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DERIVED CATEGORY OF THE SPINOR 15-FOLD

VLADIMIRO BENEDETTI, DANIELE FAENZI, AND MAXIM SMIRNOV

Abstract. We construct a full exceptional Lefschetz collection on the spinor 15-fold consisting of a con-
nected component of the space of orthogonal 6-dimensional subspaces of a 12-dimensional complex vector

space, isotropic with respect of a fixed non-degenerate quadratic form. The collection is made of 2 twists
of a 4-item block and 8 twists of a 3-item block, confirming a conjecture of Kuznetsov and Smirnov. We

speculate that a similar collection might work for the Freudenthal E7-variety.

1. Introduction

It is widely expected that, for any parabolic subgroup P of a reductive complex algebraic group G,
the associated rational homogeneous variety X = G/P admits a full exceptional G-equivariant collection.
Moreover the objects of such a collection should admit a natural partial order induced by the Bruhat-
Chevalley order, see for instance [Bö06] for an account. While full exceptional collections were given for
flags of type An and quadrics in [Bei78, Kap88a], in the remaining classical types exceptional collections
of maximal length were constructed much later, see [KP16]. Some more cases admitting full exceptional
collections were studied, notably for isotropic grassmannians in the symplectic case, we refer for instance to
[Sam07, PS11, Fon22]. Full exceptional collections on some homogeneous varieties of exceptional type were
studied in [FM15, BKS23].

A slightly different point of view on the structure of the derived category and on exceptional collections
stems from homological projective duality, as in [Kuz07]. In this context, the emphasis is on Lefschetz
properties with respect to a given ample line bundle OX(1), so that a full exceptional collection should
be obtained from a first set of objects by twisting them with OX(t), for t = 0, . . . , ℓ − 1 and occasionally
removing some objects. Here ℓ is some integer which is often the Fano index of X, see below. Full exceptional
Lefschetz collections were given in some classical and exceptional types in [Kuz08a, Fon13, FM15, BKS23].
The question of when one should remove objects along the construction of a Lefschetz collection is a very
interesting point giving rise to the study of residual categories, conjecturally related to the structure of the
quantum cohomology of X, according to a refinement of Dubrovin’s conjecture, see [KS21a, KS20].

In this paper we focus on two specific varieties, one of classical type and the other of exceptional type,
constructing a full exceptional Lefschetz collection on the first one and providing numerical evidence on the
second one, based on the ansatz that they should share some common features as they sit on the same row
of Freudenthal’s magic square related to real divison algebras, cf. [LM01]. We write Xm for the varieties
sitting in the third row of the Freudenthal’s magic square, where the index m refers to the dimension of the
corresponding real division algebra Am. These varieties are homogeneous for the action of a group G listed
below. They are Fano varieties whose Picard group is generated by a very ample line bundle OXm

(1), hence
ωXm

≃ OXm
(−ιXm

) for some integer ιXm
called the Fano index of Xm. We have dim(Xm) = 3(m+ 1) and

ιXm
= 2(m+ 1).

m 1 2 4 8

Am R C H O
G Sp3 GL6 Spin12 E7

Xm LG(3, 6) G(3, 6) OG+(6, 12) E7/P7

rk(K0(Xm)) 8 20 32 56

2020 Mathematics Subject Classification. 14F08.
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Freudenthal’s magic square.
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Excluding LG(3, 6), that does not quite fit into this picture, we have rk(K0(Xm)) = 6m + 8. We would
expect that for m = 2, 4, 8 the derived category of Xm has a full exceptional Lefschetz collection of the
following form:

(A,A(1),B(2), . . . ,B(2m+ 1))

with:
A = (OX , O, P,Q)

B = (OX , O, P )
(1.1)

Here, denoting by Uω the irreducible G-homogeneous bundle of maximal weight ω, the bundles O, P
and Q should be, respectively, Uω1 , ∧2Uω1 and S2,1Uω1 with the caveat that, in case such bundles are
not exceptional, we should replace them by some equivariant extension with homogenous bundles of lower
maximal weight (for precise definitions see the next section) or projections on the semiorthogonal summand
we are interested in. For m = 2, i.e. for G(3, 6), no extension is necessary. The resulting full exceptional
collection was studied in [Del11] in the attemt to verify Homological Projective Duality for G(3, 6). On the
other hand, this gets more tricky for m = 4 and m = 8.

The goal of this paper is to prove the statement for m = 4 and provide a partial proof of a closely related
statement for m = 8. For m = 4 we prove:

Theorem 1. Let X = OG+(6, 12) and set O = Uω1
. Then, there are unique Spin12-homogeneous exceptional

bundles P and Q fitting into:

0 → OX → P → Uω2
→ 0, 0 → Uω1

→ Q → Uω1+ω2
→ 0,

such that, defining A and B as in (1.1), we get a full Lefschetz exceptional collection:

Db(X) = ⟨A,A(1),B(2), . . . ,B(9)⟩.
Moreover, Q′ = L⟨B⟩(Q) is a homogeneous exceptional bundle and Q and Q′(1) are completely orthogonal.

This overall proves [KS21a, KS20], including the statement about the complete orthogonality of the
generators of the residual category with respect to the rectangular part of the Lefschetz collection.

For m = 8 and X := X8 = E7/P7, we prove a weaker result. Let us define O as the unique non-trivial
E7-equivariant extension fitting into

0 → OX → O → Uω1
→ 0.

Let us define P as the projection of Uω3
to the left orthogonal of ⟨OX(1), O(1), . . . ,OX(18), O(18)⟩,

and Q as the projection (see Remark 7.3) of Uω1+ω3 to the left orthogonal of
⟨OX(1), O(1), P (1), . . . ,OX(18), O(18), P (18)⟩.
Theorem 2. On X = E7/P7 the collection (OX , O, . . . ,OX(17), O(17)) is exceptional. Moreover, defining
A and B as in (1.1), we get a numerical exceptional collection of maximal length:

(A,A(1),B(2), . . . ,B(17)) , with K0(X) = K0(⟨A,A(1),B(2), . . . ,B(17)⟩).
Here, by numerical exceptional collection we mean a collection E1, . . . , Er whose numerical properties

reproduce those of an exceptional collection: χ(Ei, Ej) = 0 if i > j and χ(Ei, Ei) = 1 for all i. Of course
having a numerical exceptional collection is a priori a much weaker condition than having an exceptional
collection (not to mention having a full exceptional collection). However, due to the analogy with the other
cases of the Freudenthal magic square, we believe that this collection is indeed a full exceptional collection.

The paper is organised as follows. In Section 2 we define our Lefschtez collection. The main tools are
the theorem of Borel-Bott-Weil and a result about non-degeneracy of cup-product owing to Dimitrov and
Roth. In Section 3 we outline our strategy to prove fullness and use to reprove fullness of a natural Lefschetz
collection on OG+(5, 10). Here we use a complex constructed in Section 4, where we also construct an
analogous complex for OG+(6, 12) which in turn we use Sections 5 and 6. In Section 5 we show that certain
homogeneous bundles belong to the subcategory D generated by our exceptional collection. We use this in
Section 6 to prove fullness of our collection on OG+(6, 12). In Section 7 we provide some remarks on our
numerical exceptional collection on the Freudenthal variety E7/P7.

Acknowledgements. V.B. and D.F. partially supported by FanoHK ANR-20-CE40-0023, Sup-
ToPhAG/EIPHI ANR-17-EURE-0002, Région Bourgogne-Franche-Comté, Feder Bourgogne and Bridges
ANR-21-CE40-0017. We warmly thank Sasha Kuznetsov for useful discussions.
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2. A Lefschetz exceptional collection on the spinor 15-fold

Here we begin by sketching the exceptional collection we want to work with. We first fix some setting
about spinor varieties and homogeneous bundles over them, then define the bundles appearing in the desired
Lefschetz collection and finally show that this is indeed an exceptional Lefschetz collection.

2.1. Homogeneous bundles on spinor varieties. We consider the group Spin2n, namely the universal
cover of the group of linear automorphisms of C2n preserving a non-degenerate quadratic form q. Let Pn

be the parabolic subgroup of Spin2n defining the spinor Grassmannian X = Spin2n /Pn := OG+(n, 2n),
one of the two isomorphic connected components parametrizing n dimensional isotropic subspaces of a 2n
dimensional subspace endowed with a non-degenerate symmetric form. Let us also denote by L(Pn) its Levi
factor.

We will denote by Uω the homogeneous bundle on Spin2n /Pn associated to the L(Pn)-weight ω. We write
OX(1) := Uωn and U := U∨

ω1
. These correspond to the ample generator of Pic(X), providing the equivariant

embedding of X into P(V ωn), and to the tautological sub-bundle on G(n, 2n), restricted to X. Here we
denoted by V λ the Spin2n-representation of highest weight λ.

Unless further notice, we will set n = 6 from now on and work on X = Spin12 /P6. This is the spinor
15-fold that we are interested in. It is a Fano variety of Picard number one and index 10. The rank of its
K0 group is 32. We note that

U = U∨
ω1

≃ Uω5
(−1), ∧2U ≃ U∨

ω2
≃ Uω4

(−2), Σ2,1U ≃ U∨
ω1+ω2

≃ Uω4+ω5
(−3) (2.1)

We denote by LE(F) the left mutation of an object F about an object E of Db(X).

2.2. The bundles of the exceptional collection. Let us introduce the homogeneous vector bundles
appearing in our exceptional collection.

Lemma 2.1. On X we have a canonical Spin2n-equivariant exceptional bundle P fitting into:

0 → OX → P → Uω2
→ 0. (2.2)

Moreover, P∨(2) is the normal bundle of X inside P(V ω6), while Uω2
is the tangent bundle of X.

Proof. The tangent bundle of X is well-known to be ∧2Uω1 ≃ Uω2 , while the tangent bundle of P(V ω6)
restricted to X is the quotient V ω6 ⊗OX(1)/OX . Since the irreducible factors of V ω6 ⊗OX(1) are OX , Uω2 ,
U∨

ω2
(2) and OX(2), we obtain that the normal bundle N of X inside P(V ω6) is a Spin12-equivariant extension

γ ∈ Ext1X(Uω2 ,OX) giving:
0 → U∨

ω2
(2) → N → OX(2) → 0

By Bott-Borel-Weil (BBW) Theorem, we have Ext1X(OX(2),U∨
ω2
(2)) = H1(X,U∨

ω2
) ≃ C. Hence the sheaf

fitting as middle term of a non-trivial extension as above is unique. Since N(−1) is a quotient of V ω6 ⊗ OX

of half its rank, by autoduality of V ω6 we get an exact sequence

0 → N∨(1) → V ω6 ⊗ OX → N(−1) → 0.

