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Abstract

We consider the cost sharing issue resulting from the maintenance of a hazardous waste trans-
portation network represented by a sink tree. The participating agents are located on the nodes
of the network and must transport their waste to the sink through costly network portions. We
introduce the Liability rule, which is inspired by the principles applied by the courts to settle cost-
allocation disputes in the context of hazardous waste. We provide an axiomatic characterization of
this rule. Furthermore, we show that the Liability rule coincides with the Priority Shapley value,
a new allocation rule on an appropriate class of multi-choice games arising from hazardous waste
transportation problems. Finally, we also axiomatize the Priority Shapley value on the full domain
of multi-choice games.

Keywords: Hazardous waste, transportation network, Liability rule, Priority Shapley value, multi-
choice games.
JEL Codes: C71, Q53, R42.

1. Introduction

1.1. Maintaining a hazardous waste transportation network

Worldwide, industrial activities generate an estimated 400 million tons of hazardous waste
each year.1 Much of this waste is transported from the point of generation to facilities dedicated
to its treatment and disposal. Any accident that occurs during the transportation of hazardous
materials has enormous consequences because of the damage it can cause to human health and
the environment. It is therefore necessary to ensure that the transportation network is maintained
in a manner that minimizes the risk of accidents. One way to do this is to apply the polluter
pays principle, one of the key tenets of the European Union’s environmental policy. This principle
implies that polluters should bear not only the costs of their pollution, but also the costs of
measures to prevent it. This could involve charging waste producers based on the amount of waste
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Rémila), solal@univ-st-etienne.fr (Philippe Solal)

1https://www.theworldcounts.com/challenges/use-of-chemicals/hazardous-waste-production.

Preprint submitted to Elsevier May 25, 2023



they generate and using these funds to cover the costs of maintaining and operating the hazardous
waste transportation network.

In this article, we consider a set of agents (countries, companies, etc.) involved in a hazardous
waste transportation network. This network is modeled by a directed tree with a unique global
sink (also called a sink tree). The nodes represent the agents involved in the network and the sink
is a treatment facility. Each agent has a certain amount of waste that needs to be transported from
its location to the sink. There are costs associated with properly maintaining the network. The
amount of waste passing through each portion of the network determines the cost of maintaining this
portion. From this, the total cost of maintaining the network can be calculated and then allocated
to the parties involved. Therefore, a central regulator must determine the extent to which the
parties are liable. In addition to the volume of waste an agent must transport, this task can also
naturally depend on several elements: (a) How far is this agent from the treatment facility? (b)
What is the level of traffic on the road its waste travels on? (c) Do other agents have a high level of
waste to transport? We introduce an allocation rule which takes these characteristics of the problem
into account as well as other important facets of a hazardous waste transportation/maintenance
network.

Indeed, the management of hazardous waste is particularly regulated, for instance by the Com-
prehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund
Act). Our work is in line with the rich literature in tort law based on this regulation, which seeks
to impose liability on potentially responsible parties for hazardous waste management. According
to Erkut et al. (2007), this risk assessment is the most important aspect of hazardous waste man-
agement. It is inseparable from the allocation of costs resulting from the management of hazardous
waste (transportation, cleanup, environmental damage, product loss, etc.). Although this literature
deals primarily with liability and cost trade-offs in the event of an accident, we draw extensively
on it in our transportation network maintenance framework. To do so, we assimilate an agent’s
risk to the network, or equivalently, its liability, to the amount of waste it must transport. In this
manner, the mechanisms and principles that environmental regulations use to allocate liability help
us determine how to share the total maintenance cost of the network.

One of the key features of CERCLA is that it imposes joint and several liability on those
who contaminate the environment, referred to as potentially responsible parties (PRPs). CERCLA
Section 107(a) recognizes transporters of hazardous waste as one of four classes of PRPs. The
imposition of joint and several liability means that one of the PRPs must bear the entire cost of
the network, regardless of the liability of other parties. This regime ensures that costs are paid in
a timely and efficient manner without shifting the burden to innocent third parties.

CERCLA Section 113(f)(1) provides that the PRP that has borne the cost of the network
may bring an action in federal court (the central regulator) against other PRPs. This is a legal
process known as CERCLA allocation. The purpose of an allocation is to seek contribution from
the other PRPs for a share of the costs based on their degree of responsibility. Contribution is the
right to recover from joint parties when, and to the extent that, the party has paid more than its
proportionate share. These contribution claims may be based on appropriate equitable factors.

Although it is not defined which equitable factors courts should consider in the allocation
process, two sets of criteria are often used: the Gore factors and the Torres factors. The Gore
factors are: (1) the ability of the parties to demonstrate that their contribution to the discharge,
release, or disposal of hazardous waste can be distinguished; (2) the amount of hazardous waste
involved; (3) the degree of toxicity of the hazardous waste involved; (4) the degree of involvement
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of the parties in the production, treatment, transportation, or disposal of the hazardous waste; (5)
the degree of care exercised by the parties with respect to the hazardous waste involved, taking into
account the characteristics of such hazardous waste; and (6) the degree of cooperation between the
parties and the local government to prevent harm to public health or the environment. Meanwhile,
the Torres factors are: (1) the extent to which the costs relate to waste for which each party is
responsible; (2) the degree of fault of each party; (3) the extent to which the party has benefited
from the disposal of the waste; and (4) the ability to pay its share of the costs. In this article, we
rely in particular on Gore factors 2, 4 and 6 and on Torres factors 1 and 4 as explained hereafter.

As explained by Hall et al. (1994), cost allocation among responsible parties is exacerbated by
the presence of orphan shares, which are the shares left by absent or insolvent PRPs that must be
allocated among the other parties. These orphan shares are often substantial. This clearly argues
for the provision of high transportation network maintenance costs through the implementation of
installment payments as an insurance scheme.2 A novelty of our approach is to construct such a
provisioning system using an allocation rule that implements these features. Specifically, the share
of the network costs incurred by an agent is divided into as many levels as the number of waste
units transported by that agent, and a provisioning principle is established in which the payment
associated with a given waste shipment already includes a portion of the costs incurred by the
higher waste levels. We call the resulting allocation rule the Liability rule. This allocation rule is
also based on two other determining principles. First, agents are not held liable for the costs of
the portions of the network that their waste do not use. This clearly echoes the aforementioned
element (a), the Gore factor (4) and the Torres factor (1). Second, an agent is not held liable for
the cost increases resulting from the fact that other agents expose the network to greater risk levels
than the risk level of this agent. This principle is related to element (c) and the Gore factors (2)
and (4).

Our first main result is an axiomatic characterization of the Liability rule by invoking axioms
inspired by principles in tort law. According to Pidot and Ratliff (2018), the cost allocation under
CERCLA is characterized by two methods. The first and most common method follows from the
maxim that “equality is equity” and provides that the liable parties will end by paying equal shares.
The second and increasingly used method relies on the comparative impact of the involved parties.
Our axioms can be considered as mixtures between these two methods as we will emphasize in
the body of the article. In fact some axioms impose equal payoffs for some agents across two
different interrelated waste transportation problems while distinguishing agents according to their
importance in each of these problems.

Our second main result proves that the Liability rule coincides with a natural extension of
the Shapley value (Shapley, 1953) on an appropriate class of multi-choice games constructed from
hazardous waste transportation problems. Multi-choice games extend the classical model of coop-
erative games with transferable utility by allowing the possibility that agents cooperate at various
intensities within coalitions. In this class of games, it is possible to distinguish the different levels
of cooperation/activity of an agent when assessing its overall performance in a game. As for our

2Insurance-based incentives in hazardous waste management under CERCLA are analyzed in Kehne (1986).
The author determines the conditions that are needed for effective insurance-based incentives to arise and the
circumstances that allow insurance-based incentives to effectively promote deterrence. He then argues that insurance-
based incentives have the potential to significantly improve the control of environmental risks, provided significant
statutory changes of CERCLA. The main change would be to limit generators’ and transporters’ liability to damages
attributable to wastes that they have generated or transported. This clearly brings to mind the principles underlying
the Liability rule that we consider in this article.
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Liability rule, an allocation rule for multi-choice games specifies a payoff for each agent and each
cooperation level of this agent. We introduce the Priority Shapley value for multi-choice games
as the average of specific marginal vectors in a spirit similar to the construction of the Shapley
value in the case of a classic cooperative game. We only consider the orderings of the pairs of
agents/activity levels that are consistent in the sense that an agent can activate its given activity
level only if all other agents have activated either all lower activity levels or their maximal activity
level. Then, the marginal contribution of the pair agent/activity level is computed and shared
evenly among this activity level and the its lower levels. On the full domain of multi-choice games,
we provide two axiomatic characterizations of the Priority Shapley value. The axiom set includes
adaptations of some axioms invoked in the characterization of the Liability rule as well as axioms
specifically designed for multi-choice games based on well known principles in cooperative game
theory.

1.2. Related literature

Our approach can be connected to several strands of literature.
The closest article to ours is probably Techer (2023) in which the same cost sharing model on

a hazardous waste transportation network is studied but through another allocation rule, called
the Responsability rule. This allocation rule essentially differs from our Liability rule in that a
given level of waste of an agent cannot be impacted by the fact that this agent may expose the
network to greater risk levels. We show that the Liability rule and the Responsability rule admit
comparable axiomatic characterizations, i.e. characterizations in which the axiom set differs with
respect to two axioms only. Moreover, we provide another characterization of the Liability rule by
adapting the axiom set used by Techer (2023) to characterize the Responsability rule.

As mentioned in the previous section, we also contribute to the literature on multi-choice games
in which a couple of extensions of the classical Shapley value have been proposed. Beyond the two
axiomatic characterizations of the Priority Shapley value, we also compare this allocation rule
to the two closest allocation rules for multi-choice games provided by Derks and Peters (1993)
and Lowing and Techer (2022). In particular, Techer (2023) proves that the Responsability value
coincides with the multi-choice Shapley value introduced in Lowing and Techer (2022) on the
class of multi-choice games arising from hazardous waste transportation networks. This offers an
additional element of comparison with our Liability rule.

Our approach can as well be related to the literature on cleaning polluted rivers in which
each agent is characterized by a segment of a river and a cleaning cost for this segment. The
polluted river can be linear (Ni and Wang, 2007; Alcade-Unzu et al., 2015) or modelled by a sink
tree (Dong et al., 2012; van den Brink et al., 2018). The goal here is to share among the agents
the total cleaning cost, possibly by taking into account that the agents located upstream have a
responsibility to the agents located downstream. The main difference with our article is that a
cleaning cost is limited to one segment (and so is directly attributable to one agent) whereas our
hazardous waste travels through the network, which involves at each portion all the several agents
using that portion. Furthermore, the literature on cleaning polluted rivers looks for allocations
specifying a cost share for each agent while we determine finer allocations that distinguish a cost
sub-share for each waste level of each agent. Put differently, only two levels of cooperation are
possible in the problems of cleaning a polluted river: full cooperation or the absence of cooperation.

Our work also shares some similarities with the literature on minimum cost spanning trees. Both
approaches seek to share the connection cost to a specific node but with two significant differences.
At the level of the model, the first differences are that our cost functions can vary with the shipped
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quantities and that we do not include any preliminary optimization step during which the optimal
(with minimum total cost) spanning tree is determined from an initially complete network. Our
sink tree is given. At the level of the allocation rule, we specify the cost share associated with each
waste level of each agent whereas the literature on minimum cost spanning trees only determines
coarser allocations specifying a unique cost share for each agent. Furthermore, allocations for
minimum cost spanning trees can depend on the cost of the edges of the network that are not part
of a minimum cost spanning tree. As in our work, the links between minimum cost spanning tree
problems and cooperative games are studied. For instance, Kar (2002) characterizes the Shapley
value of the cooperative games arising from minimum cost spanning tree problems.

Finally, our approach can be related to the literature on cost allocation in collaborative trans-
portation, which has grown rapidly in recent years, as highlighted in Guajardo and Rönnqvist
(2016). This literature often uses the tools of cooperative game theory. For example, Cruijssen
et al. (2010) use the Shapley value to allocate cost savings in cooperative transportation problems,
while other game theoretic allocation rules are computed in Flisberg et al. (2015). The two articles
propose applications on real data (on a big logistic service provider for the grocery industry in the
Netherlands and on transportation of forest fuels in Sweden) but do not offer axiomatic studies.
Our main contribution to this literature is to combine the risk assessment, which is the primary
ingredient that distinguishes hazardous waste transportation problems from other transportation
problems, and the cost allocation issue. On the one hand, the aforementioned article do not deal
with the transport of hazardous materials. On the other hand, Guo and Luo (2022) provides an
overview of recent research on risk assessment in hazardous materials transportation, but do not
address the issue of cost allocation.

1.3. Outline of the article

The rest of the article is organized as follows. Section 2 provides some preliminaries. Section
3 introduces and motivates the model. The Liability rule and its axiomatic characterizations are
presented in section 4. Section 5 draws a parallel between the Liability rule and the Priority
Shapley value for multichoice games. The Priority Shapley value is axiomatically characterized
in section 6. Section 7 provides concluding remarks. All proofs are relegated to the Appendix in
section 8.

2. Preliminaries

2.1. Notation

For a finite set A, the symbol |A| denotes its cardinality. For any element i ∈ A, henceforth
the singleton {i} is denoted by i. For x ∈ R and n ∈ N, −→x denotes the vector (x, . . . , x) ∈ Rn.
For x, y ∈ Rn, x ∧ y stands for (min{x1, y1}, . . . ,min{xn, yn}) ∈ Rn. For each i ∈ {1, . . . , n},
ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector whose components are all zero, except the one on component
i that equals 1.

