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Abstract

The management and allocation of health resources, in particular equipment such

as ventilators, has been the object of significant interest by a health community that

is concerned to avoid new shortages. In this article, we develop a Markov chain based

model considering random arrivals and discharges of patients in an intensive care unit

requiring ventilator support. We provide a methodology in order to compute the ex-

act probability distribution of the time-shortage, which is the moment where no more

ventilators are available. We propose two applications of this model: a preventive

traffic signal and a tool to evaluate purchasing decisions. A calibration of parameters

based on real empirical data from a French hospital is carried out in order to test the

operational use of the model.

Keywords: Intensive care unit, ventilator shortage, Markov process, traffic signal,

purchasing management.

JEL classification: I10, I19, C0, C44, C22.

1 Introduction

The Covid-19 pandemic has caused significant medical, economic and supply chain dis-

ruptions worldwide. As countries continue to grapple with the ongoing crisis, shortages of

essential medical equipment have emerged as a critical challenge (Bhaskar et al., 2020).

Among these shortages, the lack of ventilators has been particularly acute (Dar et al.,

2021; Santini et al., 2022). According to the World Health Organization,1 an estimated

5% of Covid-19 patients required mechanical ventilation to help them breathe in 2020.

The Centers for Disease Control and Prevention estimates that 2.4 million to 21 million

*Corresponding author. Email: alexis.roussel@univ-fcomte.fr
�We would like to express our heartfelt gratitude to the “Région Bourgogne-Franche-Comté” for funding

the PhD thesis of the corresponding author Alexis Roussel.
1World Health Organization (2020) Management of severe/critical cases of Covid-19 with non-invasive

or mechanical ventilation: based on information as at 1st June 2020. Regional Office for Africa.
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Americans required hospitalization during the pandemic, and the experience in Italy has

shown that about 10 to 25% of hospitalized patients required ventilation for several weeks

in some cases (Truog et al., 2020). On the basis of these estimates, the number of patients

needing ventilation could range between 1.4 and 31 patients per ventilator. There is a

broad range of estimates of the number of ventilators needed to care for U.S. patients with

Covid-19, from several hundred thousand to as many as a million. Naturally, the estimates

vary depending on the number, speed, and severity of infections. Current estimates of the

number of ventilators in the United States range from 60,000 to 160,000, depending on

whether the ventilators that have only partial functionality are included or not, but this

remains insufficient (Ranney et al., 2020). The US Department of Health and Human

Services2 estimates that 865,000 US residents would be hospitalized during a moderate

pandemic (as in 1957 and 1968) and 9.9 million during a severe pandemic (as in 1918).

A moderate crisis could require 64,875 ventilators and a severe one up to 742,500, even

if the limiting factor during a pandemic-level crisis would be the number of respiratory

therapists. This sudden surge in demand for ventilators has put unprecedented pressure

on global supply chains, leading to shortages that have left health-care workers struggling

to save lives.

When there is a shortage of medical resources, making choices regarding the allocation

of scarce resources becomes crucial. The ongoing Covid-19 pandemic has brought these

allocation issues to the forefront and has highlighted the importance of effective resource

management and optimal anticipation and prediction of such complicated situations. In

this article, we design a time-based model focusing on the time of shortage of ventilators,

that is the moment no more ventilators are available for future incoming patients in an

intensive care unit (ICU). Patients, with multiple profiles, transit in and out of the service

with random distributions for arrivals and departures and with independence between

patients. We manage to numerically compute the exact probability distribution of this

random time. Consequently, we can assess the risk of an impeding shortage event, and,

using “traffic signals”, help health-care professionals anticipate difficult moments that will

arise if no significant measures are taken. Scenario-based applications of the model are

provided and our claims are finally strengthened by a calibration based on empirical data.

An abundance of literature has emerged since the outbreak of Covid-19 concerning the

topic of medical scarcity. The primary problematic, when it comes to medical shortages,

is the ethical dimension of decision-making. This is a complex issue in ICU since it

involves choices regarding life support and end-of-life care. This may include difficult

decisions such as choosing who gets access to life-saving equipment like ventilators and

ICU beds, and these ought not be made in the heat of the action by clinicians in the

field (e.g., Rosenbaum, 2020). In such situations, health-care providers are forced to make

ethical decisions based on available guidelines and protocols. For instance, Emanuel et

al. (2020) proposed a list of 6 recommendations to guide triage protocols for health-care

2US Department of Health and Human Services (2005) HHS pandemic influenza plan. Available at
https://www.cdc.gov/flu/pandemic-resources/pdf/hhspandemicinfluenzaplan.pdf.
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resources. For Truog et al. (2020), a strategy for avoiding debilitating distress over these

decisions is to use a triage committee. Many health-care institutions have developed

allocation frameworks to guide these decisions, based on factors such as the patient’s age,

overall health, and likelihood of survival. These frameworks are generally designed to

ensure fairness and transparency in the allocation process, but they can be challenging to

implement in practice because it implies refusing patients treatment on the basis of harsh

and inflexible selection criteria. However, for Rosenbaum (2020), such transparency and

inclusiveness is paramount to make those decisions acceptable. As far as we are concerned,

we do not pretend to establish any sort of guideline or protocol triage. As a matter of

fact, we do not consider sorting patients in our model since all of them, regardless of their

conditions, are admitted into ICU as long as there is at least one ventilator available. The

whole ethical debate about who to admit or not is henceforth not considered in our model,

and hence our paper deviates in this respect from the existing literature related to these

medical allocation problems.

Another important aspect concerning medical scarcity that has caught the attention of

researchers, is the reusable or non-reusable nature of the resource that is lacking. With hos-

pitals operating beyond capacity during the pandemic, health-care providers have struggled

to keep up with the demand for non-reusable medical equipment. For example, hospitals

have been forced to reuse single-use items like gowns and masks. Hence, the study of mask

allocation (e.g., Chen et al., 2021), considering the hidden information that some people

already have masks, is relevant. Distributing vaccines in the most inclusive and popular

way is also essential for Nganmeni et al. (2022), whereas for Akbarpour et al. (2021) the

optimal allocation of vaccines must take into account externalities and equity concerns.

Employing the tools of game theory, they found that the number of vaccine doses necessary

to generate such an allocation is greater than the one necessary to obtain an allocation

that is only popular. Saha and Ray (2019) investigate medicine inventory management

using a stochastic model, finding on the basis of empirical evidence that when medication

demand is based on the patient’s condition, the total inventory-related cost is significantly

lower compared to demand based on historical daily usage.

The shortage of reusable medical equipment has also highlighted the need for more

sustainable and efficient health-care systems for the use of items such as wheelchairs,

hospital beds (Lee and Lee, 2018) and mechanical ventilators, as investigated by Bonneuil

(2021), Olmos and Borzone (2021), and Pathak et al. (2020), among others. Notice that

the rate at which a patient consumes a certain resource depends on the type of the resource

itself. Hence, a patient will need one hospital bed and one ventilator, but maybe three to

four nursing staff members or respiratory doctors and many more medicine pills, vaccine

doses, masks, etc. Having pointed this out, we assume, in our model, that a patient

needs one and only one ventilator to be properly treated (as long as it is functional) so

that the “consumption rate” is one. The other feature regarding the missing resource is

its reusable nature, and it is clear that when a patient enters the service, he/she uses a

ventilator and when he/she exits the service, for an unknown reason among which we may

3



include recovery or death, his/her ventilator becomes available again for a future patient,

which is exactly the definition of a renewable/reusable object.3

The mathematical tool we consider in this article is the time-series (e.g., Box et al.,

2015) of the number of patients in ICU. One type of time-series analysis is Markov chain

analysis (see, for instance, Hillier and Lieberman, 2001; Norris, 1998), which is a mathe-

matical tool used to model and analyze complex systems with changing states over time.

In a Markov chain, the future state of a system depends only on the current state, and

not on any previous states. This makes it a useful tool for modeling systems that have a

certain degree of randomness or uncertainty.4 The literature regarding medical shortages

makes heavy use of Markov processes. We can mention Bonneuil (2021) who uses queu-

ing theory5 to determine an optimal age threshold minimizing a mortality rate weighted

by life expectancy, so that people with lower risk of dying and better chance of recovery

obtain a ventilator in priority to people with bad clinical conditions. Lee and Lee (2018)

consider models where patients arriving first are first served, similar to our own work but,

conversely, the arrivals of patients are dependent between them since they originate from

a surge demand due to, for instance, a massive casualty; moreover, the chain is continuous

with finite time horizon. The model developed by Olmos and Borzone (2021) is closely

related to our framework since it aims to predict the number of ventilators available over

the very short term (25 days, updating every 5 days) with empirical data and a discrete

Markov process. Meisami et al. (2019) model a hospital as a complex loss queuing net-

work, which includes a stochastic model determining the length of time patients spend

in specific units and how they move between them based on their risk levels. An opti-

mal admission control policy for the units network is estimated using a Mixed Integer

Programming model.