Since OX(−2) and Uω2(−2) have no cohomology, N∨ has no cohomology as well. From the short exact
sequence above we deduce that N is a non-trivial extension, and thus N = P∨(2); indeed, if it were not the
case, one would deduce that C ≃ H0(OX) ≃ H0(N(−2)) ≃ V ω6 ⊗H0(OX(−1)), which is false.

Since Uω2
(−2) has no cohomology and Uω2

⊗Uω2
(−2) has no cohomology except for H1(Uω2

⊗Uω2
(−2)) =

C, we get that Uω2
⊗ P (−2) has no cohomology except for H1(Uω2

⊗ P (−2)) = C. By twisting the exact
sequence defining P by P (−2) we deduce that P ⊗P (−2) has no cohomology except for H1(P ⊗P (−2)) = C.
Now let us consider the exact sequence

0 → P ⊗ P (−2) → V ω6 ⊗ P (−1) → P∨ ⊗ P → 0.

Since OX(−1) and Uω2(−1) have no cohomology, the same is true for P (−1) and V ω6 ⊗ P (−1). We deduce
that H0(P∨ ⊗ P ) = C and all other cohomologies of P∨ ⊗ P vanish. □

Lemma 2.2. On X, we have a Spin12-homogeneous exceptional bundle Q fitting into a canonical equivariant
extension:

0 → Uω1
→ Q → Uω1+ω2

→ 0 (2.3)

Moreover, we have Ext•X(Q,Q(−1)) = 0.
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Proof. We recall (2.1) and use:

Uω4+ω5
⊗ Uω1

≃ U2ω5
(1)⊕ Uω4

(1)⊕ Uω1+ω4+ω5
. (2.4)

We compute H•(U2ω5
(−2)) = H•(Uω1+ω4+ω5

(−3)) = 0, hence:

Ext•X(Uω1+ω2
,Uω1

) = Ext1X(Uω1+ω2
,Uω1

) ≃ H1(Uω4+ω5
⊗ Uω1

(−3)) ≃ H1(Uω4
(−2)) = C. (2.5)

Choosing a nonzero element ζ of Ext1X(Uω1+ω2
,Uω1

) ≃ C defines the desired equivariant vector bundle Q.

To compute Ext•X(Q,Q), we consider:

U∨
ω1+ω2

⊗ Uω1 ≃ Uω1 ⊗ Uω4+ω5(−3),

U∨
ω1

⊗ Uω1+ω2
≃ Uω1+ω2

⊗ Uω5
(−1), (2.6)

U∨
ω1+ω2

⊗ Uω1+ω2
≃ Uω1+ω2

⊗ Uω4+ω5
(−3). (2.7)

We computed the first item and its cohomology in (2.4) and (2.5). Using this, the fact that Uω1
is exceptional

and that Q is defined by the non-zero extension ζ, applying Ext•X(−,Uω1
) to the sequence (2.3) defining Q

we get

Ext•X(Q,Uω1
) = 0. (2.8)

Therefore:

Ext•X(Q,Q) ≃ H•(Q∨ ⊗ Uω1+ω2
).

To compute the term on the right-hand-side, we need to compute the cohomology of (2.6) and (2.7). For
(2.6) we get:

Uω1+ω2
⊗ Uω5

≃Uω2
(1) H•(Uω2

) ≃ H0(Uω2
) ≃ V ω2 , (2.9)

⊕U2ω1
(1) H•(U2ω1

) ≃ H0(U2ω1
) ≃ V 2ω1 , (2.10)

⊕Uω1+ω2+ω5 H•(Uω1+ω2+ω5(−1)) = 0. (2.11)

Next, we compute the cohomology of Uω1+ω2
⊗ U∨

ω1+ω2
. We use the duality isomorphisms mentioned above

and get:

Uω1+ω2 ⊗ Uω4+ω5 ≃OX(3) H•(OX) = H0(OX) ≃ C,
⊕Uω2+2ω5

(1) H•(Uω2+2ω5
(−2)) = 0,

⊕Uω2+ω4
(1) H•(Uω2+ω4

(−2)) = H1(Uω2+ω4
(−2)) ≃ V ω2 ,

⊕Uω1+ω5(2)
⊕2 H•(Uω1+ω5(−1)) = 0,

⊕Uω1+ω2+ω4+ω5
H•(Uω1+ω2+ω4+ω5

(−3)) = 0,

⊕U2ω1+2ω5
(1) H•(U2ω1+2ω5

(−2)) = 0,

⊕U2ω1+ω4(1) H•(U2ω1+ω4(−2)) = H1(U2ω1+ω4(−2)) ≃ V 2ω1 .

Having computed this, we get that Hi(Q∨ ⊗ Uω1+ω2) = 0 for all i > 0 if and only if the boundary map
induced by ζ:

V ω2 ⊕ V 2ω1 ≃ H0(U∨
ω1

⊗ Uω1+ω2
) → H1(U∨

ω1+ω2
⊗ Uω1+ω2

) ≃ V ω2 ⊕ V 2ω1

is an isomorphism, and in this case H0(Q∨ ⊗ Uω1+ω2
) ≃ C. In other words, Q is exceptional if and only if

the following Yoneda map is an isomorphism:

Ext1X(Uω1+ω2 ,Uω1)⊗HomX(Uω1 ,Uω1+ω2) → Ext1X(Uω1+ω2 ,Uω1+ω2).

In view of the isomorphisms above, this happens if and only if the cup-product maps below are isomorphisms:

H1(Uω4−2ω6
)⊗H0(Uω2

) → H1(Uω2+ω4−2ω6
),

H1(Uω4−2ω6)⊗H0(U2ω1) → H1(U2ω1+ω4−2ω6).

Fixing a Borel subgroup B of Spin12, for a given B-dominant weight ω, we consider the line bundle
Lω on the complete flag W = Spin12 /B and identify the bundle Uω with the direct image of Lω via the
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natural projection W → X. Then our statement boils down to proving that the cup-product maps below
are isomorphisms:

H1(Lω4−2ω6)⊗H0(Lω2) → H1(Lω4−2ω6 ⊗ Lω2),

H1(Lω4−2ω6
)⊗H0(L2ω1

) → H1(Lω4−2ω6
⊗ L2ω1

).

However, this follows at once from the main theorem of [DR17].
For what concern ExtX(Q,Q(−1)), it is sufficient to check that all irreducible bundles in U∨

ω1+ω2
⊗Uω1

(−1),
U∨

ω1+ω2
⊗Uω1+ω2

(−1), U∨
ω1

⊗Uω1
(−1), U∨

ω1
⊗Uω1+ω2

(−1) have no non-vanishing cohomology (by BBW). □

2.3. The exceptional Lefschetz collection. Let us define the following collections of Spin12-homogeneous
vector bundles

A = (OX ,Uω1
, P,Q) ,

B = (OX ,Uω1 , P ) .

Lemma 2.3. The following is an exceptional collection in Db(X):

(B,B(1), . . . ,B(9)) .

Proof. Recall that OX and P are exceptional. We compute:

Uω5
⊗ Uω1

≃ OX(1)⊕ Uω1+ω5
(2.12)

We write the largest intervals of integers where the twists of the bundles appearing in the right-hand-side
have vanishing cohomology by BBW. This gives:

H•(OX(−t)) = 0, for t ∈ {1, . . . , 9},
H•(Uω1+ω5

(−t)) = 0, for t ∈ {1, . . . , 11},

Then, using (2.1), we get that Uω1 is exceptional. We also get the required vanishing of twisted endomor-
phisms of OX and Uω1 . Also, we have the vanishing of Ext•X(OX(i),Uω1(j)) for 0 ≤ j < i ≤ 9 and of
Ext•X(Uω1

(i),OX(j)) for 0 ≤ j ≤ i ≤ 9.

It remains to deal with P . Looking at the extension defining P and using BBW, we get
Ext•X(OX(i), P (j)) = 0 for 0 ≤ j < i ≤ 10, so Serre duality ensures also Ext•X(P (i),OX(j)) = 0 for
0 ≤ j ≤ i ≤ 9.

Next we show Ext•X(Uω1
(i), P (j)) = 0 for 0 ≤ j < i ≤ 9 and note that the vanishing holds true even for

i = 10. We recall (2.1) and use Uω5
⊗ Uω2

≃ Uω1
(1)⊕ Uω2+ω5

. Then, tensoring the sequence (2.2) defining
P with Uω5(−1− t), for 1 ≤ t ≤ 9, we get the desired vanishing by using:

H•(Uω5
(−1− t))) = H•(Uω1

(−t))) = H•(Uω2+ω5
(−1− t))) = 0.

Now Serre duality gives Ext•X(P (i),Uω1
(j)) = 0 for 0 ≤ j ≤ i ≤ 9.

Finally we check Ext•X(P (i), P (j)) = 0 for 0 ≤ j < i ≤ 9. We compute:

Uω2
⊗ Uω4

≃ OX(2)⊕ Uω1+ω5
(1)⊕ Uω2+ω4

.

Tensoring the sequence (2.2) defining P with its dual and using (2.1), we deduce the desired vanishing
results from the following ones, which in turn are given by BBW for 1 ≤ t ≤ 9:

H•(OX(−t)) = H•(Uω2
(−t)) = H•(Uω4

(−2− t)) = H•(Uω2+ω4
(−t)) = H•(Uω1+ω5

(−1− t)) = 0.

□

Lemma 2.4. The following is an exceptional collection in Db(X):

(A,A(1),B(2) . . . ,B(9)) . (2.13)

Proof. By the previous lemma and thanks to Serre duality, we will be done once we prove Ext•X(Q,Q(−1)) =
0 (which we did in Lemma 2.2) and:

Ext•X(OX , Q(−t)) = Ext•X(Uω1
, Q(−t)) = Ext•X(P,Q(−t)) = 0,
5



for 1 ≤ t ≤ 10. Looking at the sequence (2.3) defining Q, we see that BBW directly implies H•(Q(−t)) = 0
for 1 ≤ t ≤ 10. As for Ext•X(Uω1 , Q(−t)) = 0, note that the case t = 10 is (2.8) by Serre duality. On the
other hand, for 1 ≤ t ≤ 9, this follows from (2.1) and from the vanishing

H•(Uω5
⊗ Uω1

(−1− t)) = 0, H•(Uω5
⊗ Uω1+ω2

(−1− t)) = 0,

for 1 ≤ t ≤ 9, which in turn is a consequence of (2.9), (2.10), (2.11) and (2.12).
Finally, let us show that Ext•X(P,Q(−t)) = 0. For t ̸= 10, this follows from BBW, (2.1) and from the

isomorphisms:

Uω4
⊗ Uω1

≃ Uω5
(1)⊕ Uω1+ω4

,

Uω4
⊗ Uω1+ω2

≃ Uω1
(2)⊕ Uω2+ω5

(1)⊕ Uω1+ω2+ω4
⊕ U2ω1+ω5

.