2.2. Sink trees

A directed graph is a pair g = (N,E) where N is a finite set of nodes (representing the set
of agents) and E ⊆ N × N is a binary irreflexive relation. Each element (i, i′) of E represents a
directed link from i to i′. A (directed) path from i to i′ in g is an ordered sequence of distinct
nodes (i1, . . . , iq) such that i1 = i, iq = i′ and, for each t = 1, . . . , q − 1, (it, it+1) ∈ E. A directed
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path (i1, . . . , iq) from i to i′ in g induces a (directed) cycle in g if (i′, i) ∈ E. A directed graph
is acyclic if it contains no cycle. A directed graph is a sink tree if it is acyclic and satisfies the
following two conditions: there is exactly one node i0 such that, for each i ∈ N \ i0, (i0, i) 6∈ E,
and, there is exactly one directed path from i to i0. The node i0 is the sink of the tree. Thereafter,
only sink trees are considered. Given a sink tree g = (N,E) and i ∈ N , denote by Pg(i) the set of
agents i′ such that (i′, i) ∈ E. Each such a node i′ is a (direct) predecessor of i in g. If Pg(i) is
empty, i is a leaf of g. Reciprocally, each node i′ ∈ N such that (i, i′) ∈ E is a direct successor
of i in g. By definition of a sink tree, each i ∈ N \ i0 has a unique successor in g and i0 has no
successor in g. Next, denote by Dg(i) the set of nodes different from i and belonging the unique
path from i to i0. This corresponds to the set of nodes located downstream of i along the path
towards the seek i0. By definition of a sink tree, for each i ∈ N \ i0, i0 ∈ Dg(i), and Dg(i0) = ∅.
Finally, let Ug(i) be the set of nodes i′, different from i, such that i belongs to the unique path from
i′ to i0. This set corresponds to the set of nodes located upstream of i in g. Of course, for each
node i ∈ N , Pg(i) ⊆ Ug(i) and Ug(i0) = N \ i0. For any non-empty set of nodes S ⊆ N , we use
the following notation: Pg[S] = ∪i∈SPg(i) ∪ i, Dg[S] = ∪i∈SDg(i) ∪ i, and Ug[S] = ∪i∈SUg(i) ∪ i.

Example 1. Consider the agent set N = {1, . . . , 9} and the sink tree g = (N,E) represented by
the figure below. Node 3 is the sink of the tree. The set of leaves is {2, 7, 8, 9}. For instance, the
set of agents located downstream of 4 is Dg(4) = {6, 3}, and the set of agents located upstream of
agent 6 is Ug(6) = {4, 8, 7}.

4

5

3
1

267

8

9

�

3. The model

Consider a transportation network connecting a finite set of agents N (directly or indirectly)
of size n ∈ N to a special node d called the delivery node. Such transportation network structure
is modeled by a sink tree g = (N ∪ d,E), where d is the sink of the tree. Each element (i, i′) ∈ E
is called a portion of the network from i to i′. Since g is a sink tree, for each agent i ∈ N ,
there is exactly one portion starting from i to some other i′. When no confusion arises, we
simply denote such a portion (i, i′) by i. Each agent i ∈ N is endowed with a given amount
of hazardous waste wi ∈ N to be treated by a treatment facility. The treatment facility is located
at the delivery node d. Each agent is able to ship any amount j ∈ {0, . . . , wi} of waste. Element
s = (si)i∈N ∈

∏
i∈N{0, . . . , wi}, is referred to a waste profile that indicates the amount shipped

by each agent. The profile of maximal amount of waste is w = (wi)i∈N and max(w) stands for the
greatest value in w. Given N , w, and any amount of waste j ≤ max(w), Qw(j) ⊆ N denotes the
subset of agents able to ship a quantity j of waste, i.e., Qw(j) = {i ∈ N : j ≤ wi}. For any two
amounts of waste j, j′ such that j ≥ j′, one obviously has Qw(j) ⊆ Qw(j′). Furthermore, for any
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waste amount j ≤ max(w), define the j-waste profile w ∧ −→j in which each agent i either ships
the waste amount j if i ∈ Qw(j), or wi otherwise.

Shipping any amount of waste through a portion carries risks and so generates a cost. This
cost is considered as the cost of maintaining and operating this portion. For each portion i ∈ N ,
let Ci : N → R+ be the cost function of this portion. For each i ∈ N the cost function Ci is
non-negative and non-decreasing over N and Ci(0) = 0. The null cost function C0 is such that
C0(x) = 0 whatever x ∈ N+. The interpretation is as follows. For each portion i ∈ N , the cost
function Ci only depends on the total amount of waste passing through this portion, i.e., it only
depends on the sum of the waste shipped by all agents located upstream i including agent i’s own
waste. Therefore, the maintenance cost resulting from the transport of waste profile s through the
portion i is given by

Ci

( ∑

i′∈Ug [i]
si′

)
.

Hence, the total cost of maintaining and operating the network is then given by

∑

i∈N
Ci

( ∑

i′∈Ug [i]
wi′

)
. (1)

Denote by C = (Ci)i∈N a cost profile. For each i′ ∈ N , define the cost profile λC,i
′

such that

λC,i
′

i′ = Ci′ and λC,i
′

i = C0 for each other i ∈ N \ i′. Observe that the cost profile C can be
decomposed as:

C =
∑

i′∈N
λC,i

′
. (2)

For the rest of the article, it is useful to consider the following decomposition of λC,i
′
. For each

k ∈ {1, . . . ,max(w)}, define the cost function λC,i
′,k as:

∀s ∈
∏

i∈N
{0, . . . , wi}, λC,i

′,k(s) = λC,i
′
( ∑

i∈Ug [i′]
si ∧ k

)
− λC,i′

( ∑

i∈Ug [i′]
si ∧ (k − 1)

)
.

It follows that

λC,i
′

=

max(w)∑

k=1

λC,i
′,k and so C =

∑

i′∈N

max(w)∑

k=1

λC,i
′,k. (3)

A hazardous waste transportation problem P on a fixed agent set N and delivery node
d is a triplet (g, w,C) where g is a sink tree over N ∪ d, w is a profile of maximal amount of waste
and C is a cost profile. Let P be the set of all hazardous waste transportation problems on N ∪ d.

Example 2. The following figure represents a hazardous waste transportation problem (g, w,C).

C5

C2C6

C1

C3

C8

C7 C44, w4

5, w5

d
1, w1

2, w26, w67, w7

8, w8

3, w3
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The question that arises is how to allocate the total maintenance and operation cost of the
hazardous waste transportation network. To that end, one introduces a solution concept for
the domain P. An allocation rule is a function on P that assigns a payoff (or a cost share)
f(i,j)(g, w,C) ∈ R to each waste amount 0 < j ≤ wi of each agent i ∈ N . The accumulated payoff∑

j∈{1,...,wi} f(i,j)(g, w,C) is what agent i pays for the maintenance of the network. As explained
in the introduction, this total payoff is split in wi sub-payoffs, one for each waste unit transported
by agent i, in order to set up an installment payment system. The objective is to ensure that the
network can be maintained, possibly by (partially) anticipating the costs that high waste levels will
generate. Alternatively, one could imagine that the transport of the hazardous waste is carried out
in several shipments (wi representing the number of shipments associated with agent i) and that
the maintenance of the network requires a payment f(i,j)(g, w,C) from agent i for each shipment
j.

4. Axiomatic study and the Liability rule

This section conducts an axiomatic study leading to a characterization of a new rule called the
Liability rule. The principles behind this set of axioms are inspired by the liability regimes for
the transportation of hazardous waste. Finally, the Liability rule is discussed in relation to the
Responsibility rule, recently introduced by Techer (2023). From this discussion, new comparable
characterizations of the Responsibility rule and the Liability rule are provided.

4.1. Axiomatic characterization of the Liability rule

The classical axiom of Efficiency provides a reference point specifying the total maintenance
cost to be allocated.

Axiom 1 (Efficiency). For each (g, w,C) ∈ P, it holds that

∑

i∈N

wi∑

j=1

f(i,j)(g, w,C) =
∑

i∈N
Ci

( ∑

i′∈Ug [i]
wi′

)
.

The axiom simply recalls that all the maintenance costs of the network must be covered and
provisioned by the participating agents. Since the agents cooperate to take charge of the network
total maintenance cost decided by the central regulator, the axiom of Efficiency is an explicit trans-
position of the Gore factor 6.

The second axiom proposes a first way to limit the responsibility of an agent. It is based on
the risk that an agent puts on the network, measured by the quantity of waste it must transport.

Axiom 2 (Independence of other higher waste amounts). For each (g, w,C) ∈ P, and each
pair of agents {i, i′} ⊆ N such that wi < wi′ , it holds that

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g, w − ei
′
, C).
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This axiom imposes that the liability of that agent can be affected by comparable risks but
should not be affected if other agents expose the network to greater risk levels. In this sense, this is
a limited liability principle. In describing the consequences of a change for an agent in the amount
of waste shipped by another agent, this axiom reflects the Gore factors 2 and 4. The axiom of
Independence of other higher waste amounts is similar but weaker than the axiom of Independence
of higher waste amounts in Techer (2023), which requires that the cost paid by an agent for a given
amount of waste does not depend on any greater amount of waste (including the possible agent’s
own greater waste levels). This last axiom is questionable if it is considered necessary to provision
the costs of the transportation network because it does not allow to take into account the cost of
the remaining higher waste levels of an agent in its installment payments.

Remark 1. Consider any (g, w,C) ∈ P, any k ≤ max(w) and any i ∈ N such that k ≥ wi. A
repeated application of Independence of other higher waste amounts yields the following equalities:

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g, w ∧
−→
k ,C).

The third axiom offers a second way to limit the responsibility of an agent, this time based on
the location of this agent.

Axiom 3 (Path consistency). For each i ∈ N and each pair {(g, w,C), (g, w,C ′)} ⊆ P such
that C ′` = C`, for each ` ∈ Dg[i], it holds that

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g, w,C
′).

The axiom of Path consistency is borrowed from Techer (2023). It states that agents are jointly
and severally liable for the portions that their waste use but not beyond that. An agent is not
liable for the other portions and hence it should not pay for the risk created on the portions that
its waste does not use. This is consistent with Gore factor 4 and Torres factor 1. Our axiom is also
clearly related to the polluter pays principle: if the transport of waste is likely to cause pollution,
then the potential polluters should pay the cost. The axiom of Path consistency is similar in spirit
to the Independence of upstream costs invoked in Ni and Wang (2007) and Alcade-Unzu et al.
(2015) in the context of polluted river problems, which imposes that the total cost paid by a region
be independent of the waste located upstream from this region. The principle underlying Path
consistency is also close to other axioms in the literature on cost sharing problems in networks as
underlined by Techer (2023).

The next axiom says something on the nature of the installment payments of the agents with the
highest risk. More specifically, it requires the principle of equality, according to which a decrease
in this risk should affect equally all remaining installment payments.

Axiom 4 (Intra balanced contributions for highest contributors). For each (g, w,C) ∈ P,
each i ∈ N such that wi = max(w), and each pair of waste amounts {j, j′} ⊆ {1, . . . , wi} for i, it
holds that

f(i,j)(g, w,C)− f(i,j)(g, w − ei, C) = f(i,j′)(g, w,C)− f(i,j′)(g, w − ei, C),

with the convention that, for each i ∈ N , f(i,wi)(g, w − ei, C) = 0.
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This kind of principle of balanced contributions has been extensively used in axiomatizations
since Myerson (1977), and in particular in multi-choice games (see Klijn et al., 1999, among others).
However, Myerson (1977) uses this principle to compare the payoffs of two different agents, not to
compare the payoffs of a given agent’s levels of waste, as in our axiom.

Remark 2. Intra balanced contributions for highest contributors can be rewritten as follows: for
each (g, w,C) ∈ P, each i ∈ N such that wi = max(w), it holds that

∀j ∈ {1, . . . , wi − 1}, f(i,j)(g, w,C) = f(i,wi)(g, w,C) + f(i,j)(g, w − ei, C).

The reformulation of Intra balanced contributions for highest contributors in Remark 2 makes
it possible to understand that it requires the same principle as the Equal loss property invoked in
Klijn et al. (1999), but only for agents with the maximum waste level/risk in the network. Even if
this axiom focuses on a unique given agent, it reflects Gore factors 2 and 4.

The next axiom relies on the classical principle of anonymity stating that the payoffs distributed
to the agents do not depend on their names. Given any hazardous waste transportation problem
(g, w,C) ∈ P and any permutation π : N → N , construct the corresponding hazardous waste
transportation problem (gπ, wπ, Cπ) ∈ P where the labels of the nodes are swapped according to
π, ceteris paribus. Formally,

• (i, i′) ∈ E ⇐⇒ (π(i), π(i′)) ∈ Eπ;

• for each i ∈ N , wππ(i) = wi;

• Cππ(i) = Ci.

Axiom 5 (Anonymity). For each (g, w,C) ∈ P and any permutation π : N → N , it holds that

∀i ∈ N, ∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(π(i),j)(g
π, wπ, Cπ).

The axiom of Anonymity clearly implements an equality-is-equity principle falling into the first
method of Pidot and Ratliff (2018) as mentioned in the introduction. It implies that two agents
which are equal in all respects (same waste levels, identical geographical positions in the network,
same costs characteristics) must pay the same share of the network maintenance costs. This axiom
can be considered as a specific reading of Gore factors 1, 2 and 4: if two agents have the same
degree of involvement in two problems, then they should not be able to demonstrate that their
contribution can be distinguished or, equivalently, that they are equally responsible for the risks
to the network, and hence should be treated equally in these two problems.

The following two axioms compare two hazardous waste transportation problems that are
risk/cost-equivalent. They involve transportation problems with a null cost portion. Precisely,
assume there are two agents i and i′ such that (i, i′) ∈ E and Ci = C0. The first axiom states that
the payoffs of these agents are unchanged if they exchange their location. The second axiom states
that the payoffs of each predecessor of i are unchanged if the portion between that predecessor
and i is removed and replaced by a portion between that predecessor and i′. These two axioms fall
under the Gore factor 2 since they rely on the quantity of waste that each agent must transport.
They also fall under Gore factor 4 and Torres factor 1 since they evaluate the consequence in terms
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of liability of changes in the position of some agents in the network. To state formally these axioms,
some definitions are in order.

