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We prove an approximation result for functions u ∈ SBV (Ω; R m ) such that ∇u is p-integrable, 1 ≤ p < ∞, and g 0 (|[u]|) is integrable over the jump set (whose H n-1 measure is possibly infinite), for some continuous, nondecreasing, subadditive function g 0 , with g -1 0 (0) = {0}. The approximating functions u j are piecewise affine with piecewise affine jump set; the convergence is that of L 1 for u j and the convergence in energy for |∇u j | p and g([u j ], ν uj ) for suitable functions g. In particular, u j converges to u BV -strictly, area-strictly, and strongly in BV after composition with a bilipschitz map. If in addition H n-1 (J u ) < ∞, we also have convergence of H n-1 (J uj ) to H n-1 (J u ). Contents 1 Introduction and main result 2 Consequences of the approximation theorem 3 Technical results 3.1 Extension . . . . . . . . . .

Introduction and main result

Approximation with regular objects is a fundamental tool in many problems in functional analysis and in the Calculus of Variations. For instance, De Giorgi's theory of sets of finite perimeter depends crucially on the approximability with piecewise smooth sets, a key step in the theory of Sobolev spaces is approximation by smooth functions (for example, the proof of the chain rule depends on it), and similarly for functions of Bounded Variation. Indeed, in these cases a possible definition of the relevant function space is via relaxation of a functional defined on smooth maps, and the difficult part is proving that this is equivalent to the intrinsic definition on measurable sets or functions.

More specifically, approximation and density play an important role in relaxation, Γ-convergence, integral representation, semicontinuity and many other aspects of the Calculus of Variations in which the topology of the function space is complemented by a variational functional to be minimized. In these applications it is important to approximate in the relevant topology and in energy. In this respect, the literature contains many approximation results for free discontinuity problems, mainly focused on either linear growth or discontinuity sets with finite measure, as appropriate for example for models of concentration of plastic slip or for the Griffith model of brittle fracture. Our main aim here is approximation in energy without the assumption that the jump set has finite measure. One natural application of our result is the study of superlinear models of cohesive fracture.

The functional framework to settle this kind of problems is provided by (a suitable subspace of) the space of Special functions of Bounded Variation, introduced by De Giorgi and Ambrosio in [START_REF] Giorgi | New functionals in the calculus of variations[END_REF] to model a large class of problems which are described by a volume energy and a surface energy (e.g., mixtures of liquids, liquid crystals, image segmentation, fracture mechanics, ...). Indeed, SBV (R n ; R m ) is the set of functions u ∈ BV (R n ; R m ) whose distributional derivative has no Cantor part:

Du = ∇uL n + [u] ⊗ ν u H n-1 J u ,
where ∇u is the approximate gradient and J u , ν u , [u] = u +u -are respectively the jump set, its normal, and the amplitude of the jump, see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs[END_REF] for the definitions.

In these problems, the general form of the energy is

F [u, A] := ˆA Ψ(x, ∇u)dx + ˆJu∩A g(x, u + , u -, ν u )dH n-1 , (1.1) 
for A ⊂ R n open and bounded, Ψ and g satisfying suitable growth and regularity properties, u ∈ SBV (A; R m ). If one is interested in the (possibly constrained) global minimization of F , lower semicontinuity and coercivity are further required in order to apply the direct method of the Calculus of Variations and to establish the existence of a solution.

For many applications it is of crucial importance to be able to approximate u ∈ SBV (A; R m ) in L 1 (A; R m ) and in the sense of the energy by a sequence u j of more regular functions (for example piecewise regular), i.e., in a way that F [u j , A] → F [u, A] as j → ∞. This was the aim of several works appeared in the recent years. Braides and Chiadò-Piat in [BCP96, Sect. 5] focus on functions u ∈ SBV p ⊂ SBV , p > 1, i.e. such that ∇u ∈ L p and H n-1 (J u ) < ∞. For functions u ∈ SBV p ∩ L ∞ they provide an approximation u j ∈ SBV p , regular out of a closed rectifiable set, satisfying u j → u strongly in BV, ∇u j → ∇u in L p , H n-1 (J uj J u ) → 0.

(1.2)

Cortesani in [START_REF] Cortesani | Strong approximation of GSBV functions by piecewise smooth functions[END_REF] and Cortesani and Toader in [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF], on the positive side, improve this result, by constructing for u ∈ SBV p ∩L ∞ , p > 1, a sequence u j whose jump set is in addition piecewise regular, and precisely polyhedral. Moreover they get ∇u j → ∇u in L p , lim sup j→∞ ˆJu j ∩A g(x, u + j , u - j , ν uj )dH n-1 ≤ ˆJu∩A g(x, u + , u -, ν u )dH n-1 , on A ⊂⊂ Ω. On the negative side, they do not obtain strong convergence in SBV .

The strong convergence in SBV holds for the result by De Philippis, Fusco and Pratelli in [DPFP17, Theorem C], in which, for u ∈ SBV p , p > 1, the authors construct u j regular out of the closure of its jump set, which is actually essentially closed being contained in a compact C 1 manifold with C 1 boundary, and differs from it only by an H n-1 -negligible set.

The previous four results have been crucial for many applications involving a penalization on the measure of the jump set. The case in which the jump set of u is allowed to have infinite measure is quite different and few approximations are available in the literature. An extension of the result by Cortesani and Toader to BV was obtained in [START_REF] Amar | A new approximation result for BVfunctions[END_REF] in the setting of BV strict convergence. In [START_REF] Kristensen | Piecewise affine approximations for functions of bounded variation[END_REF], the approximation of any BV function is obtained in the area-strict sense through countably piecewise affine functions with the same trace as u at the boundary. A different approximation is provided in SBV in [START_REF] De Philippis | On the approximation of SBV functions[END_REF]Theorem B]. Precisely, the authors prove that if u ∈ SBV with ∇u ∈ L p , p > 1, then it is possible to construct u j regular out of the closure of its jump set, which is actually essentially closed being (up to H n-1 -null sets) a compact C 1 manifold with C 1 boundary, and satisfying u j → u strongly in BV, ∇u j → ∇u in L p .

In particular, the convergence H n-1 (J uj \ J u ) → 0 is not ensured. Moreover, in case p = 1, the jump of u j can be additionally taken contained in the intersection of a compact C 1 manifold with C 1 boundary and of the jump set of the function to be approximated (see [START_REF] De Philippis | On the approximation of SBV functions[END_REF]Theorem A]). Related density results, with different functional settings such as (G)SBD or BH, have been obtained in the last years (see for example [Cha04, Iur14, CFI17, Fri18, FS18, CFI19, Cri19, CC19] and [START_REF] Ambrosio | Linear inverse problems with Hessian-Schatten total variation[END_REF][START_REF] Ambrosio | Functions with bounded Hessian-Schatten variation: density, variational and extremality properties[END_REF], respectively). Although all the quoted results are important advances, they are in general not enough for many applications, not providing any information on the convergence of the surface term or of the total energy F in case that the measure of the jump set is not finite. An easy example is that of an energy F where Ψ = Ψ(∇u) is superlinear for large gradients and g = g([u], ν u ) is superlinear for small amplitudes, the natural domain of finiteness being (a subset of) SBV . In this case, the only result available in the literature is [START_REF] Bellettini | The Γ-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension[END_REF]Sect. 4], which however applies only to u ∈ GSBV with ∇u = 0 L n -a.e. on Ω. The approximants satisfy ∇u j = 0 L n -a.e. on Ω and have jump sets of finite measure. The convergence is that of L 1 together with the convergence of the energies.

In this paper, we develop an original multiscale technique to approximate functions u ∈ SBV with jump set of possibly infinite measure and ∇u ∈ L p , with p ≥ 1. We stress that it encompasses at the same time both superlinear, cohesive-type and Griffith, brittle-type surface energies as shown in Section 2.

Theorem 1.1. Let Ω ⊆ R n be an open bounded Lipschitz set, u ∈ SBV (Ω; R m ) such that ∇u ∈ L p (Ω; R m×n ) for some p ∈ [1, ∞), and

g 0 (|[u]|) ∈ L 1 (Ω; H n-1 J u ), with g 0 : [0, ∞) → [0, ∞) continuous, nondecreasing, subad- ditive, and g -1 0 (0) = {0}. Then there are sequences u j ∈ SBV ∩ L ∞ (Ω; R m ) and Φ j ∈ Lip (R n ; R n ) such that
(i) for each j there is a locally finite decomposition of R n in simplexes such that u j is affine in the interior of each of them;

(ii)

u j → u in L 1 (Ω; R m ); (iii) ∇u j → ∇u in L p (Ω; R m×n ); (iv) Φ j is bilipschitz, with Φ j (x)-x → 0 in L ∞ (R n ; R n ), DΦ j → Id in L ∞ (R n ; R n×n ), and Φ j (x) = x for x ∈ R n \ Ω;
(v) one can choose the orientation of the normal ν j to J uj so that

lim j ˆJu∪Φ -1 j (Ju j ) g 0 (|[u] -[u j ] • Φ j |) dH n-1 = 0 (1.3)
(with [u] = 0 outside J u , and similarly for u j ), and

lim j ˆJu∪Φ -1 j (Ju j ) g 0 (|[u]| + |[u j ] • Φ j |) ν u -ν j • Φ j dH n-1 = 0; (1.4) (vi) if H n-1 (J u ) < ∞, then also H n-1 (J u Φ -1 j (J uj )) → 0;
(vii) if ∇u = 0 L n -almost everywhere on Ω, then ∇u j = 0 L n -almost everywhere on Ω for all j.

If instead u ∈ W 1,p (Ω; R m ) then u j ∈ W 1,p (Ω; R m ) for all j.
Few remarks are in order. First, since Φ j (Ω) = Ω, the integrals in (1.3) and (1.4) are over subsets of Ω. Then, thanks to the subadditivity of g 0 from items (iv) and (v) it follows that

lim j ˆJu j g 0 (|[u j ]|) dH n-1 = ˆJu g 0 (|[u]|) dH n-1
(see the proof of Corollary 2.1 below). Moreover, under suitable assumptions discussed in details in Section 2, we can deduce the convergence of surface energies with density g : R m × S n-1 → [0, ∞) depending suitably on the full jump and the normal. Finally, if Ψ ∈ C 0 (R m×n ) has p-growth (cf. again Section 2) then (iii) implies

lim j ˆΩ Ψ(∇u j ) dx = ˆΩ Ψ(∇u) dx .
In addition, the sequence (u j ) j∈N can be chosen such that the convergence to u is stronger, namely strict in BV and in area, see Corollary 2.3 below. We stress that energies with bulk density Ψ and surface density g as above are in general not L 1 or weakly * -BV lower semicontinuous. Hence, our approximations can be used to prove relaxation formulas in the spirit of [Amb89, [START_REF] Braides | The interaction between bulk energy and surface energy in multiple integrals[END_REF][START_REF] Bouchitté | Relaxation results for some free discontinuity problems[END_REF]. This will be the object of future work in [START_REF] Conti | Superlinear cohesive fracture models as limits of phase field functionals[END_REF].

The proof of Theorem 1.1 is obtained through an explicit construction in several steps. First, u can be extended to a function defined on a slightly larger set at a small energy cost. This is not achieved by local reflections at the boundary and a partition of unity process as usually done, which would require u ∈ L p . It is rather pursued through a regularization of the normal vector at the boundary and the definition of a bilipschitz map which swaps an inner neighborhood of the boundary with an outer one. Further details can be found in Section 3.1.

We employ next a multiscale approach. More precisely, we find a suitable scale δ > 0, such that ∇u is close to a constant and J u is close to a C 1 manifold in each cube of side δ of a partition of R n . This is the object of Proposition 3.6. At this point, we introduce a second scale ε δ. In each cube of side δ we consider a finer triangulation with simplexes of diameter less than cε and volume larger than cε n . The heart of the paper is Proposition 4.1, which, given the values of u on the vertices of a single simplex, and two vectors for each edge, representing the cumulated jump and the average gradient of u on the edge, provides a piecewise affine interpolation, whose gradient and jump can be estimated respectively only through the given gradient vector or the given jump vector (see Figure 1). Proposition 4.1 is then employed in Proposition 4.3 (see Figure 2) to define a global projection, with good energy estimates, of any SBV function on the space of piecewise affine functions.

The proof of Theorem 1.1 contains a few additional steps, since the direct application of Proposition 4.3 to the given u would provide a piecewise affine approximation with surface energy controlled only up to a multiplicative factor by the surface energy of u. To avoid this problem, we first consider the extensions U ± of u with respect to the C 1 manifold approximating J u in each cube of side δ. We then apply the previous projection to U ± . We finally introduce a piecewise affine interpolation of the C 1 manifold and define the approximation of u as the projections of U ± on the two sides of it. This is performed in the proof of Theorem 1.1 in Section 4.3, see also Figure 3.

The structure of the paper is the following. In Section 2 we provide several consequences of Theorem 1.1, in particular we show that the approximating sequence can be constructed such that it converges also BV -strictly, area-strictly and BV -strongly after composition with a bilipschitz map. Section 3 addresses two key technical issues: the extension tool in Section 3.1 and the regularization at scale δ in Section 3.2. Section 4 is devoted to the proof of Theorem 1.1. Precisely, Section 4.1 contains the construction of a relevant piecewise affine interpolation on a single simplex. Section 4.2 applies such construction to produce a piecewise affine approximation of a given SBV function. Finally, Section 4.3 provides the full proof of Theorem 1.1 by applying the projection of Section 4.2 to the extensions of u on the two sides of the regularized jump set and by defining the approximation of u as such projections on the two sides of a suitable perturbation of a piecewise interpolation of the regularized jump set.