For t = 10, the statement is equivalent to Ext•X(Q,P ) = 0. To check this last vanishing, using the isomor-
phisms of the previous display, we are reduced to show Ext•X(Q,Uω2

) = 0 and in turn to show that cupping
with ζ ∈ Ext1X(Uω1+ω2

,Uω1
) ≃ H1(Uω4

(−2)) ≃ C induces an isomorphism:

V ω1 ≃ H0(Uω1
) ≃ HomX(Uω1

,Uω2
) → Ext1X(Uω1+ω2

,Uω2
) ≃ H1(Uω1+ω4

(−2)) ≃ V ω1

As in the proof of Lemma 2.2, we move to the complete flag W , so that showing this non-degeneracy
amounts to checking that the cup-product map below is an isomorphism:

H1(Lω4−2ω6
)⊗H0(Lω1

) → H1(Lω4−2ω6
⊗ Lω1

),

and this follows from [DR17]. □

Define the full triangulated subcategory

D = ⟨A,A(1),B(2), . . . ,B(9)⟩.
We are going to show that (2.13) is full, i.e. we have

D⊥ = 0.

3. Warming up for fullness

Let D be the full triangulated subcategory of Db(X) generated by our exceptional collection, i.e. we
define

D =
〈
A,A(1),B(2),B(3),B(4)

〉
⊂ Db(X).

Thus, we have a semiorthogonal decomposition

Db(X) = ⟨D⊥,D⟩.
Our aim is to prove D⊥ = 0. To achieve this, we will restrict to a covering family of smaller spinor varieties
whose derived category is well-known and prove that any object orthogonal to D restricts to zero over such
varieties by showing that the structure sheaf of these subvarieties is resolved by objects in D. After describing
such covering family, we will show fullness in the easier and well known case of spinor 10-folds as a warming
up. In doing so, we will make use of an exact complex appearing in Section 4, pointing out that the existence
of such complex is fundamental for our proof of fullness.

3.1. A covering family of spinor varieties. Let us come back to the general case of a vector space V of
dimension 2n. Let

q : V × V → C
be the symmetric bilinear form defining X := Spin2n /Pn, i.e. we have

X = OG+(n, V ).

Recall that we have
H0(X,U∨) = V ∨ ≃→ V.

Since q is non-degenerate, there is a bijection between elements w ∈ V and sections sw ∈ H0(X,U∨) = V ∨

that sends w to sw = q(w, ). It is easy to see that we have

q|W is non-degenerate ⇐⇒ q(w,w) ̸= 0, (3.1)

where W = ker sw. If sw satisfies (3.1), then we can define two things:
6



(1) A morphism of algebraic varieties

φw : OG+(n, V ) → OG(n− 1,W )

U 7→ U ∩W,
(3.2)

which is an isomorphism.

(2) The natural morphism sw : OX → U∨ does not vanish anywhere (since there are no n-dimensional
isotropic subspaces in W ) and, therefore, defines a short exact sequence of vector bundles

0 → OX
sw→ U∨ → E∨ → 0, (3.3)

where E∨ is a vector bundle of rank n− 1 with H0(X,E∨) = W∨.

Let us fix a section sw satisfying (3.1).

Lemma 3.1. Let s ∈ H0(X,E∨) = W∨ and consider the zero-locus Ys of s.

i) If s is general enough, then Ys ≃ OG(n− 1, 2n− 2). Let us denote the inclusion by

is : Ys → X.

ii) For any section s as in i), we have

i∗U∨ = U∨
n−1 ⊕ OYs

iii) Varying s ∈ H0(X,E∨) as above we can cover X by copies of OG(n− 1, 2n− 2).
iv) If for any object F ∈ Db(X) the restrictions i∗sF vanish for all s ∈ H0(X,E∨) as above, then F = 0.

Proof. For s to be general enough, it is enough to satisfy the analogue of (3.1). i.e. the restriction of q to
L := ker(s) ⊂ W should be non-degenerate.

i) Under (3.2) the vector bundle E∨ corresponds to the dual of the tautological subbundle on OG(n−
1,W ). Hence, we get the claim.

ii) Under (3.2) the sequence (3.3) shows that there is a non-trivial extension between the dual of the
tautological subbundle and the structure sheaf on OG(n− 1,W ). However, by BBW on OG(5, L) =
OG(n− 1, 2n− 2) such extensions vanish and the sequence splits.

iii) Indeed, for any n − 1-dimensional isotropic subspace Un−1 ⊂ W we can consider U⊥
n−1, take any

element u ∈ U⊥
n−1 \Un−1 and take L = u⊥. Clearly we have Un−1 ⊂ L and q|L is non-degenerate by

(3.1).
iv) This is [Kuz08b, Lemma 4.5].

□

3.2. Full exceptional collection on the spinor 10-fold. The orthogonal Grassmannian Y = OG(5, 10)
has two connected components that we denote by

Y− = OG−(5, 10) and Y+ = OG+(5, 10).

These components are isomorphic to each other, we call them spinor 10-folds.
As usual, on Y = OG(5, 10) we can consider the tautological subbundle U5 of rank 5. We denote as

U5,± := U5|Y± its restrictions to Y±
We prove the following result as a useful warm-up to the case of X = Spin12 /P6 = OG+(6, 12).

Theorem 3.2. We have

Db(Y±) =
〈
O,U∨

5,±,O(1),U
∨
5,±(1), . . . ,O(7),U

∨
5,±(7)

〉
Proof. Let us fix the + sign and let us define D5 := ⟨O,U∨

5 ,O(1),U
∨
5 (1), . . . ,O(7),U

∨
5 (7)⟩ on Y := Y+. Let

us take an object F ∈ D⊥
5 , i.e. we have

Ext•X(A,F ) = 0 for any A ∈ D5.

Let s ∈ H0(X,E∨) be a general section and is : Zs → Y the embedding of its zero locus, as in Lemma 3.1(1).
Let us consider the set of vector bundles on Y defined by

Σ5 := {OY (t) | t ∈ [2, 7]} ∪ {U∨
5 (2)}.
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Let us denote by E∨
5 the vector bundle defined in (3.3). We claim that for any E ∈ Σ5 and any j the bundle

E ⊗ ∧jE∨
5 lies in D5. Let us for the moment assume that the claim is true. Then we have

Ext•X(E ⊗ ∧jE∨
5 , F ) = H•(Y,∧jE5 ⊗ E∨ ⊗ F ) = 0 for all j,

and making use of the Koszul complex

0 → ∧4E5 → · · · → E5 → OY → is∗OZs
→ 0,

we obtain
H•(Y, (E∨ ⊗ F )⊗ is∗OZ) = 0.

Now, by projection formula we rewrite

H•(Y, (E∨ ⊗ F )⊗ is∗OZ) = H•(Zs, is
∗ (E∨ ⊗ F )) = Ext•Z(is

∗E, is
∗F ) = 0.

Recall that Zs ≃ OG(4, 8) has two connected components Zs+ and Zs− which are two six dimensional

quadrics. We denote the compositions Zs± ⊂ Zs
is→ Y by is±. Using this notation we have

Ext•Zs
(is

∗E, is
∗F ) = Ext•Zs+

(is
∗
+E, is

∗
+F )⊕ Ext•Zs−

(is
∗
−E, is

∗
−F ).

Hence, we have
Ext•Zs+

(is
∗
+E, is

∗
+F ) = 0 and Ext•Zs−

(is
∗
−E, is

∗
−F ) = 0.

Applying Lemma 3.1(2) and the fact that the six dimensional quadrics Zs± admit the following full excep-
tional collection (see [Kap88b])

Db(Zs±) =
〈
O(2),U∨

4,±(2),O(3), . . . ,O(7)
〉
,

we obtain
is

∗
+F = 0 and is

∗
−F = 0.

Hence, we conclude is
∗F = 0. Finally, since the above argument works for any general s ∈ H0(Y,E∨

5 ), by
Lemma 3.1(3,4) we obtain F = 0.

Now, let us prove the claim. We need to prove that ∧jE∨
5 (t) ∈ D5 for t ∈ [2, 7] and U∨

5 ⊗ ∧jE∨
5 (2) ∈ D5

for all possible j’s. From the exact sequence

0 → OY →U∨
5 → E∨

5 → 0

we deduce that our claim is implied by the fact that ∧jU∨
5 (t) ∈ D5 for t ∈ [2, 7] and U∨

5 ⊗∧jU∨
5 (2) ∈ D5 for

all possible j’s.
The bundles O(t) and U∨

5 (t) for t ∈ [0, 7] generate D5. From the exact sequence 0 → U5 → V10 ⊗ OY →
U∨

5 → 0, where V10 is a ten dimensional vector space, we deduce that U5(t) ∈ D5 for t ∈ [0, 7]. Thus
OY (t),U5(t),∧4U5(t) = U∨(t− 2),∧5U5(t) = OY (t− 2) all belong to D5 for t ∈ [2, 7].

Recall that ss(S− ⊗ OY ) = U5(−1)⊕∧3U∨
5 (−1)⊕ OY (1), so we deduce that ∧3U∨

5 (t− 2) = ∧2U(t) ∈ D5

for t ∈ [2, 7]. Similarly the fact that ss(S+⊗OY ) = OY (−1)⊕∧2U∨
5 (−1)⊕U5(1) implies that ∧2U∨

5 (t−2) =
∧3U(t) ∈ D5 for t ∈ [2, 7].

Now we need to deal with U∨
5 ⊗ ∧jU5(2). When j = 0 and j = 5, U∨

5 ⊗ ∧jU5(2) ∈ D5. For j = 1 use the
decomposition ss(∧2V10 ⊗ OY ) = ∧2U5 ⊕ U5 ⊗ U∨

5 ⊕ ∧2U∨
5 to deduce that U5 ⊗ U∨

5 (t) ∈ D5 for t ∈ [2, 5].
For j = 3 use the decomposition ss(S+ ⊗ U∨

5 ) = U∨
5 (−1) ⊕ ∧3U5 ⊗ U∨

5 (1) ⊕ U5 ⊗ U∨
5 (1) to deduce that

∧3U5 ⊗ U∨
5 (t) ∈ D5 for t ∈ [2, 5]. The cases j = 2 and j = 4 can be dealt with in parallel. Indeed one can

use the decomposition ss(S− ⊗ U∨
5 ) = U∨

5 (1) ⊕ ∧2U5 ⊗ U∨
5 (1) ⊕ ∧4U5 ⊗ U∨

5 (1) to deduce that, if t ∈ [1, 6]
then: ∧2U5 ⊗ U∨

5 (t) ∈ D5 if and only if ∧4U5 ⊗ U∨
5 (t) ∈ D5.

