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Abstract

We study the relationships between two well-known social choice concepts, namely

the principle of social acceptability introduced by Mahajne and Volij (2018), and

the majoritarian compromise rule introduced by Sertel (1986) and studied in detail

by Sertel and Yılmaz (1999). The two concepts have been introduced separately in

the literature in the spirit of selecting an alternative that satisfies most individuals

in single-winner elections. Our results in this paper show that the two concepts

are so closely related that the interaction between them cannot be ignored. We

show that the majoritarian compromise rule always selects a socially acceptable

alternative when the number of alternatives is even and we provide a necessary and

sufficient condition so that the majoritarian compromise rule always selects a socially

acceptable alternative when the number of alternatives is odd. Moreover, we show

that when we restrict ourselves to the three well-studied classes of single-peaked,

single-caved, and single-crossing preferences, the majoritarian compromise rule always

picks a socially acceptable alternative whatever the number of alternatives and the

number of voters.
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1 Introduction

There are many reasons why societies run elections. For instance, a given society may need

to select its leader (e.g., a president); members of a team may need to find an appropriate

meeting time; referees of an academic journal or a conference may need to decide which

candidate should receive a given prize. Each of these settings may call for a single-winner

voting system.

The plurality rule is the simplest means of determining the outcome of a single-winner

election and it has attracted much attention in social choice theory. Under this voting rule

each voter is allowed to vote for only one alternative and, in order to win, an alternative

need only poll more votes than any other single opponent. The plurality vote has many

advantages that should be stressed: it is easily understood by voters; it provides for a

quick decision; and most importantly it is less costly to operate than many other voting

rules. However, so long as there are more than two alternatives, the winner under the

plurality rule may lack the support of any majority. The winner may be opposed by a

strict majority of agents, each of whom may even regard the chosen alternative as the worst

alternative available. As a consequence, the winner will not be seen as fully legitimate,

and to the best of our knowledge this is the main argument against the use of the plurality

rule.

The issue of the legitimacy of the winner does not only concern the plurality system but

also concerns a broad range of well-studied voting systems in the social choice literature.

The fact remains that whatever voting system is considered, one generally agrees that in

many important real-world social choice problems it is important to choose an alternative

which is regarded as strong by the agents forming the society. Many lines of research

in social choice theory have been concerned with that approach. In this respect, two

well-known social choice concepts have been introduced in the literature in the spirit of

selecting an alternative that has support from voters to the best degree possible within the

classic framework that assumes that voters’ preferences over alternatives are represented

by linear orders: the majoritarian compromise rule and the social acceptability principle.

The majoritarian compromise rule was introduced by Sertel (1986) and studied in detail

by Sertel and Yılmaz (1999). It is based on the majority principle and aims to select an

alternative which satisfies the largest majority of voters as well as possible. According

to this voting system, a majority is a subset of the set of voters that contains at least

half of the individuals. Any majority enjoys some satisfaction from each alternative and

the majoritarian compromise rule picks the alternative(s) which give(s) the best possible

satisfaction to the largest majority.1 Note that this voting system has been the subject of

many investigations in the literature such as Brams and Kilgour (2001), Dindar and Lainé

(2022), Giritligil and Sertel (2005), Kondratev and Nesterov (2018), Laffond and Lainé

(2012), Llamazares and Peña (2015), Merlin et al. (2006, 2019), Nurmi (1999), among

1Note that the majoritarian compromise rule can be seen as a refinement of the median voting rule
introduced by Bassett and Persky (1999). See also Gehrlein and Lepelley (2003).
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others.

The concept of social acceptability was introduced in the literature by Mahajne and

Volij (2018). In the framework of linear orders, we say that a voter places a given alter-

native above the line if she prefers it to at least half of the alternatives, and she places it

below the line if at least half of the alternatives are preferred to it. An alternative is said

to be socially acceptable with respect to a given preference profile if it is placed above the

line by at least as many voters as those who place it below the line. In other words, a

socially acceptable alternative is an alternative ranked among the top half of the linear or-

ders by at least as many individuals as those who rank it among the bottom half. Mahajne

and Volij (2018) characterised the only scoring rule that satisfies the social acceptability

principle, that is, the only scoring rule that always selects a socially acceptable alternative

for any preference profile.2

It is worth noting that Mahajne and Volij (2019) studied the social acceptability of

the q-Condorcet winner, that is, an alternative which is head-to-head preferred by at least

a proportion q ∈]12 , 1] of voters over any other alternative. Moreover, they showed that if

preferences are single-peaked or satisfy the single-crossing property, any Condorcet winner

(i.e., q = 1
2) is socially acceptable.3

In the paper at hand, we show that the interaction between the majoritarian com-

promise and the social acceptability principles cannot be ignored. Our results show that

the majoritarian compromise rule always selects a socially acceptable alternative when

the number of alternatives is even. We also provide a necessary and sufficient condition

that allows this connection between the two concepts when the number of alternatives

is odd. Moreover, we show that when we restrict our attention to the classes of single-

peaked, single-caved, and single-crossing preference profiles, the majoritarian compromise

rule always picks a socially acceptable alternative whatever the number of alternatives and

whatever the number of voters.

The paper is organised as follows. Section 2 lays out the basic notation and definitions,

Section 3 states and proves our results, and Section 4 concludes.

2 Definitions and notation

Consider a non-empty set A of m alternatives (or candidates) and a non-empty set N of

n voters with m ≥ 3 and n ≥ 2. Alternatives are sometimes denoted by small letters a,

b, c, etc., or a1, a2, a3, etc. and voters are denoted by non-negative integers 1, 2, 3, etc.

We assume that each voter ranks, without the possibility of ties, all the alternatives from

the most preferred alternative to the least preferred one. Each individual’s preference is

2This rule is called the HAHR (Half Accepted Half Rejected) rule. Its formal definition will be presented
in the next section.

