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Abstract. Performance and power consumption are major concerns for Deep Learning (DL)
deployment on Edge hardware platforms. On the one hand, software-level optimization tech-
niques such as pruning and quantization provide promising solutions to minimize power
consumption while maintaining reasonable performance for Deep Neural Network (DNN).
On the other hand, hardware-level optimization is an important solution to balance perfor-
mance and power efficiency without changing the DNN application. In this context, many
Edge hardware vendors offer the possibility to manually configure the Hardware parameters
for a given application. However, this could be a complicated and a tedious task given the
large size of the search space and the complexity of the evaluation process. This paper pro-
poses a surrogate-assisted evolutionary algorithm to optimize the hardware parameters for
DNNs on heterogeneous Edge GPU platforms. Our method combines both metaheuristics
and Machine Learning (ML) to estimate the Pareto-front set of Hardware configurations
that achieve the best trade-off between performance and power consumption. We demon-
strate that our solution improves upon the default hardware configurations by 21% and 24%
with respect to performance and power consumption, respectively.

1 Introduction and related works

Deep Neural Networks (DNN) are known for their intensive computations and memory operations.
Thus, they need a careful tuning of both software and hardware, especially for resource-constrained
Edge platforms. Modern Edge Graphical Processing Unit (GPU) accelerators provide outstanding
performances for Deep Learning (DL) applications [1]. Nevertheless, this comes at the cost of
considerable power consumption. Adjusting hardware parameters such as processing cores and
operating frequencies according to the DNN execution requirements, represents a different way
to improve performance and power efficiency. However, it is hard to decide the best Hardware
configuration because of the heterogeneous complexity of the GPU architecture and the wide range
of possible configurations. The contradictory nature of the two objectives, increasing performance
and decreasing power consumption, makes the optimization even more complex. Hence, this issue
can be formulated as a multi-objective optimization problem where we search for an optimal
Pareto set of hardware configurations that achieve the best trade-off between the two objectives for
a given DNN application. This paper proposes a surrogate-assisted multi-objective optimization
that incorporates both Machine Learning (ML) and metaheuristics to approximate an optimal
Pareto set of hardware operating frequencies for DNNs on Edge GPU accelerators. The resulted
Pareto set will help the user to choose adequate operating frequencies according to the application
requirements and system budget constraints.

Some works have been proposed in the literature to address the hardware tuning issue in het-
erogeneous GPUs. Authors in [2] propose a prediction model based on Support Vector Regression
(SVR) for power consumption of GPU kernels for different GPU core and memory frequencies. In
[3] and [4], the authors propose a cross-domain modeling approach for power consumption that
models both the application and the GPU micro-architecture under variable GPU core and memory
frequencies. [5] conducts an empirical study on the impact of frequency scaling on performance and
energy consumption of DNNs training and inference on high-performance GPUs. This study shows
that GPU DVFS has a significant improvement on both performance and energy consumption of
DNNs. [6] proposes a ML based prediction methodology for performance and power consumption
of OpenCL kernels on GPU platforms. They combine the two prediction models to approximate
a Pareto-set of frequency configurations on GPUs. Where the works mentioned above only focus
on tuning GPUs, [7] considers both CPU and GPU tuning in heterogeneous devices. However,
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the authors use neither prediction models nor optimization algorithms. They rely on empirical
observations of profiling results, which may lead to sub-optimal solutions.

2 Problem formulation

Given a fixed DNN application and Edge GPU platform, adjusting the hardware parameters can
be formulated as a multi-objective optimization problem where we search for the optimal hardware
configurations that provide the best trade-off between performance and power consumption. Let
X = {x1, x2, . . . , xn} be a set of hardware configurations, where each xi represents one instance
of the hardware operating frequencies. For instance, a xi can represent the frequency value of
a CPU, GPU cores or memory. Let F = (f1, f2) be a vector of objectives to minimize, where
fi ∈ {execution time, power consumption}. A real evaluation of these objectives is a tedious and
time-consuming task. Thus, instead of directly measure F on the Hardware platform, we rely on
prediction functions as surrogate-models for F that we denote F̂ . Our problem is defined as follows:

MOP =

{
min ˆF (x) = (f̂1(x), f̂2(x))

s.t. x ∈ X
(1)

In this paper, we study the case of optimizing the hardware configurations of a modern Edge
GP-GPU platform: NVIDIA Jetson AGX Xavier [8] for a state-of-the-art DNN: AlexNet [9]. We
tune four hardware parameters: CPU, GPU, PVA, and memory frequencies. We set the lower and
upper bounds for each parameter according to the reported minimum and maximum values in the
configuration file of Jetson Tegra system [10].