Finally, we want to prove for instance that ∧2U5 ⊗ U∨
5 (2) ∈ D5. For this the exact complex appearing in

Proposition 4.2 is crucial (Section 4.2 is independent of this proof, so we can use the results therein). Indeed
from that complex one deduces that R5(t) ∈ D5 for t ∈ [0, 5], which in turn implies that Uω1+ω2

5 (t) ∈ D5 for
t ∈ [0, 3]. Then, using the decomposition ss(∧2U∨

5 ⊗ V10) = Uω1+ω2
5 ⊕ ∧3U∨

5 ⊕ U∨
5 ⊕ Uω2+ω4

5 (−2), we obtain
that Uω2+ω4

5 (t) ∈ D5 for t ∈ [−2, 1]. Notice also that previously we showed that U5 ⊗ U∨
5 (t) = OY (t) ⊕

Uω1+ω4
5 (t−2) ∈ D5 for t ∈ [2, 5], so Uω1+ω4

5 (t) ∈ D5 for t ∈ [0, 3]. These two facts imply that Uω1+ω3
5 (t) ∈ D5

for t = 0, 1 because of the decomposition ss(Uω1+ω4
5 (−2) ⊗ V10) = Uω1+ω3

5 (−2) ⊕ Uω2+ω4
5 (−2) ⊕ U5 ⊕ U∨

5 .
Then from the decomposition ss(∧2U5 ⊗ U∨

5 ) = Uω1+ω3
5 (−2) ⊕ U5 we deduce that ∧2U5 ⊗ U∨

5 (t) ∈ D5 for
t = 2, 3. □
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Remark 3.3. Theorem 3.2 was already known from [Kuz06, Section 6.2]. The proof given here is more
direct and corresponds better to our approach.

4. Dissecting Spin bundles

In this section, we look more closely to the vector bundles on X = OG(5, 12)+ induced by the spinor
representations. The main goal is to prove Proposition 4.2 and 4.3, which in turn will be used in Section 5
in view of showing fullness of our collection. We ofter abbreviate OX to O.

4.1. The Spin representations. In the following we will recall a selection of generalities about the Clifford
algebra and Spin representations that can be found, for instance, in [Mei13]. Let us begin with an even
dimensional vector space V endowed with a non-degenerate symmetric form q. The Clifford algebra is
defined as the quotient of the tensor algebra V ⊗ by all relations of the form v⊗ v− q(v, v) for v ∈ V . Notice
that both V and ∧2V ≃ soV embed inside the Clifford algebra.

4.1.1. The Spin representation and exterior powers. Let us fix a maximal isotropic subspace U of V . Any
other maximal isotropic subspace intersecting U transversally can be identified through q with U∨; we thus
get a decomposition of V = U ⊕U∨. The Spin representations can be identified, as vector spaces, as follows:

S+ := ∧+U∨ =
⊕
i

∧2iU∨,

S− := ∧−U∨ =
⊕
i

∧2i+1U∨.

There is a natural action
η± := V ⊗ S± → S∓

defined as follows: η±(v ⊗ ω) = v ∧ ω if v ∈ U∨ and η±(v ⊗ ω) = v⌟ω if v ∈ U , where ⌟ is the contraction.
This induces an action of the Clifford algebra, and hence of soV , on S±, which endows this vector space
with a structure of Spin-representation; S± are the so-called Spin representations. It turns out that, if the
dimension of V is 2n, then (S±)∨ = S(−1)n± as representations. Moreover if n is odd then S+ = V ω5 and
S− = V ω6 while if n is even then S+ = V ω6 and S− = V ω5 . Notice moreover that the action η± naturally

induces a Spin-equivariant morphism η⊗i
± : V ⊗i⊗S± → S(−1)i±, and thus also a Spin-equivariant morphism

∧iη± : ∧iV ⊗ S± → S(−1)i±.

In the following we want to use the morphism ∧iη± to construct some exact complexes on Spin2n /Pn for
n = 5, 6. Before doing so, we will recall basic linear algebra facts in order to explain how to rewrite ∧iη± as

a morphism ξ : S± ⊗ (S(−1)i±)∨ → ∧iV ∨ ≃ ∧iV .

4.1.2. Linear algebra digression. Let us begin with a linear morphism u : A ⊗ B → C for three vector
spaces A,B,C. This means that u ∈ A ⊗ B ⊗ C∨ = Hom(A ⊗ C∨, B∨), so it defines another morphism
t : A⊗ C∨ → B∨. Clearly one can recover u from t as well.

Lemma 4.1. Im(u)⊥ is identified with the subspace {x ∈ C∨ | t(a, x) = 0 ∀a ∈ A} ⊂ C∨.

Proof. Let us denote by D the above subspace. By definition of t, for any x ∈ C∨, a ∈ A and b ∈ B,
x(u(a⊗ b)) = t(a⊗ x)(b). It is straightforward to deduce that x ∈ Im(u)⊥ if and only if x ∈ D. □

4.2. Spinor bundles. Let us consider the variety Spin2n /Pn = OG+(n, 2n) which is one of the two isomor-
phic connected components of the variety parametrizing maximal isotropic subspaces of V . Let us denote by
ϵ := (n mod 2). The line bundle O(1) = Uωn

embeds Spin2n /Pn inside P(V ωn) = P(S(−1)ϵ). Thus O(1) is a
G-equivariant quotient of S(−1)ϵ ⊗O. In fact, one can construct a filtration of G-equivariant vector bundles

0 =: F0 ⊂ F1 ⊂ · · · ⊂ F⌊n⌋+ϵ := S(−1)ϵ

such that
Fi+1/Fi = (∧2i+ϵU∨)(−1).

This is the relative version of the filtration of S(−1)ϵ = ∧+U∨ given by the subspaces Fi+1 :=
∑

j≤i ∧2j+ϵU∨.

A similar filtration exists for S−(−1)ϵ ⊗O. For instance, we get that F1 = U∨(−1) is a subbundle of S− ⊗O.
This filtration was described in [Kuz08b, Proposition 6.3].
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4.2.1. An exact complex in low dimension. We will now construct an exact complex of vector spaces using
the morphisms ∧iη± when n = 5 and n = 6. We believe that this type of complexes can be generalized for
higher n and will be crucial in proving fullness of exceptional collections on Spin2n /Pn for higher n. From
now on we fix η := η+

4.2.2. The case n = 5. In this case we have the following decomposition of representations: S+ ⊗ S− =
C ⊕ ∧2V ⊕ V ω4+ω5 . This implies that there exists a unique G-equivariant morphism S+ ⊗ S− → ∧2V ,
which must then be equal to ∧2η (notice that (S−)∨ = S+ since n is odd). As a consequence of BBW
H0(U(1)) = S− and thus there exists a unique G-equivariant morphism U∨(−1) ⊗ S+ → ∧2V . This
morphism must then be the composition ∧2η ◦ (i ⊗ id) where i is the inclusion i : U∨(−1) → S− ⊗ O. All
in all we get a G-equivariant morphism ∧2η ◦ (i⊗ id) : U∨(−1)⊗ S+ → ∧2V . The aim of this section is to
prove the following:

Proposition 4.2. There exists a G-equivariant extension

0 → U∨(−2) → R5 → Uω1+ω2(−2) → 0

and a G-equivariant exact complex of vector bundles

0 → R5 → U∨(−1)⊗ S+ → ∧2V ⊗ O → ∧2U∨ → 0,

where the central map is ∧2η ◦ (i⊗ id).

Proof. The morphism ∧2V ⊗ O → ∧2U∨ above is the natural projection induced by the exact sequence

0 → U → V ⊗ O → U∨ → 0.

Since this map, as well as ∧2η ◦ (i⊗ id), is a G-equivariant morphism of G-homogeneous vector bundles, it
is sufficient to restrict to any fiber of Spin10 /P5 to prove exacteness. More precisely we will show that, if
[U ] ∈ Spin10 /P5, the induced complex of vector spaces

(U∨(−1)⊗ S+)|[U ] → (∧2V ⊗ O)|[U ] → (∧2U∨)|[U ] → 0 (4.1)

is exact. From this it will follow that the complex

U∨(−1)⊗ S+ → ∧2V ⊗ O → ∧2U∨ → 0

is exact. The result will then follow by noticing that, since ss(U∨(−1) ⊗ S+) = U∨(−2) ⊕ Uω1+ω2
(−2) ⊕

∧3U∨(−2) ⊕ sl(U) ⊕ O and ss(∧2V ) = ∧2U ⊕ O ⊕ sl(U) ⊕ ∧2U∨, the semisimple reduction of the kernel of
∧2η ◦ (i⊗ id) is necessarily equal to U∨(−2)⊕ Uω1+ω2(−2).

Let [U ] ∈ Spin10 /P5 be any point. Then (U∨(−1))|[U ] ≃ U∨ is a subspace of (S− ⊗ O)|[U ] = S− =⊕
i ∧2i+1U∨ - here the last equality only holds as an equality of L(P5)-representations. Following the linear

algebra digression, the morphism ξ ◦ (i⊗ id) corresponds to the morphism ∧iη ◦ (i⊗ id). Moreover, letting

t := (∧2η ◦ (i⊗ id))[U ] : U
∨ ⊗ ∧2V ∨ → S− =

⊕
i

∧2i+1U∨

and

u := (ξ ◦ (i⊗ id))[U ] : U
∨ ⊗ S+ → ∧2V

and applying Lemma 4.1, we deduce the following:

Im(u)⊥ = {v ∈ ∧2V ∨ | ∀f ∈ U∨ ⊂ S− =
⊕
i

∧2i+1U∨, t(f ⊗ v) = 0} ⊂ ∧2V ∨.