3It is worth noting that Diss and Mahajne (2020) extended the concept of social acceptability to multi-
winner elections and in that setup studied the social acceptability of any q-Condorcet committee (Gehrlein,
1985), that is a subset of alternatives where every member of that subset is head-to-head preferred by at
least a proportion q ∈] 1

2
, 1] of voters than any non-member alternative. See also Diss and Doghmi (2016),

Gehrlein (1983) and Gehrlein and Lepelley (2011, 2017).
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then a linear order on the set A; that is, a complete, anti-symmetric and transitive binary

relation on the set A. Given a voter i ∈ N , the (linear) ranking or the preference relation

of i is denoted by pi or �i4 and the n-tuple p = (p1, p2, . . . , pn) is called a preference profile

(or simply a profile) which specifies the ranking of each voter. For any two alternatives a

and b, we write a �i b if voter i strictly prefers a to b. The rank of any alternative a ∈ A
in the preference relation pi of voter i is denoted by r(pi, a) and it is defined by

r(pi, a) =
∣∣∣
{
b ∈ A : b �i a

}∣∣∣+ 1 = m−
∣∣∣
{
b ∈ A : a �i b

}∣∣∣. (1)

The set of all individual preferences in which alternative a is strictly preferred to

alternative b in the preference profile p is denoted by N(p, a � b) and n(p, a � b) =∣∣N(p, a � b)
∣∣ is the number of such preferences. The set of all possible linear orders on

the set A is denoted by P, and the set of all profiles is denoted by PN .

A social choice rule (SCR) is any mapping F that associates each profile p with a

non-empty subset F (p) of A called the social outcome of p. We restrict our attention to

anonymous SCRs which are defined in such a way that they do not depend on the names

of voters: permuting the preference relations of any two voters does not affect the social

outcome for any profile. We then simply write Pn instead of PN since specifying N is no

longer necessary. When the set N of voters under consideration possibly varies, the set of

all possible profiles is denoted by ∪∞n=2Pn.

A scoring vector of size m is an m-tuple α = (α1, α2, . . . , αm) of real numbers such

that α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm. An SCR can be associated with the scoring

vector α as follows: given a profile p ∈ ∪n=∞n=2 Pn and an alternative a, across individual

preferences in p, alternative a receives α1 points for each first position, α2 points for each

second position, and so on. The total number of points received by a is called the score of

a in profile p and it is denoted by Sα(p, a). It is formally defined by

Sα(p, a) =
n∑

i=1

αr(pi,a), (2)

where αr(pi,a) denotes the score in the vector α which is given to alternative a in the

preference pi of individual i. With m alternatives, the scoring SCR associated with the

m-tuple α is denoted by Fα and it selects the set of all alternatives having the maximum

score Sα(p, a) taking into account all alternatives in the profile p ∈ ∪n=∞n=2 Pn. Well-

known scoring SCRs Fα include the Plurality rule, the Antiplurality rule, the Borda rule,

and the t-approval rule which respectively correspond to the scoring vectors (1, 0, . . . , 0),

(1, . . . , 1, 0), (m − 1,m − 2, . . . , 1, 0), and (1, . . . , 1︸ ︷︷ ︸
t times

, 0, . . . , 0︸ ︷︷ ︸
m−t times

). Note that Mahajne and

Volij (2018) introduced a new scoring rule called the Half Accepted Half Rejected (HAHR)

4A preference relation will also be denoted by � if the specification of the voter i is useless.
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rule which is defined by the scoring vector (α1, α2, . . . , αm) such that

αj =





+1 if j < m+1
2

0 if j = m+1
2

−1 if j > m+1
2

(3)

Following Mahajne and Volij (2018), we say that an alternative a is ranked above the

line by voter i if a is strictly preferred to at least half of the alternatives by voter i, that

is: r(pi, a) < (m + 1)/2. Similarly, the alternative a is said to be ranked below the line

by voter i if at least half of the alternatives are strictly preferred to a by voter i, that

is: r(pi, a) > (m+ 1)/2. When the number of alternatives is odd, any alternative ranked

neither above the line nor below the line by voter i is said to be ranked on the line by i,

that is: r(pi, a) = (m+ 1)/2.

Definition 1 Let p be a preference profile, A be a set of m alternatives, and N be a set

of voters. An alternative a ∈ A is said to be socially acceptable in p if the total number of

voters who rank a above the line is greater than or equal to the number of voters who rank

a below the line, that is:

∣∣∣∣
{
i ∈ N : r(pi, a) <

m+ 1

2

}∣∣∣∣ ≥
∣∣∣∣
{
i ∈ N : r(pi, a) >

m+ 1

2

}∣∣∣∣ .

The set of all socially acceptable alternatives in profile p is denoted by SA(p).

Definition 2 Given a set of alternatives A, we say that an SCR F satisfies social accept-

ability if for all profiles p ∈ ∪n=∞n=2 Pn, F (p) ⊆ SA(p), that is:

∀a ∈ A,
(
a ∈ F (p) =⇒ a ∈ SA(p)

)
,

meaning that an SCR satisfies the social acceptability principle if it always selects a socially

acceptable alternative for any preference profile.5

Let us now formally define the majoritarian compromise rule introduced by Sertel

(1986), which aims to select an alternative yielding the best majority satisfaction for

the largest proportion of voters. Given a preference profile, each majority earns some

satisfaction/welfare from any alternative depending on its lowest ranking for that majority.

We then find the maximal satisfaction that a majority can enjoy in the considered profile.

Then, the majoritarian compromise rule identifies all alternatives which yield this maximal

satisfaction to some majority, and picks among them the alternative which yields it to the

largest majority.

Formally, for any alternative a ∈ A and any voter i ∈ N , we denote by πi(a) the

integer m − r(pi, a) + 1 which defines the satisfaction/welfare given by alternative a to

5As noticed before, Mahajne and Volij (2018) provided an axiomatic characterization of the only scoring
rule that always follows the social acceptability principle, namely the HAHR rule. Consequently, they show
that SA(p) is non-empty for any profile p.

5



voter i according to her preference pi. For any coalition of voters K ⊆ N , we define the

satisfaction of K with regard to the alternative a by

πK(a) = min
{
πi(a) : i ∈ K

}
. (4)

In other words, πK(a) defines the minimum satisfaction that can be obtained from the

alternative a by a voter belonging to coalition K. A coalition K will be called a majority

if it contains at least half of the voters, that is:
∣∣K
∣∣ ≥ |N \K|. We denote by M the set

of all possible majorities of N . For any preference profile p, the maximal satisfaction that

any majority can obtain from any alternative is denoted by

π(p) = max
{
πK(a) : K ∈M, a ∈ A

}
, (5)

and we denote by

M(p) =
{
a ∈ A : ∃i ∈ N, πi(a) = π(p)

}
, (6)

the set of all alternatives that give the maximal satisfaction π(p) to at least one voter. For

any alternative a ∈M(p), we define

K(a, p) =
{
i ∈ N : πi(a) ≥ π(p)

}
, (7)

as the set of all voters who enjoy at least π(p) of satisfaction from a. We are now ready

to define the majoritarian compromise rule. It intuitively selects among the alternatives

which give the maximal (majority) satisfaction π(p) to at least one voter (i.e., among the

alternatives in the set M(p)) those which give it to the largest majority.