As far as we are concerned, all patients are included without considering any kind

of social or health condition information. The different states we consider are the num-

ber of patients ventilated, ranging from 0 (i.e., empty service) to the total number of

ventilators. Transitions, i.e. gaining or losing a patient, occur according to very simple

Bernoulli probabilities. Our vision corresponds to a very naive, but yet simple, way of

imagining incoming and outgoing flows in an ICU, which enables us to compute the exact

probability distribution function of what we will call the time-shortage. In other words,

the time-shortage is described as a random variable measuring the moment at which no

more ventilators are available, that is, all ventilators are occupied by patients in need of

respiratory assistance. To the best of our knowledge, finding the properties of the moment

the shortage arises has not yet been considered since most articles are concerned with the

best way to provide mechanical ventilators to the weakest patients.

3Although our model focuses on the case of ventilators, it can also be applied to other equipment such
as hospital beds or any reusable equipment.

4Markov chain analysis is used in a wide range of applications, from predicting stock prices (e.g.,
Hassan and Nath, 2005) to understanding the spread of infectious diseases (e.g., Gómez et al., 2010).

5He uses an M/M/C queue denoting the arrival process (Poisson distribution), the service distribution
(exponential distribution) and the total number of servers.
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For this kind of model, an important step consists in illustrating its effectiveness with

graphical and numerical applications, which can be achieved in three different manners.

One way is to calibrate the different parameters of the model based on real data. Many

well-discussed studies appear to be based on real data analysis to calibrate parameters of

the model considered. We can mention Bonneuil (2021), who uses follow-up data collected

by the French Exceptional Health Situations6 at peak dates of inflow for Covid-19 to es-

timate rates of mortality, rates of transfer to ventilators and rates of “returning home”.

Meisami et al. (2019) work on a data-set that spans two years, with more than 200,000 data

points representing over 70,000 distinct patients, in order to calibrate the transition proba-

bilities as well as the distribution of arrivals. Mayhew and Smith (2008) use Nu-Care data

to calibrate a model that relates actual average completion times to the national target.

They based their overall findings on work-flow data involving around 150,000 observations

over an extended 4-year period. Olmos and Borzone (2021) use data for daily new cases

of Covid-19 published by the Chilean ministry of health in order to compute the best-fit

exponential regression and apply their model. A second way to illustrate the effectiveness

of the method is to find and use commonly known values from the related literature. This

method has been used by Chen et al. (2021) who employ values parameters governing the

transition probabilities in their design, invoking Acemoglu et al. (2020), Atkeson (2020),

Eikenberry et al. (2020), and Verity et al. (2020), among others. And finally, the most sim-

ple way to demonstrate effectiveness is to arbitrarily choose wise parameters to construct

the simulations and build fictive, but as realistic as possible, scenarios or counter-factual

situations. For instance, Lee and Lee (2018) choose some figures of lesser importance such

as the peak times of immediate or delayed arrival, the expected volume of patients from an

incident, or the ratios between the classes of immediate and delayed patients. Although

our model renders in the first instance certain fictional scenarios and comparative situa-

tions, at the end of the paper we employ real ICU data from a French hospital in order to

calibrate the parameters of our model.

The remainder of the present paper is structured as follows. In Section 2, we introduce

the elements of the model. We use simulated trajectories in order to illustrate what we call

the “time-shortage”. The underlying Markov process is then studied in more depth so as

to obtain the computation of the distribution of the time-shortage. In Section 3, we define

the notion of “profile” and propose to extend the model from one profile to two profiles of

patients in a very similar way. The type of applications of such a model are explored in

Section 4. We then comment on the traffic signals plots and density/cumulative/quantile

distribution curves. We also construct simulations of fictive scenarios and make compar-

isons between real/fictional situations, before looking at an application with real data from

an ICU in France. Section 5 concludes.

6Better known in French as CIVIC.
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2 The model

The probabilistic approach we adopt in order to study our phenomenon is Markov chain

theory. As a recurrent time process, the total number of patients turns out to be a classical

Markov chain, but if we add some necessary assumptions, we can guarantee that the chain

is homogeneous. The required hypotheses that allow this property to be satisfied are the

following:

� Each term of the considered time sequence depends only on the previous term of this

sequence and of other independent events. If we force the probabilities of entering

and leaving the service to not depend on time, this ensures that the process of

switching from a certain time to the next one is always the same, no matter what

moment it takes place. In other words, moving from time 1 to time 2 occurs in the

exact same way as moving from time 100 to time 101.

� All times of arrivals of all patients must be independent. This means that the

moment a patient arrives does not impact the moment any other patient arrives.

� All times of discharges of all patients must be independent. This means that the

moment a patient leaves the service does not impact the moment any other patient

leaves.

� For a given patient, the moment he/she arrives is independent from the moment

he/she leaves. This means that the moment a patient arrives does not impact the

moment he/she leaves and vice versa.

In this section, we introduce our model in a formal and technical way. The case of a

“single profile” is presented first, before generalizing to two profiles and hence to n profiles

(see Appendix B).

2.1 The case of one profile

2.1.1 Basic notations and the process (Xt)t of the total number of patients

The first element we need in order to set up a time process is, of course, a time step

t = 0, 1, ...,∞ accounting for the moment or the instant considered in time. The unit of

time can be a minute, an hour, a day, etc., as long as it meets a certain condition presented

later. The duration of the study is theoretically infinite, in order to witness a shortage

event in any possible situation. The model has three parameters, as already mentioned:

� p ∈ [0, 1] is the probability of arrival of a patient at each time step.

� q ∈ [0, 1] is the probability of discharge of a patient at each time step.

� Q ∈ N∗ is the total number of ventilators in the service that are functional and able

to be offered to patients in need.

6



Hence, in our model, the triplet (p, q,Q) ∈ (0, 1) × (0, 1) × N∗ characterizes a single and

unique situation of the flows in and out of an ICU, and these are all the switches and

levers we can adjust in order to fit the model as faithfully as possible to a concrete real

situation. It is paramount to highlight that this triplet is constant with time. Concerning

the random variables that represent the patients, we use the following notations:

� Xt ∈ {0, . . . , Q} := E is the total number of patients at time t. We shall always

denote x0 the number of patients in the service at the initial time, so that X0 =

x0. Since there cannot be more patients than the total number of ventilators, the

condition Xt ≤ Q holds.7 Since the number of patients is positive, Xt ≥ 0.

� Yt ∈ {0, 1} represents that a patient requiring a ventilator either arrives (1) or

does not arrive (0) at time t. Hence, all (Yt)t follow Bernoulli distributions with

parameter p and are mutually independent. The condition Xt ≤ Q means that

once the maximum of Q patients is reached, we cannot have an additional patient

admitted, which can be expressed as P(Yt = 1|Xt = Q) = 0 or similarly P(Yt =

0|Xt = Q) = 1.

� Zt ∈ {0, 1} represents that a currently admitted patient either leaves the service

(1) or does not leave (0) at time t, thus releasing a ventilator for an unknown

reason which could be either recovery or death. Hence, all (Zt)t follow Bernoulli

distributions with parameter q and are independent between them. The condition

Xt ≥ 0 means that once the minimum of 0 patients is reached, we cannot have

any patient leaving, which can be expressed as P(Zt = 1|Xt = 0) = 0 or similarly

P(Zt = 0|Xt = 0) = 1.

As stated at the beginning of this section,

� all arrivals are mutually independent: ∀t, t′ ∈ N, t ̸= t′ =⇒ Yt ⊥⊥ Yt′ ,

� all discharges are mutually independent: ∀t, t′ ∈ N, t ̸= t′ =⇒ Zt ⊥⊥ Zt′ , and

� rates of flows are constant over time: ∀t ∈ N, P(Yt = 1) = p and P(Zt = 1) = q.

Accounting for the total number of patients at time t + 1 is simply done by adding the

number of new patients and removing the number of patients leaving at time t:

∀t ∈ N, Xt+1 = Xt − Zt + Yt.

Definition 1. The time series of the total number of patients (Xt)t can be defined as

follows:

∀t ∈ N,





X0 = x0

Xt+1 = Xt − Zt + Yt

0 ≤ Xt ≤ Q
7Actually, without this condition, the chain would not be bounded and would have an infinite state

space. In this case, some of theoretical results stated later would no longer hold, but as regards our main
concern this would not be problematic., this would not be problematic.
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2.1.2 Properties of the Markov chain (Xt)t

Let us now study the Markov chain (Xt)t. The values taken by the chain are called “states”

so that the space of states here is E = {0, . . . , Q}. We can proceed to the calculations

of the transition probabilities pi,j = P(Xt+1 = j|Xt = i) = P(X1 = j|X0 = i), i.e., the

probability of switching from state i to state j with i, j ∈ E in a time step. In other words,

pi,j is the probability of having j patients in the service at time t+ 1 knowing there were

i patients at time t. As we saw earlier, this probability does not depend on t since the

chain is homogeneous and, hence, does not need to be indexed by t.

