
HAL Id: hal-04221896
https://hal.science/hal-04221896v1

Preprint submitted on 28 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Crypto’Graph: Leveraging Privacy-Preserving
Distributed Link Prediction for Robust Graph Learning
Sofiane Azogagh, Zelma Aubin Birba, Sébastien Gambs, Marc-Olivier Killijian

To cite this version:
Sofiane Azogagh, Zelma Aubin Birba, Sébastien Gambs, Marc-Olivier Killijian. Crypto’Graph:
Leveraging Privacy-Preserving Distributed Link Prediction for Robust Graph Learning. 2023. �hal-
04221896�

https://hal.science/hal-04221896v1
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Crypto’Graph: Leveraging Privacy-Preserving Distributed

Link Prediction for Robust Graph Learning

Sofiane Azogagh, Zelma Aubin Birba, Sébastien Gambs and Marc-Olivier Killijian

Abstract

Graphs are a widely used data structure for collecting and analyzing relational data. How-
ever, when the graph structure is distributed across several parties, its analysis is particularly
challenging. In particular, due to the sensitivity of the data each party might want to keep
their partial knowledge of the graph private, while still willing to collaborate with the other
parties for tasks of mutual benefit, such as data curation or the removal of poisoned data. To
address this challenge, we propose Crypto’Graph, an efficient protocol for privacy-preserving
link prediction on distributed graphs. More precisely, it allows parties partially sharing a graph
with distributed links to infer the likelihood of formation of new links in the future. Through
the use of cryptographic primitives, Crypto’Graph is able to compute the likelihood of these
new links on the joint network without revealing the structure of the private individual graph
of each party, even though they know the number of nodes they have, since they share the
same graph but not the same links. Crypto’Graph improves on previous works by enabling
the computation of a certain number of similarity metrics without any additional cost. The
use of Crypto’Graph is illustrated for defense against graph poisoning attacks, in which it is
possible to identify potential adversarial links without compromising the privacy of the graphs
of individual parties. The effectiveness of Crypto’Graph in mitigating graph poisoning attacks
and achieving high prediction accuracy on a graph neural network node classification task is
demonstrated through extensive experimentation on a real-world dataset.

1 Introduction

In today’s digital age, graphs have emerged as the predominant format for representing relational
data, as they naturally capture both the relationships and structures inherent in such datasets.
Indeed, from social networks [35] to biological systems [27], the interconnection of entities can be
easily visualized and understood through graphs. However, as data becomes increasingly distributed,
a new set of challenges arises with respect to their analysis. For example, in a scenario where a
graph’s structure is distributed across multiple parties, the goal might be to study this structure
without any party disclosing the private details of their segment. Such an analysis could involve
predicting potential future links [18, 40, 39, 9] or identifying malicious links that an adversary has
introduced to compromise the graph’s integrity [41, 36, 37]. As such attacks might happen without
been noticed, it is crucial to act preventively and allow for collaboration to defend against them.

To address these issues, we propose Crypto’Graph, a novel protocol designed for privacy-preserving
link prediction on distributed graphs. To avoid privacy leakage, Crypto’Graph leverages crypto-
graphic primitives such as Diffie-Hellman shared secrets and Private Set Intersection Cardinality
(PSI-CA), which ensure that likelihood similarities used for link prediction can be computed on
the joint network without exposing the specifics of the private individual graphs. Furthermore,
Crypto’Graph can be used as a robust defense against graph poisoning attacks. More precisely,
by predicting potential links without jeopardizing the confidential information of individual nodes,
it can be used to effectively detect adversarial links, improving the quality of downstream graph
learning tasks.

The main contributions of this paper are:

• We propose Crypto’Graph, a new protocol for distributed privacy-preserving link prediction
on graph data via the computation of the common neighbors heuristic. Crypto’Graph is
more efficient, by several orders of magnitude, than state-of-the-art methods while making

This work is supported by the DEEL Project CRDPJ 537462-18 funded by the National Science and Engineering
Research Council of Canada (NSERC) and the Consortium for Research and Innovation in Aerospace in Québec
(CRIAQ), together with its industrial partners Thales Canada inc, Bell Textron Canada Limited, CAE inc and
Bombardier inc. https://deel.quebec

1

mailto:birba.zelma_aubin@courrier.uqam.ca
https://deel.quebec

it possible to derive other metrics such as the Jaccard and Cosine similarity measures at no
extra cost, thus allowing to choose among different heuristics to adapt the link prediction to
the actual data. Finally, unlike previous works, it can be used on the complete graph without
compromising the privacy of the private individual graphs as we demonstrate by proving its
security against graph reconstruction attacks.