Definition 3 The majoritarian compromise rule is the social choice rule M :

∪n=∞n=2 Pn −→ 2A defined by

M(p) =
{
a ∈M(p) : b ∈M(p) =⇒

∣∣K(b, p)
∣∣ ≤

∣∣K(a, p)
∣∣
}
,

where 2A stands for the set of all possible subsets of A.

Example 1 illustrates the previous definitions.

Example 1 Consider a set A = {a, b, c, d} of four alternatives and a preference profile p

of four voters such that

p =




a c b b

b a d a

c b a d

d d c c




The first column in p represents the preference relation of voter 1, the second one is the

preference relation of voter 2, and so on. The horizontal bar in p indicates the border

between the candidates that are ranked above the line and those ranked below the line. The
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alternatives a and b are socially acceptable in p since they are ranked above the line by three

voters and they are ranked below the line by only one voter. However, the alternatives c

and d are socially unacceptable since they are ranked above the line by only one voter and

below the line by three voters.

It can be checked that the maximal satisfaction enjoyed by any majority from any

alternative is π(p) = 4. This number corresponds to the satisfaction obtained from the

alternative b by the majority composed of voters 3 and 4. It can also be checked that

M(p) = {a, b, c} since the alternative a yields the satisfaction of 4 to voter 1, alternative c

yields the satisfaction of 4 to voter 2, and alternative b gives it to voters 3 and 4. However,

the only alternative that gives this maximal satisfaction to some majority is b. As a result

M(p) = {b}. In other words, the alternative b is the only majoritarian compromise winner

with respect to p.

3 Results

The only alternative picked out by the majoritarian compromise rule in Example 1 is

socially acceptable. It is interesting to check whether this is always true; that is, whether

the majoritarian compromise rule always satisfies the social acceptability principle. We

start our analysis by considering the general model where no restrictions are imposed on

individual preferences.

3.1 General setting

The next proposition states that when the number of alternatives is even, the majoritarian

compromise rule always selects a socially acceptable alternative for any preference profile.

Proposition 1 Let A be a set of m alternatives and p be a preference profile. If m is

even, then M(p) ⊆ SA(p).

Proof. Assume that m = 2q (q ∈ N∗). Let p be a preference profile and c ∈ M(p).

Since SA(p) 6= ∅,6 consider a ∈ SA(p). It holds that there is a majority K of voters who

rank a above the line since no alternative is ranked on the line whenever m is even. It

follows that πK(a) ≥ q + 1. Therefore, π(p) ≥ q + 1 and since c ∈ M(p) there exists a

majority T ∈ M such that πT (c) = π(p) ≥ q + 1. This implies that mini∈T {πi(c)} =

m−maxi∈T r(pi, c) + 1 ≥ q + 1, that is, maxi∈T r(pi, c) ≤ q < m+1
2 . Thus all voters in T

rank the alternative c above the line. Since T is a majority, then c ∈ SA(p).

We now focus on the case where the number of alternatives is odd.

6See footnote 5.
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Proposition 2 Let A be a set of m alternatives and p be a preference profile with n voters.

If m is odd, M(p) ⊆ SA(p) if and only if:

{
n ≤ 2m+ 2 if n is even

n ≤ m+ 2 if n is odd

Proof. Assume that m = 2q + 1(q ∈ N∗) and pose A = {a1, . . . , am}.
First, suppose that the majoritarian compromise rule does not satisfy the social accept-

ability principle. Then, there exists a preference profile p and an alternative c such that

c ∈M(p) and c /∈ SA(p). We show that n > 2m+ 2 for n even and n > m+ 2 for n odd.

For this purpose, we pose for any x ∈ A:

Ex =
{

(i, k) : i ∈ N, k ∈ {1, . . . , q + 1}, r(pi, x) = k
}

E−x =
{

(i, k) : i ∈ N, k ∈ {1, . . . , q}, r(pi, x) = k
}

E+
x =

{
(i, k) : i ∈ N, k ∈ {q + 2, . . . ,m}, r(pi, x) = k

}

Note that each (i, k) ∈ Ex ∪E−x ∪E+
x tells us about the position of alternative x in voter

i’s ranking. Precisely, Ex stands for the set of all positions of x above or on the line, E−x
stands for the set of all positions of x above the line, and E+

x stands for the set of all

positions of x below the line. Since SA(p) 6= ∅, let us consider b ∈ SA(p). There is a

majority of voters K who rank b among the top (q+ 1) alternatives, and for that majority

we have πK(b) ≥ q+1, which implies that π(p) = πT (c) ≥ q+1 for some majority T . Since

c /∈ SA(p), the satisfaction of any majority from c is at most q+1, i.e., π(p) = πT (c) ≤ q+1

since there is no majority of voters who rank c above the line, that is, among the top q

alternatives. Therefore, we have π(p) = q + 1 = πT (c).

Case 1: Suppose that n is even and let n = 2t (t ∈ N∗).
Since π(p) = q + 1 = (m + 1)/2, there is no majority of voters who rank any alternative

above the line. Then, |E−x | ≤ t− 1 = (n− 2)/2 for all x ∈ A. This implies that

∣∣E−c
∣∣ =

∣∣∣∣∣∣
⋃

x 6=c
E−x

∣∣∣∣∣∣
=
∑

x 6=c

∣∣E−x
∣∣ ≤ (m− 1)

n− 2

2
. (8)

Thus, we have
∣∣E−c

∣∣ = nq−
∣∣⋃

x 6=cE
−
x

∣∣ ≥ nq−(m−1)(n−2)/2 = m−1 since q = (m−1)/2

and the number of places available above the line is nq. Moreover, since c is not socially

acceptable, we have
∣∣E+

c

∣∣ >
∣∣E−c

∣∣ which implies that
∣∣E+

c

∣∣ ≥ m since
∣∣E−c

∣∣ ≥ m − 1 by

(8). It follows that
∣∣Ec
∣∣ = n−

∣∣E+
c

∣∣ ≤ n−m. We deduce that

∣∣∣∣∣∣
⋃

x 6=c
Ex

∣∣∣∣∣∣
=
∑

x 6=c
|Ex| = n(q + 1)− |Ec| ≥ n

m+ 1

2
− (n−m). (9)