Consequences of the approximation theorem

We discuss here some consequences of Theorem 1.1. To this aim we fix p ∈ [1, ∞) and consider Ψ ∈ C 0 (R m×n ) obeying for some C > 0,

|Ψ(ξ)| ≤ C(|ξ| p + 1).
(2.1)

Throughout the paper C will denote a constant, possibly depending on the dimension (if not otherwise specified) and changing from line to line. Next we select a function g 0 : [0, ∞) → [0, ∞) which represents a modulus of continuity of the surface energy g introduced below (see in particular (2.4)) satisfying:

(H g0 1 ) g 0 is continuous, nondecreasing, and g -1

0 (0) = {0}, (H g0 2 ) g 0 is subadditive, namely for every (t, t ) ∈ [0, ∞) × [0, ∞) g 0 (t + t ) ≤ g 0 (t) + g 0 (t ) .
For example either g 0 (t) = 1 ∧ t q or g 0 (t) = t q , for q ∈ (0, 1], will do. Note that by subadditivity and continuity of g 0 in zero, for every λ > 0 there is

C λ > 0 such that for all t ∈ [0, ∞) g 0 (t) ≤ λ + C λ t. (2.2)
Then we consider any function

g ∈ C 0 (R m × S n-1 ; [0, ∞)), such that (H g 1 ) g(-s, -ν) = g(s, ν) for all (s, ν) ∈ R m × S n-1 ; (H g 2 ) for all (s, s , ν) ∈ R m × R m × S n-1 g(s + s , ν) ≤ g(s, ν) + C g 0 (|s |); (2.3)
6 Density-20230927-final.tex [September 28, 2023] and either (H g 3 ) g(0, ν) = 0 for all ν ∈ S n-1 or (H g 3 ) there is α > 0 such that g(0, ν) ≥ α for all ν ∈ S n-1 . Thanks to assumption (H g 1 ), the surface energy with density g is well defined as it does not depend on the chosen orientation of the normal to the jump set. Assumption (H g 3 ) is useful to model cohesive-type energies, such as for example the one of the Barenblatt model. Assumption (H g 3 ) is instead useful for surface energies typical of brittle fracture, such as the one of the Griffith model (or, in the scalar case, of the Mumford-Shah model) for which g is constant.

Exchanging the roles of s and s + s in (2.3) yields that

|g(s + s , ν) -g(s, ν)| ≤ C g 0 (|s |).
(2.4) Moreover, if (H g 3 ) holds, the latter estimate with s = -s implies that for all (s, ν) ∈ R m × S n-1 g(s, ν) ≤ C g 0 (|s|) .

(2.5)

If instead (H g 3 )holds, then by continuity there is also β > 0 such that g(0, ν) ≤ β for all ν, and in particular for all (s, ν) ∈ R m × S n-1 g(s, ν) ≤ β + C g 0 (|s|).

(2.6)

For u ∈ SBV (Ω; R m ) and for a Borel set A ⊆ Ω, we define the energy

E Ψ,g [u, A] := ˆA Ψ(∇u)dx + ˆJu∩A g([u], ν u )dH n-1 ,
where for any u ∈ SBV (Ω; R m ) we denote by [u] the function which is the usual jump of u on J u and 0 on Ω \ J u .

Corollary 2.1. Under the assumptions of Theorem 1.1, the sequence (u j ) j∈N introduced there satisfies

lim j ˆΩ Ψ(∇u j )dx = ˆΩ Ψ(∇u)dx , (2.7) lim j ˆJu j g([u j ], ν uj )dH n-1 = ˆJu g([u], ν u )dH n-1 (2.8)
for all functions Ψ ∈ C 0 (R m×n ) satisfying (2.1), and all g ∈ C 0 (R m ×S n-1 ; [0, ∞)) satisfying (H g 1 ), (H g 2 ), and (H g 3 ). In particular,

lim j E Ψ,g [u j , Ω] = E Ψ,g [u, Ω] .
7 Density-20230927-final.tex [September 28, 2023] We stress that the assumptions of Theorem 1.1 include in particular integrability of g 0 (|[u]|) and ensure via (2.1) and (2.5) that E Ψ,g [u, Ω] is finite.

Proof. Standing the L p convergence of (∇u j ) j∈N to ∇u, we may consider a subsequence, which we do not relabel, such that lim sup j ˆΩ(Ψ(∇u j ) -Ψ(∇u))dx is actually a limit, and (∇u j ) j∈N converges to ∇u L n -almost everywhere on Ω. Thanks to Egorov's theorem, for every ε > 0 there is E with |Ω \ E| ≤ ε such that ∇u ∈ L ∞ (E; R m×n ) and (∇u j ) j∈N converges to ∇u uniformly on E. Therefore, we may use (2.1) and item (iii) in Theorem 1.1 to get lim sup

j ˆΩ(Ψ(∇u j ) -Ψ(∇u))dx = lim sup j ˆΩ\E (Ψ(∇u j ) -Ψ(∇u))dx ≤ C ˆΩ\E |∇u| p dx + |Ω \ E| .
The conclusion then follows as ε ↓ 0 by absolute continuity. As the limit is unique, convergence holds for the entire sequence. We next deal with (2.8). To this aim we first use the Area formula (cf. [AFP00, Theorem 2.91], with f = Φ j and E = Φ -1 j (J uj )) which reads

ˆJu j g([u j ], ν uj )dH n-1 = ˆΦ-1 j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )J n-1 d Φ -1 j (Ju j ) Φ j dH n-1 .
(2.9) We write J n-1 d Φ -1 j (Ju j ) Φ j for the tangential Jacobian and remark that if Φ j is differentiable then

J n-1 d Φ -1 j (Ju j ) Φ j = |cof(DΦ j )(ν uj • Φ j )|.
For H n-1 -almost every x ∈ Φ -1 j (J uj ), the map Φ j is differentiable in x in the directions of the tangent space. The same holds for y → Φ j (y)y, which is Lipschitz with Lipschitz constant bounded by

DΦ j -Id L ∞ (R n ) . Therefore for H n-1 -almost every x ∈ Φ -1 j (J uj ) we have |J n-1 d Φ -1 j (Ju j ) Φ j -1|(x) ≤ C DΦ j -Id L ∞ (R n )
. By (iv), the last expression converges to 0.

We observe that by subadditivity of g 0 ˆΦ-1

j (Ju j ) g 0 (|[u j ] • Φ j |)dH n-1 ≤ ˆJu∪Φ -1 j (Ju j ) g 0 (|[u] -[u j ] • Φ j |) dH n-1 + ˆJu g 0 (|[u]|) dH n-1 .
Using (1.3) and the assumption that

g 0 (|[u]|) ∈ L 1 (Ω, H n-1 J u ) we obtain that ˆΦ-1 j (Ju j ) g 0 (|[u j ] • Φ j |)dH n-1 ≤ C < ∞ (2.10)
for all j. By (2.9), the growth condition in (2.5), and the last step (2.10), we obtain

ˆJu j g([u j ], ν uj )dH n-1 - ˆΦ-1 j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )dH n-1 ≤ 1 -J n-1 d Φ -1 j (Ju j ) Φ j L ∞ (Φ -1 j (Ju j );H n-1 ) ˆΦ-1 j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )dH n-1 ≤ o(1)
ˆΦ-1

j (Ju j ) g 0 (|[u j ] • Φ j |)dH n-1 = o(1) .
(2.11)

Using (1.3) and (1.4) in Theorem 1.1 and the fact that g 0 is nondecreasing with g -1 0 (0) = {0} we deduce χ Φ -1 j (Ju j ) → 1 and ν uj • Φ j → ν u , H n-1 -almost everywhere on J u . Thus, χ Φ -1 j (Ju j ) ν uj • Φ j → ν u , H n-1 -almost everywhere on J u . Dominated convergence, which we can use by (2.5) and integrability of

g 0 (|[u]|), then yields lim sup j ˆJu∩Φ -1 j (Ju j ) g([u], ν uj • Φ j ) -g([u], ν u ) dH n-1 = 0.
(2.12)

Moreover, (1.3) in Theorem 1.1(v) yields (with (2.5)) that lim sup

j ˆJu\Φ -1 j (Ju j ) g([u], ν u )dH n-1 + ˆΦ-1 j (Ju j )\Ju g([u j ] • Φ j , ν uj • Φ j )dH n-1 = 0.
(2.13) Therefore, we conclude that lim sup

j ˆJu j g([u j ], ν uj )dH n-1 - ˆJu g([u], ν u )dH n-1 ≤ lim sup j ˆΦ-1 j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )dH n-1 - ˆJu g([u], ν u )dH n-1 ≤ lim sup j ˆΦ-1 j (Ju j )∩Ju g([u j ] • Φ j , ν uj • Φ j ) -g([u], ν u ) dH n-1 ≤ lim sup j ˆΦ-1 j (Ju j )∩Ju g([u j ] • Φ j , ν uj • Φ j ) -g([u], ν uj • Φ j ) dH n-1 ≤ C lim sup j ˆΦ-1 j (Ju j )∩Ju g 0 (|[u] -[u j ] • Φ j |) dH n-1 = 0 ,
where we have used (2.11) in the first inequality, (2.13) in the second one, (2.12) in the third one, (2.4) in the fourth one, and (1.3) in Theorem 1.1(v) in the last equality.

We next show how to treat the case that g is bounded from below, in which (H g 3 ) holds. We stress that the case of the Mumford-Shah energy functional corresponds to the choices Ψ = | • | 2 and g ≡ 1 as |[u]| > 0 on J u for u ∈ SBV . 9 Density-20230927-final.tex [September 28, 2023] Corollary 2.2. Under the assumptions of Theorem 1.1, if H n-1 (J u ) < ∞ the sequence (u j ) j∈N introduced there satisfies lim j ˆΩ Ψ(∇u j )dx = ˆΩ Ψ(∇u)dx ,

(2.14)

lim j ˆJu j g([u j ], ν uj )dH n-1 = ˆJu g([u], ν u )dH n-1 (2.15)
for all functions Ψ ∈ C 0 (R m×n ) satisfying (2.1), and

g ∈ C 0 (R m ×S n-1 ; [0, ∞))
satisfying (H g 1 ), (H g 2 ), and (H g 3 ). In particular,

lim j E Ψ,g [u j , Ω] = E Ψ,g [u, Ω] .
Proof. The proof is very similar to the one of Corollary 2.1. The first part, until (2.10), is identical. Using (2.6), H n-1 (J u ) < ∞, (vi) in Theorem 1.1, and (2.10) we have ˆΦ-1

j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )dH n-1 ≤ β(H n-1 (J u ) + H n-1 (Φ -1 j (J uj ) \ J u )) + C ˆΦ-1 j (Ju j ) g 0 (|[u j ] • Φ j |)dH n-1 ≤ C < ∞ (2.16)
for all j. We use the latter and (2.9) to conclude that

ˆJu j g([u j ], ν uj )dH n-1 - ˆΦ-1 j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )dH n-1 ≤ 1 -J n-1 d Φ -1 j (Ju j ) Φ j L ∞ (Φ -1 j (Ju j );H n-1 ) ˆΦ-1 j (Ju j ) g([u j ] • Φ j , ν uj • Φ j )dH n-1 = o(1) (2.17)
which replaces (2.11). Using (vi) in Theorem 1.1, χ Φ -1 j (Ju j ) → 1 pointwise H n-1 -almost everywhere on J u . As above, χ

Φ -1 j (Ju j ) ν uj • Φ j → ν u H n-1 -almost everywhere on J u . From H n-1 (J u ) < ∞ and integrability of g 0 (|[u]|) we obtain that β + g 0 (|[u]|) ∈ L 1 (Ω; H n-1 J u )
. Dominated convergence, which we can use by (2.6), then yields lim sup

j ˆJu∩Φ -1 j (Ju j ) g([u], ν uj • Φ j ) -g([u], ν u ) dH n-1 = 0.
(2.18) Moreover, items (v) and (vi) in Theorem 1.1 and (2.6), yield that lim sup

j ˆJu\Φ -1 j (Ju j ) g([u], ν u )dH n-1 + ˆΦ-1 j (Ju j )\Ju g([u j ] • Φ j , ν uj • Φ j )dH n-1 = 0.
(2.19) The rest of the proof is unchanged.

We can actually strengthen the conclusions of Corollary 2.1 and Corollary 2.2 by constructing an approximating sequence converging in a stronger sense.

Corollary 2.3. In Corollary 2.1 and Corollary 2.2 the sequence (u j ) j∈N can be chosen to additionally satisfy

lim j |(Φ j ) # Du j -Du|(Ω) = 0 (2.20)
and lim

j u j • Φ j -u BV (Ω) = 0 . (2.21)
In particular,

lim j ˆΩ |∇u j |dx = ˆΩ |∇u|dx , (2.22) lim j ˆΩ 1 + |∇u j | 2 dx = ˆΩ 1 + |∇u| 2 dx , (2.23) lim j ˆJu j |[u j ]|dH n-1 = ˆJu |[u]|dH n-1 , (2.24)
so that (u j ) j∈N converges to u strictly in BV (Ω; R m ) and in area.

Proof. The proof is based on the fact that the construction of the sequence in Theorem 1.1 does not depend on the details of the energy considered. We define the auxiliary functions

g 0 : [0, ∞) → [0, ∞), g : R m → [0, ∞), by g 0 (t) := g 0 (t) + t , t ∈ [0, ∞) , and 
g(s) := |s| , s ∈ R m .
It is easy to check that g 0 satisfies (H g0 1 )-(H g0 2 ), and moreover that both g and g satisfy (H g 1 )-(H g 2 ) with respect to g 0 . Further, g satisfies (H g 3 ). In addition, if

u ∈ SBV (Ω; R m ), having assumed that g 0 (|[u]|) ∈ L 1 (Ω; H n-1 J u ), we infer that g 0 (|[u]|) ∈ L 1 (Ω; H n-1 J u )
. Therefore, we may consider the sequence (u j ) j∈N provided by Theorem 1.1 with surface density g 0 . Thus, to get (2.22)-(2.24) it is sufficient to apply Corollary 2.1 with Ψ 1 (ξ) := |ξ| and g, and then Ψ 2 (ξ) := 1 + |ξ| 2 and g. One applies either Corollary 2.1 or Corollary 2.2 with densities Ψ and g to obtain convergence of the energy. From Theorem 1.1(v) for g0 we obtain

lim j ˆJu∪Φ -1 j (Ju j ) |[u j ] • Φ j -[u]|dH n-1 = 0 ,
and with (iii) and (iv) we conclude |(Φ j ) # Du j -Du|(Ω) → 0. It remains to prove (2.21). Recalling Theorem 1.1 (ii) and (iv) and (2.20), it is enough to check that lim

j ˆΩ |∇(u j • Φ j ) -∇u|dx = 0.
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Let S j be the decomposition of Theorem 1.1 (i), then u j is affine in T , for all T ∈ S j , and the chain rule gives

ˆΩ |∇(u j • Φ j ) -∇u|dx = T ∈Sj ˆΩ∩Φ -1 j (T ) |∇(u j • Φ j ) -∇u|dx = T ∈Sj ˆΩ∩Φ -1 j (T ) |(∇u j • Φ j )DΦ j -∇u|dx.
The triangular inequality yields

ˆΩ∩Φ -1 j (T ) |(∇u j • Φ j )DΦ j -∇u|dx ≤ ˆΩ∩Φ -1 j (T ) |∇u j • Φ j ||DΦ j -Id|dx + ˆΩ∩Φ -1 j (T ) |(∇u j -∇u) • Φ j |dx + ˆΩ∩Φ -1 j (T ) |∇u • Φ j -∇u|dx
and all terms tend to zero by Theorem 1.1 (iv) and (2.20). This gives the conclusion.