We bothered going through all of this because we have a very explicit description of the map t, which is the
one induced by η; let us see how to use it. First notice that t is a P5-equivariant morphism, so in particular
let us treat it as a L(P5)-equivariant morphism. Thus we can decompose ∧2V = ∧2U ⊕ (U ⊗U∨)⊕∧2U∨ =
∧2U ⊕ C ⊕ sl(U) ⊕ ∧2U∨. By L(P5)-equivariance, each of these factors is either completely contained in
Im(u)⊥ or does not intersect non-trivially Im(u)⊥. In order to distinguish the two cases it is thus sufficient
to decide whether a non-zero vector in a given factor belongs to Im(u)⊥ or not. We thus have four cases to
deal with. We will denote by u1, . . . , u5 a basis of U and by w1, . . . , w5 the dual basis. We will denote by
uij = ui ∧ uj and by wij = wi ∧ wj ; δi,j will denote Kronecker’s delta.
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∧2U : Let 0 ̸= uij ∈ ∧2U and wk ∈ U∨. Then t(wk ⊗ uij) = ui⌟(uj⌟wk) − uj⌟(ui⌟wk) = 0, for any
k = 1, . . . , 5, so ∧2U ⊂ Im(u)⊥.

C: Let 0 ̸=
∑

i ui∧wi ∈ C ⊂ ∧2V and wk ∈ U∨. Then t(wk⊗(
∑

i ui∧wi)) =
∑

i(ui⌟(wik)−δi,kwk) =∑
i((1− δi,k)wk − δi,kwk) =

∑
i(1− 2δi,k)wk = 2wk ̸= 0, so C ∩ Im(u)⊥ = 0.

sl(U): Let 0 ̸= ui ∧wj ∈ sl(U) for i ̸= j, and wk ∈ U∨. Then t(wk ⊗ui ∧wj) = ui⌟(wjk)− (ui⌟wk)wj =
−2δi,kwk ̸= 0, so sl(U) ∩ Im(u)⊥ = 0.

∧2U∨: Let 0 ̸= wij ∈ ∧2U∨ and wk ∈ U∨. Then t(wk ⊗ wij) = wijk ̸= 0, so ∧2U∨ ∩ Im(u)⊥ = 0.

The previous computations imply that Im(u)⊥ = ∧2U ⊂ ∧2V ≃ ∧2V ∨. This is equivalent to the fact that
Im(u) is the kernel of ∧2V → ∧2U∨. Moreover the latter morphism is clearly surjective, so we deduce that
the complex in (4.1) is exact. The statement of the proposition follows. □

4.2.3. The case n = 6. In this case we have the following decomposition of representations: S+ ⊗ S− =
V ⊕ ∧3V ⊕ V ω5+ω6 . This implies that there exists a unique G-equivariant morphism S+ ⊗ S− → ∧3V ,
which must then be equal to ∧3η (notice that (S+)∨ = S+ since n is even). As a consequence of the BBW
Theorem H0(U(1)) = S− and thus there exists a unique G-equivariant morphism U∨(−1) ⊗ S+ → ∧3V .
This morphism must then be the composition ∧3η ◦ (i⊗ id) where i is the inclusion i : U∨(−1) → S− ⊗ O.
All in all we get a G-equivariant morphism ∧3η ◦ (i⊗ id) : U∨(−1)⊗ S+ → ∧3V . The aim of this section is
to prove an analogue of Proposition 4.2. In order to do so, let us begin by defining the vector bundle T as
the cokernel of the unique G-equivariant inclusion U∨ → V ⊗ ∧2U∨; we thus have an exact sequence

0 → U∨ → V ⊗ ∧2U∨ → T → 0.

Proposition 4.3. There exists a G-equivariant extension R6 whose semisimple reduction is

ss(R6) = U∨(−2)⊕ Uω1+ω2
(−2)

and a G-equivariant exact complex of vector bundles

0 → R6 → U∨(−1)⊗ S+ → ∧3V ⊗ O → T → Uω1+ω2 → 0,

where the second map is ∧3η ◦ (i⊗ id).

Proof. The morphism ∧3V ⊗O → T is the unique G-equivariant morphism and it is the one induced on the
quotient from the natural one ∧3V ⊗O → V ⊗∧2U∨. Since the cokernel of the latter is Uω1+ω2

, this is also
the cokernel of the former. Since the morphism ∧2η ◦ (i⊗ id) is a G-equivariant morphism of G-homogeneous
vector bundles, it is sufficient to restrict to any fiber of X to prove exactness, as we did in the proof of
Proposition 4.2. More precisely we will show that, if [U ] ∈ X, the induced complex of vector spaces

(U∨(−1)⊗ S+)|[U ] → (∧3V ⊗ O)|[U ] → T |[U ]

is exact. From this it will follow that the complex

U∨(−1)⊗ S+ → ∧3V ⊗ O → T → Uω1+ω2
→ 0

is exact. The result will then follow by noticing that, since ss(U∨(−1) ⊗ S+) = U∨(−2) ⊕ Uω1+ω2(−2) ⊕
∧3U∨(−2)⊕Uω1+ω4(−2)⊕U⊕U∨ and ss(∧3V ) = ∧3U⊕Uω1+ω4(−2)⊕U⊕Uω2+ω5(−2)⊕U∨ ⊕∧3U∨, the
semisimple reduction of the kernel of ∧3η ◦ (i⊗ id) is necessarily equal to U∨(−2)⊕ Uω1+ω2

(−2).

Let [U ] ∈ X be any point. Then (U∨(−1))|[U ] ≃ U∨ is a subspace of (S− ⊗ O)|[U ] = S− =
⊕

i ∧2i+1U∨

as L(P6)-representations. Letting

t := (∧3η ◦ (i⊗ id))[U ] : U
∨ ⊗ ∧3V ∨ → S+ =

⊕
i

∧2iU∨

and
u := (ξ ◦ (i⊗ id))[U ] : U

∨ ⊗ S+ → ∧3V

and applying Lemma 4.1, we deduce the following:

Im(u)⊥ = {v ∈ ∧3V ∨ | ∀f ∈ U∨ ⊂ S− =
⊕
i

∧2i+1U∨, t(f ⊗ v) = 0} ⊂ ∧3V ∨.

Since we can treat everything as L(P6)-equivariant/homogeneous, we can decompose ∧3V = ∧3U⊕Uω1+ω4⊕
U ⊕ Uω2+ω5 ⊕ U∨ ⊕ ∧3U∨ (here, by abuse of notation, we denoted by Uω the SL(U)-representation with
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highest weight ω). By L(P6)-equivariance, each of these factors is either completely contained in Im(u)⊥

or it does not intersect non-trivially Im(u)⊥. In order to distinguish the two cases it is thus sufficient to
decide whether a non-zero vector in a given factor belongs to Im(u)⊥ or not. We thus have six cases to
deal with. We will denote by u1, . . . , u6 a basis of U and by w1, . . . , w6 the dual basis. We will denote by
uijk = ui ∧ uj ∧ uk, uij = ui ∧ uj , wij = wi ∧wj and wijk = wi ∧wj ∧wk; δi,j will denote Kronecker’s delta.

∧3U : Let 0 ̸= uijk ∈ ∧3U and wh ∈ U∨. Then t(wh ⊗ uijk) = uij⌟(uk⌟wk) − uik⌟(uj⌟wh) +
uij⌟(uk⌟wh) = 0, for any k = 1, . . . , 6, so ∧3U ⊂ Im(u)⊥.

Uω1+ω4 : Let 0 ̸= uij ∧ wk ∈ Uω1+ω4 for i ̸= k and j ̸= k, and wh ∈ U∨. Then t(wh ⊗ uij ∧ wk) =
uij⌟(wkh)− (ui⌟wk)(uj⌟wh) + (uj⌟wk)(ui⌟wh) = 0, so Uω1+ω4 ⊂ Im(u)⊥.

U : Let 0 ̸=
∑

i uij ∧ wj ∈ U ⊂ ∧3V and wh ∈ U∨. Then t(wh ⊗ (
∑

i uij ∧ wj)) =
∑

i(uij⌟wjh −
(ui⌟wj)(uj⌟wh) + (uj⌟wj)(ui⌟wh)) =

∑
i(−2δi,h + δi,h) ̸= 0, so U ∩ Im(u)⊥ = 0.

U∨: Let 0 ̸=
∑

i ui ∧ wij ∈ U∨ ⊂ ∧3V and wh ∈ U∨. Then t(wh ⊗ (
∑

i ui ∧ wij)) =
∑

i(ui⌟wijh −
wi ∧ (ui⌟wjh) + wj ∧ (ui⌟wih)) =

∑
i(2wjh + δi,hwij) =

∑
i wjh ̸= 0, so U∨ ∩ Im(u)⊥ = 0.

Uω2+ω5 : Let 0 ̸= ui ∧ wjk ∈ Uω2+ω5 for i ̸= j and i ̸= k, and wh ∈ U∨. Then t(wh ⊗ ui ∧ wjk) =
ui⌟(wjkh)− wj ∧ (ui⌟wkh) + wjk(ui⌟wh) = 3δi,hwjk ̸= 0, so Uω2+ω5 ∩ Im(u)⊥ = 0.

∧3U∨: Let 0 ̸= wijk ∈ ∧3U∨ and wh ∈ U∨. Then t(wh ⊗ wijk) = wijkh ̸= 0, so ∧3U∨ ∩ Im(u)⊥ = 0.

The previous computations imply that Im(u)⊥ = ∧3U ⊕ Uω4+ω1 ⊂ ∧3V ≃ ∧3V ∨. This is equivalent to the
fact that Im(u) is the kernel of ∧3V → (T )|[U ]. The statement of the proposition follows. □

4.2.4. Complete orthogonality. Here we show the following result. Set:

Q′ = L⟨B⟩(Q).

Proposition 4.4. The exceptional bundles Q and Q′(1) are completely orthogonal.

Proof. We know that Q′(1) is an exceptional object that Ext•X(Q′(1), Q) = 0, so we have to check that Q′

is concentrated in degree 0 and that Ext•X(Q,Q′(1)) = 0. First we check that:

Ext•X(P,Q) = HomX(P,Q) = V ω1 . (4.2)

To see this, recall (2.3) and use that (Uω1
, P ) is exceptional to get, for all p ≥ 0:

ExtpX(P,Q) ≃ ExtpX(P,Uω1+ω2).

Next, apply HomX(−,Uω1+ω2
) to the sequence (2.2) defining P and work as in Lemma 2.2 to show that :

Ext•X(OX ,Uω1+ω2
) = H0(Uω1+ω2) ≃ V ω1+ω2 ,

Ext>0
X (Uω2

,Uω1+ω2
) = Ext1X(Uω2

,Uω1+ω2
) ≃ H1(Uω1+ω2+ω4

(−2)) ≃ V ω1+ω2 ,

HomX(Uω2 ,Uω1+ω2) = H0(Uω1) ≃ V ω1 .