Starting from state 0 (i.e., knowing that there is no patient in the system), two situa-

tions can occur: we can only move to state 1 or stay in state 0. To move to state 1 we need

to gain one patient, which happens with probability p, hence p0,1 = p. Staying at state

0 (i.e., not admitting a new patient) happens with probability 1 − p, hence p0,0 = 1 − p.

This reasoning can be summarized in the following graph:

0 1
p

1− p

More generally, from a given state k, we can have a transition to states k, k + 1,

or k − 1. To move to state k + 1, we need to gain one patient with probability p but

we also need to release nobody with probability 1 − q, so the combination occurs with

probability p(1 − q) := pk,k+1. To move to state k − 1, we need to release one patient

with probability q but we also need not to admit a new one with probability 1− p, so the

combination occurs with probability q(1 − p) := pk,k−1. The remaining probability pk,k

can be calculated in two ways. We can first use the fact that pk,k + pk,k+1 + pk,k−1 = 1.

The second way is to consider that we need to gain one patient and to release another one

at the same time, which occurs with probability pq, or not to gain one and not to release

one either, which occurs with probability (1 − p)(1 − q). In both cases, we should have

pq + (1− p)(1− q) := pk,k. This discussion can be summarized again as follows:

k k + 1k − 1

pq + (1− p)(1− q)

p(1− q)

q(1− p)

Now we can draw the whole transition graph showing all states of the Markov chain

and all transition probabilities. It has the following form:

0 1 ...
p

1− p pq + (1− p)(1− q)

p(1− q)

q(1− p) q(1− p)
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... k − 1 k k + 1 ...
p(1− q)

(1− p)(1− q) + pq

q(1− p)

p(1− q)

pq + (1− p)(1− q)

q(1− p)

p(1− q)

(1− p)(1− q) + pq

q(1− p)

p(1− q)

q(1− p)

... Q
p(1− q)

q

1− q

Equivalently, the matrix filled with pi,j in row i and in column j, denoted by P = (pi,j),

is called the “transition matrix”. Each row sums to 1 since each row is the probability

distribution of transition from state i (conditional distribution).

P (p, q) =




1− p p 0 (0)

q(1− p) (1− p)(1− q) + pq p(1− q)
. . .

. . .
. . .

q(1− p) (1− p)(1− q) + pq p(1− q)

(0) . . . q 1− q




Finally, and again equivalently, the following proposition holds:

Proposition 1. For all i, j ∈ E, we have

pi,j =





(1− p)(1− q) + pq if j = i

q(1− p) if j = i− 1

p(1− q) if j = i+ 1

0 otherwise

with exceptions p0,0 = 1− p, p0,1 = p, pQ,Q−1 = q and pQ,Q = 1− q.

Proof. See Appendix D.

This result can be extended to more general discrete probability distributions on Y

and Z (see Appendix C). It is now clear that the chain is irreducible, i.e., that there is

a non-zero probability to transit from any state to any other state. Indeed, there is a

non-zero probability to transit to an adjacent state (a neighbor state that is the next,

the previous, or the same one), so there exists a strictly positive chance to transit from

one state to another one in multiple steps. Once we have the transition matrix, we can

compute the distribution of Xt for all t as follows: if we denote by

µt = (P(Xt = i))i≥0,

for all t, and if µ0 = (0, 0, . . . , 1, 0, . . . , 0) (with 1 in position x0) is the initial distribution

of the chain, i.e., absolute certainty to have x0 patients at the beginning of the study, then

9



we have the following fundamental relationship:

µt = µ0P
t,

where P t is the matrix P raised to the power t (Zukerman, 2013). Hence, iterating the

multiplication by the transition matrix P gives the distribution of the chain for each

consecutive moment. For instance, µ1000,10 = P(X1000 = 10) is the probability of having

i = 10 patients in ICU at time t = 1000 and it can be computed by µ1000,10 = µ0 × P 1000.

Definition 2. If it exists and is unique, the solution π ∈ RQ+1 of the system πP = π is

called the stationary distribution or invariant distribution of the chain X, where P is the

transition matrix of the Markov chain (Xt)t.

This particular distribution is of interest since the process remains stable once it is

nearly reached. This is what we could call an attractive point for the sequence (Xt)t. In

case of an irreducible chain with finite space states (and hence positive recurrent), π exists

and is unique, which is true in our case. Let us then compute it.

Lemma 1. The stationary distribution π of the chain (Xt)t exists and is unique. More-

over, we have πi =
1

Q+1 for all i ∈ E.

Proof. See Appendix E

This means that π follows a uniform distribution over space states E = {0, ..., Q}.
Furthermore, the chain distribution of (Xt)t converges to π: for all i ∈ E,

lim
t→∞

P(Xt = i) = πi =
1

Q+ 1
,

and this is true independently from µ0, the initial distribution of X0. In other words,

no matter how the chain starts, if we wait an infinite amount of time, we have the same

probability of having any number of patients between 0 and Q. Hence, after sufficient time

has passed, there is no reason to believe that the situation will tilt towards a brighter or

a darker side. A last, but important, result regarding the stationary distribution is the

following.

Definition 3. The first hitting time to state i ∈ E is defined as Ti := min{t ∈ N∗ /Xt =

i} ∈ N
∗. We furthermore denote by Ei(Y ) := E(Y |X0 = i) the expectancy of a random

variable Y knowing that X0 = i, i.e., starting from state i at initial time 0.

The following important result holds.

Proposition 2. For all i ∈ E, Ei(Ti) = Q+ 1. In particular, EQ(TQ) = Q+ 1.

Proof. Since all states i ∈ E of the chain are positive recurrent, Ti < +∞, and we have

the following link between the stationary distribution and the expected return time in this

case (Zukerman, 2013): Ei(Ti) =
1

πi
. The result is immediate by Lemma 1.
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This proposition implies that returning to a previously visited state takes Q+ 1 time

steps on average. So, if a critical situation occurs, we should expect it to occur again Q+1

time steps later.

2.1.3 Time-shortage t∗

Now that the whole framework is set, we can finally introduce the principal random variable

targeted by of this model: the time-shortage.

Definition 4. We call, “time-shortage”, the random variable t∗ = min{t ∈ N∗ /Xt = Q}.

This variable corresponds to the first moment all of the Q ventilators are occupied and

not one is left for eventual future incoming patients. We provide in Figure 1 a random

realization of a trajectory (Xt)0≤t≤100 for the set of parameters p = 0.5, q = 0.4 and Q = 5.

Since p > q, Xt tends to increase. At time t∗ = 21, the process for the first reaches the

maximum possible number of patients Q = 5. In theory, the sequence continues to evolve

and on average, keeps increasing, but in reality the threshold Q cannot be exceeded. This

is the case because we posit that a patient is refused for treatment if he/she arrives when

the service is already full. Thus it was common practice in France during the Covid-19

crisis to reject patients8 or at least to impose more restrictive conditions of admission

under that circumstance. One can see from Figure 1 that the situation eases for a little

while before reaching new critical points.

0

1

2

3

4

Q= 5

0 10 30 40 50 60 70 80 90 100t*= 21
t

X
t

Figure 1: Xt as a function of t with p = 0.5, q = 0.4, and Q = 5.

8Zagdoun, B. and Lecouvé, P. (2022) Covid-19: peut-on dire qu’il n’y a pas eu de tri des patients à
l’hôpital, comme l’affirme Emmanuel Macron ?
https://www.francetvinfo.fr/sante/maladie/coronavirus/vrai-ou-fake-covid-19

-peut-on-dire-qu-il-n-y-a-pas-eu-de-tri-des-patients-a-l-hopital-comme-l-affirme-Emmanuel-macron_

4908113.html.
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Running this simulation many times would compute many trajectories for (Xt)t and

hence many realizations for t∗. The histogram of these realizations should give us an

idea of the probability distribution of t∗. This would be the basic standard approach to

working out the distribution by means of simulations. The choice made in our paper,

however, is to leave this method aside and focus on a more accurate approach, which is to

find and compute the exact distribution of t∗, at least numerically speaking if no explicit

formulas can be proved. If this can be done, the calculations and graphs made will be more

reliable, and they will also be quicker to obtain numerically than via repeated simulations.

When the process being studied is not too complicated and is not marked by too much

uncertainty or too many random phenomena, an exact computation of the distribution

should always be privileged over a simulation approach. The definition of t∗ requires some

mathematical explanations regarding its existence, which is not obvious.

Proposition 3. The random time-shortage t∗ exists almost surely.