Recalling that c ∈ M(p), it follows that
∣∣Ex
∣∣ ≤

∣∣Ec
∣∣ =

∣∣K(c, p)
∣∣ for any other alternative

8



x 6= c since the size of the majority which enjoys the maximal satisfaction q + 1 from c

is exactly the cardinality of the set Ec of all positions of x above or on the line, that is,

among the top q + 1 positions. It follows that

∣∣∣∣∣∣
⋃

x 6=c
Ex

∣∣∣∣∣∣
=
∑

x 6=c

∣∣Ex
∣∣ ≤ (m− 1)

∣∣Ec
∣∣ ≤ (m− 1)(n−m). (10)

From inequalities (9) and (10), we deduce that n(m+ 1)/2− (n−m) ≤ (m− 1)(n−m),

which is equivalent to n ≥ 2m2/(m− 1). Hence n > 2m+ 2 since 2m2/(m− 1) > 2m+ 2

for all integers m such that m ≥ 3.

Case 2: Suppose n is odd and let n = 2t+ 1 (t ∈ N∗).
Since π(p) = q + 1 = (m + 1)/2, there is no majority of voters who rank any alternative

above the line. This implies that
∣∣E−x

∣∣ ≤ t = (n− 1)/2 for all x ∈ A. We deduce that

∣∣∣∣∣∣
⋃

x 6=c
E−x

∣∣∣∣∣∣
=
∑

x 6=c

∣∣E−x
∣∣ ≤ (m− 1)

n− 1

2
. (11)

Thus, we have
∣∣E−c

∣∣ = nq −
∣∣⋃

x 6=cE
−
x

∣∣ ≥ nq − (m − 1)(n − 1)/2 = (m − 1)/2 since

q = (m − 1)/2. Moreover, since c is not socially acceptable, we have
∣∣E+

c

∣∣ >
∣∣E−c

∣∣ which

implies by (11) that
∣∣E+

c

∣∣ ≥ (m− 1)/2 + 1 = (m+ 1)/2. It follows that
∣∣Ec
∣∣ = n−

∣∣E+
c

∣∣ ≤
n− (m+ 1)/2. Therefore,

∣∣∣∣∣∣
⋃

x 6=c
Ex

∣∣∣∣∣∣
=
∑

x 6=c

∣∣Ex
∣∣ = n(q + 1)−

∣∣Ec
∣∣ ≥ nm+ 1

2
−
(
n− m+ 1

2

)
. (12)

Furthermore, c ∈M(p). Therefore,
∣∣Ex
∣∣ ≤

∣∣Ec
∣∣ =

∣∣K(c, p)
∣∣ for all x ∈ A\{c}. This implies

that ∣∣∣∣∣∣
⋃

x 6=c
Ex

∣∣∣∣∣∣
=
∑

x 6=c

∣∣Ex
∣∣ ≤ (m− 1)

∣∣Ec
∣∣ ≤ (m− 1)

(
n− m+ 1

2

)
. (13)

From (12) and (13), we deduce that

n
m+ 1

2
−
(
n− m+ 1

2

)
≤ (m− 1)

(
n− m+ 1

2

)
.

Equivalently, n ≥ m(m+1)/(m−1). Therefore, n > m+2 since m(m+1)/(m−1) > m+2.

Second, suppose that n > 2m + 2 for an even number of voters or n > m + 2 for an odd

number of voters. We prove in both cases that the majoritarian compromise rule does

not satisfy the social acceptability principle by providing a profile p and an alternative

c ∈M(p) such that c is not socially acceptable.

Case 1: Suppose that n is even and n > 2m+ 2. This means that n ≥ 2m+ 4. Consider
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six subsets N1, N2, N3, N4, N5, and N6 of the set of voters N such that N1 =
{

1, 2, . . . , q
}

,

N2 =
{
q + 2, q + 3, . . . , 2q + 1 = m

}
, N3 =

{
m + 1,m + 2, . . . ,m + q

}
, N4 =

{
m + q +

2, . . . , 2m
}

, and
∣∣N5

∣∣ =
∣∣N6

∣∣ = (n − 2m)/2, and consider the partition of N defined by

N = N1 ∪N2 ∪N3 ∪N4 ∪N5 ∪N6 ∪ {q+ 1} ∪ {m+ q+ 1}. In the following profile p, each

individual’s preference is constructed around one of the two rankings r1 = a1a2 . . . am and

r2 = amam−1 . . . a1 by moving alternative aq+1 from the line to the top (i.e., first position)

or just below the line (i.e., (q+2)th position) while some other alternative, say aj , is moved

to the line as follows:

pi = aq+1a1a2 . . . ai−1ai+1 . . . aqaiaq+2 . . . am for i ∈ N1 (with j = i in r1)

pi = aq+1amam−1 . . . ai+1ai−1 . . . aq+2aiaq . . . a1 for i ∈ N2 (with j = i in r2)

pm+i = amam−1 . . . aq+2aiaq+1aq . . . ai+1ai−1 . . . a1 for m+ i ∈ N3 (with j = i in r2)

pm+i = a1a2 . . . aqaiaq+1aq+2 . . . ai−1ai+1 . . . am for m+ i ∈ N4 (with j = i in r1)

pq+1 = amam−1 . . . aq+2a1aq+1aq . . . a2 (with j = 1 in r2)

pi = r1 for i ∈ N5 ∪ {m+ q + 1} and pi = r2 for i ∈ N6

For this profile, each alternative ak for 1 ≤ k ≤ q is ranked above the line by exactly n/2−1

voters from (N1\{k})∪N4∪N5∪{m+ q+1} and on the line by at most three voters from

{k, q+1,m+k}. Similarly, each alternative ak for q+2 ≤ k ≤ m is ranked above the line by

exactly n/2−1 voters from (N2\{k})∪N3∪N6 and on the line by exactly two voters from

{k,m+k}. Clearly, any alternative ak 6= aq+1 is ranked above the line by no majority. Now,

alternative aq+1 is ranked above the line by exactly m− 1 voters from N1 ∪N2, below the

line by exactly m voters from N3∪N4∪{q+1} and on the line by exactly n−(2m−1) voters

from N5∪N6∪{m+q+1}. Therefore, π(p) = (m+1)/2,
∣∣K(ak, p)

∣∣ ≤ n/2−1+3 = (n+4)/2

for all ak 6= aq+1 and
∣∣K(aq+1, p)

∣∣ = m− 1 + n− (2m− 1) = n−m. Since n ≥ 2m+ 4, it

follows that
∣∣K(aq+1, p)

∣∣ ≥ (n + 4)/2 ≥
∣∣K(ak, p)

∣∣ for all ak 6= aq+1. Thus, aq+1 ∈ M(p)

and aq+1 is not socially acceptable. This proves that the majoritarian compromise rule

fails to satisfy social acceptability in this case.