Hence (4.2) holds if and only if the cup-product map below is non-degenerate:

Ext1X(Uω2
,OX)⊗HomX(OX ,Uω1+ω2

) → Ext1X(Uω2
,Uω1+ω2

)

However, by the above analysis, using the notation of the proof of Lemma 2.2, this map is the cup-product

H1(Lω4−2ω6
)⊗H0(Lω1+ω2

) → H1(Lω1+ω2+ω4−2ω6
)

and therefore it is non-degenerate by [DR17]. So (4.2) is proved. The resulting evaluation map V ω1 ⊗P → Q
is surjective, as it results by tensoring (2.2) by V ω1 and considering the evaluation map to (2.3); more precisely
LP (Q) is an exceptional homogeneous bundle fitting into:

0 → U∨
ω1

→ LP (Q) → N → 0, with 0 → Uω1

α−→ N → K → 0, (4.3)

where K is the kernel of the map T → Uω1+ω2
of Proposition 4.3. Note that N fits into:

0 → N → V ω1 ⊗ Uω2 → Uω1+ω2 → 0. (4.4)

Next, we show that Uω1
is completely orthogonal to LP (Q), so we need to prove

Ext•X(Uω1 ,LP (Q)) = 0. (4.5)

Using (4.3) and (4.4), one checks that (4.5) is proved once we show that α induces a non-zero map:

Ext1X(N,U∨
ω1
) → Ext1X(Uω1

,U∨
ω1
) (4.6)
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To achieve this, first note that, as a consequence of the definition of K in terms of T and the definition
of T , K is an extension

0 → Uω2+ω5
(−1) → K → Uω3

→ 0.

Next, we work as in the proof of Lemma 2.1 to check:

Ext•X(Uω2+ω5
(−1),U∨

ω1
) = Ext1X(Uω2+ω5

(−1),U∨
ω1
) ≃ H1(Uω4

(−2)) ≃ H1(ΩX) ≃ C,

Ext•X(Uω3
,U∨

ω1
) = Ext2X(Uω3

,U∨
ω1
) ≃ H2(Uω3+ω5

(−3)) ≃ H2(Ω2
X) ≃ C,

Ext1X(Uω3 ,Uω2+ω5(−1)) ≃ H1(Uω4(−2)) ≃ H1(ΩX) ≃ C.

Then, Ext•X(K,U∨
ω1
) vanishes if and only the following cup-product map is non-degenerate:

Ext1X(Uω3 ,Uω2+ω5(−1))⊗ Ext1X(Uω2+ω5(−1),U∨
ω1
) → Ext2X(Uω3 ,U

∨
ω1
)

But from we have just seen this map is the cup-product in cohomology:

H1(ΩX)⊗H1(ΩX) → H2(Ω2
X),

and therefore it is non-degenerate. This proves Ext•X(K,U∨
ω1
) = 0.

Now we can check that (4.6) is non-zero. Indeed, assume it was. Then α induces an exact sequence :

0 → Uω1
⊕ U∨

ω1
→ LP (Q) → K → 0.

But then, since Ext1X(K,U∨
ω1
) = 0, U∨

ω1
is a direct summand of LP (Q), which cannot happen since LP (Q) is

exceptional.
We have now proved (4.5). Moreover, we get that α induces a diagram:

0

��

0

��
U∨

ω1

��

U∨
ω1

��
0 // V ω1 ⊗ OX

��

// LP (Q) //

��

K // 0

0 // Uω1

α //

��

N //

��

K //

��

0

0 0 0

The leftmost column is the tautological sequence (5.5) because the cup-product above is non-degenerate and
thus (4.5) is proved. Moreover we get, from the previous diagram:

Q′ = L⟨B⟩(Q) ≃ LOX
(LP (Q)) ≃ LOX

(K).

Finally using the definition of K we check H•(K) = H0(K) = V ω3 hence, by Proposition 4.3, Q′ is concen-
trated in degree 0 and we obtain:

Q′(1) ∈ ⟨Uω1(−1),Uω1+ω2(−1),Uω1⟩.

Therefore, using Lemma 2.4 and (2.3) we get Ext•X(Q,Q′(1)) = 0. □

Remark 4.5. One can actually prove that the bundle R6 appearing in Proposition 4.3 satisfies:

R6 ≃ Q(−2) ≃ LUω1
(−1)(L⟨B⟩(Q)).

Indeed, we checked that K ≃ L⟨B⟩(Q) and one can prove Ext•X(Uω1
(−1),K) ≃ Vω5

, so R6 ≃ LUω1
(−1)(K) is

exceptional, hence indecomposable, so by Proposition 4.3 it must be isomorphic to Q(−2).
13



5. Generating more objects

We come back to X = Spin12 /P6. The goal of this section is to show that the exceptional full triangulated
subcategory D of Db(X) generated by the exceptional Lefschetz collection of Section 3 contains a bunch of
vector bundles, which will be needed in the proof that D⊥ = 0. From (2.13) we immediately have

O(t) ∈ D for t ∈ [0, 9], (5.1)

U∨(t) ∈ D for t ∈ [0, 9], (5.2)

∧2U∨(t) ∈ D for t ∈ [0, 9], (5.3)

Σ2,1U∨(t) ∈ D for t ∈ [0, 1]. (5.4)

Often we are going to use the tautological exact sequence

0 → U → V ⊗ O → U∨ → 0. (5.5)

Twisting (5.5) by O(t) with t ∈ [0, 9] and using (5.1), (5.2) we immediately obtain

U(t) ∈ D for t ∈ [0, 9]. (5.6)

We also note that for j ∈ [0, 6] we have isomorphisms

∧jU∨ ≃ ∧6−jU(2) and ∧j U ≃ ∧6−jU∨(−2).

Lemma 5.1. Seeing the spinor representations Vω5 and Vω6 as vector bundles on X, we have:

i) the vector bundle Vω5 ⊗ O has an increasing filtration, whose factors are of the form

∧2i+1 U∨(−1) for t ∈ [0, 2]

ii) the vector bundle Vω6 ⊗ O has an increasing filtration, whose factors are of the form

∧2i U∨(−1) for t ∈ [0, 3]

Proof. This follows from [Kuz08b, Proposition 6.3] (and is the same filtration F• described in Section 4.2). □

As a corollary we obtain the following.

Corollary 5.2. We have

∧jU∨(t) ∈ D for


t ∈ [0, 9] if j ∈ [0, 2],

t ∈ [0, 7] if j ∈ [3, 4],

t ∈ [−2, 7] if j = 5,

t ∈ [−2, 7] if j = 6.

(5.7)

Proof. Cases with j ∈ [0, 2] we have already considered. We treat each j ∈ [3, 6] separately.

(1) Case j = 3. Twisting Vω5 ⊗ O by O(t) with t ∈ [1, 8], using Lemma 5.1, the isomorphism U(1) =
∧5U∨(−1), (5.1),(5.2),(5.6), we obtain the claim.

(2) Case j = 4. Twisting Vω6 ⊗ O by O(t) with t ∈ [1, 8], using Lemma 5.1, (5.1),(5.3), we obtain the
claim.

(3) Case j = 5. Twisting the isomorphism U(2) = ∧5U∨ by O(t) with t ∈ [−2, 7] and using (5.6), we
obtain the claim.

(4) Case j = 6. Since ∧6U∨ = det(U∨) = O(2), the claim follows from (5.1).

□

Lemma 5.3. We have

SjU∨(t) ∈ D for

{
t ∈ [0, 9] if j ∈ [0, 1],

t ∈ [2, 9] if j ≥ 2.
(5.8)
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Proof. For j ∈ [0, 1] the statement are known by (5.1) and (5.2).

Case j = 2. From (5.5) we obtain the exact sequence

0 → ∧2U → ∧2V ⊗ O → V ⊗ U∨ → S2U∨ → 0.

Twisting this sequence by O(t) with t ∈ [2, 9], using (5.1), (5.2), the isomorphism ∧2U = ∧4U∨(−2), (5.7),
we see that all the terms of the sequence except for S2U∨(t) are contained in D. Hence, the same holds for
S2U∨(t).

Cases j ≥ 3. We argue by induction. For each j ≥ 3 we consider the exact sequence

0 → ∧jU → ∧jV ⊗ O → ∧j−1V ⊗ U∨ → ∧j−2V ⊗ S2U∨ → · · · → V ⊗ Sj−1U∨ → SjU∨.

All the middle terms twisted by O(t) with t ∈ [2, 9] are contained in D by the induction assumption. For
j ∈ [3, 6] the term ∧jU(t) = ∧6−jU∨(t− 2) is also in D for t ∈ [2, 9] by (5.7). For j ≥ 7 this term vanishes.
Hence, the claim follows. □

Lemma 5.4. We have

S2U(t) ∈ D for t ∈ [0, 9], (5.9)

U⊗ U∨(t) ∈ D for t ∈ [2, 9], (5.10)

U∨ ⊗ U∨(t) ∈ D for t ∈ [2, 9]. (5.11)

Proof. From (5.5) we get an exact sequence

0 → S2U → S2V ⊗ O → V ⊗ U∨ → ∧2U∨ → 0.

Twisting this sequence by O(t) with t ∈ [0, 9] and using (5.1), (5.2), (5.7) we obtain (5.9).

One can reformulate (5.5) by saying that the bundle V ⊗O has a filtration with factors U and U∨. Then,
taking symmetric square, we obtain on S2V ⊗O a filtration with factors S2U,U⊗U∨, S2U∨. Twisting it by
O(t) with t ∈ [2, 9], using (5.1), (5.9), and (5.8), we get (5.10).

Finally, tensoring (5.5) with U∨ we get 0 → U⊗U∨ → V ⊗U∨ → U∨ ⊗U∨ → 0. Together with (5.2) and
(5.10) it implies (5.11). □

Recall that from Proposition 4.3 and Remark 4.5 we have the exact sequence

0 → Q(−2) → U∨(−1)⊗ S+ → ∧3V ⊗ O → T → Σ2,1U∨ → 0,

with T defined by 0 → U∨ → V ⊗∧2U∨ → T → 0. Twisting this sequence by O(2) and using (5.1)-(5.4), we
obtain Σ2,1U∨(2) ∈ D. Iterating this process one shows

Σ2,1U∨ ∈ D for t ∈ [0, 9]. (5.12)

Lemma 5.5. We have

∧2 U⊗ U∨(t) ∈ D for t ∈ [2, 9], (5.13)

∧2 U⊗ U(t) ∈ D for t ∈ [2, 9], (5.14)

U∨ ⊗ ∧2U∨(t) ∈ D for t ∈ [0, 7], (5.15)

U⊗ ∧2U∨(t) ∈ D for t ∈ [0, 7]. (5.16)

Proof. To show (5.13) we consider the exact sequence

0 → ∧2U → ∧2V ⊗ O → V ⊗ U∨ → S2U∨ → 0

obtained from (5.5). Tensoring it by U∨ we obtain the exact sequence

0 → ∧2U⊗ U∨ → ∧2V ⊗ U∨ → V ⊗ U∨ ⊗ U∨ → S2U∨ ⊗ U∨ → 0.