Proof. The chain (Xt)t is aperiodic, irreducible and with finite state space,9 so that all

spaces are positive recurrent. Hence, all states are visited infinitely many times with a

non-zero probability, in particular state Q is visited infinitely many times and there exists

t ∈ N∗ such that P(Xt = Q) > 0.

This proposition ensures that all states are visited an infinitely many times with a non

zero probability, and in particular that state Q is visited infinitely many times. However,

this is not necessarily the case for a finite time horizon {0, . . . , N}. That is the reason

why choosing a sufficiently large N is essential to be able to witness a shortage event when

applying the model to concrete situations. Note that the existence of the time-shortage

is probabilistic: it has a non-zero chance to exist at every moment, although this can be

very small. In practice, we will see later that when q > p, it is the case.

Definition 5. For all i, j ∈ E, the random variable Ti,j := min{t ∈ N∗ /Xt = j,X0 = i}
is the first time state j is reached given that the chain was in state i in the past. We denote

f
(t)
i,j := P(Ti,j = t) = P(Xt = j,Xt−1 ̸= j, . . . , X1 ̸= j | X0 = i) the associated probabilities

for all i, j ∈ E and all t ∈ N∗ and we call these numbers “first passage times” .

In our case, the first passage time we are interested in is t∗ = Tx0,Q, that is the first time

the total number of ventilators Q is reached knowing that there were x0 patients in ICU

at the initial time. Hence, for all t ∈ N∗, P(t∗ = t) := f
(t)
x0,Q

. To achieve our goal, we just

need to compute these probabilities, which can be done thanks to the following recursive

relationship due to Neuts in 1973 (see, for instance, Alfa, 2016; Hillier and Lieberman,

2001). For all i, j ∈ E, we have:

{
f
(1)
i,j = pi,j ,

f
(t)
i,j =

∑
k ̸=j pi,kf

(t−1)
k,j ∀t ∈ N∗.

(1)

9We refer the reader to, for instance, Zukerman (2013).
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The value f
(t)
x0,Q

is easy to evaluate once this calculation is carried out, as well as the

mean time-shortage given by E(t∗) =
∑∞

t=1 tP(t
∗ = t) =

∑∞
t=1 tf

(t)
x0,Q

. In Appendix A we

provide the detailed pseudo-codes implemented to compute these time-shortage probabil-

ities. Figure 2 displays the probability densities of the variable t∗ as a function of time,

with parameter q fixed for each graph, and p varying. All densities are increasing, reaching

a mode and then decreasing, but the higher p, the more likely we are to observe a shortage

happening very soon and the less likely to face it late. For lower values of p, the opposite,

but but analogous reasoning still stands, since the density function flattens softly, meaning

that we have lesser but still equal chances to face a shortage in the long term. For p < q,

the chances of shortage are so small that the densities are far from complete and we only

see partial and low-valued distribution functions.
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Figure 2: Probability density function of t∗ as a function of t with Q = 5.

We can see from Figure 3 that, naturally, the fewer ventilators there are, the more

critical the situation is and the more likely that a shortage will occur soon. However, it

is interesting to note that after some time (after the modes), the tendencies tend to swap

levels of severity and, with fewer ventilators, we have no further chance of experiencing

a shortage (because it probably already happened), whereas with more ventilators the

risk remains higher and non-negligible, slowly fading away with time. From one plot to

another, we can see that the shapes of the density functions do not change much, essentially

because the stress that the ICU undergoes is more or less the same with the ratio p
q being
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constant.
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Figure 3: Probability density function of t∗ as a function of t.

2.1.4 Further results

Proposition 4 (Sufficient condition for no shortage). For all x0, Q, t ∈ N∗, we have

Q− x0 > t =⇒ f
(t)
x0,Q

= 0.

Proof. We adopt the more convenient notations i := x0 and j := Q. We want to show

that j − i > t =⇒ f
(t)
i,j = 0. Let us proceed by inductive reasoning on integer t.

For t = 1, j > i + 1 =⇒ f
(1)
i,j = pi,j = 0 by assumption on transition matrix P . Now,

suppose that the result holds for a fixed t ∈ N∗. Let us take j− i > t+1. By the recursive

formula defining the sequence (f (t))t,

f
(t+1)
i,j = pi,i−1f

(t)
i−1,j + pi,if

(t)
i,j + pi,i+1f

(t)
i+1,j

The induction hypothesis ensures that

• j − (i− 1) = j − i+ 1 > t+ 1 + 1 = t+ 2 > t =⇒ f
(t)
i−1,j = 0,

• j − i > t+ 1 > t =⇒ f
(t)
i,j = 0, and

• j − (i+ 1) = j − i− 1 > t+ 1− 1 = t =⇒ f
(t)
i+1,j = 0.

14



Hence, f
(t+1)
i,j = 0 which ends the inductive reasoning and the proof.

Hence, if the number of ventilators Q is high enough, or if the initial number of patients

x0 is small enough, or if the horizon of time considered is short enough, then the probability

of shortage is null. The intuitive reason is that it is impossible, when transiting from one

to one, to transit from x0 to Q in less than Q− x0 periods.

Proposition 5 (Maximum stress). For Q > x0, we have

f
(Q−x0)
x0,Q

=

Q−1∏

k=x0

pk,k+1 = (p(1− q))Q−x0

Proof. We adopt the more convenient notations i := x0 and j := Q. We want to show

that j− i > 0 =⇒ f
(j−i)
i,j =

∏j−1
k=i pk,k+1. Let us proceed by inductive reasoning on integer

j − i.

For j − i = 1, f
(1)
i,i+1 = pi,i+1 = p(1 − q) by assumption on transition matrix P . Now,

suppose that the result holds for a fixed integer j − i. By the recursive formula defining

the sequence (f (t))t,

f
(j−i+1)
i,j+1 = pi,i−1f

(j−i)
i−1,j+1 + pi,if

(j−i)
i,j+1 + pi,i+1f

(j−i)
i+1,j+1

Previous proposition 4 ensures that

• j + 1− (i− 1) = j + 1− i+ 1 = j − i+ 2 > j − i =⇒ f
(j−i)
i−1,j+1 = 0,

• j + 1− i > j − i =⇒ f
(j−i)
i,j+1 = 0

, and the induction hypothesis states that j + 1 − (i + 1) = j − i =⇒ f
(j−i)
i+1,j+1 =∏j

k=i+1 pk,k+1. Hence,

f
(j−i+1)
i,j+1 = pi,i+1

j∏

k=i+1

pk,k+1 =

j∏

k=i

pk,k+1

which ends the inductive reasoning. Since pi,i+1 = p(1 − q), we have the second equality

and the proof is complete.

This means that to switch from x0 patients to Q patients in exactly Q−x0 time steps,

there is no choice but to gain one patient at each time step which corresponds to a situation

of constant maximum tension.

Theorem 1 (Shortage time as a function of Q). Suppose there exists some time T ∈ N∗

such that
(
f
(T )
x0,Q

)
Q>x0

is decreasing. Then, for all t ∈ N, the sequence
(
f
(t+T )
x0,Q

)
Q>x0+t

is

decreasing.

Proof. We adopt the more convenient notation i := x0 and j := Q. We want to show

j − i > t =⇒ f
(t+T )
i,j+1 ≤ f

(t+T )
i,j . Let us proceed by inductive reasoning on integer t.
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For t = 0, this is obviously true because of the hypothesis made.

Assume now that the result holds for a fixed t ∈ N. Let us take j − i > t+ 1. We have

f
(t+T+1)
i,j+1 = pi,i−1f

(t+T )
i−1,j+1 + pi,if

(t+T )
i,j+1 + pi,i+1f

(t+T )
i+1,j+1

≤ pi,i−1f
(t+T )
i−1,j + pi,if

(t+T )
i,j + pi,i+1f

(t+T )
i+1,j

= f
(t+T+1)
i,j .

By the induction hypothesis, we have

• j − (i− 1) = j − i+ 1 > t+ 1 + 1 = t+ 2 > t =⇒ f
(t+T )
i−1,j+1 ≤ f

(t+T )
i−1,j ,

• j − i > t+ 1 = t+ 1 > t =⇒ f
(t+T )
i,j+1 ≤ f

(t+T )
i,j , and

• j − (i+ 1) = j − i− 1 > t+ 1− 1 = t =⇒ f
(t+T )
i+1,j+1 ≤ f

(t+T )
i+1,j .

This ends the induction and the proof.

This shows that the more ventilators we have at disposal, the more unlikely the ICU

will face a shortage situation. This result is to be tempered with the fact it requires this

phenomenon to happen at some particular time T to be true for all time greater than T .

Obviously, this result holds for T = 1 since (f
(1)
x0,Q

)Q>x0 = (px0,Q)Q>x0 but mainly states

that the null sequence is decreasing thanks to Proposition 4. That is why a sufficiently

large T will be wanted to guarantee the relevance of this property.