• The applicability of Crypto’Graph is illustrated through a collaborative defense against graph
poisoning scenario. More precisely, we show how to leverage our protocol to privately derive
link likelihood information in a distributed manner, enabling the different parties to identify
adversarial links and remove them for a better utility on subsequent tasks, namely the training
of graph neural networks. In addition, we show that the benefit of collaborating via our protocol
varies according to the common knowledge between the participants, the amount of adversarial
links introduced as well as the type of attack conducted. Nonetheless, experiments on a real
dataset demonstrate that it is almost always beneficial to cooperate even when the data of one
party has not been poisoned. This encourages the use of our solution without prior certainty
that one or both of the private graphs have undergone an attack.

The outline of the paper is as follows. First, in Section 2, we review the related work on
link prediction both in the centralized and distributed settings before introducing in Section 3 the
background notions on link prediction, graph neural network and private set intersection, that are
necessary to the understanding of our work. Afterwards, in Section 4 we describe Crypto’Graph,
our protocol for secure and distributed link prediction before detailing how Crypto’Graph can be
used to defend against graph poisoning in Section 5, in which we evaluate it on a real-world graph
dataset.

2 Related work

Based on the structure of the graph and potential additional information (such as the values of
node attributes), link prediction algorithms [18, 40, 39, 9] aim at identifying future probable links
in dynamic networks. One of the first proposed methods for predicting a link between two nodes
consists in measuring the similarity of these nodes by leveraging their neighborhood structure and,
based on the assumption that nodes that have common neighbors tend to create connections, predict
new links or not. This similarity can be computed on the structural information between nodes but
also by considering their attributes. For instance, in research collaboration networks, Newman has
shown that, in domains such as physics, the more coauthors two researchers have in common (i.e.,
the more common neighbors they have), the more they are likely to collaborate in the future [25].
In addition, he has also observed that a scientist taken at random is more likely to make new
collaborations if he has many past ones, introducing the notion of preferential attachment. Other
similarity measures such as the Jaccard similarity [15], the Cosine similarity [34] or the Adamic-Adar
index [2] have been explored as well.

Machine learning-based models have also been proposed to tackle the link prediction problem.
For instance, Kashima and Abe have extracted topological features from the graph and used them
to train a model for supervised link prediction [16]. Zhang and Chen have designed SEAL, a neural
network-based architecture for capturing the link formation law on a graph [39]. In particular, they
have proven that low order subgraphs, composed only of few hops-neighbors, are often sufficient to
estimate high order metrics that reason on the whole graph. They have also proposed a framework
for predicting new links using network-based heuristics applied on these subgraphs. Other link
prediction methods also try to learn informative features for nodes while avoiding to explore the
whole graph. For example, Perozzi and collaborators have used random walks in conjunction with the
SkipGram model [21] to build representations of nodes based on samples of their neighborhoods [28].
The Node2vec embedding technique [13] also relies on an analog flexible approach for neighborhood
sampling in the graph to generate continuous node feature representations that can then be compared
between nodes to predict new links.

However, the aforementioned methods are focused on the centralised setting, in which there
is a single graph in the hands of only one party. Nonetheless, subsequent works have proposed
approaches inspired by the previous ones but adapted to the multi-graph or distributed graph setting.
We define multi-graph link prediction as the setting where the parties own graphs with potentially
different nodes and links. The distributed graph setting, on the other hand, assumes that the
parties hold the same nodes in their graphs, but not necessarily the same links. For instance,

2

some works have proposed to allow members of a decentralised social network like Mastodon 1, to
define privacy controls on their connections by specifying which of their friendships they are willing
to disclose [40]. The service provider can then use this information to train a logistic regression
model that privately makes friendship recommendations. Another recent work has considered the
distributed graph setting and allows multiple subgraph owners to make link predictions by computing
similarity metrics in a secure manner [38]. More precisely by using secret sharing techniques, it
is possible to privately aggregate the local similarity scores and allow the parties to make their
decision based on the private aggregate. However, their approach can induce an accuracy loss in the
prediction because it does not take into account the cross-party similarities (similarity between a
node x in one subgraph, and a node y in another subgraph). Another recent approach [9] computes
the common neighbors similarity measure using three instances of a Private Set Intersection (PSI)
protocol , which we will detail later in Section 3.3. However, it is not clear how this protocol can be
adapted for the computation of other similarity measures and its computational cost is higher than
the approach we proposed.