Finally, we extend the above approximation results to functions belonging to (GSBV (Ω)) m with energy E |•| p ,g0 finite (we refer to [AFP00, Section 4.5] for the basic notation and theory). andg -1 0 (0) = {0}. Then, there exists a sequence (u j ) j∈N ⊆ SBV ∩ L ∞ (Ω; R m ) such that all the conclusions in Theorem 1.1 hold, and in addition

Corollary 2.4. Let Ω ⊆ R n be an open bounded Lipschitz set, u ∈ L 1 (Ω; R m ) ∩ (GSBV (Ω)) m be such that ∇u ∈ L p (Ω; R m×n ) for some p ∈ [1, ∞), and g 0 (|[u]|) ∈ L 1 (Ω; H n-1 J u ), with g 0 : [0, ∞) → [0, ∞) continuous, nondecreasing, subad- ditive,
lim j ˆΩ Ψ(∇u j )dx = ˆΩ Ψ(∇u)dx , (2.25) lim j ˆJu j g([u j ], ν uj )dH n-1 = ˆJu g([u], ν u )dH n-1 (2.26) for all functions Ψ ∈ C 0 (R m×n ) satisfying (2.1), and all g ∈ C 0 (R m ×S n-1 ; [0, ∞)) satisfying (H g 1 ), (H g 2 ), and (H g 3 ). In addition, if H n-1 (J u ) < ∞, (2.26) holds for all g ∈ C 0 (R m × S n-1 ; [0, ∞)) satisfying (H g 1 ), (H g 2 )
, and (H g 3 ). Moreover, the sequence (u j ) j∈N can be chosen such that (2.22) and (2.23) hold.

Proof. We argue by density by constructing a sequence (ũ

k ) k∈N ⊂ SBV ∩ L ∞ (Ω; R m ) converging in L 1 (Ω; R m )
and in energy to u. This is well-known nowadays, in any case for the readers' convenience we recall the definition. To this aim we fix a sequence (a k ) k∈N ⊂ (0, ∞) such that a k < a k+1 , a k ↑ ∞, and such that there are functions

T k ∈ C 1 c (R n ; R m ) satisfying T k (z)= z if |z| ≤ a k , T k (z) = 0 if |z| ≥ a k+1 , and DT k L ∞ (R n ;R m ) ≤ 1. Then, the se- quence ũk := T k (u)∈ SBV (Ω; R m ) converges to u in L 1 (Ω; R m ), ∇ũ k = ∇u L n -almost everywhere on Ω k := {x ∈ Ω : |u(x)| ≤ a k }, J ũk ⊆ J u , ν ũk = ν u H n-1
-almost everywhere on J ũk . Moreover, as

H n-1 ({x ∈ J u : |u ± (x)| = ∞}) = 0 (see [AF02, Proposition 2.12, Remark 2.13]) we infer that χ Jũ k → χ Ju , ũ± k (x) = u ± (x) H n-1 -almost everywhere on J ũk ∩ Ω k , |[ũ k ]| ≤ |[u]| and ũ± k → u ± H n-1 - almost everywhere on J u . Therefore, we get lim k ˆΩ |∇ũ k | p dx = ˆΩ |∇u| p dx ,
and thanks to the subadditivity and monotonicity properties of g 0 also that

lim k ˆJu g 0 (|[u] -[ũ k ]|)dH n-1 = 0
(for detailed proofs of similar properties see, for instance, [AF02, Lemma 6.1] and [CFI22, Proposition 4.8]).

Next, for every k ∈ N we apply Theorem 1.1 in order to get a sequence (ũ k,j ) j∈N approximating ũk and satisfying all the conditions in that statement. Eventually, we conclude thanks to a diagonalization argument in view of the properties of g 0 , Ψ and g and the arguments in Corollaries 2.1 or 2.2, and in Corollary 2.3.

Technical results

In this section we collect the key technical tools we use to prove Theorem 1.1. For SBV functions having finite energy according to Theorem 1.1, we establish first an extension result, and then some measure theoretic properties crucial for our constructions.

Extension

In this section we prove an extension result for SBV functions. A standard local reflection argument would work for SBV ∩ L p functions. However, in the present setting it is not clear that having finite energy implies finiteness of the L p norm. In particular, to the aim of applications, both for approximation via Γ-convergence and for the determination of relaxation of variational integrals, it is not natural to assume additionally u ∈ L p (see for example the forthcoming paper [START_REF] Conti | Superlinear cohesive fracture models as limits of phase field functionals[END_REF]), therefore we avoid the extra L p integrability condition. To this aim, we introduce a global reflection argument based on a bilipschitz map reflecting a neighborhood of ∂Ω in Ω, outside of Ω itself.

The general strategy is standard, but to the best of our knowledge the details are new. For example, a similar result was obtained in [CS11, Th. 3.1] with a more complex construction using the solution of an ODE (see [CS11, Eq. (3.5)] instead of the specific formula (3.21) below for the construction of the reflection.

Theorem 3.1. Let Ω ⊆ R n be a bounded Lipschitz set. Then there are an open set ω ⊆ R n with ∂Ω ⊂ ω and a bilipschitz map

Φ : ω → ω such that Φ(x) = x for x ∈ ∂Ω and Φ(ω ∩ Ω) = ω \ Ω.
We recall that a map f :

E → f (E) ⊆ R n , for E ⊆ R n , is bilipschitz if there is L > 0 such that 1 L |x -y| ≤ |f (x) -f (y)| ≤ L|x -y| (3.1)
for all x, y ∈ E. This is the same as saying that f is injective, Lipschitz, with a Lipschitz inverse

f -1 : f (E) → E. Moreover, a set Ω is Lipschitz if for every x ∈ ∂Ω there are ε x > 0, G x ∈ Lip (R n-1
) and an isometry A x : R n → R n such that A x 0 = x and

B εx (x) ∩ Ω = B εx (x) ∩ A x {(y , y n ) ∈ R n-1 × R : y n < G x (y )}. (3.2) Obviously G x (0) = 0; if |y | < ε x /(Lip (G x ) + 1) then A x (y , G x (y )) ∈ B εx (x) ∩ ∂Ω.
If Ω is bounded, there are ε 0 and L 0 such that one can choose ε x ≥ ε 0 and Lip (G x ) ≤ L 0 for all x ∈ ∂Ω.

We start with defining a smooth vector field playing the role of the normal field to ∂Ω, which under our hypotheses is only a function in L ∞ (∂Ω; S n-1 ). Lemma 3.2. Let Ω ⊆ R n be a bounded Lipschitz set. Then there are γ > 0 and a map ψ

∈ C ∞ c (R n ; R n ) such that ψ(x) • ν(x) ≥ γ for H n-1 -almost every x ∈ ∂Ω and |ψ| = 1 on ∂Ω.
This is well-known (see, for example, [CM08, Lemma 4.1]), for completeness we include the short proof.

Proof. The compact set ∂Ω can be covered by a finite family of balls B i := B ri (z i ), such that in each of the larger balls Lemma 3.3. Let Ω ⊆ R n be a bounded Lipschitz set, ψ as in Lemma 3.2. There are ρ > 0 and c > 0 such that for any x, y ∈ ∂Ω with |x -y| < ρ one has

B * i := B 2ri (z i ) (3.2) reads B * i ∩ Ω = B * i ∩ A i {(x , x n ) : x n < G i (x )} (3.3) for some G i ∈ Lip (R n-1 ) and isometry A i . If x is such that y := A i (x , G i (x )) ∈ ∂Ω ∩ B * i and G i is differentiable at x , then the outer normal obeys ν(y) = R i (-DG i (x ), 1)/ 1 + |DG i | 2 (x ), where R i := DA i ∈ O(n), so that ν • R i e n ≥ γ * := 1 1 + max i (Lip (G i )) 2 > 0 (3.4) H n-1 -almost everywhere on B * i ∩∂Ω. We fix cutoff functions θ i ∈ C ∞ c (B * i ; [0, 1]) with θ i = 1 on B i , and set ψ * (x) := i θ i (x)R i e n . Then for H n-1 -almost every point x ∈ ∂Ω we have ψ * (x) • ν(x) = i:x∈B * i θ i (x)(R i e n ) • ν(x) ≥ i:x∈B * i θ i (x)γ * ≥ γ * , ( 3 
|x -y| ≤ c|(Id -ψ(y) ⊗ ψ(y))(x -y)|.
(3.6)

Proof. We can assume x = y. After a change of coordinates, and choosing ρ sufficiently small, we can assume that y = 0, and that

∂Ω ∩ B (1+L)ρ (0) = B (1+L)ρ (0) ∩ {(z , G(z )) : z ∈ R n-1 } (3.7)
for some L-Lipschitz function G : R n-1 → R. The values of ρ and L have bounds that depend only on Ω. Let m := ψ(0), so that P := Idm ⊗ m is the projection onto the space orthogonal to m. Condition (3.6) then translates into

|x| ≤ c|P x| (3.8)
for any x ∈ ∂Ω ∩ B ρ (0). As both sides of (3.8) are continuous, it suffices to prove it for H n-1 -almost every x. By (3.7), we have x = (x , G(x )) for some

x ∈ R n-1 \ {0}. Define x := (x , 0) := ( x |x | , 0) ∈ S n-2 ×{0} ⊂ R n-1 ×{0}.
Let Π := span{x, e n }, we remark that x • e n = 0 and that x ∈ Π. Let m Π be the orthogonal projection of m on Π, namely

m Π := (x ⊗ x + e n ⊗ e n )m = (x • m)x + (e n • m)e n ∈ Π, (3.9)
and m ⊥ := mm Π , so that m = m Π + m ⊥ . Then, as x ∈ Π and m ⊥ ∈ Π ⊥ we have

|P x| 2 = |(Id-(m Π +m ⊥ )⊗(m Π +m ⊥ ))x| 2 = |x-(m Π •x)m Π | 2 +|m ⊥ | 2 |m Π •x| 2 . (3.10) We distinguish two cases. If |m ⊥ | ≥ 1
2 γ, with γ the constant from Lemma 3.2, the first term leads to

|P x| ≥ |x -(m Π • x)m Π | ≥ |x| -|m Π | 2 |x| = |m ⊥ | 2 |x| ≥ γ 2 4 |x| (3.11)
which concludes the proof of (3.8) in this case.

Assume now that |m ⊥ | ≤ 1 2 γ. For any z ∈ R n-1 with |z | < ρ we have z := (z , G(z )) ∈ ∂Ω ∩ B ρ(1+L) (0), and if G is differentiable in z the outer normal is ν(z) = 1 1 + |DG| 2 (z ) -DG(z ) 1 . (3.12) Recalling ψ(z) • ν(z) ≥ γ, m • ν(z)= ψ(z) • ν(z) + (ψ(0) -ψ(z)) • ν(z) ≥ γ -ψ C 1 |z| (3.13)
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By (3.12) and (3.9),

m Π • ν(z) = 1 1 + |DG| 2 (z ) [(e n • m) -(x • m)x • DG(z )] . (3.15)
With a slight abuse of notation we have used the dot to denote the inner product both in R n-1 and

R n . Let ζ(t) := (tx , G(tx )), for t ∈ [0, |x |]. For H n-1 -almost every choice of x ∈ B ρ we have that for H 1 -almost every t the function G is differentiable in tx . Clearly ζ(0) = 0, ζ(|x |) = x, and ζ is Lipschitz with Dζ(t) = x + (x •DG(tx ))e n .
(3.16)

We define

m ⊥ Π := (e n ⊗ x -x ⊗ e n )m = (x • m)e n -(e n • m)x ∈ Π , (3.17) 
and compute

m ⊥ Π • x = ˆ|x | 0 m ⊥ Π • Dζ(t)dt = ˆ|x | 0 [(x • m)(x • DG(tx )) -(e n • m)] dt.
(3.18)

Using first (3.15) and then (3.14),

m ⊥ Π • x = - ˆ|x | 0 m Π • ν(ζ(t)) 1 + |DG| 2 (tx )dt ≤ -|x | γ 4 . (3.19) With |m ⊥ Π |≤1 and m ⊥ Π • m = 0 (note that m ⊥ Π ∈ Π and m ⊥ Π • m Π = 0) we obtain |P x| ≥ x • m ⊥ Π |m ⊥ Π | ≥|x • m ⊥ Π | ≥ γ 4 |x | . (3.20) Recalling that |x| ≤ |x | + |G(x )| ≤ (1 + L)|x |,
this concludes the proof of (3.8), and therefore of (3.6) (with c = 4(1 + L)/γ 2 ).

We are now ready to prove Theorem 3.1. Before starting, we recall that by Brower's invariance of domain theorem any injective continuous map f :

E ⊆ R n → R n is open, in the sense that if E is open then f (E) is open.
Proof of Theorem 3.1. Step 1. Let ψ be as in Lemma 3.2, ρ as in Lemma 3.3, and define f :

∂Ω × R → R n by f (x, t) := x + tψ(x).
(3.21)

We claim that there are ε > 0 and C > 0, depending only on Ω, such that for all x, y ∈ ∂Ω, all t, s ∈ (-ε, ε),

|x -y| + |t -s| ≤ C|f (x, t) -f (y, s)|. (3.22)
In order to prove (3.22) we write

f (x, t) -f (y, s) = x -y + tψ(x) -sψ(y). (3.23)
We shall choose ε ≤ ρ. If |x -y| ≤ ρ we can use Lemma 3.3. Let P y be the projection onto ψ(y) ⊥ . Then

P y (f (x, t) -f (y, s)) = P y (x -y) + tP y (ψ(x) -ψ(y)). (3.24)
For the second term we use |ψ(x)ψ(y)| ≤ ψ C 1 |x -y|. For the first term, we use (3.6). We then obtain 

|f (x, t) -f (y, s)| ≥ |P y (x -y)| -|t| |ψ(x) -ψ(y)| ≥ 1 c |x -y| -ε ψ C 1 |x -y| ≥ 1 2c |x -y| (3.25) provided that ε ≤ 1/(2c ψ C 1 ). To estimate t -s we write (3.23) as f (x, t) -f (y, s) = (t -s)ψ(x) + x -y + s(ψ(x) -ψ(y)) (3.26) so that |t -s| ≤ |f (x, t) -f (y, s)| + |x -y| + |s| ψ C 1 |x -y| ( 
(x, t) -f (y, s)| ≥ |x -y| -|t| -|s| ≥ 1 2 |x -y| + 1 2 ρ -2ε. (3.28)
Choosing ε ≤ ρ/4 and recalling (3.27), this concludes the proof of (3.22).