Case 2: Suppose that n is odd and n > m+ 2. This means that n ≥ m+ 4. Consider a

partition of the set N of voters into five disjoint subsets N1, N2, N3, N4 and N5 such that

N1 =
{

1, 2, . . . , q
}

, N2 =
{
q + 1, q + 2, . . . , 2q

}
, N3 =

{
m
}

and
∣∣N4

∣∣ =
∣∣N5

∣∣ = (n−m)/2.

Using the same operations as in the previous case, the following profile p is built from

r1 = a1a2 . . . am or r2 = amam−1 . . . a1 as follows:

pi = aq+1a1a2 . . . ai−1ai+1 . . . aqaiaq+2 . . . am for i ∈ N1 (with j = i in r1)

pq+i = amam−1 . . . aq+2aiaq+1aq . . . ai+1ai−1 . . . a1 for q + i ∈ N2 (with j = i in r2)

pm = a1a2 . . . aqamaq+1aq+2 . . . am−1 (with j = m in r1)

pi = r1 for i ∈ N4 and pi = r2 for i ∈ N5
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For this profile, each alternative ak with 1 ≤ k ≤ q is ranked above the line by exactly

(n− 1)/2 voters from (N1\{k})∪N4 ∪ {m} and on the line by two voters from {k, q+ k};
each alternative ak with q+2 ≤ k ≤ m is ranked above the line by exactly (n−1)/2 voters

from N2 ∪ N5 and on the line by at most one voter from {m}. Clearly, any alternative

ak 6= aq+1 is ranked above the line by no majority. Now, alternative aq+1 is ranked above

the line by exactly (m−1)/2 voters from N1, below the line by exactly (m+1)/2 voters from

N2∪{m}, and on the line by exactly n−m voters fromN4∪N5. Therefore, π(p) = (m+1)/2,∣∣K(ak, p)
∣∣ ≤ (n−1)/2+2 = (n+3)/2 for all ak 6= aq+1 and

∣∣K(aq+1, p)
∣∣ = (m−1)/2+n−

m = n− (m+ 1)/2. Since n ≥ m+ 4, it follows that
∣∣K(aq+1, p)

∣∣ ≥ (n+ 3)/2 ≥
∣∣K(ak, p)

∣∣
for all ak 6= aq+1. Thus, aq+1 ∈ M(p) and aq+1 is not socially acceptable. This proves

that the majoritarian compromise rule fails to satisfy social acceptability in this case.

Example 2 provides an illustration of the profiles presented in the previous proposition.

Example 2 Suppose that m = 5 and n = 14 (i.e., n > 2m + 2). Consider the following

preference profile p:

p =




a3 a3 a3 a3 a5 a5 a5 a1 a1 a1 a1 a1 a5 a5

a2 a1 a4 a5 a4 a4 a4 a2 a2 a2 a2 a2 a4 a4

a1 a2 a5 a4 a1 a1 a2 a4 a5 a3 a3 a3 a3 a3

a4 a4 a2 a2 a3 a3 a3 a3 a3 a4 a4 a4 a2 a2

a5 a5 a1 a1 a2 a2 a1 a5 a4 a5 a5 a5 a1 a1




It can be checked that M(p) = {a1, a3}. Alternative a3 is a majoritarian compromise

winner (and the Condorcet winner), but it is not socially acceptable.

As in the above example, it can be checked that when the total number of alternatives

is odd and greater than or equal to five,7 in each of the profiles presented in the proof

of Proposition 2, alternative aq+1 is both a majoritarian compromise winner and a Con-

dorcet winner, but fails to be socially acceptable. This shows that the bounds provided

in Proposition 2 are tight because even if we are looking for an alternative who is both a

majoritarian compromise winner and a Condorcet winner, the bounds cannot be improved.

It is worth noting that even if the majoritarian compromise rule always picks a socially

acceptable alternative when the number of alternatives is even or whenever the number of

alternatives is odd and the conditions of Proposition 2 are satisfied, the outcome of this

rule can differ from the outcome of the only scoring rule that satisfies social acceptability,

namely the HAHR rule. This is due to the fact that not all socially acceptable alternatives

are necessarily selected by the HAHR rule. Moreover, the HAHR rule rates all the alterna-

tives on the same side of the line with the same worth, while the majoritarian compromise

rule takes into account the degree of majority support. This is illustrated in Example 3.

7Note that if m = 3, any Condorcet winner is socially acceptable according to Mahajne and Volij (2019).
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Example 3 Consider the following profiles p and p′:

p =




a a c c

b b b b

c c a a

d d d d




p′ =



a a b

b b c

c c a




It can be checked that M(p) = {a, c}, SA(p) = {a, b, c}, and HAHR(p) = {b}. For the

second profile, M(p′) = {a}, SA(p′) = {a, b}, and HAHR(p′) = {a, b}. In both cases, the

two rules yield distinct outcomes.

3.2 Some restricted domains

In this section, we restrict our attention to the classes of single-peaked, single-caved, and

single-crossing preferences and we show that the majoritarian compromise rule always

selects a socially acceptable alternative for each of these domains.

3.2.1 Single-peaked preferences

The class of single-peaked preferences introduced by Black (1948) is perhaps the most

extensively studied type of domain restriction. Roughly speaking, a set of preference

relations is single-peaked with respect to a given linear order of the alternatives if each

preference has a “peak” (most preferred alternative) such that for any two alternatives

on the same side of the peak, one is preferred over the other if it is closer to the peak.

Single-peaked preferences can arise for instance in the presence of a desirable suggested

project such as the construction of a hospital. In this case, for a voter, the best location

would be closest to her home. Single-peaked preferences can also arise in political area

with a left-right preference spectrum in which policies are on a classical axis which can

be modelled by a segment [a, b], such that any voter cannot prefer both a and b over any

middle policy. Formally,

Definition 4 Let A be a set of m alternatives, and let ≤ be a linear order on A. We say

that a preference relation � is single-peaked with respect to ≤ if there is an alternative

p(�), called the peak, such that

(
b < a ≤ p(�) or p(�) ≤ a < b

)
⇒ (a � b).