Given any hazardous waste transportation problem (g, w,C) ∈ P, first construct the problem
(gi↔i

′
, wi↔i

′
, Ci↔i

′
) ∈ P in which i and i′ exchange their location without affecting their maximal

amount of waste and the (null) cost of the portion linking them. Formally, let πi↔i
′

be the
permutation on N that represents the operation where i exchanges its location with i′: πi↔i

′
(i) = i′,

πi↔i
′
(i′) = i and πi↔i

′
(`) = ` for each ` ∈ N \{i, i′}. From this operation, (gi↔i

′
, wi↔i

′
, Ci↔i

′
) ∈ P

is as follows:

• ∀{`, `′} ⊆ N , (`, `′) ∈ E ⇐⇒ (πi↔i
′
(`), πi↔i

′
(`′)) ∈ Ei↔i′ ;

• wi↔i′ = w;

• ∀` ∈ N , Ci↔i
′

` = Cπi↔i′ (`).

Next, given any (g, w,C) ∈ P and any predecessor p ∈ Pg(i) of i, construct the associated
hazardous waste transportation problem (g(p,i

′), w(p,i′), C(p,i′)) ∈ P such that

• E(p,i′) =
(
E \ {(p, i)}

)
∪ {(p, i′)};

• w(p,i′) = w;

• ∀` ∈ N , C
(p,i′)
` = C`.

Axiom 6 (Invariance to a relocation on a null cost portion). For each (g, w,C) ∈ P where
there are two agents i and i′ such that (i, i′) ∈ E and Ci = C0, it holds that

∀` ∈ {i, i′}, ∀j ∈ {1, . . . , w`}, f(`,j)(g, w,C) = f(`,j)(g
i↔i′ , wi↔i

′
, Ci↔i

′
).

This axiom can also be interpreted in the light of the polluter-pays principle. If transport on
a portion of the network is particularly safe and indeed costless, then an agent should not pay
more if it takes that portion (no extra risk, no extra cost). Our axiom translates this principle
into the requirement that swapping the positions of the endpoints of this riskless/costless portion
should make no difference regarding the cost share accruing to any of their waste levels. In other
words, since the two compared transportation problems are risk/cost-equivalent, the swapped
agents should be invariant to which of the two networks they are part of.

Axiom 7 (Invariance to a cut-and-connect operation on a null cost portion). For each
(g, w,C) ∈ P where there are two agents i and i′ such that (i, i′) ∈ E and Ci = C0, it holds that

∀p ∈ Pg(i), ∀j ∈ {1, . . . , wp}, f(p,j)(g, w,C) = f(p,j)(g
(p,i′), w(p,i′), C(p,i′)).

This axiom implements another cost-preserving change to the network. Roughly speaking, it
requires an agent to be indifferent if it must use an alternative route with identical risk character-
istics. In other words replacing a portion of the network by an identical (from the risk point of
view) portion plus a riskless portion should not change this agent’s risk assessment, and in turn
its share of the network maintenance costs.

11



Below, we propose an allocation rule for the domain P of hazardous waste transportation
problems. Consider any (g, w,C) ∈ P and any portion i′ ∈ N of g. Decompose the total cost
Ci′(

∑
`∈Ug [i′]w`) of maintaining and operating the portion i′ into a sum of cost increases for each

additional unit of waste passing through i′:

max(w)∑

k=1

Ci′

( ∑

`∈Ug [i′]
w` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
w` ∧ (k − 1)

)
.

The cost increase at level k,

Ci′

( ∑

`∈Ug [i′]
w` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
w` ∧ (k − 1)

)
,

represents the increase of maintaining and operating cost of the portion i′ when each agent ` located
upstream of i′, including i′, decides to ship an additional unit of waste from k − 1 to k, provided
this additional unit is feasible for agent `, that is, ` ∈ Qw(k); Otherwise, agent ` ships its maximal
amount w`.

This cost increase at level k is shared according to the following two-step procedure:

• in the first step, the cost increase is equally shared among the agents that use this portion
i′ and are able to ship the waste amount k. More formally, this cost increase at level k is
equally shared among the agents in Ug[i

′] ∩Qw(k);

• in the second step, each agent in Ug[i
′] ∩ Qw(k) charges an equal share of this cost to each

waste amount k, k − 1, . . . , 1.

From this two-step procedure, it results that each agent able to ship k units of waste but currently
shipping its jth unit of waste, where j ≤ k, contributes

1

k
·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

to the cost increase at each level k.
This two-step procedure is repeated for each portion i′ that an agent uses, that is, for each

i′ ∈ Dg[i]. The overall cost charged to an agent i shipping its jth unit of waste is the sum of the
above contributions. Formally, the Liability rule is the allocation rule fL on P defined as:

fL(i,j)(g, w,C) =
∑

i′∈Dg [i]

∑

k≥j:
i∈Qw(k)

1

k
·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)| . (4)

The rationale for this cost allocation procedure is as follows. First, agents are not held liable for
the maintenance costs of the portions they do not use. Second, an agent is not held liable for the cost
increases incurred by additional waste amounts higher than its maximal amount wi as it is clearly
imposed by Axiom 2. These first two principles describe the extent to which an agent’s liability
is limited and perfectly reflect the Gore factor 4 and the Torres factor 1. Third, the maintenance
of the network takes into account the fact that it is waste profile w that will be transported. The
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central regulator dimensions the maintenance costs for this profile. In order to ensure that the
agents will be able to assume these maintenance costs, the central regulator progressively collects
payments from agents. More precisely, the regulator requires from each agent a partial payment
for each of its units of waste, say unit j, that takes into account the forthcoming maintenance
costs resulting from the shipment of units k > j. This insurance-based system therefore leads the
agents to pay multiple installments to the regulator, which is a way of improving the CERCLA
regulation according to Kehne (1986) as emphasized in the introduction. Since this system can
also be seen as an attempt to guarantee the ability of agents to pay they share of the maintenance
costs, the Liability rule reflects the Torres factor 4. Lastly, the main and obvious objective of
an allocation rule such as the Liability rule is to calibrate the contribution of each agent to the
problem of maintaining the hazardous waste transportation network. As such, the Liability rule
provides a relevant answer to the Gore factor 1.

The main result of this section states that that the above set of seven axioms characterize the
Liability rule.

Theorem 1. The Liability rule fL defined as in (4) is the only allocation rule on P that satisfies
Efficiency, Independence of other higher waste amounts, Path consistency, Intra balanced contri-
butions for highest contributors, Anonymity, Invariance to a relocation on a null cost portion, and
Invariance to a cut-and-connect operation on a null cost portion.

In the very special case where each agent ships one unit of waste and the sink tree is a directed
path, the Liability rule fL coincides with the Baker-Thompson rule, also called the Sequential
equal contributions rule. This rule is usually applied to cost sharing problems that arise from
situations in which some service is provided to a variety of different customers which differ in the
amount or type of service they need. This rule arises from a report by the Baker consultancy in
1965 and Thompson’s PhD thesis (Baker, 1965; Thompson, 1971) to provide a way to allocate
the costs associated with an airport’s runway among all types of aircraft that make (differential)
use of its common infrastructure (see Thompson, 2020). Subsequently, Littlechild and Thompson
(1977) show that the Baker-Thompson rule coincides with the Shapley value of a cost TU-game.
Several axiomatic characterizations of the Baker-Thompson rule have been provided (see, e.g.,
Fragnelli and Marina, 2010; Chun et al., 2012); and the airport problem has been studied from
different perspectives (see, e.g., Vázquez Brage et al., 1997; Alparslan Gök et al., 2009; Alparslan
Gök, 2012; Dong et al., 2012; Hou et al., 2018). According to Thompson (2020), over 60 papers
and articles deploy the airport cost game framework in some form or another to analyze various
theoretical issues.

Thus, assume that, for each i ∈ N , mi = 1 and the sink tree g is a directed path. Without loss
of generality, let g be defined as {(1, 2), (2, 3), . . . , (n− 1, n), (n, d)}. Let P∗ ⊆ P be this subclass
of hazardous transportation network problems. Then, the Liability rule is rewritten as:

∀i ∈ N, fL(i,1)(g, w,C) =
Cn(n)

n
+
Cn−1(n− 1)

n− 1
+ . . .+

C(i)

i
,

which is the Baker-Thompson rule.3 In view of Theorem 1, one obtains a new characterization of
the Baker-Thompson rule on P∗.

3In fact, any (g, w,C) ∈ P∗ corresponds to the airport problem with costs ci =
∑n
k=i Ck(k), for each agent i ∈ N .

A formulation of the Baker-Thompson rule when c1 > ... > cn can be found in Fragnelli and Marina (2010).
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Theorem 2. The Liability rule fL (or the Baker-Thompson rule) is the only allocation rule on
P∗ that satisfies Efficiency, Path consistency, Anonymity, and Invariance to a relocation on a null
cost portion.

If one considers the larger subclass P∗∗ ⊇ P∗ of hazardous waste transportation network
problems where for each i ∈ N,mi = 1, and g is a sink tree, then the Liability rule is characterized
by the above four axioms plus Invariance to a cut-and-connect operation on a null cost portion.
This comparison shows that the added axiom is used to deal with situations where the network
is tree-like, and the axioms of Independence of other higher waste amounts and Intra balanced
contributions for highest contributors deal with situations where agents ship more than one unit
of waste.

4.2. Comparison with the Responsibility rule

We now present the Responsibility rule fR (Techer, 2023). This rule allocates the cost increase
induced by the jth waste unit equally among the agents located upstream of this portion and
shipping wi ≥ j waste units. Formally,

∀i ∈ N, ∀j ≤ wi, fR(i,j)(g, w,C) =
∑

i′∈Dg [i]

Ci′
(∑

`∈Ug [i′] j ∧ w`
)
− Ci′

(∑
`∈Ug [i′](j − 1) ∧ w`

)

|Ug[i′] ∩Qw(j)| . (5)

The main difference with the Liability rule is that when an agent carries out its jth unit of waste,
it is not held liable for the extra cost incurred by the each additional unit to come. This means
that cost charged for the jth unit shipped does not takes into account the extra costs incurred by
the future units of waste k > j, Qm(k) 3 i. This has three consequences:

• the allocation rule fR violates Intra balanced contributions for highest contributors. Never-
theless, it is easy to check that it satisfies all the other axioms of Theorem 1;

• The total cost charged for the jth unit of waste is equal to the total cost increase over the
network at j:

∑

i∈Qw(j)
fR(i,j)(g, w,C) =

∑

i′∈N

(
Ci′
( ∑

`∈Ug [i′]
j ∧ w`

)
− Ci′

( ∑

`∈Ug [i′]
(j − 1) ∧ w`

))
. (6)

This principle is violated by the Liability rule fL;

• the allocation rule fR satisfies a principle of independence stronger than Independence of
other higher waste amounts. This principe requires that an agent’s payoff for a given waste
amount j does not depend on any amount higher than j, including its own units from j+1 to
wi. In particular, no agent shipping j units of waste is held liable for the subsequent amounts
it will carry out through the network. This principle can be expressed in the following axiom.

Axiom 8 (Independence of higher waste amounts). For each (g, w,C) ∈ P, it holds that

∀i ∈ N, ∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g, w ∧
−→
j , C).
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It can be shown that the combination of Independence of higher waste amounts and Efficiency
implies (6) (see Techer, 2023). Removing Intra balanced contributions for highest contributors and
Independence of other higher waste amounts from Theorem 1 and adding Independence of higher
waste amounts, one gets an axiomatic characterization of the Responsibility rule. This result is
stated without proof.

Theorem 3. The Responsibility rule fR defined as in (5) is the only allocation rule on P that sat-
isfies Efficiency, Independence of higher waste amounts, Path consistency, Anonymity, Invariance
to a relocation on a null cost portion, and Invariance to a cut-and-connect operation on a null cost
portion.

To characterize the Responsibility rule, Techer (2023) follows another route. He introduces a
principle of solidarity among the agents located upstream of a portion of the network. This principle
relies on the fact that each such agent is held liable for the cost incurred on this portion of the
network. However, the extent to which an agent should be held liable remains to be determined.
Upstream solidarity for a cost increase then requires that agents located upstream of a portion be
equally impacted by a cost increase on this portion. This principle is not satisfied by the Liability
rule unless agents located upstream of this portion ships the same amount of waste. This results
in a strong version of Upstream solidarity for a cost increase.

Axiom 9 (Strong upstream solidarity for a cost increase). For each (g, w,C) ∈ P, each
i ∈ N , and each pair of cost function Ci, C

′
i such that

∀s ∈
∏

i′∈N
{0, . . . , wi}, Ci(

∑

i′∈N
si′ ∨ 0)− Ci(

∑

i′∈N
(si′ − 1) ∨ 0) ≥ C ′i(

∑

i′∈N
si′ ∨ 0)− C ′i(

∑

i′∈N
si′ ∨ 0),

it holds that, for each pair of agents {`, `′} ⊆ Ug[i] such that w` = w`′ ,

∀j ∈ {1, . . . , w`}, f(`,j)(g, w,C)− f(`,j)(g, w,C ′) = f(`′,j)(g, w,C)− f(`′,j)(g, w,C ′),

where C ′ denotes the cost profile which only differs from C only by the fact that C ′i replaces Ci.

Techer (2023) shows that the combination of Efficiency, Independence of higher waste amounts,
Path consistency and Upstream solidarity for a cost increase yields the Responsibility rule fR.
To obtain the Liability rule fL from these principles, just weaken Independence of higher waste
amounts, add Intra balanced contributions for highest contributors and strengthen Upstream soli-
darity for a cost increase. This result is stated without proof.

Theorem 4. The Liability rule fL defined as in (1) is the only allocation rule on P that sat-
isfies Efficiency, Independence of other higher waste amounts, Path consistency, Intra balanced
contributions for highest contributors, and Strong upstream solidarity for a cost increase.

The above discussion compared fR and fL and provided comparable axiomatics of these two
allocation rules.