Step 2. We define where f -1

ω := f (∂Ω × (-ε, ε)) and check that f | ∂Ω×(-ε,ε) is bilips- chitz. Let y, y ∈ ω. Then there are x, x ∈ ∂Ω, t, t ∈ (-ε, ε), such that y = f (x, t), y = f (x , t ), ( 3 
C (|x -x | + |t -t |) ≤ |y -y | ≤ C(|x -x | + |t -t |). (3.30) Hence f | ∂Ω×(-ε,ε) is bilipschitz. Let now Φ : ω → ω be Φ(y) := f (f -1 x (y), -f -1 t (y)) (3.
x and f -1 t denote the components of f -1 . Obviously Φ(y) = y if y ∈ ∂Ω ⊆ ω. We check that Φ is bilipschitz. Indeed, arguing as above, setting

Y := f (x, -t) = Φ(y), Y := f (x , -t ) = Φ(y ), (3.32) we get 1 C (|x -x | + |t -t |) ≤ |Y -Y | ≤ C(|x -x | + |t -t |), (3.33) therefore Φ is bilipschitz. It remains to show that ω is open if ε is sufficiently small. Assume ε ≤ ε 0 /(1 + L 0 )
, with ε 0 , L 0 the quantities introduced right after (3.2). Select y ∈ ω, and let x ∈ ∂Ω, s ∈ (-ε, ε) be such that y = f (x, s). Choose A x , G x as in (3.2) and let h :

B ε0/(1+L0) × (-ε, ε) → ω be defined by h(z , t) := f (A x (z , G x (z )), t).
(3.34)

The map h is injective and Lipschitz, and therefore open. Therefore ω contains an open neighborhood of y = f (x, s).

Remark 3.4. If ψ were only L ∞ , the map f (x, t) may not be invertible in ∂Ω×(-ε, ε), for all choices of ε > 0. This happens for example if ∂Ω is (locally) the graph of the function χ (0,1) (x)|x| 1+α for x ∈ (-1, 1), where 0 < α < 1 (see (3.25)). and ˆΩ

∩J U g 0 (|[U ]|)dH n-1 ≤ ˆJu g 0 (|[u]|)dH n-1 + θ . (3.36)
In particular,

E |•| p ,g0 [U, Ω ] ≤ E |•| p ,g0 [u, Ω] + 2θ. (3.37) If H n-1 (J u ) < ∞, then additionally H n-1 (J U ) < ∞ and H n-1 (J U ∩Ω \Ω) < θ; if ∇u = 0 L n -almost everywhere on Ω then also ∇U = 0 L n -almost everywhere on Ω . If u ∈ W 1,p (Ω; R m ) then U ∈ W 1,p (Ω ; R m ).
Proof. We consider the open set ω and the bilipschitz map Φ provided by Theorem 3.1. Thus, [AFP00, Theorem 3.16] yields that u

• Φ -1 ∈ SBV (ω \ Ω; R m ), with | Lip(Φ)| 1-n Φ # |D(u| Ω∩ω )| ≤ |D(u • Φ -1 )| ≤ | Lip(Φ -1 )| n-1 Φ # |D(u| Ω∩ω )| ,
where Φ # denotes the push forward of measures. In particular, by the Coarea formula (cf. [AFP00, Theorem 2.93]) we conclude that ˆω\Ω

|∇(u • Φ -1 )| p dx ≤ C ˆΩ∩ω |∇u| p dx , (3.38) 
and by the Coarea formula between rectifiable sets (cf. [Fed69, Theorem 3.

2.22]) ˆJu•Φ -1 g 0 (|[u • Φ -1 ]|)dH n-1 ≤ C ˆJu∩(Ω∩ω) g 0 (|[u]|)dH n-1 , (3.39)
for a constant C depending only on n and Lip(Φ -1 ).

Having fixed θ > 0, up to restricting ω, we may assume that both right-hand sides of (3.38) and (3.39) are actually less than or equal to θ, and in addition that ω is Lipschitz with |ω \ Ω| ≤ θ.

Then, to conclude, set Ω := Ω ∪ ω and In the case H n-1 (J u ) < ∞ the additional estimate follows from the same proof, using 1 + g 0 in place of g 0 in (3.39). Similarly, if either ∇u = 0 or J u = ∅, the same property is immediately inherited by U on Ω ∪ ω.

U (x) :=      u(x) x ∈ Ω, u(Φ -1 (x)) x ∈ ω \ Ω, 0 x ∈ R n \ Ω .

Approximate regularity on an intermediate scale

Given a SBV function satisfying the hypotheses of Theorem 1.1, we show that at an intermediate scale, denoted by δ, the regular part of the gradient is uniformly approximately continuous, and the jump is approximately given by a fixed jump concentrated on a C 1 manifold. Having fixed g 0 satisfying (H g0 1 )-(H g0 2 ), for every u ∈ SBV (Ω; R m ), we introduce the notation

µ u := g 0 (|[u]|)H n-1 J u .
(3.41)

We remark that µ u is a finite measure on Ω concentrated on a σ-finite set with respect to H n-1 J u . The main result is the following.

Proposition 3.6. Let Ω ⊆ R n be open and bounded, p ∈ [1, ∞), and g 0 be satisfying (H g0 1 )-(H g0 2 ). There is a constant C depending on p, n and m, such that for every u ∈ SBV (Ω; R m ) with µ u (Ω) < ∞ and ∇u ∈ L p (Ω; R m×n ), and for every θ > 0, after fixing an orientation of J u there is δ ∈ (0, θ] such that, setting A δ := {z ∈ Ω ∩ δZ n : dist(z, ∂Ω) > δ √ n} and Q * z := z + (-δ, δ) n , the following holds: there are R :

A δ → SO(n), s : A δ → R m , η : A δ → R m×n , ϕ : A δ → C 1 c (R n-1
), and x : A δ → R n such that, setting

L z := x z + R z {(y , ϕ z (y )) : y ∈ R n-1 }, (3.42) one has Dϕ z L ∞ ≤ θ and z∈A δ ˆQ * z |∇u -η z | p dx + z∈A δ ˆQ * z ∩Ju\Lz g 0 (|[u]|)dH n-1 + z∈A δ ˆQ * z ∩Lz g 0 (|[u]|)|ν u -R z e n |dH n-1 + z∈A δ ˆQ * z ∩Lz g 0 (|[u] -s z |)dH n-1 ≤ Cθ(1 + µ u (Ω) + |Ω|) .
(3.43)

If H n-1 (J u ) < ∞ then additionally z∈A δ H n-1 (Q * z ∩ (J u L z )) ≤ Cθ. (3.44)
Before proving it we introduce a preliminary pointwise result for the jump part of the energy.

Lemma 3.7. Let Ω ⊆ R n be open, and g 0 be satisfying (

H g0 1 )-(H g0 2 ). Let u ∈ SBV (Ω; R m ) with µ u (Ω) < ∞. Then, for H n-1 -almost every x ∈ J u there are R x ∈ SO(n), s x ∈ R m \ {0}, ϕ x ∈ C 1 (R n-1
) such that ϕ x (0) = 0, Dϕ x (0) = 0, and, letting

L x := x + R x {(y , ϕ x (y )) : y ∈ R n-1 }, lim r→0 1 µ u (B r (x)) ˆBr(x)∩Ju\Lx g 0 (|[u]|)dH n-1 + ˆBr(x)∩Lx g 0 (|[u] -s x |) + g 0 (|[u]|)|ν u -R x e n | dH n-1 = 0.
(3.45)

If H n-1 (J u ) < ∞, then additionally lim r→0 H n-1 (B r (x) ∩ (J u L x )) µ u (B r (x)) = 0. (3.46)
Proof. We first observe that for H n-1 -almost every x ∈ J u by [AFP00, Th. 2.83(i)] we have We first observe that (3.48) implies (3.49). Indeed, subadditivity and monotonicity of g 0 imply g 0 (|s

lim r→0 µ u (B r (x)) ω n-1 r n-1 = g 0 (|[u](x)|) = 0, ( 3 
x |) ≤ g 0 (|[u]|) + g 0 (|[u] -s x |) and therefore µ u (B r (x) \ L x ) = µ u (B r (x)) -µ u (B r (x) ∩ L x ) ≤µ u (B r (x)) -g 0 (|s x |)H n-1 (B r (x) ∩ L x ) + ˆBr(x)∩Lx g 0 (|[u] -s x |)dH n-1 .
(3.51)

We divide by ω n-1 r n-1 and take the lim sup as r → 0 to obtain, with

lim r→0 H n-1 (B r (x) ∩ L x ) ω n r n-1 = 1, (3.52) 
(3.47) and (3.48), lim sup

r→0 1 ω n-1 r n-1 µ u (B r (x) \ L x ) = 0, (3.53) 
which is (3.49). Therefore it remains to prove (3.48). For any j > 0 let

A j := {x ∈ J u : |[u](x)| ≥ 2 -j }.
As u ∈ SBV (Ω; R m ), we have H n-1 (A j ) < ∞, and A j is countably (n -1)-rectifiable. Therefore for H n-1 -almost every x ∈ A j there are R j

x , ϕ j x as in the statement such that the corresponding set L j

x obeys lim r→0

H n-1 (B r (x) ∩ (A j L j x )) r n-1 = 0 (3.54) and ν u (x) = R j x e n . As |[u]| ∈ L 1 (Ω; H n-1 J u ), and H n-1 (A j ) is finite, for H n-1 -almost every x ∈ A j lim r→0 1 r n-1 ˆAj∩Br(x) |[u] -s x |dH n-1 = 0 (3.55)
and similarly

lim r→0 1 r n-1 ˆAj∩Br(x) |ν u -ν u (x)|dH n-1 = 0. (3.56)
We recall that for x ∈ J u we defined s x = [u](x) = 0. We first show that (3.54) and (3.55) imply

lim r→0 1 r n-1 ˆLj x ∩Br(x) |[u] -s x |dH n-1 = 0 (3.57)
for H n-1 -almost every x ∈ A j . Indeed, we have ˆLj

x ∩Br(x) |[u] -s x |dH n-1 ≤ ˆAj∩Br(x) |[u] -s x |dH n-1 + (|s x |+2 -j )H n-1 ((L j x \ A j ) ∩ B r (x))
and the conclusion then follows from (3.54) and (3.55).

We next show that (3.57) implies that for

H n-1 -almost every x ∈ A j lim r→0 1 r n-1 ˆLj x ∩Br(x) g 0 (|[u] -s x |)dH n-1 = 0.
(3.58) Indeed, using (2.2), namely that for every λ > 0 there is C λ > 0 such that g 0 (t) ≤ λ + C λ t for all t ∈ [0, ∞), with (3.57) we obtain lim sup

r→0 1 r n-1 ˆBr(x)∩L j x g 0 (|[u] -s x |)dH n-1 ≤ λ lim r→0 H n-1 (B r (x) ∩ L j x ) r n-1 = λω n-1 .
(3.59) Since λ was arbitrary this concludes the proof of (3.58).

Let N ⊆ J u be an H n-1 -null set such that (3.58) holds for all x ∈ J u \ N and all j such that x ∈ A j . For any x ∈ J u \ N we define L x as L j

x for the smallest j ∈ N such that x ∈ A j . This proves (3.48). Condition (3.50) follows similarly from (3.56) using A j ⊆ J u and (3.54).

Assume now that H n-1 (J u ) < ∞. Then we can replace (3.54) by

lim r→0 H n-1 (B r (x) ∩ (J u L x )) r n-1 = lim r→0 H n-1 (B r (x) ∩ (A j L x )) r n-1 = 0. (3.60)
The second equality leads as above to (3.45); from the first one, one immediately obtains (3.46) (using again (3.47)).

Proof of Proposition 3.6. As ∇u ∈ L p (Ω; R m×n ), there is f ∈ C 0 (Ω; R m×n ) such that ∇uf p L p (Ω) ≤ θ. Let δ > 0 be such that |f (x)f (y)| p ≤ θ for all x, y ∈ Ω with |x -y| ≤ δ √ n. For any z ∈ A δ we set η z := f (z) and obtain

z∈A δ ˆQ * z |∇u-η z | p dx ≤ 2 p-1 z∈A δ ˆQ * z (|∇u-f | p +|f -η z | p )dx ≤ 2 p+n (1+|Ω|)θ
(3.61) as any point x ∈ R n belongs to at most 2 n of the cubes Q * z , z ∈ A δ . This treats the first term.

The jump terms are treated using Lemma 3.7. For µ u -almost every x ∈ Ω there are Rx ∈ SO(n), ŝx ∈ R m \ {0}, and φx ∈ C 1 (R n-1 ) as stated, we define Rx := Id, ŝx := 0, and φx := 0 on the others. We recall that Lx = x + Rx {(y , φx (y )) : y ∈ R n-1 }, and define, for any x ∈ Ω, the measure (we write B for balls in R n-1 ). We define, for k ∈ N >0 ,

mx :=g 0 (|[u]|)H n-1 (J u \ Lx ) + g 0 (|[u] -ŝx |)H n-1 Lx +g 0 (|[u]|) |ν u -Rx e n | H n-1 Lx . ( 3 
E k,θ :={x ∈ Ω : D φx L ∞ (B 3 k ) > 1 3 θ} ∪ {x ∈ Ω : ∃r ∈ (0, 1 k ] with mx (B r (x) ∩ Ω) ≥ θµ u (B r (x) ∩ Ω)}.
(3.64)

Obviously E k ,θ ⊆ E k,θ if k < k . By (3.63), for µ u -almost every x ∈ Ω there is k such that x ∈ E k,θ . Therefore µ u ( k∈N E k,θ ) = 0. (3.65) We select k θ > 2/θ such that µ u (E k θ ,θ ) ≤ θ, and assume that δ is such that 2δ √ n ≤ 1/k θ .
For some (s, x,R, ϕ) :

A δ → R m × Ω×SO(n) × C 1 c (R n-1
) (still to be defined) and any z ∈ A δ we intend to estimate an error measure defined in analogy to (3.62) by S z := x z +R z {(y , ϕ z (y )) : y ∈ R n-1 } and

m z := g 0 (|[u]|)H n-1 (J u \ S z ) + g 0 (|[u] -s z |)+g 0 (|[u]|)|ν u -R z e n | H n-1 S z ,
(3.66) namely to prove

z∈A δ m z (Q * z ) ≤ Cθ(1 + µ u (Ω)) ,
with a constant C > 0 depending on n, p.