Without any other hypothesis, it is difficult to prove any stronger result. For example,

we can show that if pi+1,i+2 > pi,i, then f
(2)
i,i+1 < f

(2)
i,i+2 such that the sequence (f

(2)
i,j )j>i is

no longer decreasing.

Theorem 2 (Shortage time as a function of x0). Suppose there exists some time T ∈ N∗

such that
(
f
(T )
x0,Q

)
x0<Q

is increasing. Then, for all t ∈ N, the sequence
(
f
(t+T )
x0,Q

)
x0<Q−t

is

increasing.

Proof. We adopt the more convenient notation i := x0 and j := Q. We want to show that

j − i > t =⇒ f
(t+T )
i,j ≤ f

(t+T )
i+1,j . Let us proceed by inductive reasoning on integer t.

The case t = 0 is obvious because of the hypothesis made. Assume now that the result

holds for a fixed t ∈ N. Let us take j − i > t+ 1. We have

f
(t+T+1)
i,j = pi,i−1f

(t+T )
i−1,j + pi,if

(t+T )
i,j + pi,i+1f

(t+T )
i+1,j

≤ pi,i−1f
(t+T )
i,j + pi,if

(t+T )
i+1,j + pi,i+1f

(t+T )
i+2,j

= pi+1,if
(t+T )
i,j + pi+1,i+1f

(t+T )
i+1,j + pi+1,i+2f

(t+T )
i+2,j

= f
(t+T+1)
i+1,j .

Indeed, we were able to apply the induction hypothesis since

• j − (i− 1) = j − i+ 1 > t+ 2 > t =⇒ f
(t+T )
i−1,j ≤ f

(t+T )
i,j ,
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• j − i > t+ 1 > t =⇒ f
(t+T )
i,j ≤ f

(t+T )
i+1,j , and

• j − (i+ 1) = j − i− 1 > t+ 1− 1 = t =⇒ f
(t+T )
i+1,j ≤ f

(t+T )
i+2,j .

We also used for the last equality the fact that the sequences (pi,i−1)i, (pi,i)i and (pi,i+1)i

are constant. This ends the induction and the proof.

Hence, the higher the number of patients in the ICU at the beginning of the study,

the greater the chances to expect a shortage. This result should be moderated by the fact

that it holds until a certain rank decreasing as t grows. The value of T , once again, needs

to be large enough to bring substantial information. The case T = 1 is true but irrelevant.

Proposition 6 (Shortage time as a function of p). Suppose there exists some time T ∈ N∗

such that
(
f
(T )
x0,Q

)
x0<Q

is increasing and that the function p 7→ f
(T )
x0,Q

is increasing for

x0 < Q. Then, the function p 7→ f
(t+T )
x0,Q

is increasing for Q− x0 > t.

Proof. We adopt the more convenient notation i := x0 and j := Q. We want to show that

j − i > t =⇒
∂f

(t+T )
i,j

∂p
≥ 0. Let us proceed by induction reasoning on integer t.

For t = 0, this is the hypothesis made. Assume now that the result holds for a fixed t ∈ N.
Let us take j − i > t+ 1. We have

f
(t+T+1)
i,j = pi,i−1f

(t+T )
i−1,j + pi,if

(t+T )
i,j + pi,i+1f

(t+T )
i+1,j

= q(1− p)f
(t+T )
i−1,j + [(1− p)(1− q) + pq] f

(t+T )
i,j + p(1− q)f

(t+T )
i+1,j

so that

∂f
(t+T+1)
i,j

∂p
= −qf (t+T )

i−1,j + q(1− p)
∂f

(t+T )
i−1,j

∂p

+ (2q − 1)f
(t+T )
i,j + [(1− p)(1− q) + pq]

∂f
(t+T )
i,j

∂p

+ (1− q)f
(t+T )
i+1,j + p(1− q)

∂f
(t+T )
i+1,j

∂p

The induction hypothesis applies and shows that

• j − (i− 1) = j − i+ 1 > t+ 1 + 1 = t+ 2 > t =⇒
∂f

(t+T )
i−1,j

∂p
≥ 0,

• j − i > t+ 1 > t =⇒
∂f

(t+T )
i,j

∂p
≥ 0 and

• j − (i+ 1) = j − i− 1 > t+ 1− 1 = t =⇒
∂f

(t+T )
i+1,j

∂p
≥ 0

hence, the derived terms at the end of each line are positive. For the remaining terms

(at the start of each line), notice that, thanks to the previous proposition 2 regarding the

growth in x0 of the shortage time, we have
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• j − (i− 1) = j − i+ 1 > t+ 2 + 1 = t+ 3 > t+ 1 =⇒ f
(t+T )
i−1,j ≤ f

(t+T )
i,j and

• j − (i+ 1) = j − i− 1 > t+ 1− 1 = t > t− 1 =⇒ f
(t+T )
i,j ≤ f

(t+T )
i+1,j

That way,

−qf (t+T )
i−1,j + (2q− 1)f

(t+T )
i,j + (1− q)f

(t+T )
i+1,j ≥ −qf

(t+T )
i,j + (2q− 1)f

(t+T )
i,j + (1− q)f

(t+T )
i,j = 0

We can conclude that
∂f

(t+T+1)
i,j

∂p
≥ 0 which ends the induction and the proof.

We have the similar analogous proposition regarding the exit flow q:

Proposition 7 (Shortage time as a function of q). Suppose there exists some time T ∈ N∗

such that
(
f
(T )
x0,Q

)
x0<Q

is increasing and that the function q 7→ f
(T )
x0,Q

is decreasing for

x0 < Q. Then, the function q 7→ f
(t+T )
x0,Q

is decreasing for Q− x0 > t.

Proof. A simple copy of the previous proof swapping the roles of p and q, changing the

signs, the inequalities and the words ”increasing” by ”decreasing” yields the claimed result.

Hence, the higher the inflow of patients, the greater the chances of shortage. Similarly,

the higher the outgoing rate, the lower the risks of shortage.

Proposition 8. For x0, Q ∈ N∗ and all k ∈ Z such that x0 + k ≥ 0 and Q + k > 0, we

have

f
(t)
x0+k,Q+k = f

(t)
x0,Q

Proof. The process Wt = Xt + k is also a homogeneous Markov chain since it verifies

the same recursive relationship as (Xt)t: Wt+1 = Wt + Yt − Zt. Henceforth, W has the

same distribution as X with translated support [|k,Q + k|] and its transition matrix is

identical with translated space states. Since first passage times depend only on transition

probabilities, we have the result.

That means that if the initial number of patients and the total number of ventilators

are shifted by the same amount (whether it is a gain or a loss), then the shortage time

remains exactly the same (and its distribution as well).

We want now to relax the strong assumption of homogeneity of the Markov chain.

Suppose that the process is no longer homogeneous and that the rates of flows in the ICU

change over time. We adopt the following notations.

Definition 6. Denote by

• p(t) the probability of arrival of a patient at time t

• q(t) the probability of discharge of a patient at time t
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• pi,j(t) = P(Xt+1 = j | Xt = i), the analogous notations of the transition probabilities

at time t for the non homogeneous case

• P (t) := (pi,j(t))i,j the transition matrix at time t

• fi,j(n,m) = P(Xn = j,Xn−1 ̸= j, ..., Xm+1 ̸= j | Xm = i), the analogous notation

for the first passage time for the non homogeneous case.

• F (n,m) := (fi,j(n,m))i,j the first passage time matrix

For a homogeneous Markov chain, we have the particular properties:

• fi,j(n, 0) = f
(n)
i,j , the classical first passage time or in a matrix formulation, F (n, 0) =

F (n)

• fi,j(m+ 1,m) = pi,j(m) or in a matrix formulation, F (m+ 1,m) = P (m)

• pi,j(0) = pi,j , the classical transition probabilities or in a matrix formulation, P (0) =

P

Proposition 9. We have the following recursive relationship:

fij(n,m) =
∑

k ̸=j

fkj(n,m+ 1)pik(m)

Proof. Thanks to the law of total probability:

fij(n,m) = P(Xn = j,Xn−1 ̸= j, ..., Xm+1 ̸= j | Xm = i)

=
∑

k ̸=j

P(Xn = j,Xn−1 ̸= j, ..., Xm+1 = k | Xm = i)

=
∑

k ̸=j

P(Xn = j,Xn−1 ̸= j, ..., Xm+2 ̸= j | Xm+1 = k,Xm = i)P(Xm+1 = k | Xm = i)

=
∑

k ̸=j

P(Xn = j,Xn−1 ̸= j, ..., Xm+2 ̸= j | Xm+1 = k)pik(m)

=
∑

k ̸=j

fkj(n,m+ 1)pik(m)

where we used the relation

P(A ∩B|C) = P(A|B ∩ C)P(B|C)

Proposition 10. In this framework, we can compute the shortage time distribution through

this relation:

P(t∗ = t) = fx0,Q(t, 0)
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We can notice that computing F (t, 0) requires to compute F (t, 1),. . . , and so on until

matrix F (t, t−1) = P (t−1). If we suppose we have full knowledge regarding the future (but
changing) probabilities of arrival and discharge, the whole sequence (P (t))t∈N is known,

there is no problem for assessing quickly F (t, 0) and the distribution of the shortage time.