We say that a preference profile p = (p1, . . . , pn) is single-peaked with respect to ≤ if all

preference relations pi are single-peaked with respect to ≤.

The next two claims from Mahajne and Volij (2019) are very useful properties of

single-peaked preferences that we will use in order to facilitate our proof.

Claim 1 (Mahajne and Volij, 2019) Let ≤ be a linear order on A and assume without

loss of generality that a1 < · · · < am. Let � be a preference relation that is single-peaked
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with respect to ≤ and let a, b, and c be any three alternatives such that a < b < c. It holds

that (a � c)⇒ (b � c), and (c � a)⇒ (b � a).

Claim 2 (Mahajne and Volij, 2019) Let ≤ be a linear order on A and assume without

loss of generality that a1 < · · · < am. For any alternative a such that a 6= am+1
2

, there is

an alternative b (called the counter of a) such that for any preference relation � that is

single-peaked with respect to ≤, a is ranked above the line by � if and only if a is strictly

preferred to b by �.

Precisely, if a = ak for some k ∈ {1, . . . , dm−12 e} then b = ak+dm−1
2
e, and if a = ak for

some k ∈ {bm+1
2 c+ 1, . . . ,m}, then b = ak−dm−1

2
e. We can remark that when the number

of alternatives is odd, for any k 6∈ {1,m}, the relation between an alternative ak and its

counter is converse; that is, if b is the counter of ak, then ak is also the counter of b.

Example 4 gives an illustration.

Example 4 Let us consider the set of alternatives A = {a1, a2, a3, a4, a5}. Obviously, the

preference relation a1 � a2 � a3 � a4 � a5 is single-peaked with respect to the linear order

a1 < a2 < a3 < a4 < a5. For this preference relation, the alternative a3 is the counter of

the alternatives a1 and a5. The alternative a4 is the counter of a2 and a2 is conversely the

counter of a4. By single-peakedness, it is not possible to rank the alternatives a2 and a4

on the same side of the line.

Definition 5 Let a be an alternative, p be a preference profile, and K be a majority. We

say that a “gains kth degree approval” from K if r(pi, a) ≤ k for all i ∈ K, which means

that πK(a) ≥ m− k + 1.

Definition 6 The critical degree of majority approval of an alternative a, denoted k∗(a),

is the lowest degree of approval that a gains from a majority.

From the definitions above, we can remark that for any preference profile p, and for

any alternative a ∈M(p), we have that π(p) = m−k∗(a) + 1 which is equivalent to saying

that k∗(a) ≤ k∗(b) for all b ∈ A.

Example 5 Let us consider the set of 5 alternatives A = {a1, a2, a3, a4, a5} and the fol-

lowing preference profile p:

p =




a1 a1 a5 a5

a2 a2 a4 a4

a3 a3 a3 a3

a4 a4 a2 a2

a5 a5 a1 a1




It can be checked that p is single-peaked with respect to the linear order a1 < a2 < a3 <

a4 < a5. The critical degree of majority approval of the alternatives a1 and a5 is k∗(a1) =

k∗(a5) = 1 < k∗(aj) for all j ∈ {2, 3, 4}. Then, M(p) ⊆ {a1, a5}. Moreover, the majorities

who rank either a1 or a5 first have the same size. Therefore, M(p) = {a1, a5}
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Before proceeding to the main result of this section, let us state the following lemma from

Sertel and Yılmaz (1999) which is useful.

Lemma 1 (Sertel and Yılmaz, 1999) The critical degree of majority approval of a ma-

joritarian compromise winner does not exceed bm+1
2 c.

We are now ready to state our main result regarding single-peaked preferences.

Proposition 3 Let ≤ be a linear order on A and assume without loss of generality that

a1 < · · · < am. Let p be a profile of single-peaked preferences with respect to ≤. Then

M(p) ⊆ SA(p).

Proof. Let p be a profile of single-peaked preferences with respect to ≤. Assume without

loss of generality that a1 < · · · < am. Let a be a majoritarian compromise winner of p.

The following cases arise:

Case 1: If m is even, then a is socially acceptable by Proposition 1.

Case 2: If m is odd, we distinguish two cases:

Case 2.1: If a = am+1
2

, then a cannot be below the line for any preference relation in p. To

see this, note that by Claim 1, it holds that for all i ∈ N a �i ak, either for all k < m+1
2

or for all k > m+1
2 . This means that r(pi, a) ≤ m+1

2 for all i ∈ N . Hence, a is socially

acceptable.

Case 2.2: If a 6= am+1
2

, assume by contradiction that a is not socially acceptable and let

b be the counter of a. Since a ∈ M(p), the critical degree of majority approval of a does

not exceed m+1
2 by Lemma 1. Therefore, k∗(a) ≤ m+1

2 . Moreover, recalling that a is not

socially acceptable, k∗(a) ≥ m+1
2 (since there is no majority of voters who rank a above

the line). Hence, k∗(a) = m+1
2 .

• If b = am+1
2

(which can be the case either for a = a1 or a = am), then r(pi, b) ≤ m+1
2 ,

for all i ∈ N(as shown in Case 2.1). It then follows that k∗(b) ≤ m+1
2 . Since

a ∈ M(p), then k∗(b) ≥ k∗(a) = m+1
2 . We deduce that k∗(b) = k∗(a) = m+1

2 and

thus a, b ∈ M(p). Moreover, |K(a, p)| < n since k∗(a) = m+1
2 and a is not socially

acceptable. It follows that

∣∣K(b, p)
∣∣ =

∣∣∣∣
{
i ∈ N : r(pi, b) ≤

m+ 1

2

}∣∣∣∣ = n >
∣∣K(a, p)

∣∣.

This inequality contradicts the fact that a ∈M(p).

• If b 6= am+1
2

(that is, a 6= a1 and a 6= am), the counter of b is then a. By Claim 2,

the number of voters who place a above the line is exactly the number of voters who

prefer a to b. Since a is not socially acceptable, we have that

∣∣∣∣
{
i ∈ N : r(pi, a) <

m+ 1

2

}∣∣∣∣ <
∣∣∣∣
{
i ∈ N : r(pi, a) >

m+ 1

2

}∣∣∣∣ .
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We deduce that n(p, a � b) < n(p, b � a) and that n(p, b � a) > n
2 . Thus, the

number of voters who prefer b to a is greater than n
2 , which means that more than

half of the voters rank b above the line. Therefore, we have that k∗(b) < m+1
2 which

implies that k∗(a) < m+1
2 . This is a contradiction since k∗(a) = m+1

2 .