5. The Priority Shapley value and the Liability rule

This section introduces cooperative multi-choice games and a new Shapley-like value for this
class of games, called the Priority Shapley value. Then, it is shown that the Liability rule corre-
sponds to the Priority Shapley value of a multi-choice game constructed from a hazardous waste
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transportation problem. This multi-choice game is a cost game that associates to each coalition
the total cost of the network induced by this coalition. Finally, we provide two axiomatic char-
acterizations of the Priority Shapley value. We also compare the Priority Shapley value with two
other Shapley-like values for multi-choice games: the Derks-Peters value (Derks and Peters, 1993)
and the Shapley value recently introduced by Lowing and Techer (2022).

5.1. Multi-choice cooperative games

Let N = {1, . . . , n} be the fixed and finite agent set. Each agent i ∈ N has a finite set of
pairwise distinct activity levels Mi := {0, . . . ,mi}, mi ∈ N. These levels are linearly ordered from
the lowest activity level 0 (i does not participate or cooperate) to the maximal activity level mi. A
(multi-choice) coalition is an element s = (s1, . . . , sn) ∈ M, where M stands for the cartesian
product

∏
i∈N Mi. In coalition s = (s1, . . . , sn), each agent i ∈ N implements its activity level

si ∈ Mi. The coalition m = (m1, . . . ,mn) ∈ M corresponds to the grand coalition in which

each agent cooperates at its maximal activity level. The null coalition is the coalition
−→
0 where

no agent participates. The set M endowed with the usual binary relation ≤ on Rn induces a
(complete) lattice with greatest element m and least element

−→
0 . For any two coalitions s and

t of M, s ∨ t and s ∧ t denote their least upper bound and their greatest lower bound over M,
respectively. For i ∈ N , let M+

i = Mi \ 0. Further, let M+ be the set of agent-activity level
pairs (i, j) where i ∈ N and j ∈M+

i . For any coalition s ∈M, the sets

max(s) = max
{
si : i ∈ N

}
and T (s) =

{
i ∈ N : si = max(s)

}

stand for the highest activity level agent in s and the set of agents which implement the highest
activity levels in s, respectively. Each agent in T (m) is called a top agent. The set of agents
playing at least the activity level j in s is denoted Qs(j) and formally defined as

Qs(j) =
{
i ∈ N : si ≥ j

}
.

Thus, if i ∈ Qs(j), one necessarily have mi ≥ j. The cardinality of the set Qs(j) is denoted by qsj .

Remark 3. For any coalition s ∈ M, Qs(max(s)) = T (s); the set Qm(j) represents the set of
agents such that their maximal activity level mi is greater than or equal to j; and T (m) is the
subset of agents with the highest activity level in the game.

In a situation where agents have a linearly ordered set of activity levels at their disposal, it
is natural to consider that if agent i deploys level si in a coalition s, then that level has been
implemented gradually from level 1 to level si. With this interpretation in mind, the set of relevant
agent-activity level pairs in coalition s is

B(s) =
{

(i, j) ∈M+ : j ≤ si
}
.

For each coalition s ∈M and each i ∈ N such that si ≥ 1, s− ei denotes the coalition s′ ∈M
such that s′i = si − 1 and s′k = sk for k ∈ N \ i.

A multi-choice game on N is a pair (m, v) formed by the grand coalition m and a coalition

function v :M −→ R satisfying v(
−→
0 ) = 0, with the interpretation that v(s) represents the worth

that the set of agents deploying a non-zero activity level in coalition s can generate by cooperating.
Given the grand coalition m, the null game is the game (m,0) such that 0(s) = 0 for each s ∈M.
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Denote by G the class of multi-choice games on N . Notice that TU-games can be viewed as a
subclass of multi-choice games satisfying m =

−→
1 .

Let t ∈ M, t 6= −→0 be a multi-choice coalition. An analogue of the unanimity games in the
multi-choice setting are the minimal activity level games (m,ut) ∈ G defined as:

∀s ∈M, ut(s) =

{
1 if s ≥ t,
0 otherwise.

For each multi-choice game (m, v) ∈ G, it is known that the characteristic function v admits a
unique linear decomposition in terms of minimal activity level games as follows:

v =
∑

t≤m
∆v(t)ut, where ∆v(t) = v(t)−

∑

s≤t,s 6=t
∆v(s). (7)

The quantity ∆v(t) is the Harsanyi dividend of coalition t. Given a multi-choice game (m, v) ∈ G,
a payoff vector x ∈ RM+

assigns a payoff x(i,j) ∈ R to each agent-activity level pair (i, j) ∈M+.
A value on G is a map that assigns a unique payoff vector to each (m, v) ∈ G.

5.2. The Priority Shapley value

To construct the Priority Shapley value, one considers a coalition formation process where the
activity levels of the agents are deployed gradually and consistently with the linear order on the
activity levels. This idea can be formalized as follows. Let Hm = {1, 2, . . . , |M+|}. An ordering
on the set of agent-activity level pairs is a bijection σ : M+ → Hm such that the rank of any
pair of agent-activity level (i, j) ∈ M+ is lower than the rank of each pair (`, k) ∈ M+ such that
k > j. In words, no agent is allowed to implement an activity level k > j before all agents have
already implemented either j or their maximal activity level if j is not accessible to them, that is,
they do not belong to Qm(j). Formally, such an ordering σ is such that

∀(i, j), (`, k) ∈M+, [j < k] =⇒ [σ(i, j) < σ(`, k)].

Denote by Om the set of such orderings. Notice that

|Om| =
max(m)∏

r=1

qmr !

Let σ be an ordering and (i, j) ∈ M . When σ(i, j) ≥ 2, the predecessor pσ(i, j) of (i, j) is
the pair (`, k) such that σ(`, k) = σ(i, j) − 1. In case σ(i, j) = 1, set pσ(i, j) = ∅. Let us denote
by sσ,(i,j) the coalition formed when it is the turn of the pair (i, j) to be activated, that is, the
coalition formed at step σ(i, j). Formally, the coalition sσ,(i,j) is defined as:

∀` ∈ N, s
σ,(i,j)
` = max

{
k ∈M+

` : σ(`, k) ≤ σ(i, j); 0
}
.

Note that
B(sσ,(i,j)) =

{
(`, k) ∈M+ : σ(`, k) ≤ σ(i, j)

}
.
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Example 3. Let N = {1, 2} and m = (2, 2). If the ordering σ is such that

σ(1, 1) = 1, σ(2, 1) = 2, σ(1, 2) = 3 and σ(2, 2) = 4,

then one has sσ,(1,2) = (2, 1) and

B(sσ,(1,2)) =
{

(1, 1), (1, 2), (2, 1)
}
.

Let C ⊆ M be the subset of coalitions s such that

∀i ∈ N, [si ≤ max(s)− 2] =⇒ [si = mi].

From the definition of Om, note that C contains all coalitions sσ,(i,j), for (i, j) ∈M+ and σ ∈ Om.
This coalition formation process has been used in Grabisch and Xie (2007) and Lowing and Techer
(2022) to extend the Weber set and the Shapley value from standard cooperative games to multi-
choice cooperative games.

Given a multi-choice game (m, v) ∈ G and an ordering σ ∈ Om, define the associated marginal
vector ησ(m, v) ∈ RM+

as

∀(i, j) ∈M+, ησ(i,j)(m, v) = v(sσ,(i,j))− v(sσ,p
σ(i,j))

= v(sσ,(i,j))− v(sσ,(i,j) − ei).

Note that if σ(i, j) = 1, then j = 1, pσ(i, 1) = ∅, and sσ,(i,1) − ei =
−→
0 . The quantity

ησ(i,j)(m, v) ∈ R is the marginal contribution of i when it increases its activity level from j − 1 to j
with respect to the ordering σ.

We have the material to define the Priority Shapley value. It is defined through the following
procedure:

• each pair (i, j) ∈M+ shows up according to some ordering σ ∈ Om;

• at step σ(i, j), the pair (i, j) ∈M+ generates the marginal contribution ησ(i,j)(m, v);

• this marginal contribution is shared equally among all the activity levels k ≤ j of agent i.

Therefore, under σ ∈ Om, the procedure generates the following payoff vector λσ(m, v):

∀(i, j) ∈M+, λσ(i,j)(m, v) =

mi∑

k=j

ησ(i,k)(m, v)

k
. (8)

The Priority Shapley value φ on G is the value defined as the average payoff vector λσ over
the set of orderings Om:

∀(i, j) ∈M+, φ(i,j)(m, v) =
1

|Om|
∑

σ∈Om
λσ(i,j)(m, v)

=
1

∏max(m)
r=1 qmr !

∑

σ∈Om

mi∑

k=j

v(sσ,(i,k))− v(sσ,(i,k) − ei)
k

. (9)
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The distinctive feature of the Priority Shapley value is that it does not require that each
level of activity of an agent retains its marginal contribution to a coalition. Instead, this marginal
contribution is redistributed to successive lower levels of activity of that agent, which were necessary
to reach that level of activity in that coalition.

Below, two alternative expressions of φ are provided. The first one expresses the Priority
Shapley value in terms of the marginal contribution of agent i to coalitions s ∈ C where it plays at
least level j. The second one expresses the Priority Shapley value in terms of the distribution of
the Harsanyi dividends. The dividend of a coalition s is shared according to a two-step procedure:
in the first step, the agents playing the highest activity level in s, that is the agents in T (s), receive
an equal share of the dividend; in the second step, this share is equally redistributed to the subset
of their activity levels lower than or equal to max(s).

Proposition 1. The Priority Shapley value φ on G defined as in (9) admits the following equivalent
expressions:

1.

∀(i, j) ∈M+, φ(i,j)(m, v) =
∑

s∈C\−→0 :

si≥j

(qmmax(s) − qsmax(s))!(q
s
max(s) − 1)!

qmmax(s)!

[
v(s)− v(s− ei)

max(s)

]
.

2.

∀(i, j) ∈M+, φ(i,j)(m, v),
∑

s∈M\−→0 :

T (s)3i,max(s)≥j

∆s(v)

|T (s)|max(s)
.

Remark 4. In case mi = 1 for each i ∈ N , the Priority Shapley value coincides with the Shapley
value for TU-games. Indeed max(s) = 1 for all s 6= −→0 and, in that context, |T (s)| represents
the number of agents that cooperate in s, i.e., the agents choosing the activity level 1. Thus, the
Priority Shapley value shares equally the dividend of a coalition among its members, what the
Shapley value prescribes.

We now approach the class of hazardous waste transportation problems from a cooperative
point of view. For each hazardous waste transportation problem (g, w,C) ∈ P, define the multi-
choice game (w, vg,C) ∈ G where the worth vg,C(s) describes the total maintenance cost of the
network g whenever the profile s is shipped to the delivery node d. That is:

∀s ∈M, vg,C(s) =
∑

i∈N
Ci

( ∑

i′∈Ug [i]
si′

)
.

Proposition 2. For each hazardous waste transportation problem (g, w,C) ∈ P, and its associated
multi-choice game (w, vg,C) ∈ G, it holds that

fL(g, w,C) = φ(w, vg,C).
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6. Axiomatic characterizations

The first three axioms are adaptations of the principles of Efficiency, Independence of other
higher waste amounts, and Intra balanced contributions for highest contributors to the context of
multi-choice games.

Axiom 10 (Efficiency). For each (m, v) ∈ G, it holds that

∑

(i,j)∈M+

f(i,j)(m, v) = v(m).

Axiom 11 (Independence of more active agents). For each (m, v) ∈ G, and each pair of
agents {i, i′} ⊆ N such that mi < mi′ , it holds that

∀j ∈M+
i , f(i,j)(m, v) = f(i,j)(m− ei

′
, v).

Axiom 12 (Intra balanced contributions for top agents). For each (m, v) ∈ G, each top
agent i ∈ T (m) and each pair of activity levels {j, k} ⊆ {1, . . . ,max(m)} for i, it holds that

f(i,j)(m, v)− f(i,j)(m− ei, v) = f(i,k)(m, v)− f(i,k)(m− ei, v),

with the convention that, for i ∈ N , f(i,mi)(m− ei, v) = 0.

The fourth axiom is new although it belongs to the family of Balanced contribution axioms, a
principle introduced by Myerson (1980) to characterize the Shapley value of TU-games.

Axiom 13 (Inter balanced contributions for top agents). For each (m, v) ∈ G, and each
pair of top agents {i, i′} ⊆ T (m), it holds that

f(i,max(m))(m, v)− f(i,max(m))(m− ei
′
, v) = f(i′,max(m))(m, v)− f(i′,max(m))(m− ei, v).

This axiom says that, for any pair i and i′ of top agents, the change in payoff for the highest
level of agent i when i′ decreases its activity level is equal to the change in payoff for the highest
level of agent i′ when i decreases its activity level available.

The next axiom is the classical principle of Additivity used to characterize numerous allocation
rules in cooperative games.

Axiom 14 (Additivity). For each (m, v), (m, v′) ∈ G, it holds that

f(m, v) + f(m, v′) = f(m, v + v′),

where v + v′ denotes the coalitional function on m such that, for each s ∈ M, (v + v′)(s) =
v′(s) + v′(s).

The last two axioms are related to specific agents and activity levels in the game.
An agent-activity level pair (i′, j) ∈M+ is a maximal pair if j = mi′ . A maximal pair (i′,mi′)

is null in (m, v) ∈ G if, for each s ∈M\−→0 such that si′ = mi′ , v(s) = v(s− ei′). That is, this pair
is null if the highest activity level of i′ does not generate any additional worth. The next axiom
relies on an invariance principle, which states that the payoff of any other agent-activity level pair
should not be affected whether i′ cooperates at level mi′ or not.
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Axiom 15 (Null max activity level out). For each (m, v) ∈ G, and each null maximal pair
(i′,mi′) ∈M+, it holds that

∀(i, j) ∈M+ \ {(i′,mi′)}, f(i,j)(m, v) = f(i,j)(m− ei
′
, v).

A top agent i ∈ T (m) is top-veto in (m, v) ∈ G if for each coalition s ∈M,

si < mi =⇒ v(s) = 0.

In words, coalitions are worthless if any top-veto agent implements an activity level lower than
the maximal level. Since all top-veto agents have the same veto power at level max(m), the next
axiom states that any two pairs of top-veto agents with maximal activity level should receive the
same payoff.