In the remainder of this paper, we introduce a method that addresses the drawbacks of the
two former works. More precisely, our protocol improves on the accuracy compared to [38] while
allowing to compute a wide range of similarity measures and thus not being limited to common
neighbors as in [9]. In addition, as our protocol is highly efficient this makes it suitable for large-
scale link prediction on a large graph, which motivates its usage as a defense mechanism against
graph poisoning, as described later in Section 5.

3 Preliminaries

In this section, we start by providing the notations we will be using, then we introduce the prelimi-
nary notions of link prediction, graph neural network and private set intersection, that are necessary
to the understanding of the remainder of this paper.

To begin, the notations employed throughout the paper are presented in Table 1.

Graph
V set of vertices (i.e nodes)
E set of edges (i.e links)
G = (V, E) graph of nodes V and links E
Γ(x) ⊆ V the neighbors of x in G (i.e the nodes in V that share a link with x)

GNN
X ∈ Rd×|V| feature matrix where X [i] is d−dimensional feature vector of node i
Y ∈ R|V| labels of nodes where Y[i] is the label of node i
G = (V, E ,X ,Y) extended graph (with features and labels)
A adjacency matrix of a graph

Ã adjacency matrix with self-connections inserted (i.e Ã = A+ IV)

D̃ degree matrix (i.e D̃ii =
∑

j Ãij) at a specific layer

Crypto

p, q large prime p and integer q such that q divides p− 1
Zp set of integers modulo p
Gq multiplicative group of order q
g generator of Gq

Table 1: A guide to the notation used in this paper.

3.1 Link prediction

Link prediction [25, 18] is a graph learning task that aims to infer the potential existence of links
between nodes that are not currently connected. Link prediction has many possible applications,
such as friend recommendation in a social network [18] or in healthcare for the the study of contacts
for epidemic control purposes [3]. A lot of link prediction methods are based on the computation of
the similarity between the neighborhoods of pairs of nodes. More formally, considering two nodes
x, y ∈ V, we can compute their similarity in the following ways (which are also the most commonly
used in the literature):

• Common Neighbors: The common neighbors similarity of x and y is defined as

CN(x, y) = |Γ(x) ∩ Γ(y)|
1https://joinmastodon.org

3

https://joinmastodon.org

.

• Jaccard: The Jaccard similarity between x and y is defined as

J(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

=
CN(x, y)

|Γ(x) ∪ Γ(y)|
.

• Cosine: The cosine similarity between x and y is given by

Cosine(x, y) =
|Γ(x) ∩ Γ(y)|√
|Γ(x)| ×

√
|Γ(y)|

=
CN(x, y)√

|Γ(x)| ×
√
|Γ(y)|

In real-world scenarios, the graph might be distributed among different parties. To account for
this, and without loss of generality, we consider that the whole graph G = (V, E) is distributed
among two parties P1 and P2 such as each party entirely knows V but only a fraction of E . It’s
worth noting that this distribution can be generalized, as shown in [38]. Let G1(V, E1) denote the
graph of P1 and G2(V, E2) the graph of P2 such as E1 ⊂ E and E2 ⊂ E . We consider the scenario
in which P1 and P2 want to collaborate to predict the existence of a link in their respective graphs
without revealing them due to confidentiality issues that may arise (e.g., the graphs may represent
personal relationships). A possible solution to predict a link between x, y ∈ V is for P1 to privately
share Γ1(x) and Γ1(y) with P2, who in turn privately shares Γ2(x) and Γ2(y).

Subsequently, the link prediction primitive computes the similarity measure on the joined graph
G and outputs this measure to both P1 and P2. Finally, each party decides to predict a link based
on this result and a threshold chosen independently as illustrated in Figure 1.

Figure 1: An illustration of a collaboration between P1 and P2 to predict a link between the node
x (green) and y (blue). Here, the link prediction primitive will output CN(x, y) that each party Pi

will compare with their personal threshold, which is 1 for P1 and 3 for P2. Based on the result of
this comparison, a link between x and y can be added or not, in one or both graphs G1 and G2.