A contradiction holds in both cases. Hence, a is necessarily socially acceptable.

We conclude that any majoritarian compromise winner with respect to a single-peaked

preference profile is socially acceptable.

3.2.2 Single-caved preferences

The class of single-caved preferences was introduced by Inada (1964).8 A set of preference

relations is single-caved with respect to a linear order of the alternatives if each preference

has a “cave” (least preferred alternative) such that for any two alternatives on the same

side of the cave, one is preferred over the other if it is more distant from the cave. Single-

caved preference profiles are generated from single-peaked preference profiles by inverting

the preference relation of each voter. Single-caved preferences can arise, for instance, in

the presence of an undesirable suggested project such as the construction of a prison. In

this case, for a voter, the worst location may be the closest to her home, and the more

distant a location, the more desirable it is. Formally,

Definition 7 Let ≤ be a linear order on A. We say that a preference relation � is single-

caved with respect to ≤ if there is an alternative d(�) such that

(
a < b ≤ d(�) or d(�) ≤ b < a

)
⇒ (a � b).

We say that a profile p = (p1, . . . , pn) is single-caved with respect to ≤ if all the preference

relations pi are single-caved with respect to ≤.

The following results from Diss and Mahajne (2020) are useful properties of single-

caved preference relations that we will use later.

Claim 3 (Diss and Mahajne, 2020) Let ≤ be a linear order on A and assume without

loss of generality that a1 < · · · < am. Let a, b, and c be any three alternatives such that

a < b < c and let � be a single-caved preference with respect to ≤. Then it holds that

b � a⇒ c � b and b � c⇒ a � b.

Claim 4 (Diss and Mahajne, 2020) Let p be a profile of single-caved preferences with

respect to ≤ and assume without loss of generality that a1 < · · · < am. For any alternative

a such that a 6= am+1
2

, there is an alternative b (called the counter of a), such that for any

preference relation � that is single-caved with respect to ≤, a is ranked above the line by

� if and only if a is strictly preferred to b by �.

8Sometimes single-caved preferences are also called single-dipped (e.g., Klaus et al., 1997).
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Precisely, if a = ak for some k ∈ {1, . . . , dm−12 e}, then b = ak+bm+1
2
c and if a = ak for

some k ∈ {bm+1
2 c + 1, . . . ,m}, then b = ak−bm+1

2
c. Note that in this case, a is conversely

the counter of b because for any k ∈ {1, . . . , dm−12 e}, ak+bm+1
2
c 6= am+1

2
and for any k ∈

{bm+1
2 c+ 1, . . . ,m}, ak−bm+1

2
c 6= am+1

2
. Let us now state our result regarding single-caved

preferences.

Proposition 4 Let ≤ be a linear order on A and assume without loss of generality that

a1 < · · · < am. Let p be a profile of single-caved preferences with respect to ≤. Then

M(p) ⊆ SA(p).

Proof. Let p be a profile of single-caved preferences with respect to ≤ and assume without

loss of generality that a1 < · · · < am. Let a be a majoritarian compromise winner of p.

The following cases arise:

Case 1: If m is even, then a is socially acceptable by Proposition 1.

Case 2: If m is odd, a cannot be am+1
2

. Indeed, let us assume that a = am+1
2

. Given a

voter i ∈ N , it holds by Claim 3 that ak �i a either for all k such that k < m+1
2 or for

all k such that k > m+1
2 . It follows in both cases that r(pi, a) ≥ m+1

2 . This implies that

E−a = ∅ and k∗(a) ≥ m+1
2 . Since a ∈M(p), it holds by Lemma 1 that k∗(a) ≤ m+1

2 . Hence

k∗(a) = m+1
2 and k∗(c) ≥ m+1

2 for all c ∈ A. Thus, for all c ∈ A, there is no majority of

voters who rank c above the line; that is, |E−c | < n
2 . Noting that |E−a | = 0, we deduce that

n(m− 1)

2
=
∑

c 6=a
|E−c | <

n(m− 1)

2
and a contradiction holds. In other words, this means

that a 6= am+1
2

.

To prove that a is necessarily socially acceptable, suppose by contradiction that a is not

socially acceptable. Since a 6= am+1
2

, by Claim 4, let b be the counter of a. Then we have

∣∣∣∣
{
i ∈ N : r(pi, a) <

m+ 1

2

}∣∣∣∣ <
∣∣∣∣
{
i ∈ N : r(pi, a) >

m+ 1

2

}∣∣∣∣ .

Therefore, n(p, a � b) < n(p, b � a). This implies that n(p, b � a) > n
2 . It then follows

that
∣∣{i ∈ N : r(pi, b) <

m+1
2 }

∣∣ > n
2 and that k∗(b) < m+1

2 . Since a ∈ M(p), it follows

that k∗(a) < m+1
2 , which means that there is a majority of voters who place a above the

line. This is a contradiction since by assumption a is not socially acceptable. This proves

that a is necessarily socially acceptable.

3.2.3 Single-crossing preferences

We now restrict our attention to the class of preferences that satisfies the single-crossing

property introduced by Mirrlees (1971). Roughly speaking, a set of preferences satisfies

the single-crossing property if both preferences (individuals or voters) and alternatives

can be ordered from “left” to “right” so that if, with respect to a rightist preference, an

alternative a is preferred to another alternative b, then the same comparison holds for all
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other preferences that are to the left of this preference whenever a is at the left of b. In

the political area, the single-crossing property makes sense if, for instance, individuals are

interpreted as having different ideological characters, arranged on a left-right scale, and

alternatives are policies to be chosen by the society. Put in this way, given two policies,

one of them more to the right than the other, the more rightist an individual the more

she will tend to prefer the right-wing policy over the left-wing one.

Definition 8 Let ≤ be a linear order on A. Let C ⊆ P be a non-empty set of preference

relations on A and let v be a linear order on C. We say that preference relations in C
satisfy the single-crossing property with respect to (≤,v) if for all pairs of alternatives a, b

in A and for all pairs of preferences �,�′ in C, we have

a < b

�v�′

}
⇒ (b � a⇒ b �′ a).