Axiom 16 (Equal treatment for top-veto agents). For each (m, v) ∈ G, and each pair
{i, i′} ⊆ N of top-veto agents in (m, v) ∈ G, it holds that

f(i,max(m))(m, v) = f(i′,max(m))(m, v).

The next results provide distinct axiomatic characterizations of the Priority Shapley value.

Theorem 5. The Priority Shapley value φ defined as in (9) is the only value on G that satisfies
Efficiency, Independence of more active agents, Intra balanced contributions for top agents, and
Inter balanced contributions for top agents.

Theorem 6. The Priority Shapley value φ defined as in (9) is the only value on G that satis-
fies Efficiency, Independence of more active agents, Intra balanced contributions for top agents,
Additivity, Null max activity level out, and Equal treatment for top-veto agents.

6.1. Comparison with two other Shapley-like values for multi-choice games

There are several extensions of Shapley value from TU-games to multi-choice cooperative games.
The two closest to The Priority Shapley value are the Derks-Peters value and the Shapley value
introduced in Lowing and Techer (2022). From point 2 of Proposition 1, the Priority Shapley value
shares the dividend of a coalition s according to the following two-step procedure: in the first step,
the agents playing the highest activity level in s, that is the agents in T (s), receive an equal share
of the dividend; in the second step, this share is equally redistributed to the subset of their activity
levels lower than or equal to max(s). Formally,

∀(i, j) ∈M+, φ(i,j)(m, v) =
∑

s∈M\−→0 :

T (s)3i,max(s)≥j

∆s(v)

|T (s)|max(s)
.

The Shapley-like value introduced in Lowing and Techer (2022) equally shares the dividend of
a coalition s among the agents in T (s); and each agent i in T (s) allocates this amount to the level
si = max(s). If φLT denotes this value, then

∀(i, j) ∈M+, φLT(i,j)(m, v) =
∑

s∈M\−→0 :

T (s)3i,max(s)=j

∆s(v)

|T (s)| .
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In a similar way as Proposition 2, Techer (2023) shows that the Responsibility rule fR coincides
with the Shapley-like value φLT of the game (w, vg,C), that is,

φLT (w, vg,C) = fR(g, w,C).

The Derks-Peters value equally shares the dividend of a coalition s among the the activity-level
pairs (i, j) such that j ≤ si. That is, it shares the dividend of a coalition s among its set of relevant
agent-activity level pairs B(s). If φDP denotes this value, then

∀(i, j) ∈M+, φDP(i,j)(m, v) =
∑

s∈M\−→0 :

si≥j

∆s(v)

|B(s)| =
∑

s∈M\−→0 :

si≥j

∆s(v)∑
i∈N si

.

With regard to the distribution procedure of the dividend ∆s(v), the Priority Shapley value
φ and the Lowing-Techer value φLT consider only the agents playing the highest activity level
in s. But unlike φLT , the Priority Shapley value φ shares the dividend among all activity level
j ≤ si = max(s). This last principle is shared by the Priority value and the Derks-Peters value
φDP . The main difference between φDP and φ is that the former takes into account all agents
in coalition s whereas φ takes into account only the agents in T (s), that is those playing the
activity level max(s). With these remarks in mind, it is possible to compare these three values
axiomatically.

Let us consider the characterization of φ given in Theorem 5. The Lowing-Techer value satisfies
all axioms except Intra balanced contributions for top agents. It satisfies a principle of independence
stronger than the Independence of more active agents. To be precise, it satisfies the following
principle.

Axiom 17 (Independence of higher activity levels). For each (m, v) ∈ P, it holds that

∀i ∈ N, ∀j ∈ {1, . . . ,mi}, f(i,j)(m, v) = fij(m ∧
−→
j , v),

where (m ∧ −→j , v) is read as the restriction of v to the profiles induced by m ∧ −→j .

Clearly this axiom is a direct adaptation of Independence of higher waste amounts from P to
G. The Priority Shapley value φ fails to satisfy this axiom.

The Derks-Peters value φDP satisfies all axioms of Theorem 5 except Independence of more
active agents. Furthermore, it satisfies a stronger principle than Inter balanced contributions for
top agents, called Upper balanced contributions.

Axiom 18 (Upper balanced contributions). For each (m, v) ∈ G, and each distinct maximal
pairs (i,mi), (i

′,mi′) ∈M+, it holds that

f(i,mi)(m, v)− f(i,mi)(m− ei
′
, v) = f(i,mi′ )(m, v)− f(i,mi′ )(m− e

i, v).

The Priority Shapley value φ fails to satisfy this axiom unless i and i′ are in T (m). Note also
that both the Priority Shapley value φ and the Derks-Peters value φDP satisfy a stronger version
of Intra balanced contributions for top agents. In fact, the principle embodied in this axiom can
be applied to any agent, not just top agents. This version of the axiom is called Intra balanced
contributions (also known as Equal loss axiom).
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Axiom 19 (Intra balanced contributions). For each (m, v) ∈ G, each i ∈ N and each pair of
activity levels {j, k} ⊆ {1, . . . ,mi}, it holds that

f(i,j)(m, v)− f(i,j)(m− ei, v) = f(i,k)(m, v)− f(i,k)(m− ei, v).

Theorem 7. (Klijn et al., 1999) The Derks-Peters value φDP is the only value on G that satisfies
Efficiency, Intra balanced contributions, and Upper balanced contributions.

Although Lowing and Techer (2022) do not axiomatize φLT in terms of the Balanced contri-
butions principle, the following result holds. Its proof follows similar arguments to the proof of
Theorem 5, and therefore, it is omitted.

Theorem 8. The Lowing-Techer value φLT is the only value on G that satisfies Efficiency, Inter
balanced contributions for top agents, and Independence of higher activity levels.

Table 1 summarizes the axiomatic comparison of the above three Shapley-like values. The
symbol X means that the axiom is used in the characterization result; the symbol ◦ means that
the axiom is satisfied by the value though not used in the characterization result; and a white cell
means that the axiom is not satisfied by the value.

Axioms φLT φDP φ

Efficiency X X X
Upper balanced contributions X

Inter balanced contributions for top agents X ◦ X
Intra balanced contributions for top agents ◦ X

Intra balanced contributions (Equal loss axiom) X ◦
Independence of more active agents ◦ X

Independence of higher activity levels X

Table 1: Axiomatic comparison of the Shapley-like values.

7. Conclusion

There are several plausible directions in which our work can be extended. In this section, we
briefly allude to one of them. It would make sense to endow each portion of the network with a
(transport) capacity as in a flow network. This can only be done by relaxing the assumption that
the sink tree is given, so as to allow waste that cannot travel on a portion with saturated transport
capacity to travel on alternative portions. This is left for future work.
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8. Appendix

8.1. Proof of Theorem 1

This proof is based on several intermediate results stated in the following lemmas.

Lemma 1. Let f be an allocation rule on P satisfying Independence of other higher waste amounts,
and Intra balanced contributions for highest contributors. Then, for each (g, w,C) ∈ P, each agent
i ∈ N , the following holds:

∀j ∈ {1, . . . , wi − 1}, f(i,j)(g, w,C) = f(i,wi)(g, w,C) + f(i,j)(g, w ∧
−−−−−→
(wi − 1), C).

Proof. Pick any (g, w,C) ∈ P and any agent i ∈ N . Thanks to Remark 1,

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g, w ∧ −→wi, C).

Starting from (g, w ∧ −→wi, C) ∈ P, Remark 2 leads to:

∀j ∈ {1, . . . , wi − 1}, f(i,j)(g, w ∧ −→wi, C) = f(i,wi)(g, w ∧ −→wi, C) + f(i,j)(g, (w ∧ −→wi)− ei, C),

so that

∀j ∈ {1, . . . , wi − 1}, f(i,j)(g, w,C) = f(i,wi)(g, w ∧ −→wi, C) + f(i,j)(g, (w ∧ −→wi)− ei, C). (10)

Finally, consider the right-hand side of (10). Using Remark 1 again, one obtains that

f(i,wi)(g, w,C) = f(i,j)(g, w ∧−→wi, C) and f(i,j)(g, (w ∧−→wi)− ei, C) = f(i,j)(g, (w ∧−→wi)∧
−−−−−→
(wi − 1), C).

By noting that

f(i,j)(g, (w ∧ −→wi) ∧
−−−−−→
(wi − 1), C) = f(i,j)(g, w ∧

−−−−−→
(wi − 1), C),

the result follows. �

Lemma 2. Consider any (g, w,C) ∈ P, and any two leaves ` and `′ of g with the same successor
i in g such that C` = C`′ and w` = w`′. If an allocation rule f satisfies Anonymity, then

∀j ∈ {1, . . . , w`}, f(`,j)(g, w,C) = f(`′,j)(g, w,C).

Proof. Pick any (g, w,C) ∈ P, and two leaves ` and `′ in g as hypothesized. Let π be the permu-
tation on N such that π(`) = `′, π(`′) = `, and π(`′′) = `′′ for each other `′′ ∈ N \ {`, `′}. From
(g, w,C) ∈ P, construct the corresponding hazardous transportation waste problem (gπ, wπ, Cπ) ∈
P as defined before the statement of Anonymity. From the structure of g and the fact that C` = C`′

and w` = w`′ , (gπ, wπ, Cπ) coincides with (g, w,C). By Anonymity, one obtains that

∀j ∈ {1, . . . , w`}, f(`,j)(g, w,C) = f(π(`),j)((g
π, wπ, Cπ) = f(`′,j)(g, w,C).

�
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Lemma 3. Let f be an allocation rule on P satisfying Anonymity, and Invariance to a relocation
on a null cost portion. For each (g, w,C) ∈ P, each pair {i, i′} ⊆ N such that (i, i′) ∈ E, Ci = C0,
and wi = wi′, it holds that

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i′,j)(g, w,C).

Proof. Consider (g, w,C) ∈ P and i and i′ as hypothesized. Let π be the permutation on N such
that π(i) = i′, π(i′) = i and π(`) = ` for each other ` ∈ N \ {i, i′}. Because wi = wi′ , the following
equality holds:

(gi↔i
′
, wi↔i

′
, Ci↔i

′
) = (gπ, wπ, Cπ).

By Invariance to a relocation on a null cost portion,

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g
i↔i′ , wi↔i

′
, Ci↔i

′
).

By Anonymity,

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i′,j)(g
π, wπ, Cπ) = f(i′,j)(g

i↔i′ , wi↔i
′
, Ci↔i

′
).

Thus,
∀j ∈ {1, . . . , wi}, f(i,j)(g

i↔i′ , wi↔i
′
, Ci↔i

′
) = f(i′,j)(g

i↔i′ , wi↔i
′
, Ci↔i

′
).

In particular, by setting (g′, w′, C ′) := (gi↔i
′
, wi↔i

′
, Ci↔i

′
), one obtains that

∀j ∈ {1, . . . , wi}, f(i′,j)((g
′)i
′↔i, (w′)i

′↔i, (C ′)i
′↔i) = f(i,j)((g

′)i
′↔i, (w′)i

′↔i, (C ′)i
′↔i).

Since ((g′)i
′↔i, (w′)i

′↔i, (C ′)i
′↔i) = (g, w,C), then

∀j ∈ {1, . . . , wi}, f(i′,j)(g, w,C) = f(i,j)(g, w,C),

�

Proof of Theorem 1. Uniqueness part: The combination of the seven axioms induces at most one
allocation rule on P. So, let f be an allocation rule on P satisfying these seven axioms. To show
that f is uniquely determined. Pick any hazardous waste transportation problem (g, w,C) ∈ P.
Set K(g, w,C) as the set of portions in g with a non-null cost:

K(g, w,C) =
{
i ∈ N : Ci 6= C0

}
.

The proof proceeds by induction on the number of elements in K(g, w,C).

Induction basis: K(g, w,C) is empty. By Efficiency,

∑

i∈N

wi∑

j=1

f(i,j)(g, w,C) = 0.

Consider any directed path of length two of the form (i′, i, d). Cut the directed link (i′, i) ∈ E
and connect i′ to the treatment facility d by adding the directed link (i′, d), ceteris paribus. Repeat
this operation until there is no directed path of length two leading to d. The resulting sink tree
g? is such that each i ∈ N is directly connected to the treatment facility d. Apply repeatedly
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Invariance to a cut-and-connect operation on a null cost portion to obtain (with a slight abuse of
notation),

∀i ∈ N, ∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g
?, w, C).

To complete the induction basis, it suffices to prove that f(i,j)(g
?, w, C) = 0, for each agent i ∈ N ,

and each j ∈ {1, . . . , wi}. To that end, one again proceeds by induction on the value of max(w).

Induction basis: If max(w) = 1, then Qw(1) = N . The Efficiency condition applied to
(g?, w, C) becomes ∑

i∈N
f(i,1)(g

?, w, C) = 0.

From Lemma 2, all agents in N obtain the same payoff. Together with the Efficiency condi-
tion, this forces that f(i,1)(g

?, w, C) = 0 for each i ∈ N .

Induction hypothesis: Assume that the assertion is true whenever max(w) ≤ k, for k ≥ 1.

Induction step: Consider the situation where max(w) = k + 1. If i ∈ N \ Qw(k + 1), then
Remark 1 and the induction hypothesis yield the following equalities:

∀j ∈ {1, . . . , wi}, f(i,j)(g
?, w, C) = f(i,j)(g

?, w ∧ −→k ,C) = 0.

It thus remains to deal with the agents in Qw(k + 1). By Lemma 2,

∀{i, i′} ⊆ Qw(k + 1), f(i,k+1)(g
?, w, C) = f(i′,k+1)(g

?, w, C).

By the induction hypothesis, for each agent i ∈ Qw(k + 1), one has

∀j ∈ {1, . . . , k}, f(i,j)(g
?, w ∧ −→k ,C) = 0.

Using the above equality and Lemma 1, one obtains

∀i ∈ Qw(k + 1), ∀j ∈ {1, . . . , k}, f(i,j)(g
?, w, C) = f(i,k+1)(g

?, w, C) + f(i,j)(g
?, w ∧ −→k ,C)

= f(i,k+1)(g
?, w, C). (11)

It amounts to saying that, for any i′ ∈ Qw(k + 1),

∑

i∈Qw(k+1)

k+1∑

j=1

f(i,j)(g
?, w, C) = (k + 1)|Qw(k + 1)|f(i′,k+1)(g

?, w, C).