2.2 The case of two non-simultaneous profiles

In this section, we provide a technical discussion of how to adapt this model to the case of

two profiles (the most general case with n profiles is described in Appendix B). Suppose

now we wish to add some diversity regarding the types of patients. For example, among

Covid-19 patients, some of them were more vulnerable than others. Of course, considering

only two types of patients might seem unrealistic, if the only features considered are

the admission and leaving rates of these patients regardless of their age, their sex, their

comorbidities, etc. However, it is not false that among general population, a few patients

are severely diseased and a lot are slightly infected or even asymptomatic. Considering

these commonly known health facts, we can imagine having two profiles of patients, one

type corresponding to severely diseased patients, in high need of assistance whose life is in

real danger, whereas we have a secondary type of patient who is ill enough to be admitted

to ICU but still in a reasonable shape with significant chances of survival compared to the

first profile.

Hence, let us consider two profiles indexed by 1 and 2. The admission rates are respec-

tively denoted by p1 and p2 for profiles 1 and 2, the leaving rates by q1 and q2 respectively,

the arrivals by Y 1 and Y 2 respectively, the discharges by Z1 and Z2 respectively and, last,

the total number of patients by X1 and X2 respectively. We still set classical Bernoulli

distributions as follows: Y 1 ∼ B(p1), Y 2 ∼ B(p2), Z1 ∼ B(q1) and Z2 ∼ B(q2) but, now,
we need to condition by the events Y 1Y 2 = 0 and Z1Z2 = 0, which means we cannot at

the same time have Y1 = 1 and Y2 = 1 (entries of both types), and the same holds for

exits. The bivariate chain Y = (Y 1, Y 2) has a joint distribution given in Table 1.

Y (1)\ Y (2) 0 1

0 α0 :=
(1−p1)(1−p2)

1−p1p2
α1 :=

(1−p1)p2
1−p1p2

1 α2 :=
p1(1−p2)
1−p1p2

0

Table 1: The joint distribution of Y = (Y 1, Y 2).

Analogous reasoning stands for the bivariate chain Z = (Z1, Z2) representing the exits

which has the joint distribution given in Table 2.
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Z(1)\ Z(2) 0 1

0 β0 :=
(1−q1)(1−q2)

1−q1q2
β1 :=

(1−q1)q2
1−q1q2

1 β2 :=
q1(1−q2)
1−q1q2

0

Table 2: The joint distribution of Z = (Z1, Z2).

We can interpret the probabilities as follows: α0 is the probability to admit no new

patient, β0 the probability to release no patient, α1 is the probability to admit a patient

of type 1 but not type 2, α2 is the probability to admit a patient of type 2 but not type 1,

β1 is the probability to release a patient of type 1 but not type 2, and β2 is the probability

to admit a patient of type 2 but not type 1. The Markov chain X has two components

X = (X1, X2) accounting for the total number of patients of type 1 and 2. To summarize,

the bi-dimensional model can be written as follows:

∀t ∈ N,





Xt = (X1
t , X

2
t ),

X0 = (x0,1, x0,2),

Xt+1 = Xt − Zt + Yt,

0 ≤ X1
t and 0 ≤ X2

t and X1
t +X2

t ≤ Q.

(2)

Figure 4 is a realization of a couple trajectory with Q = 8 ventilators and x0,1 =

x0,2 = 0 patients at the start. The profile 1 contains severely diseased patients (p1 = 0.6

and q1 = 0.4) with a tendency to appear in large surges and to remain for a long period,

whereas profile 2 contains patients with the opposite behavior (p2 = 0.4 and q2 = 0.6).

The patients of type 2 fail to increase so that the total number of patients mainly comes

from type 1, which is the more problematic group. At time t∗ = 18, all of the 8 ventilators

of the service are used and shortage cannot be avoided.
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Figure 4: A 2-profile trajectory as a function of t with p1 = q2 = 0.6, p2 = q1 = 0.4, and
Q = 8.

Here are the transition graphs of initialization. Starting from state (0, 0), it is impos-

sible to release patients since the service is empty, hence β1 = β2 = 0 and β0 = 1.

(0, 0) (0, 1)(1, 0)

α0

α2
α1

Starting from (0, x2), it is impossible to release patients of type 1, which means that β1 = 0.

Let us consider a few cases for the sake of better understanding. To move from situation

(0, x2) to (0, x2− 1), for instance, we need to admit no patient of type 1 (with probability

α0) and to release a patient of type 2 (with probability β2) so that the overall probability

is α0β2. To move to (1, x2), we need to gain one patient of type 1 (with probability α1) and

not to release a patient of type 2 (with probability 1− β2) so that the overall probability

is α1(1− β2).
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(0, x2) (0, x2 + 1)(0, x2 − 1)

(1, x2 − 1)
(1, x2)

α0β0 + α2β2

α2(1− β2)
α0β2

α1(1− β2)
α1β2

The reasoning is analogous when starting from (x1, 0). It is impossible to release patients

of type 2, which means that β2 = 0.

(x1, 0) (x1 + 1, 0)(x1 − 1, 0)

(x1 − 1, 1)
(x1, 1)

α1β1 + α0β0

α1β0

α2β0

α0β1)

α2β1

And here is the graph from a certain state (x1, x2) with x1 + x2 ≤ Q.

(x1, x2) (x1, x2 + 1)(x1 + 1, x2)

(x1 − 1, x2) (x1, x2 − 1)

(x1 + 1, x2 − 1) (x1 − 1, x2 + 1)

α0β0 + α1β1 + α2β2

α2β0

α1β0

α0β1

α0β2

α1β2

α2β1
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We are now able to define the chain (St)t by St = X1
t +X2

t , accounting for the total

number of patients, regardless of their types. One can easily show that the transition

graph and the transition matrix are exactly the same as with one profile, only replacing

the coupled values (p, q) with (1 − α0, 1 − β0). Hence, we obtain the following transition

diagram and transition matrix.

0 1 ...
1− α0

α0 α0β0 + (1− α0)(1− β0)

(1− α0)β0

(1− β0)α0 (1− β0)α0

... k − 1 k k + 1 ...
(1− α0)β0

α0β0 + (1− α0)(1− β0)

(1− β0)α0

(1− α0)β0

α0β0 + (1− α0)(1− β0)

(1− β0)α0

(1− α0)β0

α0β0 + (1− α0)(1− β0)

(1− β0)α0

(1− α0)β0

(1− β0)α0

... Q
(1− α0)β0

1− β0

β0

P (1− α0, 1− β0) =




α0 1−α0

(1−β0)α0 (1−β0)(1−α0)+β0α0 β0(1−α0) (0)

. . .
. . .

. . .
(1−β0)α0 (1−β0)(1−α0)+β0α0 β0(1−α0)

(0) 1−β0 β0




The time-shortage t∗ is obtained in exactly the same way as before, computing the first

passage time from x0 to Q on the previous matrix: P(t∗ = t) = f
(t)
x0,Q

.

3 A simple operational forecasting tool: a traffic signal

In this section, we want to propose an application of our model that at first sight would

seem promising, that is a traffic signal.

3.1 Traffic signal

The first type of study that can be quickly and immediately carried out is a simple compu-

tation of the time of shortage for a given set of parameters for each simulation. health-care

professionals can decide to run various studies of this kind to get a glimpse of how com-

plicated the situation is or is about to become.

Let us consider, for instance, a situation with Q = 6 ventilators and a daily time step

in order to make our interpretations. We can plot the density distribution function of
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the random time-shortage t∗ as shown in Figure 5. A continuous multi-color gradient,

assessing the risk of shortage, helps us to illustrate, in a quite explicit way, the urgency of

the situation. The color denotes the value of the cumulative distribution function (from

0 to 1) of t∗ such that with the passing of time, the probability that a shortage event has

happened by that time increases. For example, on the left-hand side graph of Figure 5,

the chance of having a new patient every day is p = 60% and the chance of releasing one

patient is q = 40%. Until day 10, all seems to be under control with a low probability

of shortage (≤ 25%). But it rapidly gets worse up until day 20 where all signals start

triggering before meeting complete disaster around day 30 when it is probably already too

late to react. Once the overall distribution is computed, any value of interest related to

it can be calculated such as the mean time-shortage, the median time, the mode, etc. For

instance, we obtain E(t∗) ≈ 23 days which means that a shortage is to be expected on

average on the twenty-third day. Actually, the ratio p
q can be seen as the mean number

of patients arriving for each patient that leaves, which means that if this value is too big

the outcome of a shortage is likely to be swift and brutal. The density function is heavily

concentrated on the left and does not spread uniformly along the whole graph. This can

be seen as a graphical sign that the situation is critical. Conversely, the right-hand side

graph of Figure 5 (with q > p) shows a situation with low tension turning orange at day

500 and red at day 1000 after the beginning of the study.