We say that a preference profile p satisfies the single-crossing property if there is a linear

order ≤ on A and a linear order v on the set of preferences in p, such that the preferences

in p satisfy the single-crossing property with respect to (≤,v).

Example 6 Let A = {a, b, c} be a set of three alternatives and a < b < c be a linear

order on A. Consider the set C of preferences that contains the following four preference

relations

p =



a a c c

b c a b

c b b a




with the linear order given by p1 @ p2 @ p3 @ p4. We can easily check that the set of

preferences C satisfies the single-crossing property with respect to (≤,v).

The next claim from Mahajne and Volij (2019) gives a very useful property of single-

crossing preferences.

Claim 5 (Mahajne and Volij, 2019) Let p be a profile of single-crossing preferences with

respect to (≤,v) for some linear order ≤ on A and for some linear order v on the set

{p1, . . . , pn}. Let i, j, k ∈ N with pi @ pj @ pk. Then for any two alternatives a, b ∈ A, if

both a �i b and a �k b, then a �j b.

When a set of preferences is ordered with a linear order v, we can define its median.

Definition 9 Let p be a profile of preferences and v be a linear order on the set of pref-

erences in p. We say that pM is a median preference relation of p if

∣∣∣
{
i ∈ N : pi v pM

}∣∣∣ ≥ n

2
and

∣∣∣
{
i ∈ N : pM v pi

}∣∣∣ ≥ n

2
.
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In other words, pM is a median preference of p if at least half of the individual pref-

erences are at least as to the “right” as pM and at least half of the individual preferences

are at least as to the “left” as pM . Let us recall the following result from Mahajne and

Volij (2019).

Proposition 5 (Mahajne and Volij, 2019) Let p be a single-crossing preference profile.

The top alternative of any median preference of p is socially acceptable (and Condorcet

winner).

The next proposition gives our main result regarding the single-crossing preference

profiles.

Proposition 6 Let p = (p1, . . . , pn) be a preference profile that satisfies the single-crossing

property. Then M(p) ⊆ SA(p).

Proof. Let ≤ be a linear order on A and v be a linear order on the set {p1, . . . , pn} such

that p satisfies the single-crossing property with respect to (≤,v). Let a be a majoritarian

compromise winner of p.

Case 1: If m is even, then a is socially acceptable by Proposition 1.

Case 2: Consider that m is odd. If we first suppose that a is the top alternative of a

median preference, then a is socially acceptable by Proposition 5. Now suppose that a is

the top alternative of a no-median preference. Let b be the top alternative of a median

preference pM . Since b is socially acceptable, it follows that k∗(b) ≤ m+1
2 since there is a

majority of voters who rank b among the top m+1
2 alternatives. Recalling that a ∈M(p),

we deduce that k∗(a) ≤ k∗(b) ≤ m+1
2 . To prove that a is socially acceptable, suppose

on the contrary that a is not socially acceptable. This implies that k∗(a) ≥ m+1
2 since

there is no majority of voters who rank a above the line. Therefore, k∗(a) = k∗(b) = m+1
2 ,

π(p) = m+1
2 and |K(a, p)| < n since a is not socially acceptable. In this case, it holds that

r(pj , b) ≤ m+1
2 for all j ∈ N . Indeed, let i ∈ N the the individual who ranks b as low as

possible. Suppose that r = r(pi, b) >
m+1
2 . Then there are r − 1 alternatives b1, . . . br−1

with r − 1 ≥ m+1
2 such that i strictly preferred each bk to b, k = 1, 2, . . . , r − 1. Assume

without loss of generality that pi v pM . Then by the single-crossing property (Claim 5),

it holds that b �pj bk for all k ∈ {1, . . . , r− 1} and for all j ∈ N such that pM v pj . Thus,

for all j ∈ N such that pM v pj , j prefers b to at least m+1
2 alternatives which means that

pj ranks b above the line. Consequently, b is ranked above the line by at least half of the

voters and thus k∗(b) < m+1
2 . A contradiction arises since k∗(b) = m+1

2 . Note that voter i

ranks b as low as possible and that r(pi, b) ≤ m+1
2 , which implies that r(pj , b) ≤ m+1

2 for

all j ∈ N . Therefore the following holds:

∣∣∣K(b, p)
∣∣∣ =

∣∣∣∣
{
i ∈ N : r(pi, b) ≤

m+ 1

2

}∣∣∣∣ = n >
∣∣∣K(a, p)

∣∣∣.

This inequality holds in contradiction to the fact that a ∈ M(p). Hence, a is necessarily

socially acceptable.
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4 Concluding remarks

Let us first emphasise an important remark. Although the majoritarian compromise

rule always selects a socially acceptable alternative for any single-peaked, single-caved,

or single-crossing preference profiles, it is worth mentioning that there are some domains

for which the result does not hold. Single-peaked and single-caved preferences are two

subsets of the broader set of value-restricted preferences (see, for instance, Sen, 1969).

Another subset of this domain of preferences is the class of group-separable preferences

introduced by Inada (1964). A preference profile is group-separable if each subset (of size

three at least) of the set of all the alternatives can be partitioned into two disjoint non-

empty subsets such that for each voter, either she prefers every alternative from the first

subset to every alternative from the second subset, or she prefers every alternative from

the second subset to every alternative from the first subset. The next example shows that

the majoritarian compromise winner of a group-separable preference profile can be socially

unacceptable. Consider the set of alternatives A = {a, b, c} and the following preference

profile p of n = 9 voters such that

p =



a a a a c c c c b

b b c c b b b b c

c c b b a a a a a




We can check that the profile p is group-separable with the group-separable partition

A = {a} ∪ {b, c}: each voter prefers a to every alternative from {b, c} or she prefers every

alternative in {b, c} to a. We can also check that M(p) = {b, c} and SA(p) = {c}; that

is, b is a majoritarian compromise winner which is socially unacceptable. In other words,

being group-separable does not guarantee in a profile that each majoritarian compromise

winner is socially acceptable.

To summarise, the paper at hand mainly shows that the majoritarian compromise rule

always selects a socially acceptable alternative, except for some profiles when the number of

voters is odd. Our study raises many interesting additional questions. Our main objective

is to define an extension of the majoritarian compromise rule for multi-winner elections

and make some investigations about its social acceptability. As noted earlier, Diss and

Mahajne (2020) have already extended the concept of social acceptability to multi-winner

elections.
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