On the other hand, by Efficiency,

∑

i∈Qw(k+1)

k+1∑

j=1

f(i,j)(g
?, w, C) =

∑

i∈N

wi∑

j=1

f(i,j)(g
?, w, C) = 0.

Therefore, one concludes that

∀i′ ∈ Qw(k + 1), f(i′,k+1)(g
?, w, C) = 0,

and so, thanks to (11), for each j ∈ {1, . . . , k + 1}, f(i′,j)(g?, w, C) = 0, as desired.
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Induction hypothesis: Suppose that f(g, w,C) is uniquely determined when K(g, w,C) contains
t elements, for t ≥ 0.

Induction step: Suppose that K(g, w,C) contains t+ 1 elements. Let

Ug =
⋂

i∈K(g,w,C)

Ug[i].

Case 1. If Ug = ∅, then, for each i ∈ N , there exists i′ ∈ K(g, w,C) such that i /∈ Ug[i′], and so
Dg[i]∩Ug[i′] = ∅. Now define the cost profile C −λC,i′ (see (2) for the definition of λC,i

′
). Because

i′ /∈ Dg[i], by Path consistency, one obtains

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g, w,C − λC,i
′
).

By the induction hypothesis,

∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C − λC,i
′
) is uniquely determined

and so is f(i,j)(g, w,C), as desired.

Case 2. If Ug 6= ∅, then, since g is a sink tree, there exists i′ ∈ K(g, w,C) such that Ug = Ug[i
′]. If

i /∈ Ug, then proceeding as in Case 1, one concludes that, for each j ∈ {1, . . . , wi}, f(i,j)(g, w,C) is
uniquely determined. It remains to deal with the payoffs of agents belonging to Ug. By definition of
Ug, for each i ∈ Ug \i′, Ci = C0. Consider any directed path of length two of the form (`, `′, i′). Cut
the directed link (`, `′) ∈ E and connect ` to i by adding the directed link (`, i′), ceteris paribus.
Repeat this operation until there is no directed path of length two leading to i′. The resulting sink
tree g? is such that each i ∈ Ug \ i′ is now directly connected to i′. Apply repeatedly Invariance to
a cut-and-connect operation on a null cost portion to obtain

∀i ∈ Ug \ i′,∀j ∈ {1, . . . , wi}, f(i,j)(g, w,C) = f(i,j)(g
?, w, C).

To complete the proof, one again proceeds by induction on the value of max(wUg) where wUg stands
for the restriction of w to the components of Ug.

Induction basis: If max(wUg) = 1, then, the Efficiency condition applied to (g, w,C) and the
above equalities give

∑

i∈Ug
f(i,1)(g

?, w, C) =
∑

i∈N
Ci

( ∑

`∈Ug [i]
w`

)
−

∑

i∈N\Ug

wi∑

j=1

f(i,j)(g, w,C).

Note that the right-hand side of the above equality is uniquely determined. On the other
hand, by Lemma 2, for each pair {`, `′} ⊆ Ug \ i′, f(`,1)(g?, w, C) = f(`′,1)(g

?, w, C). Further-
more, by Lemma 3, f(`,1)(g

?, w, C) = f(i′,1)(g
?, w, C), meaning that each agent in Ug obtains

the same payoff. Together with the Efficiency condition, this forces that

∀` ∈ Ug, f(`,1)(g
?, w, C) =

1

|Ug|

[∑

i∈N
Ci

( ∑

`′∈Ug [i]
w`′

)
−

∑

i∈N\Ug

wi∑

j=1

f(i,j)(g, w,C)

]
.

Therefore, for each ` ∈ U , f(`,1)(g
?, w, C) is uniquely determined, as desired.
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Induction hypothesis: Assume that the assertion is true whenever max(wUg) ≤ k, for k ≥ 1.

Induction step: Consider the situation where max(wUg) = k + 1. If i ∈ Ug \Qw(k + 1), then
by Remark 1,

∀j ∈ {1, . . . , wi}, f(i,j)(g
?, w, C) = f(i,j)(g

?, w ∧ −→k ,C),

which is uniquely determined by the induction hypothesis. So, it remains to deal with the
agents in Ug ∩Qw(k + 1). By Lemma 1,

∀i ∈ Ug∩Qw(k+1), ∀j ∈ {1, . . . , k}, f(i,j)(g
?, w, C) = f(i,k+1)(g

?, w, C)+f(i,j)(g
?, w∧−→k ,C).

(12)

By the induction hypothesis, for each j ∈ {1, . . . , k}, f(i,j)(g?, w ∧
−→
k ,C) is uniquely deter-

mined. It remains to prove that f(i,k+1)(g
?, w, C) is uniquely determined. By Lemma 2,

∀{`, `′} ⊆ (Ug \ i) ∩Qw(k + 1), f(`,k+1)(g
?, w, C) = f(`′,k+1)(g

?, w, C).

Furthermore, if i′ ∈ Qw(k + 1), then, by Lemma 3, one obtains

f(`,k+1)(g
?, w, C) = f(i′,k+1)(g

?, w, C).

All in all, all agents of Ug ∩Qw(k+ 1) obtain the same payoff at level k+ 1. Let αk+1 denote
this common value. Using the Efficiency condition and the fact that, for each pair (i, j) such
that i ∈ N \(Ug∩Qw(k+1)) and 1 ≤ j ≤ wi, the payoff f(i,j)(g

?, w, C) is uniquely determined
(see above), one concludes that the quantity

∑

i∈Ug∩Qw(k+1)

k+1∑

j=1

f(i,j)(g
?, w, C) =

∑

i∈N

wi∑

j=1

f(i,j)(g
?, w, C)−

∑

i∈N\(Ug∩Qw(k+1))

wi∑

j=1

f(i,j)(g
?, w, C)

is uniquely determined. Furthermore, by (12), one obtains

∑

i∈Ug∩Qw(k+1)

k+1∑

j=1

f(i,j)(g
?, w, C) =

∑

i∈Ug∩Qw(k+1)

k∑

j=1

(
f(i,j)(w∧

−→
k ,C)+αk+1

)
+

∑

i∈Ug∩Qw(k+1)

αk+1,

which leads to

∑

i∈Ug∩Qw(k+1)

k+1∑

j=1

f(i,j)(g
?, w, C) =

∑

i∈Ug∩Qw(k+1)

k∑

j=1

f(i,j)(g
?, w∧−→k ,C)+(k+1)|Ug∩Qw(k+1)|αk+1.

By the induction hypothesis,

∑

i∈Ug∩Qw(k+1)

k∑

j=1

f(i,j)(g
?, w ∧ −→k ,C)

is uniquely determined, which allows to conclude that αk+1 is uniquely determined. The
proof is complete.
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Existence part: One verifies that fL satisfies the seven axioms. From the definition given in (4)
of fL, the cost increase at level k,

Ci′

( ∑

`∈Ug [i′]
w` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
w` ∧ (k − 1)

)
,

is paid only by the agents i located upstream of i′ provided that wi ≥ k, that is, this cost increase is
paid only by the agents belonging to Ug[i

′]∩Qw(k). Therefore, fL trivially satisfies Path consistency
and Independence of other higher waste amounts. Each i ∈ Ug[i′] ∩Qw(k) pays an equal share of
this cost increase by charging it equally to each waste amount k, k− 1, . . . , 1, that is, the Liability
rule charges an amount

1

k
·
Ci′(

∑
`∈Ug [i′]w` ∧ k)− Ci′(

∑
`∈Ug [i′]w` ∧ (k − 1))

|Ug[i′] ∩Qw(k)| ,

to each waste amount j ∈ {1, . . . , k}. It follows that if agent i ships wi − 1 units of waste instead
of wi, each unit wi − 1, . . . , 1, will reduce the amount to be paid by the same amount,

1

wi
·
Ci′(

∑
`∈Ug [i′]w` ∧ wi)− Ci′(

∑
`∈Ug [i′]w` ∧ (wi − 1))

|Ug[i′] ∩Qw(wi)|
.

This shows that fL satisfies Intra balanced contributions for highest contributors. It must also be
clear that the cost charged to each waste amount j of i does not depend on the label i. Thus, fL

satisfies Anonymity as well. From the above discussion, it follows that if the cost function Ci′ = C0

is the null cost function, the portion connecting each predecessor i ∈ Pg(i′) to i′ can be removed
and replaced by a portion connecting each of these predecessors to the successor of i′, without
modifying the cost share to be paid for i under fL. This ensures that fL satisfies Invariance to
a cut-and-connect operation on a null cost portion. Furthermore, i has trivially no cost to pay
when it passes its waste on its portion, and each successor of i has nothing to pay either, since it
does not use that portion. Then, under fL, these agents will pay part of the cost increases of the
portions from i’s successor to d. As a result, the positions of i and its successor can be exchanged
without modifying their payoffs under fL. This ensures that fL satisfies Invariance to a relocation
on a null cost portion. It remains to prove that fL indeed satisfies Efficiency. First the total cost
paid by i ∈ N in (g, w,C) under fL is

wi∑

j=1

fL(i,j)(g, w,C) =

wi∑

j=1

∑

i′∈Dg [i]

∑

k≥j:
i∈Qw(k)

1

k
·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

=
∑

i′∈Dg [i]

wi∑

k=1

k∑

j=1

1

k
·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

=
∑

i′∈Dg [i]

wi∑

k=1

Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)| .
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Then,

∑

i∈N

wi∑

j=1

fL(i,j)(g, w,C) =
∑

i∈N

∑

i′∈Dg [i]

wi∑

k=1

Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

=
∑

i′∈N

∑

i∈Ug [i′]

wi∑

k=1

Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

=
∑

i′∈N

max(w)∑

k=1

∑

i∈Ug [i′]∩Qw(k)

Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

=
∑

i′∈N

max(w)∑

k=1

Ci′

( ∑

`∈Ug [i′]
k ∧ w`

)
− Ci′

( ∑

`∈Ug [i′]
(k − 1) ∧ w`

)

=
∑

i′∈N
Ci′

( ∑

`∈Ug [i′]
w`

)
,

which proves that fL satisfies Efficiency. This completes the proof of Theorem 1. �

Logical independence of the axioms. The axioms invoked in Theorem 1 are logically indepen-
dent, as shown by the following alternative allocation rules.

• The allocation rule f on P defined as:

∀(i, j) ∈M+, f(i,j)(g, w,C) = 0

satisfies all the axioms except Efficiency.

• The allocation rule f on P defined as:

∀(i, j) ∈M+, f(i,j)(g, w,C) =
∑

i′∈Dg [i]

max(w)∑

k=j

1

wi ∧ k
·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′]|

satisfies all the axioms except Independence of other higher waste amounts.

• The allocation rule f on P defined as:

∀(i, j) ∈M+, f(i,j)(g, w,C) =
∑

i′∈N

∑

k≥j:
i∈Qw(k)

1

k
·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Qw(k)|

satisfies all the axioms except Path consistency.

• The Responsibility rule fR on P defined as:

∀(i, j) ∈M+, fR(i,j)(g, w,C) =
∑

i′∈Dg [i]

∑

k≥j:
i∈Qw(k)

Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)

|Ug[i′] ∩Qw(k)|

satisfies all the axioms except Intra balanced contributions for highest contributors.
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• The allocation rule f on P defined as:

∀(i, j) ∈M+, f(i,j)(g, w,C) =
∑

i′∈Dg [i]

∑

k≥j:
i∈Qw(k)

i·
Ci′
(∑

`∈Ug [i′] k ∧ w`
)
− Ci′

(∑
`∈Ug [i′](k − 1) ∧ w`

)
∑

`∈Ug [i′]∩Qw(k) `

satisfies all the axioms except Anonymity.

• To define the next allocation rule, recall that by (2), C can be decomposed as:

C =
∑

i′∈N
λC,i

′
.

And by (3), one has the following decomposition of C:

λC,i
′

=

max(w)∑

k=1

λC,i
′,k and so C =

∑

i′∈N

max(w)∑

k=1

λC,i
′,k,

where,

∀s ∈
∏

i∈N
{0, . . . , wi}, λC,i

′,k(s) = λC,i
′
( ∑

i∈Ug [i′]
si ∧ k

)
− λC,i′

( ∑

i∈Ug [i′]
si ∧ (k − 1)

)
.

From this, define the additive allocation rule f as follows: if i′ is a successor of a leaf of g
and i′ ∈ Qw(k), then

∀j ∈ {1, . . . , k}, f(i′,j)(g, w, λ
C,i′,k) =

1

k

(
Ci′
( ∑

`∈U[i′]

k ∧ w`
)
− Ci′

( ∑

`∈U[i′]

(k − 1) ∧ w`
))
,

and f(i,j)(g, w, λ
C,i′,k) = 0 if either i ∈ N \ i′ or i = i′ and j ∈ {k + 1, . . . , wi}.

In any other case, that is, if i′ is neither a successor of a leaf of g nor i′ ∈ Qw(k),

∀i ∈ N, ∀j ∈ {1, . . . , wi}, f(i,j)(g, w, λ
C,i′,k) = fL(i,j)(g, w, λ

C,i′,k).

By additivity of f ,

f(g, w,C) =
∑

i′∈N

max(w)∑

k=1

f(g, w, λC,i
′,k).

This allocation rule f on P satisfies all the axioms except Invariance to a relocation on a null
cost portion.

• Define the allocation rule f as follows. Pick any (g, w,C) ∈ P. Consider the set Pg(d) of
predecessors of the sink d and define Sg = {i1, i2, . . . , ip} ⊆ Pg(d) as the possibly empty subset
of predecessors of the sink d that are also leaves of g and such that wit = 1 for t ∈ {1, . . . , p};
and the complementary subset Pg(d) \ Sg = {i′1, i′2, . . . , i′q}. One distinguishes two cases.
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Case 1. If Pg(d) \ Sg 6= ∅ and Sg 6= ∅, define the cost function C ′ as:

C ′i =

{
Ci + 1

q if i ∈ Pg(d) \ Sg,
Ci otherwise.