Let F := {z ∈ A δ : Q * z ⊆ E k θ ,θ }. If z ∈ F , we set s z := 0, x z := z + 2δe n , R z :=Id, ϕ z := 0, so that S z ∩ Q * z = ∅ and m z Q * z = µ u Q * z . Therefore z∈F m z (Q * z ) = z∈F µ u (Q * z )≤ 2 n µ u ( z∈F Q * z ) ≤ 2 n µ u (E k θ ,θ ) ≤ 2 n θ. (3.67) Consider now z ∈ A δ \ F , and select x z ∈ Q * z \ E k θ ,θ .
We set s z := ŝxz , R z := Rxz , and

S z := Lxz = x z + R z {(y , φxz (y )) : y ∈ R n-1 } .
(3.68)

Note that with this choice m z = mxz . Moreover, as

x z ∈ Q * z we have Q * z ⊂ B 2 √ nδ (x z ) ∩ Ω. As 2δ √ n ≤ 1/k θ , x z ∈ E k θ ,θ implies mxz (B 2δ √ n (x z ) ∩ Ω) < θµ u (B 2δ √ n (x z ) ∩ Ω), so that z∈A δ \F m z (Q * z ) ≤ z∈A δ \F θµ u (B 2δ √ n (x z ) ∩ Ω). (3.69)
Each ball B 2 √ nδ (x z ) overlaps with a finite number C(n) of cubes with center in δZ n and side of length δ, which implies that they have finite overlap. Therefore

z∈A δ \F m z (Q * z ) ≤ Cθµ u (Ω) . (3.70)
Recall that φxz satisfies D φxz L ∞ (B 3/k θ ) ≤ 1 3 θ and φxz (0) = 0. We fix

α z ∈ C 1 c (B 3/k θ ; [0, 1]) such that α z = 1 on B 1/k θ and Dα z L ∞ ≤ 2 3 k θ , and set ϕ z := α z φxz . Then ϕ z ∈ C 1 c (R n-1 ) with Dϕ z L ∞ (R n-1 ) ≤ D φxz L ∞ (B 3/k θ ) ( α z L ∞ + 3 k θ Dα z L ∞ ) ≤ θ, and ϕ z = φxz on B 1/k θ (x z ).
Combining this remark with the results in (3.61), (3.67), (3.70) gives the first assertion.

Assume now that additionally H n-1 (J u ) < ∞. We proceed in the same way, replacing the measure mx defined in (3.62) by Mx := mx + H n-1 (J u Lx ) and µ u by μu := (g 0 (|[u]|) + 1)H n-1 J u . By (3.46) in Lemma 3.7 we obtain that (3.63) holds with Mx in place of mx , so that we can define E k,θ with Mx and μu . Similarly, we consider in place of m z defined in (3.66) the measure M z := m z + H n-1 (J u S z ). The rest of the proof is unchanged, replacing m z by M z and µ u by μu .

Proof of the approximation theorem 4.1 Explicit construction on a single simplex

We show how to construct the piecewise affine approximation in a single simplex, assuming that the values at the vertices and the jumps on the sides are given. On each edge we shall use a function of the form illustrated on the right-hand side of Figure 1. For simplicity we deal here only with scalar functions, the construction will then be applied componentwise.

We consider points A 1 , . . . , A n+1 ∈ R n such that their convex envelope, the simplex T := conv({A 1 , . . . , A n+1 }), has positive measure. The basic construction is outlined in general for values u 1 , . . . , u n+1 ∈ R of the function on the vertices, and jumps s ij ∈ R on the (oriented) edges, with s ij = -s ji (which obviously implies s ii = 0). We then define the average gradients on the edges ξ ij := u ju is ij . The definition of ξ implies that whenever {i, j, k} ⊆ {1, . . . , n} then

ξ ij + ξ jk + ξ ki + s ij + s jk + s ki = 0. (4.1)
The compatibility conditions arising from longer paths are not independent, as each path can be written as a concatenation of triangles. On the edge joining A i with A j , we require our target function to take the form (see Figure 1)

v(A i + t(A j -A i )) =u i + tξ ij + s ij χ t>1/2 =u i + t(u j -u i ) + s ij (χ t>1/2 -t). (4.2)
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A 1 Proposition 4.1. Let A 1 , . . . , A n+1 ∈ R n be such that T := conv({A 1 , . . . , A n+1 }) has positive measure. There is a decomposition of T into n + 1 closed polyhedra T 1 , . . . , T n+1 with disjoint interior such that the following holds. Let

A 2 A 3 A 1 A 2 s s ξ
u 1 , . . . , u n+1 ∈ R, fix s ∈ R * := R (n+1) 2 skw
, and define ξ ∈ R * by ξ ij +s ij = u j -u i . Then there is v : T → R affine in each T j \ i =j ∂T i and such that

|∇v| ≤ C diam(T ) n-1 |T | |ξ| , |[v]| ≤ 3|s|, (4.3) H n-1 (J v ∩ T ) ≤ H n-1 (∂T ), (4.4) and with v(A i + t(A j -A i )) = u i + tξ ij + s ij χ t>1/2 (4.5)
for all i < j ∈ {1, . . . , n + 1}, t ∈ [0, 1]. The constant C depends only on n. The function v depends linearly on {u i } ∪ {s ij }.

The function v on a face of T does not depend on the opposing vertex. Precisely, for any k, if x ∈ conv({A 1 , . . . , A n+1 } \ {A k }) then v(x) depends only on A i , u i for i = k and on s ij for i, j = k.

Proof. We first observe that each point x ∈ T can be uniquely represented as

x = n+1 i=1 λ i A i for some λ ∈ Λ := {λ ∈ [0, 1] n+1 : n+1 i=1 λ i = 1}
. We define the polyhedra T j by

T j := { i λ i A i : λ ∈ Λ, λ j ≥ λ i for i = j}, (4.6)
see Figure 1(left) (in the case that T is regular, this amounts to the Voronoi decomposition of T ). We remark that the condition

λ i ≤ λ j = 1 -k =j λ k for all i = j is equivalent to 2λ i ≤ 1 - k =i,j
λ k for all i = j , (4.7) so that

x ∈ T j ⇐⇒ x = A j + i =j λ i (A i -A j ) λ ∈ Λ as in (4.7) .
We define v j : T j → R by

v j (x) := vj (A -1 j (x -A j )) ,
where A j is the matrix with columns given by A i -A j for i = j, and vj : R n → R is defined by vj (λ 1 , . . . , λ j-1 , λ j+1 , . . . , λ n+1 ) := u j + i =j

λ i ξ ji (4.8) so that v j ( i λ i A i ) = u j + i =j λ i ξ ji . We define v by setting v := v j in T j \ i<j T i . (4.9)
Obviously A j ∈ T j and v(A j ) = u j . Further, for any j the function v is affine in T j \ i<j ∂T i , with

∇v(x) = (A -1 j ) T ∇v j (A -1 j (x -A j )) = (A -1 j ) T (ξ ji ) i =j
for all x inside T j , and therefore

|∇v| ≤ A -1 j op |(ξ ji ) i =j | on T j
from which we infer that

| det A j ||∇v| ≤ cof A j op |ξ| on T j . By definition of A j , it holds | det A j | = n!|T |.
As a cofactor is a homogeneous polynomial of degree n -1, one obtains cof A j op ≤ Cdiam(T ) n-1 , for some dimensional constant C < ∞. This proves the first bound in (4.3).

To conclude that v ∈ SBV (T ), with the claimed estimates, we note that since by construction v is affine on each T j , it jumps only on the points x = compatibility condition in (4.1) imply that

(v j -v k )( i λ i A i ) = u j -u k + λ k ξ jk -λ j ξ kj + i ∈{j,k} λ i (ξ ji -ξ ki ) = ξ kj + s kj -(λ k + λ j )ξ kj + i ∈{j,k} λ i (ξ ji + ξ ik ) = s kj + i ∈{j,k} λ i (ξ kj + ξ ji + ξ ik ) = s kj - i ∈{j,k} λ i (s kj + s ji + s ik ) = (λ j + λ k )s kj - i ∈{j,k} λ i (s ji + s ik ). (4.10) Therefore v ∈ SBV (T ) with |[v]| ≤ 3|s| and H n-1 (J v ) ≤ i =j H n-1 (∂T i ∩ ∂T j ) ≤ H n-1 (∂T ) . (4.11)
The last inequality is proven in (4.19) below. This concludes the proof of (4.3) and (4.4). Condition (4.5) follows directly from the definition above. By construction, it is clear that v does not depend on the vertex A k on the opposing face F k , since on F k we have λ k = 0 and

F k ∩ T k = ∅.
It remains to prove the geometric inequality that was used in the last step of (4.11). By Fubini's theorem one easily checks the following: Consider a set α of k + 1 points in R n , 0 ≤ k < n. Then for any x ∈ R n one has

H k+1 (conv(α ∪ {x})) = 1 k + 1 H k (conv(α)) • dist(x, aff-span(α)), (4.12)
where aff-span(α) is the smallest affine space that contains α (if k = 0 then conv(α) = aff-span(α) = α and H 0 (conv(α)) = 1). Fix now i = j ∈ {1, . . . , n + 1}, and consider ∂T i ∩ ∂T j . Then

∂T i ∩ ∂T j ={ n+1 p=1 λ p A p : λ ∈ Λ, λ i = λ j = max p λ p } ={2λ i A i + A j 2 + p ={i,j} λ p A p : λ ∈ Λ, λ i = λ j = max p λ p } ⊆{ n p=1 λ * p A * p : λ * ∈ Λ * , λ * 1 = max p λ * p }, (4.13)
where

Λ * := {λ * ∈ [0, 1] n : n p=1 λ * p = 1}, A * 1 := Ai+Aj 2
and {A * p } p=2,...,n is any relabeling of the n -1 points in α ij := {A 1 , . . . , A n+1 } \ {A i , A j } (the inclusion in the last step follows from the fact that λ * 1 = 2λ i ≥ 2λ * p for all p > 1). By symmetry, all n sets {λ * ∈ Λ * : λ * i = max p λ * p } have the same area, and as they are disjoint up to H n-1 -dimensional null sets we obtain

H n-1 (∂T i ∩ ∂T j ) ≤ 1 n H n-1 conv{A * p } = 1 n H n-1 conv α ij ∪ { A i + A j 2 }
(4.14) so that (4.12) gives

H n-1 (∂T i ∩ ∂T j ) ≤ 1 n(n -1) H n-2 (conv(α ij )) • dist A i + A j 2 , aff-span(α ij ) .
(4.15) By convexity

dist A i + A j 2 , aff-span(α ij ) ≤ 1 2 dist(A i , aff-span(α ij ))+ 1 2 dist(A j , aff-span(α ij )) . (4.16) Let F i := conv({A 1 , . . . , A n+1 } \ {A i }) = conv(α ij ∪ {A j }
) be the face opposite to the vertex A i . By (4.12),

H n-1 (F i ) = 1 n -1 H n-2 (conv(α ij )) • dist(A j , aff-span(α ij )).
(4.17)

Combining (4.15), (4.16) and (4.17) gives

H n-1 (∂T i ∩ ∂T j ) ≤ 1 2n H n-1 (F i ) + 1 2n H n-1 (F j ). (4.18)
We sum over all pairs (i, j) with i = j and obtain i =j

H n-1 (∂T i ∩ ∂T j ) ≤ n+1 i=1 j =i 1 n H n-1 (F i ) = n+1 i=1 H n-1 (F i ) = H n-1 (∂T ) (4.19) which concludes the proof.

Projection on piecewise affine functions

In this section, we use Proposition 4.1 to construct a good piecewise affine interpolation of any vectorial function u ∈ SBV loc (R n ; R m ) over a suitable partition of R n in simplexes. First, Lemma 4.2 states the general properties of the chosen partition. Proposition 4.1 then can be applied componentwise in each simplex of a suitable shift of the partition. The resulting interpolation can be interpreted as a projection of u over piecewise affine functions and enjoys good energy estimates, see Proposition 4.3. Lemma 4.2. For any n ≥ 1 there is a countable set of simplexes T 0 ⊆ P(R n ) such that, denoting by Vert(τ 0 ) the set of vertices of τ 0 ∈ T 0 , one has:

(i) #Vert(τ 0 ) = n + 1; |τ 0 | > 0 for all τ 0 ∈ T 0 ; (ii) τ 0 ∩ τ 0 = conv(Vert(τ 0 ) ∩ Vert(τ 0 )), in particular |τ 0 ∩ τ 0 | = 0 if τ 0 = τ 0 ; (iii) τ0∈T0 τ 0 = R n ;
(iv) For any τ 0 ∈ T 0 there is z ∈ Z n such that Vert(τ 0 ) ⊆ {z + i λ i e i : λ i ∈ {0, 1}, i ∈ {1, . . . , n}}, with the e i 's the canonical basis vectors;

(v) If τ 0 ∈ T 0 , then τ 0 + 2e i ∈ T 0 , with e i any of the canonical basis vectors.

We recall that conv(∅) = ∅. Condition (i) and condition (ii) with τ 0 = τ 0 imply that τ 0 is a closed simplex. Condition (iv) implies that for all ε > 0, the rescaled simplex ετ 0 has diameter at most ε √ n, and together with condition (i) that its volume is at least ε n /n! (indeed, it is 1/n! times the determinant of a matrix with entries in {-ε, 0, ε}). The last two imply that this is a refinement of the natural subdivision of R n into unitary cubes, with period [0, 2] n .

Proof. This can be obtained taking any partition, as for example the Freudenthal partition, of [0, 1] n , reflecting this along the coordinate axes to obtain a partition of [-1, 1] n , and then extending periodically.

In the rest of this section we define for any ε > 0 and ζ ∈ B ε a projection Π ε,ζ on the space of functions that are affine on each polyhedron in a refinement of ζ + εT 0 . The projection will be used on functions u ∈ SBV (R n ; R m ). As it depends on point values, we shall only obtain a well-defined result for values of the translation ζ outside a null set. The null set, however, depends on u. To avoid this, the precise definition is given not on equivalence classes but on functions from R n to R m . In order to understand the key properties, it is useful to consider first the action of Π ε,ζ on elements of SBV (R n ; R m ) (or, equivalently, (setting it to zero if the sum does not converge or is not defined) and correspondingly the integral of the absolutely continuous part of the gradient by By monotonicity and subadditivity of g 0 ,

SBV loc (R n ; R m ), since Π ε,ζ is local). Let u ∈ SBV (R n ; R m ).
∈ SBV (R; R m ) with u(b) -u(a) = ˆ1 0 (u b-a a ) (t)dt + t∈(0,1)∩J u b-a a [u b-a a ](t) (4.20) with (u b-a a ) (t) = ∇u(a + t(b -a))(b -a) and [u b-a a ](t) = [u](a + t(b -a))sgn(ν a+t(b-a) • (b -a)) (see [AFP00, Sect.
ξ [a,b] := u(b) -u(a) -s [a,b] . (4.22) 
g 0 (|s [a,b] |) ≤ t∈(0,1)∩J u b-a a g 0 (|[u](a + t(b -a))|) . (4.24) 
Similarly, for L 2n -almost all pairs (a, b), using (4.23) and Jensen's inequality,

ξ [a,b] |b -a| p ≤ ˆ1 0 |∇u(a + t(b -a))| p dt. (4.25) 
In Proposition 4.3 we will turn both estimates (4.24) and (4.25) into estimates relating the energy over shifts of the segment, averaged over all possible shifts of size less than ε, and integrals over J u and Ω, respectively.