Note that we have
U∨ ⊗ U∨ = ∧2U∨ ⊕ S2U∨,

S2U∨ ⊗ U∨ = S3U∨ ⊕ Σ2,1U∨.

Twisting by O(t) with t ∈ [2, 9] and using (5.7), (5.8), (5.12) we obtain the claim.
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To show (5.14) we tensor the exact sequence (5.5) by ∧2U and get the exact sequence

0 → U⊗ ∧2U → V ⊗ ∧2U → U∨ ⊗ ∧2U → 0.

Twisting by O(t) with t ∈ [2, 9], using the isomorphism ∧2U = ∧4U∨(−2), (5.7), (5.13) we get the claim.

To show (5.15) we note

U∨ ⊗ ∧2U∨ ≃ ∧3U∨ ⊕ Σ2,1U∨.

Twisting by O(t) with t ∈ [0, 7], using (5.12) and (5.7) we obtain the claim.

To show (5.16) we tensor the exact sequence (5.5) by ∧2U∨ to get

0 → U⊗ ∧2U∨ → V ⊗ ∧2U∨ → U∨ ⊗ ∧2U∨ → 0.

Twisting by O(t) with t ∈ [0, 7], using (5.15) and (5.7) we obtain the claim. □

At this point we have proved the following.

Corollary 5.6. We have:

i) U∨ ⊗ ∧0U∨(t) ∈ D for t ∈ [0, 9],
ii) U∨ ⊗ ∧1U∨(t) ∈ D for t ∈ [2, 9],
iii) U∨ ⊗ ∧2U∨(t) ∈ D for t ∈ [0, 7],
iv) U∨ ⊗ ∧4U∨(t) ∈ D for t ∈ [0, 7],
v) U∨ ⊗ ∧5U∨(t) ∈ D for t ∈ [0, 7],
vi) U∨ ⊗ ∧6U∨(t) ∈ D for t ∈ [−2, 7].

Proof. We already proved these statements. Indeed, i) is (5.2), ii) is (5.11), iii) is (5.15), iv) follows from
U∨ ⊗∧4U∨(t) ≃ U∨ ⊗∧2U(t+ 2) and (5.13), v) follows from U∨ ⊗∧5U∨(t) ≃ U∨ ⊗U(t+ 2) and (5.10) and
vi) follows from ∧6U∨ ≃ O(2). □

Thus, we are still missing the objects U∨ ⊗ ∧3U∨(t), and the range of t for U∨ ⊗ U∨(t) needs to be
extended. This is our next goal.

Lemma 5.7. We have

U∨ ⊗ ∧3U∨(t) ∈ D for t ∈ [2, 7], (5.17)

U⊗ ∧3U∨(t) ∈ D for t ∈ [2, 7], (5.18)

U∨ ⊗ ∧3U(t) ∈ D for t ∈ [4, 9]. (5.19)

Proof. To show (5.17) we proceed as follows. By Lemma 5.1 we have

V ω5 ⊗ O = [U∨(−1), ∧3U∨(−1), ∧5U∨(−1) = U(1)].

Tensoring it by U∨ we get

V ω5 ⊗ U∨ = [U∨ ⊗ U∨(−1), ∧3U∨ ⊗ U∨(−1), U⊗ U∨(1)].

Twisting it by O(t) with t ∈ [3, 8] and using (5.2), (5.10), (5.11) we obtain the claim.

To show (5.18) one can tensor the exact sequence (5.5) by ∧3U∨ to get

0 → U⊗ ∧3U∨ → V ⊗ ∧3U∨ → U∨ ⊗ ∧3U∨ → 0.

Now we twist by O(t) with t ∈ [2, 7] and use (5.17) and (5.7).

To show (5.19) we use the inclusion (5.17) and the isomorphism ∧3U∨ = ∧3U(2). □

Lemma 5.8. We have

∧2U⊗ ∧2U∨(t) ∈ D for t ∈ [4, 7], (5.20)

∧2U∨ ⊗ ∧2U∨(t) ∈ D for t ∈ [2, 5]. (5.21)
16



Proof. To show (5.20) we consider the filtration

∧4V ⊗ O = [∧2U∨(−2), ∧3U⊗ U∨, ∧2U⊗ ∧2U∨, U⊗ ∧3U∨, ∧4U∨].

Twisting by O(t) with t ∈ [4, 7] and using (5.1), (5.7), (5.18), (5.19) we get the claim.

To show (5.21) we consider the filtration of Lemma 5.1

V ω6 ⊗ O = [O(−1), ∧2U∨(−1), ∧2U(1), O(1)],

where we have used the isomorphisms ∧4U∨(−1) = ∧2U(1) and ∧6U∨(−1) = O(1). Tensoring it by ∧2U∨

we get
V ω6 ⊗ ∧2U∨ = [∧2U∨(−1), ∧2U∨ ⊗ ∧2U∨(−1), ∧2U⊗ ∧2U∨(1), ∧2U∨(1)].

Twisting it by O(t) with t ∈ [3, 6] and using (5.7), (5.20) we obtain the claim. □

Lemma 5.9. We have

Σ3,1U∨(t) ∈ D for t ∈ [2, 9], (5.22)

Σ2,1,1U∨(t) ∈ D for t ∈ [2, 7], (5.23)

Σ2,2U∨(t) ∈ D for t ∈ [2, 7]. (5.24)

Proof. Our first step is to note that by the Littlewood-Richardson rule we have

U∨ ⊗ ∧3U∨ = Σ2,1,1U∨ ⊕ ∧4U∨,

∧2U∨ ⊗ ∧2U∨ = Σ2,1,1U∨ ⊕ Σ2,2U∨ ⊕ ∧4U∨.

Hence, by (5.7) inclusions (5.17) and (5.21) immediately imply

Σ2,1,1U∨(t) ∈ D for t ∈ [2, 7], (5.25)

Σ2,2U∨(t) ∈ D for t ∈ [2, 5]. (5.26)

This proves (5.23), but it is not quite enough to prove (5.24).

Our second step is to deal with Σ3,1U∨. Let us consider the exact sequence

0 → ∧3U → ∧3V ⊗ O → ∧2V ⊗ U∨ → V ⊗ S2U∨ → S3U∨ → 0

obtained from (5.5). After twisting by O(2) and using the isomorphism ∧3U = ∧3U∨(−2) we rewrite the
above sequence as

0 → ∧3U∨ → ∧3V ⊗ O(2) → ∧2V ⊗ U∨(2) → V ⊗ S2U∨(2) → S3U∨(2) → 0.

Tensoring it by U∨ we obtain the exact sequence

0 → ∧3U∨ ⊗ U∨ → ∧3V ⊗ U∨(2) → ∧2V ⊗ U∨ ⊗ U∨(2) →
→ V ⊗ S2U∨ ⊗ U∨(2) → S3U∨ ⊗ U∨(2) → 0.

Now we note that by the Littlewood-Richardson rule we have

S2U∨ ⊗ U∨ = S3U∨ ⊕ Σ2,1U∨ and S3U∨ ⊗ U∨ = S4U∨ ⊕ Σ3,1U∨

Therefore, tensoring the above sequence by O(t) with t ∈ [2, 7] and using (5.17), (5.2), (5.11), (5.8), (5.12),
we conclude

Σ3,1U∨(t) ∈ D for t ∈ [4, 9]. (5.27)

It is not quite enough for (5.22), but we are going to fix this soon.

As third step we proceed as follows. Recall again the exact sequence from Proposition 4.3 and Remark
4.5

0 → Q(−2) → U∨(−1)⊗ S+ → ∧3V ⊗ O → T → Σ2,1U∨ → 0. (5.28)

Using the Littlewood-Richardson rule and the definitions of P and Q we have

ss(P ⊗ U∨) = U∨ ⊕ ∧3U∨ ⊕ Σ2,1U∨

and
ss(Q⊗ U∨) = Σ3,1U∨ ⊕ Σ2,2U∨ ⊕ Σ2,1,1U∨ ⊕ S2U∨ ⊕ ∧2U∨.
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Hence, for P ⊗ U∨ we have

P ⊗ U∨(t) ∈ D for t ∈ [0, 7], (5.29)

as each individual factor is contained in D by (5.12) and (5.7).
In the same way we have

Q⊗ U∨(t) ∈ D for t ∈ [4, 5], (5.30)

as each individual factor is contained in D by (5.7), (5.8), (5.25), (5.26), (5.27).

Tensoring (5.28) by U∨(t) with t ∈ [6, 7] and using (5.29), (5.30), (5.2), (5.11), (5.15) we conclude that
Q⊗U∨(t) ∈ D for t ∈ [6, 7]. Similarly, tensoring (5.28) by U∨(t) with t ∈ [4, 5], we conclude Q⊗U∨(t) ∈ D

for t ∈ [2, 3]. Finally, tensoring (5.28) by U∨(3), we obtain Q⊗U∨(1) ∈ D. Thus, we have shown Q⊗U∨(t) ∈
D for t ∈ [1, 7]. This inclusion, together with (5.8), (5.7), (5.25), (5.26), (5.27) allows to conclude first
that Σ2,2U∨(t) ∈ D for t ∈ [6, 7], as all the other factors are already contained in D with these twists. Then,
similarly, we conclude that Σ3,1U∨(t) ∈ D for t ∈ [2, 3]. □

Corollary 5.10. We have

∧3 U∨ ⊗ U∨(t) ∈ D for t ∈ [0, 7], (5.31)

Σ2,1,1U∨(t) ∈ D for t ∈ [0, 7], (5.32)

U∨ ⊗ U∨(t) ∈ D for t ∈ [0, 9]. (5.33)

Proof. Let us consider again the exact sequence

0 → ∧3U∨ ⊗ U∨ → ∧3V ⊗ U∨(2) → ∧2V ⊗ U∨ ⊗ U∨(2) →
→ V ⊗ S2U∨ ⊗ U∨(2) → S3U∨ ⊗ U∨(2) → 0.

as in the proof of the previous lemma. From the previous lemma, (5.7), (5.8), (5.11), (5.12), we know that all
its terms except for ∧3U∨⊗U∨ are contained in D with twists in [0, 7]. Hence, the same holds for ∧3U∨⊗U∨.