Figure 5: Traffic signal with Q = 6.

This kind of graphical traffic signal can be freely handled online on the web applica-

tion developed by the first author through the link https://shortage.shinyapps.io/

shortage/ with the possibility of choosing a single or a multiple profiles model, the values
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of the three parameters p, q, and Q, and the duration of the study (on the x-axis).

3.2 Application on data for a French ICU

In this section, we aim to apply this model on real data. We have at our disposal data

from a French ICU that can be described as follows. From 01/01/2010 to 31/12/2019

(before the Covid-19 pandemic started), we have all patients who went through this service

during the 10 years under consideration, which represents not less than 8,600 patients.

More particularly, for each patient who stayed in ICU, we have his/her date and time of

admission, date and time of discharge, the number of hospital beds with ventilators in the

service officially available at the moment of entry, and the Simplified Acute Physiology

Score (SAPS). This last feature is a point score that is calculated from 12 physiological

variables and 3 disease-related variables during the first 24 hours, along with information

about previous health status and some information obtained at admission. In other words,

the higher this score is, the lower the survival expectancy of the patient. This score can

be useful to split our sample of patients into multiple groups that correspond to what we

call “profiles” of patients. Let us now consider technically how to apply our model to

these data. The number of beds in the service is in general constantly equal to 15, which

will be our reference value for Q, considering that one bed occupied is equivalent to one

ventilator occupied. The time step to choose would be a time duration small enough so

that there is no more than one entry and one exit per time unit. A quick study shows that

a 2 hour time step enables us to make this hypothesis valid on average. The hardest part

consists in being able to find a period during these 10 years of data where the estimations

of parameters p and q do not vary much over time. Indeed, the assumption according to

which p and q must be constant with time is paramount. Let us choose, for example, the

month of January in 2012. On this period, we assess p as

p̂ =
Number of patients admitted in January 2012

Number of 2-hours time steps in January 2012
.

Since 60 patients were admitted and since we have 12×31 = 372 time steps of 2 hours,

we get the estimated admission probability p̂ ≈ 0.161. Similarly, the estimated discharge

probability is q̂ ≈ 0.147. We can now plot the density distribution of the time-shortage

for this month. The x-axis is labeled with calendar dates so that the reader does not have

to convert time steps into dates.
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Figure 6: Risk of shortage for a French ICU in January 2012 with one single profile.

We see that the situation starts deteriorating around day 8. With a more than 60%

chance a shortage will occur after 17 days. Since p̂ > q̂, the shape of the distribution is

very soon concentrated on the left. The expected time-shortage can also be computed, for

which we get Ê(t∗) ≈ 75 steps. In other words it takes approximately 6 days on average

to face a shortage. By extending this study beyond the date 25/01/2012, we could have a

more complete curve and risks even higher than what we observe here.

If we wish to partition our sample into subgroups of patients with different character-

istics, we can use the severity score given by the SAPS variable. A histogram regarding

the distribution of this score over the 8,600 patients allows us to split them into 3 groups

as shown in Table 3.

Profile SAPS range p̂ q̂

1 [0, 25] 0.018 0.017
2 (25, 55) 0.0847 0.0825
3 [55,+∞) 0.0496 0.0455

Table 3: Calibration to 3 profiles for a French ICU according to SAPS values.

That way, we define a low/medium/high gravity type of patients, which allows us to

estimate the admission rate and the discharging rate in January 2012 for each profile, as

explained before for one profile. An analogous density plot can be drawn for these three

profiles as shown in Figure 7.

27



Figure 7: Risk of shortage for a French ICU in January 2012 with 3 profiles.

We can comment that we need to go further ahead in time to experience similar

quantitative risks compared to the one-type case. On the date 18/02/2012, 50 days after

the beginning of the study, we barely reach a 60% chance of shortage whereas after 25

days, with one single profile, we had a risk of more than 70% risk. Splitting patients into

multiple profiles results, for this particular example, in a considerable gain of time and

effort.

4 A management tool to evaluate purchasing decisions

4.1 Comparison of situations when adding one ventilator

Another application of our model that can be carried out is a comparison between two

situations. We can imagine comparing two different intensive care units or a given unit

with different parameters. The range of values taken by the four parameters (x0, p, q,Q)

can be freely chosen according to the situation of study, without any boundary conditions

or restrictions. Figure 8 shows a type of situation that physicians could encounter. Imagine

a service with p = 0.6 and q = 0.5, which means that shortage is likely to occur after some

time. Physicians have 6 ventilators and and are hesitating about purchasing one more to

cope with the situation and help them gain some time. Considering the actual cost of a

ventilator,10 this represents an investment, meaning that it is important to know if this

decision is worth taking. We then introduce the two triplets of parameters (p1, q1, Q1) and

(p2, q2, Q2) with p1 = p2 = 0.6, q1 = q2 = 0.5, Q1 = 6 and Q2 = 7 such that scenario 1 is

10Not to mention the commitment of the health care staff necessary to take charge of ventilated patients.
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the current actual critical situation of the service and scenario 2 is the imaginary fictive

situation, but more desirable one, with the additional ventilator. In other words, situation

2 is situation 1 with one more ventilator. We can now plot the cumulative distribution

functions of respectively t∗1 and t∗2, the times of shortage in situation 1 and 2. If we consider

a daily time step, we can see, for instance, that the number of days saved is 8 (30 against

38) for a 50% risk of shortage.
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Figure 8: Risk of shortage as a function of time with p1 = p2 = 0.6, q1 = q2 = 0.5, Q1 = 6,
and Q2 = 7.

This graphical comparison can also be carried out online with the freedom to choose

any possible values for the parameters p, q, and Q, again through the same link as before:

https://shortage.shinyapps.io/shortage/. One can compute the amount of time

saved but also the value of risk avoided (in terms of probability). If we now plot the

quantile difference z2(α) − z1(α),
11 that is the number of time steps (days in our case)

saved as a function of the risk taken, we see that this difference is positive (see Figure 9).

This means that, no matter the level of risk that has to be assumed, scenario 2 is always

more favorable since the shortage always occurs later with one more ventilator, but, in

addition, the greater the level of risk that is assumed, the more we manage to save days

since the represented function increases.

11For any risk α ∈ [0, 1], the quantile zα is the unique value such that P(t∗ ≤ zα) = α. Hence, α 7→ zα
is the reciprocal function of the cumulative distribution function t 7→ P(t∗ ≤ t).
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Figure 9: Quantile difference between scenarios 1 and 2 as a function of the risk α.

In order to propose relevant comparative situations, let us think about what parameters

can be set up in reality. As we have just illustrated, the number of ventilators can change

because the hospital can decide to borrow or buy ventilators, but some can also undergo

maintenance or turn out to be broken. The parameter q, accounting for the probability

of departure of the patients, is not really up to the therapists to choose. It is conditioned

by the health state of patients and by the quality of work of the staff. The fact that a

patient recovers or dies after a period of time in ICU does generally not depend on the

good will of the staff. Hence, q is not really a parameter that can be modified according to

what clinicians would want. As for parameter p, accounting for the probability of arrival

of patients, it is mainly governed by epidemiological dynamics. However, in a situation

of tension, doctors can decide to restrict the selection criteria for patient admissions,

which was the easiest and most common practice adopted during the Covid-19 pandemic

when ventilators were lacking. Hence, other fictive comparisons with the same number

of ventilators but different values for p could also be relevant. To summarize, the only

parameter we should not want to change too much relative to its actual value is parameter

q.

4.2 Application on French ICU data

Applying the same methodology to our real data provides us with the following quantile

curve:
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Figure 10: Amount of time saved as a function of the risk of adding one ventilator.

The delay is strictly increasing, meaning that the more risk practitioners are willing

to take, the more time they will save. We see that for a 40% risk, 3 days can be gained

with one more ventilator. t seems to us that it is not unreasonable to consider that this

risk is already quite high, considering that (i) a ventilator is expensive and (ii) there is a

time delay between the moment we purchase the additional ventilator and the moment it

starts being operational on site, etc.

5 Conclusion

The ideal way to allocate scarce resources in times of crisis remains a delicate topic of

research. We saw that it is possible to assess quickly, in terms of probabilities, how much

time there is left before a shortage arises as long as we know the quantity of available

resources and the rates of occupation and release of the scarce resource. We were able to

obtain density, cumulative, and quantile plots for the time-shortage and deduce the risk

of an impending shortage as a function of the time ahead. Comparison between situations

of interest and an application on real ICU data have been provided to emphasize the

pragmatic side of our work.