Proposition 4.3. There is a locally finite subdivision of R n into countably many essentially disjoint polyhedra, T * 0 , finer than T 0 and with the same periodicity, and C > 0 such that, for any ε > 0 and ζ ∈ B ε , to any function f : R n → R m one can associate a function Π ε,ζ f : R n → R m , affine in the interior of each element of T * ε,ζ := ζ + εT * 0 , so that the following holds:
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f for all f , and it commutes with translations, in the sense that

Π ε,ζ [f (•-ζ)] = [Π ε,0 f ](•-ζ); (iii) One has Π ε,ζ f ∈ SBV loc (R n ; R m ) and, with T ε,ζ := ζ + εT 0 , |DΠ ε,ζ f |( τ ∈T ε,ζ ∂τ ) = 0. (4.26) If u ∈ SBV loc (R n ; R m ), then for L n -almost every ζ ∈ B ε one has H n-1 (J u ∩ τ ∈T ε,ζ ∂τ ) = 0.
(iv) The function Π ε,ζ f on a set ω depends only on the value of f on the set

(ω) ε √ n . (v) If A : R n → R m is affine and λ ∈ R, then for any function f one has Π ε,ζ (λf + A) = λ(Π ε,ζ f ) + A; if u, v ∈ SBV loc (R n ; R m ) then for almost every ζ ∈ B ε one has Π ε,ζ (u + v) = Π ε,ζ u + Π ε,ζ v;
(vi) For any η ∈ R m×n and τ 0 ∈ T 0 , one has for any u

∈ SBV loc (R n ; R m ) that Bε ˆζ+ετ0 |∇Π ε,ζ u -η| p dx dζ ≤ C ˆ(ετ0)c * ε |∇u -η| p dx, (4.27) 
Bε ˆJΠ ε,ζ u ∩(ζ+ετ0) g 0 (|[Π ε,ζ u]|)dH n-1 dζ ≤ C ˆJu∩(ετ0)c * ε g 0 (|[u]|)dH n-1 , (4.28) Bε H n-1 (J Π ε,ζ u ∩ (ζ + ετ 0 ))dζ ≤ CH n-1 (J u ∩ (ετ 0 ) c * ε ), (4.29) Bε ˆζ+ετ0 |Π ε,ζ u -u|dx dζ ≤ Cε|Du|((ετ 0 ) c * ε ), (4.30) 
and, for every n -1-rectifiable set Σ,

Bε ˆΣ |Π ε,ζ u|dH n-1 dζ ≤ Ck Σ ε u L 1 ((Σ)c * ε) + Ck Σ |Du|((Σ) 2c * ε ), (4.31) where k Σ := sup r>0,x∈R n H n-1 (Σ ∩ B r (x)) r n-1 . (4.32) Here c * ∈ [1+ √ n, ∞
) is a constant that depends only on n; C may depend on n, m, p.

(vii) If u ∈ SBV loc (R n ; R m ) and ∇u = 0 L n -almost everywhere then for almost every ζ ∈ B ε one has ∇Π ε,ζ u = 0 L n -almost everywhere. In particular, if u = χ E for some set E then there is a countable union of polygons

F ε,ζ such that Π ε,ζ u = χ F ε,ζ . If H n-1 (J u ) = 0 then for almost every ζ ∈ B ε one has H n-1 (J Π ε,ζ u ) = 0.
Condition (4.27) easily implies that for any Borel set ω ⊂ R n and any η

Bε ˆω |∇Π ε,ζ u -η| p dx dζ ≤ C ˆ(ω)2c * ε |∇u -η| p dx. (4.33)
Indeed, it suffices to sum (4.27) over all τ 0 ∈ T 0 such that there is

ζ ∈ B ε with (ζ + ετ 0 ) ∩ ω = ∅, which implies ετ 0 ⊆ (ω) (1+ √ n)ε .
Analogous observations hold for (4.28), (4.29) and (4.30).

We remark that (4.31) fails if we remove the derivative term in the right-hand side. Consider for example the sequence u j (x) := 1 j jx 1 , where x := xx denotes the fractional part of x ∈ R, which converges uniformly to 0 as j → ∞. As ∇u j e 1 = 1 almost everywhere, for any ε and ζ we have ∂ 1 Π ε,ζ u j = 1 almost everywhere, and since Π ε,ζ u j is piecewise affine on a scale ε we obtain Π ε,ζ u j L ∞ ≥ 1 2 ε, which does not depend on j. Similarly, one cannot estimate Π ε,ζ u in L 1 only in terms of the L 1 norm of u.

Proof. The grid T * 0 is defined decomposing each simplex τ 0 ∈ T 0 as in Proposition 4.1. The projection Π ε,ζ f is defined by application of the construction in Proposition 4.1 componentwise in each simplex τ ∈ T ε,ζ = ζ + εT 0 .

Precisely, let τ = ζ + ετ 0 , for some τ 0 ∈ T 0 , and let {w 1 , . . . , w n+1 } := Vert(τ ) be its vertices. In order to define the cumulated jump over the edge [w i , w j ] we consider the slice v f ij (t) := f (w i + t(w jw i )), for t ∈ [0, 1]. If v f ij ∈ SBV ((0, 1); R m ) then we set

s f ij := t∈(0,1)∩J v f ij [v f ij ](t), (4.34) 
otherwise we set s f ij := 0. The function Π ε,ζ f is then defined in τ using Proposition 4.1 componentwise. As discussed above, if f = u ∈ SBV loc (R n ; R m ) then for almost every choice of ζ one has that v u ij ∈ SBV ((0, 1); R m ) for all choices of τ 0 and of i, j.

(i): The upper bound on the diameter follows from Lemma 4.2 and the fact that T * 0 is a refinement of T 0 . The lower bound on the volume follows from the fact that both grids are locally finite and periodic.

(ii): Assume for simplicity that f is scalar. For any τ and w 1 , . . . , w n+1 as above, one easily obtains that (Π ε,ζ f )(w i ) = f (w i ). Let s f ij be defined as in (4.34). By (4.5) the function v (vi): By (v), it suffices to prove the first bound in the case η = 0. Let τ 0 ∈ T 0 , and {w 1 , . . . , w n+1 } = Vert(ετ 0 ). 

≤ C i ˆB(1+ √ n)ε (wi) |∇u| p dx ≤ C ˆ(ετ0) (1+ √ n)ε |∇u| p dx,
which concludes the proof of (4.27). Analogously, using (iii), (4.3), and (4.4), we get 

ˆJΠ ε,ζ u ∩(ζ+ετ0) g 0 (|[Π ε,ζ u]|)dH n-1 ≤ Cε n-1 i,j
g 0 (|[u](ζ + w i + t )|)dζ ≤ ˆε -ε ˆB ε t∈(0,1) g 0 (|[u](ζ + w i + t + ζ | | )|)dζ dζ ≤ 2ε ˆB ε t∈(-ε,ε(1+ √ n)) g 0 (|[u](ζ + w i + t | | )|)dζ ≤ 2ε ˆJu∩B(2+ √ n)ε (wi) g 0 (|[u]|) ν u • | | dH n-1 .
(4.39)

Clearly, (4.38) easily follows from (4.39). Hence, by (4.37) and (4.38)

Bε ˆJΠ ε,ζ u∩(ζ+ετ0) g 0 (|[Π ε,ζ u]|)dH n-1 dζ ≤ C ˆJu∩(ετ0)(2+ √ n)ε g 0 (|[u]|)dH n-1
(4.40) which concludes the proof of (4.28).

The proof of (4.29) is similar. Let g 1 : [0, ∞) → [0, ∞) be defined by g 1 (0) = 0, g 1 (s) = 1 for s = 0. The derivation of (4.37) above uses only (iii), (4.3), (4.4), and the fact that g 0 is nondecreasing and subadditive, and g 1 has the same properties. By (4.34), s u ij = 0 if v u ij does not jump on [0, 1], thus we obtain instead of (4.37) the estimate 

ˆJΠ ε,ζ u ∩(ζ+ετ0) g 1 (|[Π ε,ζ u]|)dH n-1 ≤ Cε n-1 i,
+ w i ) -u(x)|dx dζ ≤ 1 |B ε | ˆ(ετ0)ε ˆ(ετ0)ε |u(y) -u(y )|dydy ≤2 |(ετ 0 ) ε | |B ε | ˆ(ετ0)ε |u(y) -ū|dy ≤ Cε|Du|((ετ 0 ) ε ),
where ū denotes the average of u in (ετ 0 ) ε . For the second one, we write using (4.36) with p = 1

ε n Bε i,j |ξ ζ+[wi,wj ] |dζ ≤ Cε ˆ(ετ0) Cε |∇u|dx.
Combining the two gives (4.30). Finally, we prove (4.31): for any τ 0 ∈ T 0 and ζ ∈ B ε , we have

H n-1 (Σ ∩ (ζ + ετ 0 )) ≤ Ck Σ ε n-1 . As the map Π ε,ζ u is affine on each element of ζ + εT * 0 , we have Π ε,ζ u L ∞ (ζ+ετ0) ≤ C ε n Π ε,ζ u L 1 (ζ+ετ0) . (4.42) 
We sum over all τ 0 such that ζ + ετ 0 intersects Σ and obtain Finally, if H n-1 (J u ) = 0 then necessarily u ∈ W 1,1 loc (R n ; R m ). In turn, the slices of u are Sobolev functions for L n -almost every ζ ∈ B ε , so that J Π ε,ζ u = ∅, in turn implying that Π ε,ζ u is actually continuous and in W 1,1 loc (R n ; R m ) (alternatively, this follows also from (4.29)).

ˆΣ |Π ε,ζ u|dH n-1 ≤ Ck Σ ε Π ε,ζ u L 1 ((Σ) √ nε ) ( 

Global construction

We are now ready to establish Theorem 1.1. The proof contains two different scales, denoted by δ and ε in the following. The scale δ is the one at which the function u has approximately regular jump and gradient, and is identified in Proposition 3.6. The second scale ε δ, used for the construction in Proposition 4.3, is the one on which we construct a piecewise affine approximation of u. This is achieved in each cube at scale δ by applying Proposition 4.3 to the extensions, obtained via Theorem 3.5, of u itself restricted to domains separated by the regular part of its jump set. In turn, the regularization L z of the jump

δ ε L z H z R n-1
Figure 3: Sketch of the grids used in the proof of Theorem 1.1. The grid (T , V ) is taken in R n-1 , it is then rotated. Similarly, H z and L z are graphs (of ψ z and ϕ z , respectively) in these rotated coordinates.

set J u will be separately approximated using piecewise affine elements in R n-1 using again the scale ε. Figure 3 shows a sketch of the construction, the different parts will become clear during the proof.

Proof of Theorem 1.1. Let u ∈ SBV (Ω; R m ) and θ ∈ (0, 1 2 ]. To simplify the notation we work at fixed θ, and in the end choose a sequence θ j → 0. It is not restrictive to assume additionally that t ≤ g 0 (t) for all t ∈ [0, ∞);

(4.44) indeed, this follows by proving first the theorem with g 0 (t) + t in place of g 0 and then deducing the statement for g 0 as a by-product. By (2.2), for any λ > 0 (fixed below, it will depend on θ and δ but not on ε and δ ; λ = θδ will do) there is C λ ≥ 1 such that

g 0 (t) ≤ λ + C λ t for all t ∈ [0, ∞). (4.45)
This will be used to estimate terms of the form g 0 (|[w]|) on sets of finite n -1dimensional measure in terms of the jump.

Step 1: Choice of the scale δ on which u is regular and of the sets A δ , A * δ . By Theorem 3.5 we can assume that u

∈ SBV (R n ; R m ) with |Du|(J u ∩∂Ω) = 0, ˆΩ |∇u| p dx ≤ ˆΩ |∇u| p dx + θ , (4.46) 
and

ˆΩ ∩Ju g 0 (|[u]|)dH n-1 ≤ ˆΩ∩Ju g 0 (|[u]|)dH n-1 + θ , (4.47) 
for some bounded open set Ω with Ω ⊂ Ω and |Ω | ≤ 2|Ω|. We choose δ 0 ∈ (0, θ] such that 3δ 0 √ n ≤ dist(Ω, ∂Ω ) and

ˆ(∂Ω) 3δ 0 √ n |∇u| p dx + µ u ((∂Ω) 3 √ nδ0 ) ≤ θ, (4.48) 
where µ u := g 0 (|[u]|)H n-1 J u as in (3.41). If H n-1 (J u ∩Ω) < ∞, then Theorem 3.5 gives H n-1 (J u ) < ∞ and we may also require

H n-1 (J u ∩ (∂Ω) 3 √ nδ0 ) ≤ θ. (4.49)
By Proposition 3.6, used with δ 0 in place of θ, there is δ ∈ (0, δ 0 ] ⊆ (0, θ] such that, with

A δ := {z ∈ (δZ n ) ∩ Ω : dist(z, ∂Ω)>δ √ n}, there are R : A δ → SO(n), s : A δ → R m , η : A δ → R m×n , ϕ : A δ → C 1 c (R n-1 ), x : A δ → R n which, setting L z := x z + R z {(y , ϕ z (y )) : y ∈ R n-1 } (4.50) and Q * z := z + (-δ, δ) n , satisfy Dϕ z L ∞ ≤ θ and z∈A δ ˆQ * z |∇u -η z | p dx + z∈A δ ˆQ * z ∩Ju\Lz g 0 (|[u]|)dH n-1 + z∈A δ ˆQ * z ∩Lz [g 0 (|[u] -s z |)+g 0 (|[u]|)|ν u -R z e n |]dH n-1 ≤ Cθ . (4.51) 
Here and in what follows we do not explicitly indicate the dependence of C on µ u (Ω) and |Ω|. If H n-1 (J u ) < ∞ we have in addition

z∈A δ H n-1 (Q * z ∩ (J u L z )) ≤ Cθ. (4.52)
We further define A * δ := {z ∈ (δZ) n : dist(z, ∂Ω) ≤ δ √ n}. We observe that

Q * z ⊆ B δ √ n (z), so that by (4.48) z∈A * δ ˆQ * z |∇u| p dx + z∈A * δ ˆQ * z ∩Ju g 0 (|[u]|)dH n-1 ≤ C( ˆ(∂Ω) 2δ √ n |∇u| p dx + µ u ((∂Ω) 2δ √ n )) ≤ Cθ . (4.53) For γ ∈ Bδ /4 and z ∈ A δ ∪A * δ we define Q γ z := γ +z +(-δ/2, δ/2) n ⊆ Q * z , and ob- serve that since 2δ √ n ≤ 2δ 0 √ n ≤ dist(Ω, ∂Ω ) we have Ω ⊂ z∈A δ ∪A * δ Q γ z ⊂ Ω . Further, for L n -almost every choice of γ ∈ Bδ /4 we have H n-1   J u ∩ z∈A δ ∪A * δ ∂Q γ z   = 0 and H n-1 z∈A δ (L z ∩ ∂Q γ z ) = 0. (4.54)
This follows from the fact that H n-1 J u and H n-1 z∈A δ L z are σ-finite. In the rest of the proof γ is a fixed value with property (4.54) and we write Q z in place of Q γ z .

small neighborhood of the sets H ± z ∩ Q z , and by Proposition 4.3(vi) the relevant properties of w z,ζ can be estimated by corresponding properties of U ± z on 2c * εneighborhoods of H ± z ∩ Q z (see also (4.33)). Therefore we need to estimate U ± z on these sets. 