In this case,

f(i,j)(g, w,C) =





fL(i,1)(g, w,C)− 1
p if i ∈ Sg,

fL(i,j)(g, w,C
′) if i ∈ N \ Sg and j ∈ {1, . . . , wi}.

Case 2. Either Pg(d) \ Sg = ∅ or Sg = ∅. Then, set f(g, w,C) = fL(g, w, c).

This allocation rule f on P satisfies all the axioms except Invariance to a cut-and-connect
operation on a null cost portion.

8.2. Proof of Theorem 2

Proof of Theorem 2. Only the uniqueness part has to be shown. So, let f be an allocation rule on
P∗ satisfying the axioms of the statement of Theorem 2. Pick any hazardous waste transportation
problem (g, w,C) ∈ P∗. As in the proof of Theorem 1, set K(g, w,C) as the set of portions in g
with a non-null cost:

K(g, w,C) =
{
i ∈ N : Ci 6= C0

}
.

The proof proceeds by induction on the number of elements in K(g, w,C).

Induction basis: K(g, w,C) is empty. By Efficiency,

∑

i∈N
f(i,1)(g, w,C) = 0.

By Lemma 3, all agents in N obtain the same payoff. By Efficiency, it follows that f(g, w,C) =
−→
0 .

Induction hypothesis: Suppose that f(g, w,C) is uniquely determined when K(g, w,C) contains
t elements, for t ≥ 0.

Induction step: Suppose that K(g, w,C) contains t+1 elements. Let ` be the most distant agent
from d such that Ck = C0. This means that each i ∈ Ug[`] is such that Ci = C0. By Lemma 3,
all agents in Ug[`] obtain the same payoff, say cf ∈ R. Next, consider any i ∈ N \ Ug[k]. By Path
consistency,

f(i,1)(g, w,C) = f(i,1)(g, w,C − λ`,C).

By induction hypothesis, f(i,1)(g, w,C − λλ,C) is uniquely determined, so is f(i,1)(g, w,C), for each
i ∈ N \ Ug[k]. By Efficiency,

cf =

∑
i∈N Ci(i)−

∑
i∈N\Ug [k] f(i,1)(g, w,C)

|Ug[k]|
is uniquely determined. This complete the proof of the induction step. �
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8.3. Proof of Proposition 1

Before starting with the proof of Proposition 1, a definition is required. A coalition s ∈ C is
induced by an ordering σ ∈ Om if there is a pair (i, j) ∈ M+ such that sσ,(i,j) = s. Let Iσ be
the subset of coalitions in C induced by σ. Obviously, the grand coalition m and the null coalition−→
0 belong to Iσ whatever σ ∈ Om.

Proof of Proposition 1. Point 1. From the definition of the Priority Shapley value given in (9), one
observes that sσ,(i,j) and sσ,(i,j) − ei are in C, and coalition sσ,(i,j) is such that max(sσ,(i,j)) = j.
From this observation, one deduces that

∀(i, j) ∈M+, φ(i,j)(m, v) =
1

∏max(m)
r=1 qmr !

∑

s∈C:
si≥j

∑

σ∈Om:
Iσ3s

v(s)− v(s− ei)
max(s)

.

Using Remark 3, for any coalition s ∈ C, the number of orderings σ ∈ Om such that Iσ 3 s is
given by:

(max(s)−1∏

r=1

qmr !

)(
qsmax(s) − 1

)
!
(
qmmax(s) − qsmax(s)

)
!

( max(m)∏

r=max(s)+1

qmr !

)
.

From this, one directly gets the desired result:

∀(i, j) ∈M+, φ(i,j)(m, v) =
∑

s∈C:
si≥j

(qmmax(s) − qsmax(s))!(q
s
max(s) − 1)!

qmmax(s)!

[
v(s)− v(s− ei)

max(s)

]
.

Point 2. The Priority Shapley value φ is obviously a linear function in v. By (7), it follows that

∀(i, j) ∈M+, φ(i,j)(m, v) =
∑

s≤m
∆v(s)φ(i,j)(m,us). (13)

Note that, for any ordering σ ∈ Om, ησ(i,j)(m,us) = 1 if and only if the following conditions hold:

• i ∈ T (s);
• j = max(s);
• for any other agent ` ∈ T (s), σ(i,max(s)) > σ(`,max(s)).

In all other cases, ησ(i,j)(m,us) = 0. By the above fact and definition (8) of λσ(i,j)(m,us), it
follows that

∀(i, j) ∈M+, λσ(i,j)(m,us) =

{
1

max(s)
if i ∈ T (s), j ≤ max(s), ∀` ∈ T (s) \ i, σ(i,max(s)) > σ(`,max(s)),

0 otherwise.

By definition (9) of φ(i,j)(m,us), it holds that

∀(i, j) ∈M+ : i ∈ T (s), j ≤ max(s), φ(i,j)(m,us) =
1

|Om|
∑

σ∈Om
λσ(i,j)(m,us)

=
1

|Om|
∑

σ∈Om:

∀`∈T (s),σ(i,max(s))>σ(`,max(s))

1

max(s)
.
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And, for each i ∈ N \ T (s) and j ∈Mi, φ(i,j)(m,ut) = 0.
To complete the proof, note that, for i, ` ∈ T (s), the number of restricted orders σ such that

σ(i,max(s)) > σ(`,max(s)) is equal to the number of restricted orders σ such that σ(`,max(s)) >
σ(i,max(s)), and it is given by

|Om|
|T (s)| .

It follows that

∀(i, j) ∈M+ : i ∈ T (s), j ≤ max(s), φ(i,j)(m,us) =
1

|Om|
∑

σ∈Om:

∀`∈T (s),σ(i,max(s))>σ(`,max(s))

1

max(s)

=
1

|Om|
|Om|
|T (s)|

1

max(s)

=
1

|T (s)|max(s)
,

and so

∀(i, j) ∈M+, φ(i,j)(m,us) =

{
1

|T (s)|max(s)
if i ∈ T (s), j ≤ max(s),

0 otherwise.

The desired result follows by (13).
�

8.4. Proof of Proposition 2

Proof of Proposition 2. Consider any hazardous waste transportation problem (g, w,C) ∈ P and
its associated multi-choice game (w, vg,C) ∈ G. By (2), C can be decomposed as:

C =
∑

i′∈N
λC,i

′
.

By (3), one has the following decomposition of C:

λC,i
′

=

max(w)∑

k=1

λC,i
′,k, and so C =

∑

i′∈N

max(w)∑

k=1

λC,i
′,k,

where

∀s ∈
∏

i∈N
{0, . . . , wi}, λC,i

′,k(s) = λC,i
′
( ∑

i∈Ug [i′]
si ∧ k

)
− λC,i′

( ∑

i∈Ug [i′]
si ∧ (k − 1)

)
.

Pick another hazardous waste transportation problem (g, w,C ′) ∈ P with the same sink tree and
waste profile as (g, w,C) and define the hazardous waste transportation problem (g, w,C+C ′) ∈ P.
By definition of the coalition functions vg,C and vg,C′ , it holds that vg,C+C′ = vg,C +vg,C′ . Observe
also that the Priority Shapley value φ given in (9) is additive in v and the Liability rule fL given
in (4) is additive in C. Therefore, using (3), it suffices to prove that

∀k ∈ {1, . . . ,max(w)}, φ(w, vg,λC,i′,k) = fL(g, w, λC,i
′,k).
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From the definition of the Liability rule fL, one has that

fL(i,j)(g, w, λ
C,i′,k) =





1
k
·
Ci′
( ∑

`∈Ug [i′]
w` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
w` ∧ (k − 1)

)

|Ug[i′] ∩Qw(k)| if i ∈ Ug[i′] ∩Qw(k), j ∈ {1, . . . , k},

0 otherwise.

On the other hand,

∀s ∈M, vg,λC,i′,k(s) = λC,i
′,k(s)

= Ci′

( ∑

`∈Ug [i′]
s` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
s` ∧ (k − 1)

)

= Ci′

( ∑

`∈Ug [i′]
s` ∧ (k − 1) + |Ug[i′] ∩Qs(k)|

)
− Ci′

( ∑

`∈Ug [i′]
s` ∧ (k − 1)

)
.

Let σ be any ordering in Om. Using the definition of vg,λC,i′,k , one has that

• for each i ∈ N \ Ug[i′] and each j ∈ {1, . . . , wi}, ησ(i,j)(w, vg,λC,i′,k) = 0;

• for each i ∈ N and each j ∈ {1, . . . , wi} \ k, ησ(i,j)(w, vg,λC,i′,k) = 0.

By definition of the Priority Shapley value φ given in (9), one obtains the following payoffs:

φ(i,j)(w, vg,λC,i′,k) =





1
k
·

∑

σ∈Ow
ησ(i,k)(w, vg,λC,i′,k)

|Ow| if i ∈ Ug[i′] ∩Qw(k), j ∈ {1, . . . , k},

0 otherwise.

(14)

Furthermore, by the definition of a marginal vector,

∀σ ∈ Ow,
∑

(i,j)∈M+

ησ(i,j)(w, vg,λC,i′,k) =
∑

i∈Ug [i′]∩Qw(k)
ησ(i,k)(w, vg,λC,i′,k)

= vg,λC,i′,k(w)

= Ci′

( ∑

`∈Ug [i′]
w` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
w` ∧ (k − 1)

)
,

and so,

∑

σ∈Ow

∑

i∈Ug [i′]∩Qw(k)
ησ(i,k)(w, vg,λC,i′,k) =

∑

i∈Ug [i′]∩Qw(k)

∑

σ∈Ow
ησ(i,k)(w, vg,λC,i′,k)

= |Ow| ·
(
Ci′
( ∑

`∈Ug [i′]
w` ∧ k

)
− Ci′

( ∑

`∈Ug [i′]
w` ∧ (k − 1)

))
.(15)

Next, let ` and `′ be two agents in Ug[i
′] ∩Qw(k) and let inv`,`

′
(σ) ∈ Ow be defined as:
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• inv`,`′(σ)(`, k) = σ(`′, k);

• inv`,`′(σ)(`′, k) = σ(`, k);

• inv`,`′(σ)(i, j) = σ(i, j), ∀(i, j) ∈M+ \ {(`, k), (`′, k)}.

Because Ci′ only depends on the sum of the amount of waste shipped by the agents of Ug[i
′], it

holds that

ησ(i,k)(w, vg,λC,i′,k) = η
inv`,`

′
(σ)

(i,k) (w, vg,λC,i′,k).

From this observation, one concludes that

∑

σ∈Ow
ησ(i,k)(w, vg,λC,i′,k) =

∑

σ∈Ow
η
inv`,`

′
(σ)

(i,k) (w, vg,λC,i′,k)

=
∑

σ′∈Ow
ησ
′

(i,k)(w, vg,λC,i′,k). (16)

By (15) and (16), it holds that

∑

σ∈Ow
ησ(i,k)(w, vg,λC,i′,k) =

|Ow| ·
(
Ci′
(∑

`∈Ug [i′]w` ∧ k
)
− Ci′

(∑
`∈Ug [i′]w` ∧ (k − 1)

))

|Ug[i′] ∩Qw(k)| .

Substituting the above equality in (14), one obtains that φ(w, vg,λC,i′,k) = fL(g, w, λC,i
′,k), as

desired. �

8.5. Proof of Theorem 5

Proof of Theorem 5. Uniqueness part: We prove that Efficiency, Independence of more active
agents, Inter balanced contributions for top agents, and Intra balanced contributions for top agents
determine φ in a unique way. Assume that a value f on G satisfies the above four axioms. The
proof is by induction on

∑
i∈N mi.

Induction basis: If
∑

i∈N mi = 1, then there is exactly one active agent in the game, say i′, with
mi′ = 1. Therefore, M+ = {(i′, 1)} and, by Efficiency,

f(i′,1)(m, v) = v(0, . . . , 1, . . . , 0) = v(m),

meaning that f = φ.

Induction hypothesis: Assume that f = φ for all multi-choice games in G such that
∑

i∈N mi ≤
p, for some p ≥ 1.

Induction step: Consider any multi-choice game (m, v) ∈ G such that
∑

i∈N mi = p + 1. Two
separate cases are distinguished.

Case 1. Consider any i ∈ N \T (m). Consider any activity level j ∈M+
i and any agent i′ ∈ T (m).

By Independence of more active agents and the induction hypothesis, one obtains

f(i,j)(m, v) = f(i,j)(m− ei
′
, v) = φ(i,j)(m− ei

′
, v) = φ(i,j)(m, v),
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where the first equality follows from Independence of more active agents applied to f , the second
equality is a consequence of the induction hypothesis, and the third equality follows from Indepen-
dence of more active agents applied to φ.