3.2 Graph Neural Networks

To take advantage of their structural information, deep learning approaches have been adapted to
the graph data format with the advent of Graph Neural Networks (GNNs) [32, 17], which have made
it possible to harness the structure and the node properties in graphs for various learning tasks. In a
nutshell, most GNN models take as input a graph G = (V, E ,X ,Y) and combine the features of each
node with the ones of its neighbors to perform the predictions. In this way, new node features are
created with each node aggregating information from farther in the graph at each layer. Nonetheless,

4

different types of models have been introduced over the years. For instance, representation learning
algorithms [28, 13] are deep learning-based architectures that represent nodes, edges or subgraphs
of a graph as a multidimensional vector. This vector can then be used for various statistical and
prediction tasks, such as community identification (i.e., a form of clustering) and link prediction.

In this work, we focus on Graph Convolutional Networks (GCNs) [17], a specific type of network
that mimics convolutions on images. More precisely, we consider a semi-supervised node classification
task that aims at predicting the labels of test nodes based on the features, edges and labels of a set
of training nodes. Following the approach taken in [17, 41], we consider a two layer neural network
given by the formula :

Z = softmax
(
Â ReLu

(
ÂXW (0)

)
W (1)

)
,

in which Â = D̃− 1
2 ÃD̃− 1

2 , and W (0),W (1) are the trainable parameters of the network and Z is the
prediction of the network for a given node.

Similarly to classical deep learning models, GNNs have been shown to be vulnerable to adver-
sarial attacks. More specifically for the task considered here, this means that an adversary can
poison the graph by injecting links or altering node features to influence the prediction made by the
model [41, 36]. Some of the classical defenses against such poisoning attacks leverage link prediction
techniques [36, 37], in which by computing a likelihood score for each edge, one can identify the
unlikely links and consider them as being potentially adversarial (and thus cleaning them).

3.3 Private Set Intersection

A Private Set Intersection (PSI) protocol [12] allows two or more parties, each holding a private set
of items to compute the intersection of their sets (i.e., items that they have in common) without
revealing any additional information. PSI has found many applications in the real world, such as
private data mining [26], the analysis of genomics or medical data [4, 22, 33, 31] or even botnet
detection [24]. Since it was first introduced, PSI has evolved in many subvariants of protocols
according to the scenario in which it is applied. For example, if only one of the parties needs to
obtain the intersection at the end of the computation, it is called a one-way PSI, while otherwise it
is a mutual PSI. Another type of PSI protocol was developed according to the size the sets of each
party. For instance, if the sizes of the private sets are similar, it is refer to as a balanced PSI while
otherwise it is called an unbalanced one. More generally, a classification has recently been proposed
in [23].

In other scenarios, the parties may want to know how much they share but not what exactly
they have in common. This can be solved using a PSI-CA (standing for Private Set Intersection
CArdinality), which cannot be directly instantiated from classical PSI. Among the cryptographic
building blocks that can be combined to develop a PSI-CA protocol, we can cite for instance homo-
morphic encryption, as seen in works like [7, 19, 14], oblivious transfer [11], using generic public key
techniques described in [8, 29], or even commutative encryption similar to the method outlined in
[20]. In this latter approach, one party, P1, initiates the protocol by sending its own set of items X
encrypted as EncPK1

(X) to P2. Afterwards P2 shuffles the elements and send them back to P1 as
EncPK2

(EncPK1
)(X). Additionally, P2 sends its own set encrypted as EncPK2

(Y). By using a com-
mutative encryption scheme, P1 can “delete” its corresponding key PK1 from EncPK2

(EncPK1
(X))

to obtain EncPK2(X) and then compare the number of correspondence with EncPK2(Y). This ap-
proach inspired a lot of PSI-CA including the one that we use in this paper which is based on [6].

4 Protocol

In this section, we present our protocol Crypto’Graph, which enables to perform link prediction
on graph data between two parties in a distributed and privacy-preserving manner. However, our
protocol can easily be generalized to more than two parties by following the approach proposed
in [38].

4.1 Description

Crypto’Graph is close in spirit to the PSI functionality, in the sense that it privately computes
the common neighbors of two nodes on a distributed graph. Let G1 = (V, E1) and G2 = (V, E2)
be the private subgraphs owned by the semi-honest parties P1 and P2. The main idea behind our
approach is the following : by representing the union graph G1 ∪G2 as a data structure that masks
the neighborhood of each node while keeping its cardinality, it is possible to count the common

5

neighbors of any two nodes. To achieve this objective, we propose a solution based on the use of
Diffie-Hellman shared secrets [10]. Our solution can be divide in two phases: an offline phase that
can be precomputed before the beginning of the concrete protocol, and the real execution of the
protocol on the precomputed data.

