n ´1¯ż 8 0 R ´1, v ´1{γ ¯dv,
and hence

Q p2q 5,n " ˆ1 ´1 γ ˙?k pS n ´1q ż 8 0 R ´1, v ´1{γ ¯dv `oP p1q.
As for Q p4q 5,n we use Assumption pSq and obtain, for n large and with arbitrary large probability " Zpφ H,1 q ´γ Zpφ D,1 q `tZ n pφ H,Sn q ´Zpφ H,1 qu `tH n pS n q `γZpφ D,1 qu ": Zpφ H,1 q ´γ Zpφ D,1 q `Q6,n `Q7,n , where

|Q p4q 5,n | ď ? k sup x 0 Pr1{2,2s x h ą0 |R n{k px 0 , x h q ´Rpx 0 , x h q| x κ h ^1 ż 8 0 ˆF X pu n vq F X pu n q ˙κ ^1 dv " O ´?k ´n k ¯τ ¯#1 `ż 8 1 ˆF X pu n vq F X pu n q ˙κ dv + ( 19 
H n psq :" ? k " n k E " log X 0 u n s 1l tX 0 ąunsu  ´γ* .
For Q 6,n , we have for n large enough

|Q 6,n | ď sup sPr1´ε,1`εs |Z n pφ H,s q ´Zpφ H,s q| `|Zpφ H,Sn q ´Zpφ H,1 q| a.s. Ñ 0.
Now for Q 7,n , remark that, under Assumption pDq

H n psq " ? k " F X psu n q F X pu n q ´1 ż 8 1 F X psu n zq F X psu n q 1 z dz `?k ż 8 1 1 z " F X psu n zq F X psu n q ´z´1 γ  dz " ? k ´s´1 γ ´1¯ż 8 1 F X psu n zq F X psu n q 1 z dz `s´1 γ ? k δ X pu n q γ `δX pu n q " δ X psu n q δ X pu n q ´1 ż 8 1 F X psu n zq F X psu n q 1 z dz `?k ż 8 1 1 z " F X psu n zq F X psu n q ´z´1 γ  dz ": ? k ´s´1 γ ´1¯ż 8 1 F X psu n zq F X psu n q 1 z dz `Q8,n `Q9,n .
By Assumption pDq combined with Proposition B.1.10 in de [START_REF] De Haan | Extreme value theory. An introduction[END_REF], we have

|Q 9,n | ď ˇˇˇˇ? k δ X psu n q γ `δX psu n q ˇˇˇˇż 8 1 z ´1 γ ´1 ˇˇˇδ X psu n zq δ X psu n q ´1ˇˇˇˇd z ď ˇˇˇˇ? k δ X psu n q γ `δX psu n q ˇˇˇˇ" ż 8 1 z ´1 γ ´1 ˇˇˇδ X psu n zq δ X psu n q ´z´β ˇˇˇd z `ż 8 1 z ´1 γ ´1 ˇˇz ´β ´1ˇˇˇd z * ď ˇˇˇˇ? k δ X psu n q γ `δX psu n q ˇˇˇˇ" ε ż 8 1 z ´1 γ ´1´β`ξ dz `2 ż 8 1 z ´1 γ ´1 dz * .
This implies that, for ξ P p0, 1{γ `βq,

sup sPr1´ε,1`εs |Q 9,n | ď C ? k |δ X pu n q|.
Clearly we have also sup Finally, using Theorem 2.2 achieves the proof of Theorem 2.4. Proof of Theorem 3.1. Using decomposition (10), we start to study the first factor p θ h,p {θ h,p . To this aim, first remark that the assumption that the original time series is β´mixing ensures that the non-negative time series pX t q tPZ is also β´mixing. Also, Assumption pSq on the original pair pX 0 , X h q implies the same assumption on the non-negative pair pX 0 , X h q. Indeed, for 0 ă x h ă rt1´F X p0qu, we have t1´F X `pX h q ď x h r u " t1´F X pX h q ď x h r u " t1´F X pX h q ď

x h r u, and otherwise, if x h ą rt1 ´FX p0qu, clearly 1 ´FX `pX h q ď x h r . Thus, we have now all the assumptions required in order to apply Theorem 2.4 to pX t q tPZ and to deduce that ? k log k np ˜p θ h,p θ h,p ´1¸ Z pφ H,1 q ´γ Z pφ D,1 q .

(20)

Concerning now the second factor θ h,p {θ h,p , we can proceed as follows:

θ h,p θ h,p " ErX h |X 0 ą U X p1{pqs ErX h |X 0 ą U X `p1{pqs " ErX h |X 0 ą U X p1{pqs ErX h |X 0 ą U X p1{pqs " 1 ´ErX h |X 0 ą U X p1{pqs ErX h |X 0 ą U X p1{pqs
.