Case 2. Consider any i ∈ T (m). First, Intra balanced contributions for top agents applied to f
implies that

∀i ∈ T (m), ∀j ∈M+
i , f(i,j)(m, v)− f(i,j)(m− ei, v) = f(i,max(m))(m, v). (17)

In a similar way, Intra balanced contributions for top agents applied to φ leads to

∀i ∈ T (m), ∀j ∈M+
i , φ(i,j)(m, v)− φ(i,j)(m− ei, v) = φ(i,max(m))(m, v). (18)

By induction hypothesis, f(i,j)(m− ei, v) = φ(i,j)(m− ei, v). Thus, subtracting (18) from (17), one
obtains that

∀i ∈ T (m),∀j ∈M+
i , f(i,j)(m, v)− φ(i,j)(m, v) = f(i,max(m))(m, v)− φ(i,max(m))(m, v), (19)

which shows that the difference f(i,j)(m, v) − φ(i,j)(m, v) does not depend on the activity level j.
On the other hand, for any pair {i, i′} ⊆ T (m), Inter balanced contributions for top agents applied
to f implies that

f(i,max(m))(m, v)− f(i,max(m))(m− ei
′
, v) = f(i′,max(m))(m, v)− f(i′,max(m))(m− ei, v). (20)

In a similar way, Inter balanced contributions for top agents applied to φ leads to

φ(i,max(m))(m, v)− φ(i,max(m))(m− ei
′
, v) = φ(i′,max(m))(m, v)− φ(i′,max(m))(m− ei, v). (21)

Subtracting (21) from (20) and using the induction hypothesis as above, one obtains that

f(i,max(m)))(m, v)− φ(i,max(m))(m, v) = f(i′,max(m))(m, v)− φ(i′,max(m))(m, v),

which proves that f(i,max(m))(m, v) − φ(i,max(m))(m, v) does not depend on the agent i ∈ T (m).
Taking into account (19), one finally obtains that

∃cf,φ ∈ R : ∀i ∈ T (m), ∀j ∈ {1, . . . ,max(m)}, f(i,j)(m, v)− φ(i,j)(m, v) = cf,φ. (22)

By Efficiency,

v(m) =
∑

(i,j)∈M+

f(i,j)(m, v)

=
∑

(i,j)∈M+:
i∈T (m)

f(i,j)(m, v) +
∑

(i,j)∈M+:
i/∈T (m)

f(i,j)(m, v)

(22),Case 1
=

∑

(i,j)∈M+:
i∈T (m)

(φ(i,j)(m, v) + cf,φ) +
∑

(i,j)∈M+:
i/∈T (m)

φ(i,j)(m, v)

= v(m) + max(m)|T (m)|cf,φ, (23)
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which implies that cf,φ = 0. Therefore,

∀i ∈ T (m), ∀j ∈M+
i , f(i,j)(m, v) = φ(i,j)(m, v),

which concludes the proof of the induction step.

Existence part: We prove that φ satisfies the four axioms. Consider any (m, v) ∈ G. For each
ordering σ ∈ Om,

∑

(i,j)∈M+

λσ(i,j)(m, v) =
∑

i∈N

mi∑

j=1

mi∑

k=j

ησ(i,k)(m, v)

k

=
∑

i∈N

mi∑

k=1

k∑

j=1

ησ(i,k)(m, v)

k

=
∑

i∈N

mi∑

k=1

ησ(i,k)(m, v)

=
∑

(i,j)∈M+

ησ(i,k)(m, v).

It follows that
∑

(i,j)∈M+

λσ(i,j)(m, v) =
∑

(i,k)∈M+

(
v(sσ,(i,k) − v(sσ,p

σ(i,k)
)

=
∑

(i,k)∈M+

v(sσ,(i,k))−
∑

(i,k)∈M+,σ(i,k) 6=1

v(sσ,p
σ(i,k)),

=
∑

(i,k)∈M+

v(sσ,(i,k))−
∑

(i,k)∈M+,σ(i,k) 6=|M+|
v(sσ,(i,k))

= v(sσ,σ
−1(|M+|))

= v(m). (24)

By (24) and the definition of φ, it follows that

∑

(i,j)∈M+

φ(i,j)(m, v) =
1

|Om|
∑

σ∈Om

∑

(i,j)∈M+

λσ(i,j)(m, v)

=
1

|Om|
∑

σ∈Om
v(m)

= v(m),

which proves that φ satisfies Efficiency.
Pick any pair of agents {i, i′} ⊆ N such that mi < mi′ , and any (i, j) ∈ M+. By definition of

Om, for each σ ∈ Om, σ(i, j) < σ(i′,mi′). Therefore, for each σ ∈ Om, ησij(m, v) = ησij(m− ei
′
, v),

and so, λσ(i,j)(m, v) = λσ(i,j)(m− ei
′
, v). Because the latter equality holds for each σ ∈ Om, one gets

φ(i,j)(m, v) = φ(i,j)(m− ei
′
, v). This show that φ satisfies Independence of more active agents.
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Now, pick any pair of top agents {i, i′} ⊆ T (m). By Point 2. of Proposition 1,

φ(i,max(m))(m, v)−φ(i,max(m))(m−ei
′
, v) =

∑

t≤m:T (t)3i,
max(t)=max(m)

∆v(t)

max(t)|T (t)|−
∑

t≤m−ei′ ,T (t)3i,
max(t)=max(m−ei′ )

∆v(t)

max(t)|T (t)| .

A coalition t appears in the first sum and not in the second one if and only if ti′ = max(m). Thus,

φ(i,max(m))(m, v)− φ(i,max(m))(m− ei
′
, v) =

∑

t≤m,T (t)⊇{i,i′},
max(t)=max(m)

∆v(t)

max(t)|T (t)|

= φ(i′,max(m))(m, v)− φ(i′,max(m))(m− ei, v),

where the second equality follows from a symmetric argument. This ensures that φ satisfies Inter
balanced contributions for top agents.

Finally, similarly as above, by choosing a top agent i ∈ T (m) and any pair of distinct activity
levels {j, j′} ⊆ {1, . . . ,max(m)}, one obtains that

φ(i,j)(m, v)− φ(i,j)(m− ei, v) =
∑

t≤m,T (t)3i,max(t)=max(m)

∆v(t)

max(t)|T (t)|

= φ(i,j′)(m, v)− φ(i,j′)(m− ei, v),

which entails that φ satisfies Intra balanced contributions for top agents.
�

Logical independence of the axioms. The axioms invoked in Theorem 5 are logically indepen-
dent, as shown by the following alternative values. The second and third examples are taken from
Table 1.

• The null value on G that distributes a zero payoff to each pair (i, j) ∈ M+ satisfies all the
axioms except Efficiency.

• The Shapley-like value φDP on G defined as:

∀(i, j) ∈M+, φDP(i,j)(m, v) =
∑

s∈M\−→0 :

si≥j

∆s(v)

|B(s)|

satisfies all the axioms except Independence of more active agents.

• The Shapley-like value φLT on G defined as:

∀(i, j) ∈M+, φLT(i,j)(m, v) =
∑

s∈M\−→0 :

T (s)3i,max(s)=j

∆s(v)

|T (s)| ,

satisfies all the axioms except Intra balanced contributions for top agents.
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• Associate with each i ∈ N a positive real number βi ∈ R++. The value fβ on G defined as:

∀(i, j) ∈M+, fβ(i,j)(m, v) =
∑

s∈M\−→0 :

T (s)3i,max(s)=j

βi∑
i′∈T (s) βi′

· ∆s(v)

|max(s)| ,

satisfies all the axioms except Inter balanced contributions for top agents.

8.6. Proof of Theorem 6

Proof of Theorem 6. Uniqueness part: Consider any value f on G satisfying Efficiency, Inde-
pendence of more active agents, Intra balanced contributions for top agents, Additivity, Null max
activity level out, and Equal treatment for top-veto agents. Pick any (m, v) ∈ G. By Additivity,

f(m, v) =
∑

t≤m
f(m,∆v(t)ut).

It must be shown that ∀t ≤ m, f(m,∆v(t)ut) = φ(m,∆v(t)ut). To that end, consider any minimum
activity level game (m,∆v(t)ut). Each pair (i,mi) where mi > ti, if it exists, is a null pair in
(m,∆v(t)ut). Applying successively Null max activity level out, one obtains that

∀(i, j) ∈M+ : j ≤ ti, f(i,j)(m,∆v(t)ut) = f(i,j)(t,∆v(t)ut).

Null max activity level out and Efficiency leads to

∀(i, j) ∈M+ : j > ti, f(i,j)(m,∆v(t)ut) = 0

= φ(i,j)(m,∆v(t)ut),

as desired. Pick any i′ ∈ T (t). By Independence of more active agents,

∀i 6∈ T (t),∀j ∈ {1, . . . , ti}, f(i,j)(t,∆v(t)ut) = f(i,j)(t− ei
′
,∆v(t)ut).

Note that (t− ei′ ,∆v(t)ut) is the null game (t− ei′ ,0). Additivity applied to a null game implies
zero payoffs for each pair (i, j) ∈M+. It follows that

∀i ∈ N \ T (t),∀j ∈ {1, . . . , ti}, f(i,j)(t,∆v(t)ut) = 0

= φ(i,j)(t,∆v(t)ut).

It remains to deal with the agents in T (t). Note that each i ∈ T (t) is a top-veto agent in (t,∆v(t)ut).
By Equal treatment of top-veto agents applied to f and φ,

∀i, i′ ∈ T (t), f(i,max(t))(t,∆v(t)ut) = f(i′,max(t))(t,∆v(t)ut),

∀i, i′ ∈ T (t), φ(i,max(t))(t,∆v(t)ut) = φ(i′,max(t))(t,∆v(t)ut),

and so

f(i,max(t))(t,∆v(t)ut)− φ(i,max(t))(t,∆v(t)ut) = f(i′,max(t))(t,∆v(t)ut)− φ(i′,max(t))(t,∆v(t)ut). (25)

Using Intra balanced contributions for top agents, Independence of more active agents, and pro-
ceeding as in Case 2 in the proof of Theorem 5, one obtains that

∀i ∈ T (t), ∃cf,φi ∈ R, ∀j ∈ {1, . . . ,max(m)}, f(i,j)(t,∆v(t)ut)− φ(i,j)(t,∆v(t)ut) = cf,φi , (26)
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which shows that the above difference does not depend of the activity level j. Combining (25) and
(26), one deduces that

∃cf,φ ∈ R : ∀i ∈ T (m), ∀j ∈ {1, . . . ,max(m)}, f(i,j)(t,∆v(t)ut)− φ(i,j)(t,∆v(t)ut) = cf,φ,

which ensures that the above difference does not depend upon either j or i. Using Efficiency as in
the proof of Theorem 5, one easily obtains cf,φ = 0, and so f(i,j)(t,∆v(t)ut) = φ(i,j)(t,∆v(t)ut) for
each i ∈ T (t), as desired.

Existence part: One verifies that the Priority Shapley value φ satisfies the six axioms of the
statement of Theorem 6. It was seen earlier that φ satisfies Efficiency, Independence of more active
agents, Intra balanced contributions for top agents, and Additivity.

Let any (m, v) ∈ G, and let (i′,mi′) be a null maximal pair. For each σ ∈ Om, let pi
′
(σ) be the

ordering of Om−e
i′

induced by σ. Obviously, by definition of a null maximal pair, ησ(i′,mi′ )
(m, v) = 0,

and it holds that

∀(i, j) ∈M+ \ {(i′,mi′)}, ησ(i,j)(m, v) = η
pi
′
(σ)

(i,j) (m− ei′ , v),

and so

∀(i, j) ∈M+ \ {(i′,mi′)}, λσ(i,j)(m, v) = λ
pi
′
(σ)

(i,j) (m− ei′ , v). (27)

Moreover, for each σ′ ∈ Om−ei
′
, there are qmmi′ orderings σ ∈ Om such that pi

′
(σ) = σ′. Thus,

∀(i, j) ∈M+ \ {(i′,mi′)}, φ(i,j)(m, v) =
1

|Om|
∑

σ∈Om
λσ(i,j)(m, v)

=
1

|Om|
∑

σ′∈Om−ei′

∑

σ∈Om:

pi
′
(σ)=σ′

λσ(i,j)(m, v)

(27)
=

1

qmmi′ |Om−e
i′ |

∑

σ′∈Om−ei′
qmmi′λ

σ′
(i,j)(m− ei

′
, v)

= φ(i,j)(m− ei
′
v),

which ensures that φ satisfies Null max activity level out.
Now, consider any (m, v) ∈ G that contains two distinct top-veto agents i, i′ ∈ T (m). For

σ ∈ Om, let invi,i
′max(m)(σ) ∈ Om defined as:

• invi,i′,max(m)(σ)(i,max(m)) = σ(i′,max(m));

• invi,i′,max(m)(σ)(i′,max(m)) = σ(i,max(m));

• invi,i′,max(m)(`, j) = σ(`, j), ∀(`, j) ∈M+ \ {(i,max(m)), (i′,max(m))}.
Note that

sσ,(i
′,max(m)) = sinv

i,i′,max(m)(σ),(i,max(m)).

From the above equality, one deduces that

ησ(i,max(m))(m, v) = η
invi,i

′max(m)(σ)
(i′,max(m)) (m, v).

42



Therefore, one obtains that

∀σ ∈ Om, λσ(i,max(m))(m, v) =
ησ(i,max(m))(m, v)

max(m)

=
η
invi,i

′max(m)(σ)
(i′,max(m)) (m, v)

max(m)

= λ
invi,i

′max(m)(σ)
(i′,max(m)) (m, v), (28)

and so

φ(i,max(m))(m, v) =
1

|Om|
∑

σ∈Om
λσ(i,max(m))(m, v)

=
1

|Om|
∑

invi,i
′max(m)(σ)∈Om

λ
invi,i

′,max(m)(σ)
(i′,max(m)) (m, v)

= φ(i′,max(m))(m, v),

which proves that φ satisfies Equal treatment for top-veto agents.
�

Logical independence of the axioms. The axioms invoked in Theorem 6 are logically inde-
pendent, as shown by the following alternative values. The first four are those used to show the
logical independence of the axioms invoked in Theorem 5.

• The null value on G that distributes a zero payoff to each pair (i, j) ∈ M+ satisfies all the
axioms except Efficiency.

• The Shapley-like value φDP on G satisfies all the axioms except Independence of more active
agents.

• The Shapley-like value φLT on G satisfies all the axioms except Intra balanced contributions
for top agents.

• The value fβ on G satisfies all the axioms except Equal treatment of top-veto agents.

• The value f on G defined as:

∀(i, j) ∈M+, f(i,j)(m, v) =
∑

s∈M\−→0 :

T (s)3i,max(s)≥j

(v((m ∧ −−−−−−−−−→(max(s)− 1)) + ei))2 + 1
∑

i′∈T (s)(v((m ∧ −−−−−−−−−→(max(s)− 1)) + ei′))2 + 1
· ∆s(v)

|max(s)| ,

satisfies all the axioms except Additivity.

• The value f on G defined as:

∀(i, j) ∈M+, f(i,j)(m, v) =
∑

k≥j:
Qm(k)3i

1

k
· v(m ∧ −→k )− v(m ∧ −−−−→(k − 1))

|Qw(k)|

satisfies all the axioms except Null max activity level out.
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