More precisely, for a link prediction performed between nodes x and y, each party represents the
neighborhoods of the nodes as sets {gαβxi}i∈{1,...,|Γk(x)|} and {gαβyi}i∈{1,...,|Γk(y)|}, with k ∈ {1, 2}
and in which α and β are secrets randomly sampled respectively by P1 and P2. Those secrets have
the property that they can be used to compare the sets without disclosing the individual elements,
which we leverage to compute the oblivious union of the neighbors of x in both graphs, as well as
for node y. Afterwards, we count the common elements of those sets to determine the size of the
intersection.

One of the strength of our method is that by computing the intermediary sets of neighbors of
x and y separately, those results can also be reused to compute the Jaccard similarity by dividing
the common neighbors score with the size of the union of the neighbors of x and y. More generally,
our method allows for the computation of any similarity metric involving the sizes of the immediate
neighborhood of two nodes [25, 15].

As an additional contribution, we propose an optimization of the aforementioned algorithm based
on a caching mechanism. More precisely, by keeping the same α and β keys across predictions, for
each node t that has been involved in a previous prediction, we can reuse its encryption gαβt. A
detailed analysis of this caching mechanism and its security are provided in Section 4.3. Figure 2
provides a graphic illustration of the Crypto’Graph protocol, where the offline phase is represented
in gray, and the online one in black.

Crypto’Graph Private Link Prediction

P1 : G1 = (V, E1) P2 : G2 = (V, E2)
α← Zq β ← Zq

∀xi ∈ Γ1(x), ai = gαxi ∀xi ∈ Γ2(x), ci = gβxi

∀yi ∈ Γ1(y), bi = gαyi ∀yi ∈ Γ2(y), di = gβyi

{a1, . . . , a|Γ1(x)|}
{b1, . . . , b|Γ1(y)|} ∀ai ∈ {a1, . . . , a|Γ1(x)|}, a′i = aβi

∀bi ∈ {b1, . . . , b|Γ1(y)|}, b′i = bβi
{a′1, . . . , a′|Γ1(x)|}
{b′1, . . . , b′|Γ1(y)|}
{c1, . . . , c|Γ2(x)|}
{d1, . . . , d|Γ2(y)|}

∀ci ∈ {c1, . . . , c|Γ2(x)|}, c′i = cαi
∀di ∈ {d1, . . . , d|Γ2(y)|}, d′i = dαi

JΓ(x)K = {a′1, . . . } ∪ {c′1, . . . }
JΓ(y)K = {b′1, . . . } ∪ {d′1, . . . }

CN(x, y) = |JΓ(x)K ∩ JΓ(y)K|
CN(x, y)

Figure 2: A diagram of Crypto’Graph, our private link prediction protocol for two nodes. Both parties are
assumed to share a common element g ∈ Gq. In the offline part (gray), both parties generates a key (α for P1

and β for P2) and then encrypt the neighbors of the nodes of x and y of their respective graphs. The online
phase (black) begins with P1 transmitting the encrypted nodes under consideration to P2. Subsequently,
P2 proceeds by re-encrypting them using his own key β before shuffling them at random and sending them
accompanied of his own encrypted nodes. Hence, leveraging the commutativity of the encryption algorithm,
P1 can incorporate his key to the nodes of P2. Finally once P1 gets |Γ(x)| and |Γ(y)| by matching the
ciphertexts, he can compute the similarity measure (here Common Neighbor, but it can also be Jaccard and
Cosine as well).

6

Topology Protocol Time G1 Time G2 Com. G1 Com G2

all vs all [9] 2h 21min 56s 1h 14min 18s 291.96MB 316.07MB
Crypto’Graph 5min 58s 1s 0.70MB 1.43MB

one vs all [9] 28s 28s 20.44MB 22.0MB
Crypto’Graph 913ms 790ms 0.71MB 1.43MB

one vs one [9] 426ms 432s 0.31MB 0.33MB
Crypto’Graph 26ms 22ms 0.02MB 0.04MB

Table 2: Online running time and communication performances of Crypto’Graph, compared to [9]

4.2 Performance results

To assess the performance of our protocol, we evaluate it on a real world graph commonly used in
the literature for link prediction. Our experiments are conducted on two subgraphs of the Polblogs
dataset from [30], which represents political blogging sites in the USA. The two subgraphs are
obtained by sampling links from the original dataset. More precisely, as in [38], the membership
of a link to one or both of the graphs is determined as follows : we choose two values q1, q2 in the
interval [0, 1], such that q1 ≤ q2. Then, for each link in the original graph, we sample a random
value v in the same interval. If the sampled value lands in [0, q1], the link is attributed to G1 while
if v ∈]q1, q2], the link is added to G2. Otherwise the link is attributed to both the subgraphs.