3 Proposed Approach

We propose a surrogate-assisted evolutionary algorithm that leverages both metaheuristics and
Machine Learning. We speed up the optimization process using ML-based prediction models to
estimate F̂ . Our proposed methodology is composed of two main steps:
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Fig. 1: Overview of the proposed methodology: a) corresponds to the training phase of the prediction mod-
els for performance and power consumption. b) depicts the optimization phase of the hardware parameters
using both the trained prediction models and evolutionary-based multi-objective metaheuristic

a. Prediction models training: The training phase is illustrated in figure 1.a. First, we collect
training data by profiling the DNN application on randomly sampled Hardware configurations.
We denote the resulting training datasets for performance by Dl = {(x1, l1), (x2, l2), . . . , (xn, ln)}
and for power consumption by Dp = {(x1, p1), (x2, p2), . . . , (xn, pn)}, where li and pi refer to the
measured values of performance and power consumption, respectively, under the hardware configu-
ration xi. Second, we train SVR-based prediction models for performance and power consumption
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on Dl and Dp. The trained prediction models are used in the optimization step for a rapid evalu-
ation. The following prediction models are defined:

{
Mperformance(Dl) =

∑n
j=1(αj − α̂j)KRBF (djl, Dl) + b

Mpower(Dp) =
∑n

j=1(αj − α̂j)KRBF (djp, Dp) + b
(2)

where b, αj , and α̂j refer to the bias and training coefficients of the trained instance of SVR. KRBF

is a radial basis kernel function. Dl, Dp are the datasets used to train the prediction models for
performance and power consumption, respectively.

b. Optimization: Figure 1.b gives an overview of the optimization phase. To efficiently explore the
search space of the hardware configurations, we implement MOEA/D, a decomposition-problem-
based metaheuristic, as a multi-objective evolutionary optimization algorithm. It uses different
evolutionary operators to combine good solutions of neighboring problems, resulting in quick and
accurate convergence. We adapt MOEA/D for our problem by leveraging the normalization tech-
nique as both performance and power consumption have different scales. We choose the Tchebycheff
method as a problem decomposition technique. To generate an ensemble of uniformly distributed
weight vectors, we use the Das and Dennis technique. The trained prediction models from figure
1.a are used to evaluate the fitness in the MOEA/D algorithm.

4 Experimental Results

Figures 2 and 3 provide an overview of the estimated Pareto front and set by our proposed method.
In figure 2, the blue points represent the predicted Pareto front, while orange ones report the
measured values of performance and power consumption of the Pareto front. The seven default
hardware configurations of NVIDIA Jetson AGX GPU are marked with the other point types and
colors.
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Fig. 2: Predicted vs measured PF Fig. 3: Obtained Pareto set

Metric Performance Power

MAPE 4.21% 5.75%

RMSPE 4.83% 6.69%

Kendall’s tau 0.971 0.970

Table 1: Prediction errors and
rank order persevering

Figure 2 shows that in addition to the small gap between predictions and measurements, our
approach gives configurations that dominate the default suggested NVIDIA configurations. Details
of the prediction errors are given in table 1. Obtained MAPE and RMSPE values are small for
both performance and power predictions. Moreover, the rank order is highly respected between
predicted and measured metrics according to the reported Kendall’s τ coefficients in table 1. For
configurations that give high performance and low power consumption, we have obtained a con-
figuration with the same performance as the MAXN power mode of NVIDIA with a power-saving
of 24%. Similarly, for performance, we have obtained a configuration that gives similar power con-
sumption as the minimum power mode suggested by NVIDIA (i.e., conf 1), with a performance
gain of 21%. Figure 3 presents the Pareto set in the decision space. We notice that most config-
urations maximize the memory frequency. This is explained by the architecture of AlexNet that
holds a large number of parameters, which results a high memory activities. This also corroborate
our motivation to adjust the hardware configuration according to the DNN requirements.



4 Authors

5 Conclusion

In this paper we introduced a multi-objective optimization approach that leverages both meta-
heuristics and Machine Learning to optimize the Hardware configurations for Deep Neural Net-
works on GPU heterogeneous accelerators. The optimization approach incorporates prediction
models for approximating the fitness functions to speed up the evaluation of the sampled configu-
rations by the optimization algorithm. Experimental results on AlexNet and Jetson AGX Xavier
GPU demonstrated that a higher accurate prediction and a more energy-efficient configurations
that outperform the predefined ones can be obtained. As a future work, we plan to develop a
cross-surrogate-based multi-objective optimization approach that models both DNN architecture
and Hardware configuration. We also propose to enhance the optimization process by injecting the
knowledge on the execution requirements of the DNN.
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