Let Ôε

z := (L z ) M ε ∩ (Q z ) M ε .
+ z ) 2c * ε ⊆ L + z ∪ (L z ) (2+2c * )ε , which imply (H + z ∩ Q z ) 2c * ε ⊆ (L + z ∩ Q * z ) ∪ Ôε z (4.61)
and the same for the other sign, provided that M ≥ 2 + 2c * and ε is sufficiently small. Recalling (4.51), (4.59) in particular implies

z∈A δ ˆJU + z ∩(H + z ∩Qz)2c * ε g 0 (|[U + z ]|)dH n-1 + z∈A δ ˆJU - z ∩(H - z ∩Qz)2c * ε g 0 (|[U - z ]|)dH n-1 ≤ Cθ (4.62)
and

z∈A δ ˆ(H + z ∩Qz)2c * ε |∇U + z -η z | p dx + ˆ(H - z ∩Qz)2c * ε |∇U - z -η z | p dx ≤ Cθ. (4.63)
We next estimate the difference between u, U + z and U - z around H z , this will be important after (4.104) (cf. (4.108)-(4.109)). We pick x 1 , . . 

. , x K ∈ L z such that L z ∩ Q z ⊆ i B i , B i := B M ε (x i ), ( 4 
+ i , h - i ∈ R m with 1 ε u -h + i L 1 (B * i ∩L + z ) + T u -h + i L 1 (B * i ∩Lz;H n-1 ) ≤ C|Du|(B * i ∩ L + z ). (4.66)
In (4.66) we write T u for the inner trace on the boundary of B * i ∩ L + z , which on B * i ∩ L z coincides with u + . The corresponding estimate holds with the other sign (then with T u = u -). This in particular implies ˆB * We observe that Lip (ϕ z ) ≤ 1 2 also implies for some constant C

i ∩Lz |[u] -(h + i -h - i )|dH n-1 ≤ C|Du|(B * i \ L z ). ( 4 
ε n C ≤ |B * i ∩ L + z |, ε n C ≤ |B * i ∩ L - z |, (4.68) 
as well as 

ε n-1 C ≤ H n-1 (B i ∩ L z ) ≤ Cε n-1 , ε n-1 C ≤ H n-1 (B i ∩ H z ) ≤ Cε n-
+ z -h + i L 1 (B * i ) ≤ Cε|DU + z |(B * i ) (4.70)
and analogously for U - z and h - i , so that

ˆB * i |U + z -U - z -h + i + h - i |dx ≤ Cε(|DU + z | + |DU - z |)(B * i ). (4.71)
Finally, a direct application of Poincaré's inequality to

U + z -u on B * i , using u = U + z on B * i ∩ L + z and (4.68), leads to ˆB * i |U + z -u|dx ≤ Cε(|DU + z | + |Du|)(B * i ), (4.72) 
obviously the same holds for U - z . Summing (4.72) over all balls shows that

U + z -u L 1 ( Ôε z ) ≤ Cε(|DU + z | + |Du|)(O ε z ) (4.73)
and the same for U - z . Summing instead (4.72) only over the balls with centers contained in (∂Q z ) 3M ε ∩ L z gives

U + z -u L 1 ((∂Qz) M ε ∩(Lz) M ε ) ≤ Cε |DU + z | + |Du| ((∂Q z ) 5M ε ∩ O ε z ), (4.74)
and the same bound for U

- z . For z ∈ A δ with L z ∩ Q * z = ∅ we define w z,ζ : R n → R m by w z,ζ := Π ε,ζ U + z in H + z , Π ε,ζ U - z in H - z , (4.75) 
we recall that if instead L z ∩ Q * z = ∅ we had set w z,ζ = Π ε,ζ u. In both cases, the function w z,ζ is piecewise affine. For almost all ζ ∈ B ε we have

H n-1 (J Π ε,ζ f ∩ H z ) = H n-1 (J Π ε,ζ f ∩ ∂Q z ) = 0 (4.76)
for any function f , and in particular for U + z and U - z . With this choice, and recalling (4.58), J w z,ζ ∩ Q z splits (up to H n-1 -null sets) into the disjoint union of The first term, using (4.69) twice and subadditivity, leads to ˆHz∩Bi g 0 (|h

J Π ε,ζ U + z ∩ H + z ∩ Q z , J Π ε,ζ U - z ∩ H - z ∩ Q z ,
+ i -h - i -s z |)dH n-1 ≤ Cε n-1 g 0 (|h + i -h - i -s z |) ≤ C ˆLz∩Bi [g 0 (|[u] -s z |) + g 0 (|h + i -h - i -[u]|)]dH n-1 , (4.107) 
where the first integral is controlled by I 1 z . Using (4.45) in the second term of (4.106) and the second term of (4.107), for any λ > 0 we have The term in the second line can be estimated with (4.67). For the last line we use first (4.31) and then (4.71), and obtain so that by (4.59) summing on z ∈ A δ we find for λ ≤ δθ and ε sufficiently small

I 2 z (B i ) ≤C ˆLz∩Bi g 0 (|[u] -s z |)dH n-1 + Cλε n-1 + C λ ˆLz∩Bi |h + i -h - i -[u]| dH n-1 + C λ Bε ˆHz∩Bi |Π ε,ζ (U + z -U - z -h + i + h - i )| dH n-1 dζ.
Bε ˆHz∩Bi |Π ε,ζ (U + z -U - z -h + i + h - i )|dH n-1 dζ ≤ C ε ˆB * i |U + z -U - z -h + i + h - i |dx + C(|DU + z | + |DU - z |)(B * i ) ≤ C(|DU + z | + |DU - z |)(B * i ).
z∈A δ I 2 z ≤ Cθ .
We next turn to I 3 z , and observe that by (4.91) and (4.92) As H n-1 ( z∈A δ (H z ∪L z )∩Q z ) < ∞ and δ <δ Q z = Q z , choosing δ sufficiently close to δ we have Similarly, if H n-1 (J u ) < ∞, for δ sufficiently close to δ we have In the first term in the second line, we use (4.58) to drop the part on ∂Q z and then separate the contributions inside and outside L z . Equation (4.91) ensures that Q z ∩ Φ -1 (H z ) \ L z = ∅. We obtain The converse inequality is proven by a different argument based on lower semicontinuity. As discussed in the first lines of the proof, taking a sequence θ j → 0 we obtain a sequence w j which has all stated properties, except that (vi) is replaced by the weaker assertion lim sup j H n-1 (Ω ∩ Φ -1 j (J wj ) \ J u ) = 0. (4.130)

H n-1 ((L z Φ -1 (H z )) ∩ Q z ) ≤H n-1 (L z ∩ Q z \ Q z ) + H n-1 (Φ -1 (H z ) ∩ Q z \ Q z ) ≤H n-1 (L z ∩ Q z \ Q z ) + 2H n-1 (H z ∩ Q z \ Q z ).
z∈A δ H n-1 ((H z ∪ L z ) ∩ (Q z \ Q z )) ≤ θ and
H n-1 (J u ∩ z∈A δ (Q z \ Q z )) ≤ θ.
z∈A δ H n-1 (Q z ∩ Φ -1 (H z ) \ J u ) ≤ z∈A δ H n-1 (Q z ∩ L z \ J u ) + H n-1 (Q z ∩ Φ -1 (H z ) \ Q z ) ≤
In particular w j converges to u in L 1 (Ω; R m ), and since ∇w j converges to ∇u strongly in L p (Ω; R m×n ), with p ∈ [1, ∞) given, there is a function f : R m×n → [0, ∞) with superlinear growth at infinity such that lim sup j ˆΩ f (∇w j )dx + H n-1 (Ω ∩ J wj ) < ∞ (4.131) (if p > 1, then f (ξ) := |ξ| p itself will do; if p = 1, de la Vallée-Poussin Theorem gives the conclusion). By the SBV closure and lower semicontinuity theorem [AFP00, Theorem 4.7], we deduce H n-1 (Ω ∩ J u ) ≤ lim inf j H n-1 (Ω ∩ J wj ) = lim inf j H n-1 (Ω ∩ Φ -1 j (J wj )), (4.132)

where the last equality can be obtained from the area formula and (iv). By additivity of H n-1 , H n-1 (Ω ∩ J u \ Φ -1 j (J wj )) =H n-1 (Ω ∩ J u ) -H n-1 (Ω ∩ Φ -1 j (J wj )) + H n-1 (Ω ∩ Φ -1 j (J wj ) \ J u ).

(4.133)

Using first (4.132) and then (4.130), lim sup j H n-1 (Ω ∩ J u \ Φ -1 j (J wj )) ≤ lim sup j H n-1 (Ω ∩ Φ -1 j (J wj ) \ J u ) = 0, (4.134) which concludes the proof. 50 Density-20230927-final.tex [September 28, 2023] 

  .5) since at least one of the θ i (x) equals 1. It only remains to normalize. Condition (3.5) implies |ψ * | ≥ γ * on ∂Ω, and therefore |ψ * | > γ * /2 in a neighborhood of ∂Ω. We select ϕ ∈ C ∞ (R n ; [0, 1]) such that ϕ = 0 on ∂Ω, and ϕ > 0 on the set |ψ * | ≤ γ * /2. Then ψ := ψ * / |ψ * | 2 + ϕ has the desired properties with γ := γ * / max |ψ * |(∂Ω).

  .29) which by (3.22) and (3.26) in Step 1 implies 1

  Theorem 3.5. Let Ω ⊆ R n be a bounded open Lipschitz set, θ > 0, and u ∈ SBV (Ω; R m ) such that E |•| p ,g0 [u, Ω] < ∞, for some p ≥ 1 and g 0 satisfying (H g0 1 )-(H g0 2 ). Then there are an open set Ω with Ω ⊂ Ω and |Ω | ≤ |Ω| + θ, and a function U ∈ SBV (R n ; R m ) such that U = u on Ω, |DU |(∂Ω) = 0, ˆΩ |∇U | p dx ≤ ˆΩ |∇u| p dx + θ , (3.35)

(3. 40 )

 40 By construction U = u on Ω. Moreover, recalling that Φ| ∂Ω is the identity and that ω is Lipschitz, [AFP00, Corollary 3.89] implies that U ∈ SBV (R n ; R m ), |DU |(∂Ω) = 0, and moreover that DU Ω = Du Ω + D(u • Φ -1 ) (ω \ Ω). Finally, estimates (3.35) and (3.36) readily follows from (3.38) and (3.39).

  .47) therefore to prove (3.45) it suffices to show that for H n-1 -almost every x ∈ J u there is L x as stated such that, setting sx := [u](x), one has lim r→0 1 r n-1 ˆBr(x)∩Lx g 0 (|[u]s x |)dH n-1 = 0, (3.48) 20 Density-20230927-final.tex [September 28, 2023] |ν u -R x e n |dH n-1 = 0. (3.50)

  .62) 22 Density-20230927-final.tex [September 28, 2023] By Lemma 3.7, for µ u -almost every x ∈ Ω lim r→0 mx (B r (x)) µ u (B r (x)) = 0 and lim r→0 D φx L ∞ (B 3r ) = 0 (3.63)

Figure 1 :

 1 Figure 1: Sketch of the construction in Proposition 4.1 in the 2d case. Left: decomposition of the triangle. The blue lines represent the jump set of v. Right: profile along a single edge. The parameter s denotes the jump in the middle, the parameter ξ the rest of the height change, which corresponds to the uniform slope in the rest.

  For any couple of vertices a = b ∈ Vert(τ ) of a simplex τ ∈ ζ + εT 0 , we consider the slice u b-a a (t) := u(a + t(ba)). For L 2n -almost every pair (a, b) we have u b-a a

Figure 2 :

 2 Figure 2: Sketch of the construction for Proposition 4.3. The dots mark the points on which Π ε,ζ f coincides with f , the black triangles (one of them is colored red) are the elements of T ε,ζ , on which Proposition 4.1 is applied. The blue segments are the (eventual) discontinuities introduced by the construction of Proposition 4.1 and delimit the polygons which compose T * ε,ζ . The function Π ε,ζ u is affine on the smaller polyhedra (one of them is colored green).