The calibration on real data also reveals some restrictive aspects of the model, espe-

cially the fact that parameters need to be constant over time during the whole study.

These parameters are likely to be very volatile and manifest great variability, particularly

in a period of tension. This could make the process difficult to apply in practice, and

hence it should be exclusively dedicated to projections in the short term. The further

ahead we look in time, the less the model is reliable since it is never updated with new

data. A solution would be to search for periods when the moving side deviation of p and

q are relatively low among all available data. In any case, for this main reason, applying
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the model on real data and being able to formulate guidelines or medical protocols seems

slightly ambitious. Being able to relax the hypotheses that p and q are constant would be a

significant improvement, which can be done by carrying out simulations or even adapting

the recursive formula 1 to a non-homogeneous case.

Another drawback which needs to be pointed out is the fact that, when making fore-

casts, we assume that the parameters calibrated on the previous period remain the same

on the targeted future period in time. For instance, in Figure 6, the graph extends until

the month of February but only the month of January was used to calibrate the param-

eters. Hence, what is represented from the date 01/02/2012 is pure prediction based on

the model, and should be interpreted very carefully, or at least during only a very short

horizon of time.

Note that the status dead/alive of a patient leaving the service is unknown in our model.

Taking into account this information would be a possible improvement, introducing, for

example, proportions of death and recovery after a period of time in ICU, the proportion

of lethal cases growing with the stress in the service. The indicator that the service is

under stress could be that p
q is high, or that the total number of patients is high leading

to greater loss of chance of survival. In that case, the natural variable to be minimized

would be the proportion of deaths.

Other variations could be considered in order to improve our model. Recall that in

practice one patient requires many nurse. So we could imagine a model where a patient

uses more than one unit of the resource with a certain proportion. We could even think

about a model with many types of resources being employed, dependent on various factors

(1 hospital bed for 4 nurses for instance). We could also set, for each incoming patient, a

random duration of stay in the service with a certain probability distribution, so that the

probability of exiting the service depends only on the patient himself/herself.

Another side that could have been more deeply investigated from the economic point

of view consists in introducing, for instance, the cost of a ventilator, the cost of a human

life lost, and establishing some kind of “cost evaluation” for the decision maker. In this

context, the economic problem amounts to an optimal arbitration between (i) a maximum

number of ventilators that the hospital an purchase, thus saving maximum lives but at a

greater cost to public health finances, and (ii) a minimum number of ventilators, allowing

money to be saved but with the risk of high mortality rates.
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Appendix

A

Here is a concise sketch of the algorithm. The function “diag” is the following:

Algorithm 1 “diag” function

Input: a transition matrix P
Output: diag(P ), the same matrix as P on the diagonal with 0’s everywhere else

n← size(P )
for i, j from 1 to n do

if i ̸= j then
P [i, j]← 0
end

end
Return P

Algorithm 2 Computation of P(t∗ = t) for t = 1, . . . , N and for parameters (p, q,Q, x0)

Input: p, q ∈ [0, 1], Q ∈ N∗, N the duration of study, x0 number of initial patients
Output: P(t∗ = t)1≤t≤N as t∗

Initialize the transition matrix P ← 0 with size Q+ 1
P [0, 0]← 1− p
P [0, 1]← p
for k from 1 to Q do

if k < Q then
P [k, k + 1]← p(1− q)
end
else

if k > 1 then
P [k, k − 1]← q(1− p)
end
else
P [k, k]← pq + (1− p)(1− q)
end

end

end
Initialize the matrix f of first passage times: f ← P
Initialize the vector of shortage probabilities: t∗ ← [0, ..., 0] of size

N
Initialize time: t← 1

while t < N + 1 do
t∗[t]← f [x0, Q] ▷ Adding up to vector t∗ the newly computed shortage probability
f ← P × (f − diag(f)) ▷ Computing the first passage matrix for the following time
t← t+ 1

end
Return t∗
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B

In this section, we briefly sketch the values of probabilities in the case of n different profiles

of patients, with the condition that maximum one type enters or leaves at the same time.

For i = 1, ..., n, let us consider the admissions Y i ∼ B(pi) and the exits Zi ∼ B(qi)
knowing that

∑n
i=1 Y

i ≤ 1 and
∑n

i=1 Z
i ≤ 1, i.e., no more than one of the n variables can

be equal to 1. The vector X = (X1, ..., Xn) gives the total number of patients of each

type.

Denoting Y = (Y 1, ..., Y n) the total number of patients of each type, ri =
pi

1−pi
and

R =
∑n

i=1 ri, we have the probability distribution of Y given by

P


Y = 0n

∣∣∣∣∣∣
∑

j

Y j ≤ 1


 =

1

1 +R
:= α0,

where 0n := (0, ..., 0). If we introduce the vector ei = (0, ...0, 1, 0, ...0) where the 1 is in

position i for i ≥ 1, we can show that

P


Y = ei

∣∣∣∣∣∣
∑

j

Y j ≤ 1


 =

ri
1 +R

:= αi.

In a similar way, let us define r′i =
qi

1−qi
, R′ =

∑n
i=1 r

′
i so that

P

(
Z = 0n

∣∣∣∣∣
∑

i

Zi ≤ 1

)
=

1

1 +R′ := β0,

and

P


Z = ei

∣∣∣∣∣∣
∑

j

Zj ≤ 1


 =

r′i
1 +R′ := βi.

The complete graph of chain X is obviously not possible to draw. However, we can

describe the situation starting from a certain state x = (x1, ..., xn) ∈ N∗n (the case with

zeros would need another study). Then we have the following transitions and associated

probabilities:

x x+ei
i≥1

x−ei
i≥1

x+ei−ej
i ̸=j≥1

∑n
i=0 αiβi

∑

i ̸=j≥1

αiβj

αiβ0

α0βi
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Nothing changes from the previous case for the rest. If we denote St =
∑n

i=1X
i
t , then

S has the same transition graph and matrix as before.

The end is exactly the same as before. The graph and the matrix of the chain S =∑n
i=1X

i are unchanged and the first passage time is to be computed on the Markov chain

S.

C

For instance, in the case of a single profile with entries Y and exits Z, we can check that

transition probabilities are given by the formula

pi,j =
∞∑

k,k′=0

1(s(i− k′ + k) = j)P(Yt = k)P(Zt = k′),

where s(x) =





0 if x ≤ 0

x if 0 ≤ x ≤ Q

Q if x ≥ Q

and

1(a = b) =

{
1 if a = b

0 otherwise

D

For all (i, j) ∈ E, for all t ∈ N∗,

pi,j = P(Xt+1 = j|Xt = i)

= P(Xt + Yt − Zt = j|Xt = i)

= P(i+ Yt − Zt = j|Xt = i)

= P(Yt − Zt = j − i).

Let Y ∼ B(p), Z ∼ B(q) be two Bernoulli independent variables. Since Y −Z ∈ {−1, 0, 1},
if j − i /∈ {−1, 0, 1}, then pi,j = 0 clearly. So, we have the 3 following remaining cases to

treat:

(i) P(Y − Z = 1) = P({Y = 1} ∩ {Z = 0}) = P(Y = 1)P(Z = 0) = p(1− q)

(ii) P(Y − Z = −1) = (1− p)q in a similar way

(iii)

P(Y − Z = 0) = P({Y = Z = 1} ∪ {Y = Z = 0})
= P ([{Y = 1} ∩ {Z = 1}] ∪ [{Y = 0} ∩ {Z = 0}])
= P(Y = 1)P(Z = 1) + P(Y = 0)P(Z = 0)

= pq + (1− p)(1− q),
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hence, the announced result holds. To finish, notice that Xt = 0 =⇒ Zt = 0 such that

p0,0 = P(Xt+1 = 0|Xt = 0) = P(Yt − Zt = 0|Xt = 0, Zt = 0) = P(Yt = 0) = 1 − p.

Furthermore,

p0,1 = P(Xt + Yt − Zt = 1|Xt = 0) = P(Yt = 1 + Zt|Xt = 0, Zt = 0) = P(Yt = 1) = p. An

analog reasoning can be made to establish pQ,Q and pQ,Q−1.

E

Let P be the transition matrix and π be the unique stationary distribution. Then

πP = π ⇐⇒





(1− p)π0 + pπ1 = π0

q(1− p)πk−1 + (pq + (1− p)(1− q))πk + p(1− q)πk+1 = πk, k = 1, . . . , Q− 1

q(1− p)πQ−1 + (1− q(1− p))πQ = πQ

⇐⇒





π1 = π0

q(1− p)πk−1 + (2pq − p− q)πk + p(1− q)πk+1 = 0, k = 1, . . . , Q− 1

πQ−1 = πQ

We can then easily show, by inductive reasoning, that (πk)0≤k≤Q is constant, and since∑Q
k=0 πk = 1, we have πk = 1

Q+1 for all k = 0, . . . , Q.
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