Using Hölder's inequality

ErX h |X 0 ą U X p1{pqs "

1 p ErX h 1l tX 0 ąU X p1{pqu s " 1 p ErX h 1l tX h ă0,X 0 ąU X p1{pqu s ď 1 p ! E " pX h q 1{γ
ı) γ rP pX 0 ą U X p1{pq, X h ă 0qs 1´γ .

By (11), we have E " pX h q 1{γ ‰ ă 8 and 1 p P pX 0 ą U X p1{pq, X h ă 0q " 1 ´1 p P pX 0 ą U X p1{pq, X h ě 0q

" 1 ´1 p P `F X pX 0 q ă p, F X pX h q ď F X p0q ď ˇˇˇ1 ´R ˆ1, 1 p F X pX 0 q ˙ˇˇ1 p P `F X pX 0 q ă p, F X pX h q ď F X p0q ˘´R ˆ1,

1 p F X pX 0 q ˙ˇˇ"
Opp ´τ q, by using Assumption pSq on the original pair pX 0 , X h q together with the fact that ˇˇˇ1 ´R ˆ1, 1 p ˙ˇˇˇď sup

x 0 Pr1{2,2s ˇˇˇx 0 ´R ˆx0 , 1 p

˙ˇˇˇ"

Opp ´τ q.

This yields P pX 0 ą U X p1{pq, X h ă 0q " O `p1´τ ˘, from which we deduce that

ErX h |X 0 ą U X p1{pqs " O ´p´1`p1´τqp1´γq ¯.
Finally, using Lemma 2. ombined with ( 20) and ( 21), Theorem 3.1 follows.

  15) combined with Conditions (A) and (B).

  since a X is regularly varying with index ´β γ, ? k δ X pu n q Ñ 0 and k np Ñ 8.and using (18), we have for the same T n as in the proof of Theorem 2.2|Q 14,n | " O ´|δ X pu n q| T 1´γ`βγ`ξγwhich can also be shown to hold for θ h,p {U X p1{pq, from which we deduce that

	sPr1´ε,1`εs H n psq " γ from which we deduce that ? k ´s´1 γ ´1¯`O ´?k |δ X pu n q| |Q 8,n | ď C ? k |δ X pu n q|, where the O´term is uniform in s P r1 ´ε, 1 `εs. Consequently, for n large enough |Q 7,n | ď sup sPr1´ε,1`εs ˇˇH n psq ´γ ? k ´s´1 γ ´1¯ˇˇˇ`ˇˇˇˇγ ? k ˆS´1 γ n ´1˙`γ ¯, by Corollary 2.1 and since ? kδ X pu n q Ñ 0 by assumption. This achieves the proof of Theo-Zpφ D,1 q ˇˇˇa .s. Ñ 0, p θ h,p θ h,p ´1 " ˆk np ˙p γ k θ h,k{n θ h,p ´1 " # ˆk np ˙p γ k ´γ + looooooomooooooon Q 10,n # θ h,k{n θ h,k{n + loooomoooon Q 11,n $ & % ´k np ¯γ θ h,k{n θ h,p , . -looooooooomooooooooon Q 12,n ´1 " # ˆk np ˙p γ k ´γ ´1+ Q 11,n Q 12,n `# θ h,k{n θ h,k{n ´1+ Q 12,n `$ & % ´k np ¯γ θ h,k{n θ h,p ´1, . -. `?k # θ h,k{n θ h,k{n ´1+ Q 12,n log k np `?k " θ h,k{n {U X pn{kq θ h,p {U X p1{pq ´1* 1 log k np U X pn{kq U X p1{pq ˆk np ˙γ `?k " U X pn{kq U X p1{pq ˆk np ˙γ ´1* 1 log k np . Under Assumption pDq, we have ? k " U X pn{kq U X p1{pq ˆk np ˙γ ´1* 1 log k np " 1 1 `aX p1{pq " ? k a X ´n k ¯´? k a X ˆ1 p ˙* 1 log k np " op1q, Now, we have θ h,k{n U X pn{kq " ż 8 0 R n{k ´1, n k F X pu n zq ¯dz " ´ż 8 0 Rp1, zq dz ´γ ´ż 8 0 " R n{k ´1, n k F X `un z ´γ ˘¯´R ´1, n k F X `un z ´γ ˘¯ı dz ´γ ´ż 8 0 " R ´1, n k F X `un z ´γ ˘¯´Rp1, zq ı dz ´γ ": ´ż 8 0 Rp1, zq dz ´γ ´Q13,n ´Q14,n . Similarly as for (19), we have |Q 13,n | " O ´´n k ¯τ ¯, n ¯`O `T ´γ n ˘. Thus, under our assumptions θ h,k{n U X pn{kq " ´ż 8 0 Rp1, zq dz ´γ `o ˆ1 ? k ˙, rem 2.3. Proof of Theorem 2.4. We have the decomposition This implies that k log k np ˜p θ h,p θ h,p k pp γ k ´γq p1 `oP p1qqQ 11,n Q 12,n ´1¸" ? ? ? k " θ h,k{n {U X pn{kq θ h,p {U X p1{pq ´1* " op1q.
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