For

  L 2n -almost all pairs (a, b) ξ [a,b] = ˆ1 0 ∇u(a + t(ba))(ba)dt. (4.23)

Π

  ε,ζ f ij has a unique jump point in (0, 1), which is located at 1/2, and the amplitude of the jump is exactly s f ij . Therefore sΠ ε,ζ f ij = s f ij and Π ε,ζ is a projection. The relation to translations follows observing that for any τ 0 ∈ T 0 the vertices of ζ + ετ 0 are translated with respect to the vertices of ετ 0 by ζ. (iii): Let τ = τ ∈ T ε,ζ be such that H n-1 (∂τ ∩ ∂τ ) > 0, so that by Lemma 4.2(ii) ∂τ ∩ ∂τ = conv(Vert(τ ) ∩ Vert(τ )). Proposition 4.1 implies that Π ε,ζ f | ∂τ ∩∂τ only depends on the in-plane vertices Vert(τ ) ∩ Vert(τ ), on the values of f on such vertices, and on the jumps s σ on the in-plane edges σ ⊂ ∂τ ∩ ∂τ . Hence |DΠ ε,ζ f |( τ ∈T ε,ζ ∂τ ) = 0. The second condition follows from the fact that H n-1 J u is σ-finite. (iv): Given a set ω ⊂ R n , the function Π ε,ζ f | ω only depends on the values of f on the vertices of the simplexes intersecting ω. Since their diameter is by construction not greater than ε √ n, Π ε,ζ f | ω only depends on the value of f on the neighborhood (ω) ε √ n . (v): It follows from the fact that the function constructed in Proposition 4.1 depends linearly on the prescribed values on the vertices u i and jumps s ij .

g 0 (

 0 |s ζ+[wi,wj ] |), (4.37) by monotonicity and subadditivity of g 0 , where as before the w i are the vertices of ετ 0 . We claim that ˆBε g 0 (|s ζ+[wi,wj ] |)dζ ≤ Cε ˆB(2+ √ n)ε (wi)∩Ju g 0 (|[u]|)dH n-1 . (4.38) Indeed, we start from (4.24), integrate over translations, and separate the component ζ along from the orthogonal ones, which we denote by ζ , so that ζ = ζ + ζ /| |. Using the Coarea formula we estimate as follows ˆBε g 0 (|s ζ+[wi,wj ] |)dζ ≤ ˆBε t∈(0,1)

  4.43) for a.e. ζ ∈ B ε . Then we use (4.30) and a triangular inequality to conclude. (vii): If ∇u = 0 L n -almost everywhere, then (4.27) with η = 0 implies ∇Π ε,ζ u = 0 L n -almost everywhere for L n -almost every ζ. If u takes values in {0, 1}, then for each application of Proposition 4.1 we have that ξ ij = 0, therefore the constructed function is piecewise constant and takes values in the set {u 1 , . . . , u n+1 } ⊆ {0, 1}.

  z∈A δ : Lz∩Qz =∅ Bε ˆQz |w ζ -u|dx dζ ≤ Cθ (4.87) for ε sufficiently small. If L z ∩ Q * z = ∅ or z ∈ A * δ the computation is simpler as w ζ = w 0 ζ = Π ε,ζ u, and only (4.86) with u in place of U + z appears. From this we conclude that Bε ˆΩ |w ζ -u|dx dζ ≤ Cθ. (4.88) Moreover, from w ζ = w 0 ζ on Q z \ Ôε z , from (4.59) and estimate (4.27) in Proposition 4.3(vi) we deduce BεˆΩ |∇w ζ -∇u| p dx dζ ≤ C Bε z∈A δ ∪A * δ ˆQz |∇w 0 ζ -∇u| p dx+ ˆÔ ε z (|∇w ζ | p + |∇u| p )dx dζ ≤ C z∈A δ ∪A * δ ˆ(Qz)2c * ε |∇uη z | p dx+Cθ ≤ Cθ, (4.89)where the last estimate follows from (4.51), and the constant C > 0 depends on u, on the dimension n, on p and on Ω. |[u]s z |) dH n-1 , (4.100)I 2 z := Bε ˆΦ-1 (Hz)∩Qz g 0 (|[w ζ ] • Φs z |) dH n-1 dζ,(4.101)andI 3 z := g 0 (|s z |)H n-1 ((L z Φ -1 (H z )) ∩ Q z ). (4.102)First note thatz∈A δ (I 1 z + II z ) ≤ Cθ (4.103)thanks to (4.51). For I 2 z we use first the Coarea formula, (4.92) and (4.77) to obtainI 2 z ≤2 Bε ˆHz∩Qz g 0 (|Π ε,ζ (U + z -U - z )s z |) dH n-1 dζ. (4.104)We cover H z ∩ Q z with the balls B i introduced in (4.64), and start from estimating the termI 2 z (B i ) := Bε ˆHz∩Bi g 0 (|Π ε,ζ (U + z -U - z )s z |) dH n-1 dζ. (4.105) By subadditivity, g 0 (|Π ε,ζ (U + z -U - z )s z |) ≤ g 0 (|h + ih - is z |) + g 0 (|Π ε,ζ (U + z -U - z )h + i + h - i |). (4.106)
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(4. 109 )

 109 Using that Lip (ϕ z ) ≤ 1 2 , (4.69) andK i=1 χ B * i ≤ C, summing over i yields I 2 z ≤CI 1 z + Cλδ n-1 + C λ |Du|(O ε z \ L z ) + C λ (|DU + z | + |DU - z |)(O ε z ), (4.110)

  |s z |)H n-1 ((H z ∪ L z ) ∩ (Q z \ Q z )) .

For

  III z we use the Coarea formula and (4.92). We obtainIII z ≤ 2 Bε ˆJw z,ζ ∩Qz\Hz g 0 (|[w z,ζ ]|) dH n-1 dζ. (4.114) Therefore III z ≤ 2III + z + 2III - z , with III + z := Bε ˆJΠ ε,ζ U + z ∩Qz∩H + z g 0 (|[Π ε,ζ U + z ]|) dH n-1 dζ, (4.115) 47 Density-20230927-final.tex [September 28, 2023]

  For any ζ ∈ B ε , by the uniform estimate in (4.3) we have ˆζ+ετ0 |∇Π ε,ζ u| p dx ≤ Cε n

					i,j	ξ ζ+[wi,wj ] |w i -w j |	p	.	(4.35)
	Next, we claim that for all i, j						
	ˆBε	ξ ζ+[wi,wj ] |w i -w j |	p	dζ ≤	ˆB(1+ √	n)ε (wi)	|∇u| p dx.	(4.36)
	Indeed, starting from (4.25) and integrating over all translations ζ ∈ B ε we get, setting := w j -w i , ˆBε ξ ζ+[wi,wj ] | | p dζ ≤ ˆBε ˆ1 0 |∇u(ζ + w i + t )| p dtdζ = ˆ1 0 ˆBε(wi+t ) |∇u(x)| p dxdt ≤ ˆB(1+ √ n)ε (wi) |∇u| p dx
	√ n. Therefore, from (4.35) and (4.36) we conclude |∇Π ε,ζ u| p dx dζ since | | = |w i -w j | ≤ ε Bε ˆζ+ετ0

  The rest of the computation leading to (4.40) is unchanged. This proves (4.29).Next, we estimate the L 1 distance of u from Π ε,ζ u. By (4.3) for τ 0 ∈ T 0 one has the pointwise estimate We observe that for all choices of i, ζ and x we have x ∈ ζ + ετ 0 ⊆ (ετ 0 ) ε and ζ + w i ∈ ζ + ετ 0 ⊆ (ετ 0 ) ε . Therefore, each addend in the first term can be estimated using Poincaré's inequality for BV functions by

	Bε ˆζ+ετ0	|u(ζ	
		j	g 1 (|s ζ+[wi,wj ] |).	(4.41)
	Bε ˆζ+ετ0 ≤ Bε ˆζ+ετ0 i |Π ε,ζ u -u|dx dζ |u(ζ + w i ) -u(x)|dx dζ + Cε n	Bε i,j	|ξ ζ+[wi,wj ] |dζ.

  and a subset ofH z ∩ Q z , with [w z,ζ ] = Π ε,ζ U + z -Π ε,ζ U - z , H n-1 -a.e. on H z ∩ Q z . (4.77)We next address the L 1 convergence. For any z ∈ A δ for whichL z ∩ Q * z = ∅,by the definition of w ζ and Proposition 4.3(v), we have for L n -almost every ζ∈ B ε ˆQz |w ζ -u|dx = ˆQz∩H +

	≤	z ˆQz∩H + z + ˆQz∩H -|Π ε,ζ U + z -u|dx + |Π ε,ζ U + z -U + z | + |U + ˆQz∩H -z z |Π ε,ζ U -z -U -z | + |U -z -u| dx. |Π ε,ζ U -z -u|dx z -u| dx	(4.84)
	We recall that U + z = u on Q z ∩ H + z \ Ôε z ⊆ E + z and (4.73) to obtain ˆQz∩H + z |U + z -u|dx ≤ U + z -u L 1 ( Ôε z )	(4.85)
		≤Cε(|DU + z | + |DU -z | + |Du|)(O ε z ).	
	With (4.30) in Proposition 4.3,	

Bε ˆQz∩H + z |Π ε,ζ U + z -U + z |dx dζ ≤ Cε|DU + z |((Q z ∩ H + z ) 2c * ε ) ≤ Cε(|Du|(Q * z ) + |DU + z |(O ε z )) (4.86)

and an analogous estimate holds for the term with the other sign. Recalling (4.59) we obtain

  Cθ, (4.128) where the last inequality follows from (4.52), (4.112) and the Coarea formula. The other two terms in (4.127) can be bounded by (4.126) and (4.49), and we conclude H n-1 (Ω ∩ Φ -1 (J w ζ ) \ J u ) ≤ Cθ. (4.129)
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i λ i A i ∈ ∂T j ∩ ∂T k for some j = k. Necessarily λ j = λ k , and the conditions ξ ij + s ij = u ju i , i λ i = 1 with λ i ∈ [0, 1], the antisymmetry of ξ, and the 26 Density-20230927-final.tex[September 28, 2023] 
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Step 2: Approximation of the interface.

Let ε ∈ (0, δ 2 ). For every z ∈ A δ , we let L + z := x z +R z {(y , y n ) : y ∈ R n-1 , y n > ϕ z (y )}, (4.55) so that L z = ∂L + z , and then let L - z := R n \ L z \ L + z . Fix a triangulation (T , V ) of R n-1 , with V = εZ n-1 , as in Lemma 4.2. We define ψ z : R n-1 → R setting ψ z = ϕ z on V , and ψ z affine in each element of T .

We stress that the triangulation (T , V ) used above to approximate L z is not related to the triangulation (T ε,ζ , V ε,ζ ) used in Proposition 4.3 for the definition of Π ε,ζ . The usage of the same scale ε for both triangulations is only to avoid having one more small parameter. In any case, it would be crucial for both scales to be much smaller than δ.

We claim that there is a modulus of continuity ω ε , infinitesimal as ε ↓ 0, such that for all z ∈ A δ we have

(4.56)

In the following we shall assume that ε is sufficiently small to ensure ω ε ≤ θ.

To prove (4.56), we observe that since Using this interpolation and a shift β ∈ (-ε, ε) we define the set

which is a polyhedral approximation of L + z , and 3). We choose β such that

Condition (4.58), which holds for almost all β, will be needed to estimate the (unilateral) H n-1 -difference between the jump of the approximation and J u , see text after (4.76) and the proof of (4.128).

Step 

Step 3 in the proof of Theorem 1.1, assuming n = 2, R z = Id, and that L z is the graph of a parabola. The set E + z is the area above L z (inside the ball B z ), O ε z is a neighborhood of L z intersected with the larger cube Q * z , and Ôε z is a smaller neighborhood of L z intersected with a neighborhood of Q z . The set H z is an approximation of L z with the graph of a piecewise affine function, and the part inside Q z belongs to Ôε z . Figure 3 shows how this construction interacts with the rest.

The other case is more complex. We pick Let M > 0 be fixed, it will be chosen below depending only on the dimension n. By Theorem 3.5 there are U ± z ∈ SBV (R n ; R m ) which extend the restriction of u to E ± z , respectively. In particular, we have

for all z, and the same for

The function w z,ζ will be defined as a discretization of U + z on H + z ∩ Q z , and similarly with the other sign. By Proposition 4.3(iv) it depends on U ± z on a By (4.56) and the fact that ϕ z is θ-Lipschitz we also obtain

If H n-1 (J u ) < ∞ then using (4.29) separately on U + z and U - z (cf. the discussion to get (4.33)), then (4.61), U + = u on L + z ∩ Q z , and finally (4.52) and (4.60) we obtain

(4.79)

We define w 0

For any ζ ∈ B ε , the function w ζ is piecewise affine and obeys property (i). This concludes the construction of w ζ .

Step 4: Estimates on w ζ and ∇w ζ .

We first check that we have not added too much jump on the boundary between adjacent cubes by replacing w 0 ζ by w z,ζ and compute with (4.58) and (4.76)

Recalling that U + z = u on E + z and (4.61), both domains can be restricted to (∂Q z ) M ε ∩ (L z ) M ε . The first term is estimated by (4.74), and we conclude Step 5: Definition of the deformation Φ.

We select δ ∈ (0, δ) and define Φ : R n → R n by Φ(x) := x+

(4.90) where (R T z x) denotes the first n -1 components of the vector R T z x and we fixed a function

The map Φ is Lipschitz since α z , ψ z , ϕ z are, by definition Φ(x) = x for x ∈ Ω, by (4.56) |Φ(x) -x| ≤ 2ε for all x, we can assume 2ε ≤ (δδ )/4. For ε sufficiently small, Φ(Q z ) = Q z for all z ∈ δZ n by construction, and if we define 

(4.91)

In order to show that Φ is invertible with Lipschitz inverse it suffices to prove that DΦ is uniformly close to the identity. Indeed, using (4.56) we obtain

In particular, if ε is sufficiently small on a scale depending on δ and δ , we can ensure DΦ -

which implies that Φ is globally bilipschitz. Property (iii) follows.

Step 6: Estimate of the jump energy.

We are now able to estimate the energy of the jump contribution. We start to decompose it as 

δ . We start from the boundary term. From (4.45) we get

by (4.83) and choosing ε sufficiently small. For λ ≤ δθ the entire term is bounded by Cθ.

We now turn to the first term of (4.94). We start from z ∈ A δ . Splitting

and using the subadditivity of g 0 to estimate the integral on the second set, we get

We start from I z . We add and subtract s z , write

and observe that

and similarly for the other term. Therefore

and similarly for III - z . We use inequalities (4.28) to infer 

where

As for III + z , we use inequality (4.28) in Proposition 4.3 and obtain

for ε sufficiently small, where in the last step we used (4.48). Combining the previous estimates, (4.94) yields

We claim next that for ε sufficiently small

Thanks to subadditivity and monotonicity of g 0 , (4.122) implies that it suffices to prove 

If H n-1 (J u ) < ∞ then, using (4.79), we can choose B so that additionally

which by the Coarea formula as usual implies

Properties (ii), (iii) and (v) follow; (i) and (iv) had already been proven. Property (vii) is immediate.

It remains to prove (vi). We assume that H n-1 (J u ) < ∞ and start from a bound on Φ -1 (J w ζ ) \ J u . We split the jump set of w ζ into the contribution inside each cube Q z , for z ∈ A * δ ∪ A δ , and then for each z ∈ A δ , we split the jump set J w ζ into the part in H z and the rest. We obtain