The inclusion (5.32) follows from

U∨ ⊗ ∧3U∨ = Σ2,1,1U∨ ⊕ ∧4U∨,

combined with (5.31) and (5.7).

Finally, we show (5.33). Let us consider the filtration

V ω5 ⊗ U∨ = [U∨ ⊗ U∨(−1), ∧3U∨ ⊗ U∨(−1), U⊗ U∨(1)]

provided by Lemma 5.1. Twisting it by O(t) with t ∈ [1, 2] and using (5.31), (5.10), (5.2) we obtain
U∨ ⊗ U∨(t) ∈ D for t ∈ [0, 1]. Combining this with (5.11) we get the claim. □

Lemma 5.11. For any j ∈ [0, 5] we have

U∨ ⊗ ∧jE∨(t) ∈ D for t ∈ [0, 7]. (5.34)

Proof. Let us consider the exact sequence

0 → OX → U∨ → E∨ → 0.

It implies that ∧jU∨ has a filtration with factors OX , E∨, ∧2E∨, . . . , ∧jE∨. Therefore, arguing inductively
with respect to j, if we know the inclusions

U∨ ⊗ ∧jU∨(t) ∈ D for t ∈ [0, 7], (5.35)

for all j ∈ [0, 5], then we know (5.34). Now we note that (5.35) holds by Corollary 5.6, (5.31) and (5.33). □
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6. Proof of fullness

We are now in position to prove fullness of our Lefschetz exceptional collection. Recall that this is defined
in (2.13).

Theorem 6.1. The semiorthogonal exceptional collection appearing in (2.13) is full.

Proof. Let us take an object F ∈ D⊥, i.e. we have

Ext•X(A,F ) = 0 for any A ∈ D.

Let s ∈ H0(X,E∨) be a general section and is : Ys → X the embedding of its zero locus, as in Lemma 3.1(1).
Let us consider the set of vector bundles on X defined by

Σ := {U∨(t) | t ∈ [0, 7]}.

By Lemma 5.11 for any E ∈ Σ and any j the bundle E ⊗ ∧jE∨ lies in D. Hence, we have

Ext•X(E ⊗ ∧jE∨, F ) = H•(X,∧jE⊗ E∨ ⊗ F ) = 0 for all j,

and making use of the Koszul complex

0 → ∧5E → · · · → E → OX → is∗OYs
→ 0,

we obtain

H•(X, (E∨ ⊗ F )⊗ is∗OY ) = 0.

Now, by projection formula we rewrite

H•(X, (E∨ ⊗ F )⊗ is∗OY ) = H•(Ys, is
∗ (E∨ ⊗ F )) = Ext•Y (is

∗E, is
∗F ) = 0.

Recall that Ys ≃ OG(5, 10) has two connected components Ys+ and Ys−. We denote the compositions

Ys± ⊂ Ys
is→ X by is±. Using this notation we have

Ext•Ys
(is

∗E, is
∗F ) = Ext•Ys+

(is
∗
+E, is

∗
+F )⊕ Ext•Ys−

(is
∗
−E, is

∗
−F ).

Hence, we have

Ext•Ys+
(is

∗
+E, is

∗
+F ) = 0 and Ext•Ys−

(is
∗
−E, is

∗
−F ) = 0.

Applying Lemma 3.1(2) and Theorem 3.2 we obtain is
∗
+F = 0 and is

∗
−F = 0. Hence, we conclude is

∗F = 0.
Finally, since the above argument works for any general s ∈ H0(X,E∨), by Lemma 3.1(3,4) we obtain
F = 0. □

7. A collection on the Freudenthal variety

Recall from the introduction that, in the third row of Freudenthal magic square, the homogeneous varieties
P2 × P2, G(3, 6), X = Spin12 /P6 and E7/P7 appear, so by the general philosophy of [LM01] these varieties
should share a similar geometric behaviour. Our first observation here is that Lemma 2.1 can be transposed
to E7/P7.

Lemma 7.1. On E7/P7 we have a canonical E7-equivariant exceptional extension

0 → OE7/P7
→ O → Uω1

→ 0,

with O∨(2) being the normal bundle of E7/P7 inside P(V ω7).

Proof. In the proof of Lemma 2.1 substitute: Spin12 with E7, P6 with P7, ω2 with ω1, ω6 with ω7 and P
with O; the modified proof still holds. □

Lemma 7.2. The collection ⟨OE7/P7
, O,OE7/P7

(1), O(1), . . . ,OE7/P7
(17), O(17)⟩ is exceptional.

Proof. By an application of the BBW Theorem, we get, for 1 ≤ i ≤ 17:

Ext•X(OE7/P7
(i),OE7/P7

) = Ext•X(O(i),OE7/P7
) = Ext•X(O(i), O) = 0.

Since O is a non-trivial extension of OE7/P7
and Uω1 , we also get Ext•X(O,OE7/P7

) = 0. □
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One can also define a G-equivariant extension

0 → O → P ′ → U2ω1 → 0

Let us define a numerical exceptional collection in the derived category Db(X) of any smooth projective
variety X as a collection of objects E1, . . . , Er such that χ(Ei, Ej) = 0 if i > j and χ(Ei, Ei) = 1 for all i.
Let us denote by

B′ :=
(
OE7/P7

, O, P ′) .
Moreover we will denote by Q′ the projection of Uω1+ω3

(−5) to the left orthogonal of

⟨B′, . . . ,B′(17)⟩.

Remark 7.3. Here and later on by “projection” we mean that Q′ is obtained as an extension of Uω1+ω3
(−5)

with elements in the collection (B′, . . . ,B′(17)) so that, for any element E ∈ (B′, . . . ,B′(17)), χ(E,Q′′) = 0; if
we knew that (B′, . . . ,B′(17)) were an exceptional collection, then it would be admissible and the “projection”
to its left orthogonal would be well defined. Notice however that Q′ is uniquely defined in the Grothendieck
group.

We consider the collection:

A′ :=
(
Q′,OE7/P7

, O, P ′) .
Proposition 7.4. The collection (A′,A′(1),B′(2), . . . ,B′(17)) is a numerical exceptional collection of max-
imal length, i.e. of length equal to

∑
p h

p,p(E7/P7) = 56.

Proof. The projection Q′ can be computed numerically, i.e. in the Grothendieck group of E7/P7. Let
us explain the strategy. Let us denote by R0 := Uω1+ω3

(−5) and let us define R1, R2, . . . , R54 = Q′

inductively. Write the collection (B′, . . . ,B′(17)) as (E1, . . . , E54). The object Ri+1 will be an extension of
Ri by χ(Ei+1, Ri)Ei+1(−18) in the Grothendieck group. When this process finishes, by Serre duality one
obtains an object Q′ which is by definition left orthogonal to ⟨E1, . . . , E54⟩, and one checks that χ(Q′, Q′) =
−χ(Q′(2), Q′) = 1 and χ(Q′(1), Q′) = 0. Another computation with BBW Theorem yields the numerical
exceptionality of the collection. □

Some observations are in order. Let us write the element in the Grothendieck group corresponding to Q′:

Uω1+ω3
(−5)− P ′(−7) +O(−6) + 56P ′(−6)− 1673OE7/P7

(−5)− 3137O(−5) + P ′(−5)+

−94656OE7/P7
(−4)− 56P ′(−4)− 54342OE7/P7

(−3) + 3271O(−3)− P ′(−3)− 58576OE7/P7
(−2)+

−968O(−2) + 56P ′(−2) + 54342OE7/P7
(−1)− 3137O(−1).

Notice that by general properties of mutations we also obtain another numerical exceptional collection:

(Q′,LBQ
′(1),B′,B′(1), . . . ,B′(17)) .

The peculiar fact about this collection is that its residual collection (Q′,LB′Q′(1)) is numerically com-
pletely orthogonal, meaning that χ(Q′,LB′Q′(1)) = χ(LB′Q′(1), Q′) = 0. Therefore, such a residual collec-
tion numerically satisfies Dubrovin’s refined conjecture, see [KS21b, Conjecture 1.3] and [CMP10, Corollary
1.2]. We believe that the collection above is an exceptional collection in Db(E7/P7) (of maximal length),
but we could not prove our claim due to the big number of cohomologies between Hom’s of the irreducible
factors of the extensions in play. We even suspect that the collection is full.

If the above collection has the advantage of respecting Dubrovin’s conjecture’s expectation, we will
briefly describe another numerical exceptional collection on E7/P7 which is closer to the collection
of (2.13) on Spin12 /P6. Let us begin with the usual collection

(
OE7/P7

, O, . . . ,OE7/P7
(17), O(17)

)
.

Consider the projection P of Uω3 to the left orthogonal of ⟨OE7/P7
(1), O(1), . . . ,OE7/P7

(18), O(18)⟩.
Moreover consider the projection (as in Remark 7.3) Q of Uω1+ω3

to the left orthogonal of
⟨OE7/P7

(1), O(1), P (1), . . . ,OE7/P7
(18), O(18), P (18)⟩. Let us write

B := ⟨OE7/P7
, O, P ⟩, A := ⟨OE7/P7

, O, P,Q⟩.

By a repeated application of BBW Theorem done with a Python script using [vLCL92] as in the proof of
Proposition 7.4 one obtains the following result.
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Proposition 7.5. The homogeneous bundles P and Q are numerically exceptional and the collection

D′ := (A,A(1),B(2), . . . ,B(17))

is numerically exceptional of maximal length. Moreover Q and LB(1)Q(1) are numerically completely orthog-
onal.

The computation is enclosed as an ancillary file.

Remark 7.6. Notice that in the Python script, in order to obtain the result, it was easier to work with
the projection (as in Remark 7.3) of Uω1+ω3(−9) to the left orthogonal of ⟨B,B(1), . . . ,B(17)⟩. Then Q is
easily obtained as the projection of F (9) to the left of ⟨B(1), . . . ,B(8)⟩. Similarly, if F ′ is the projection of
Uω1+ω3

(−8) to the left of ⟨B,B(1), . . . ,B(17)⟩, then LB(1)Q(1) is obtained as the projection of F ′(9) to the
left of ⟨B(1), . . . ,B(8)⟩. Since these operations preserve (numerical) orthogonality, we prove Proposition 7.5
using F and F ′.
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[Bö06] Christian Böhning, Derived categories of coherent sheaves on rational homogeneous manifolds, Doc. Math. 11 (2006),

261–331. MR 2262935

[CMP10] Pierre-Emmanuel Chaput, Laurent Manivel, and Nicolas Perrin, Quantum cohomology of minuscule homogeneous
spaces III. Semi-simplicity and consequences, Canadian Journal of Mathematics. Journal Canadien de Mathématiques
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