This generation of the distributed dataset enables to control the proportions of links owned
by one or both of the graphs. The experiments described hereafter are made with q1 and q2 set
respectively to 0.3 and 0.6, which results in each subgraph solely owning 30% and sharing 40% of
the initial graph with the other one.

Our implementation is single-threaded and developed in C++, and for efficient exponentiation,
we use the OpenSSL implementation of the NIST P-256 [1] elliptic curve. This choice allows to
achieve the typical 128-bit security level requirement in cryptographic protocols. Experiments are
run on a desktop computer running the 20.04 LTS version of Ubuntu operating system with 64GB
of memory, and 16 x 11th generation Intel i9@ 3.50 GHz cores. Since the protocol operates entirely
on one machine, there is no network-related delay. In addition, our implementation uses the caching
mechanism described previously. We compute the common neighbors heuristic for each pair of nodes
in the graph. We also re-implemented the solution of [9] as described by its authors and present their
performance next to ours in Table 2, with results obtained being consistent with those presented
in their original paper. Three scenarios are considered : (1) predictions on all the node pairs in
the graph (all vs all), (2) predictions between a single random node and all the other ones (one
vs all) and (3) predictions between two random nodes (one vs one). These results show a drastic
improvement of one to several orders of magnitude in both computing time and communication.

4.3 Security Model

In this subsection, we introduce the security model of our protocol and prove its security against
a semi-honest adversary2 under well-known cryptographic assumptions that we recall hereafter. In
the following, we denote the security parameter as λ and n as the number of nodes.

Definition 1 (Discrete Logarithm Assumption) Let G be a cyclic group of generator g. The
Discrete Logarithm Problem (DLP) is hard in G if, for every efficient algorithm A, the following
probability is a negligible function of λ :

P[A(g, ga) = a]

Definition 2 (Decision Diffie-Hellman Assumption) Let G be a cyclic group and g be its gen-
erator. We assume that the bit-length of group size is l. The Decision Diffie-Hellman (DDH) problem
is hard in G if, for every efficient algorithm A, the following probability is a negligible function of λ:

|P[x, y ← {0, 1}l : A(g, gx, gy, gxy) = 1]− P[x, y, z ← {0, 1}l : A(g, gx, gy, gz) = 1]|

Definition 3 (One-More-Diffie-Hellman Assumption) Let G be a cyclic group of order q and
g be its generator. The One-More-DH problem [5] is said to be (τ , t)-hard if for every algorithm A
that runs in time t we have:

P[{(gi, (gi)x)}i=1,...,n+1 ← ADHx(.)(g1, . . . , gm)] ≤ τ

2The term semi-honest adversary refers to a participant of the protocol that does not deviate maliciously from it
but tries to infer new knowledge about the inputs of other parties from the information it gathers.

7

in which m ≥ n and ADHx(.) is the algorithm A with access to a ”DHx(.)” oracle. We assume that
A can make at most n queries to the DHx(.) oracle.

Theorem 1 The security of the proposed protocol is ensured by the DLP problem and the One-More-
DH problem if both parties reinitialise their keys α and β after each instantiation of the protocol.

Proof 1 Let G = (V, E) denote a graph shared between two parties P1 and P2. Let x ∈ V be a node
in G and lets denote xi the elements of Γ1(x) and x′

i the elements of Γ2(x). During the protocol,
P2 obtains the elements from P1 in the encrypted form ai = gxiα that P2 cannot decrypt without α
because of the DLP problem. Afterwards, P2 encrypts his own elements and sends them in the form
ci = gx

′
iβ before encrypting the elements of P1 by sending them in the form a′i = gxiαβ. From here,

several scenarios are possible:

1. If there are no elements in the intersection, then the elements of P2 are protected by the
hardness of DLP.

2. If there is only one element in the intersection, for instance xj = x′
l so P1 can get gxjβ = gx

′
lβ

(by doing a modular exponentiation of α−1 ∈ Zq). The hardness of DLP implies that P1

cannot find an algorithm A that run in polynomial time to recover xjβ. Furthermore, even if
we discard the DLP assumption, xjβ is indistinguishable from a random element of Zq.

3. If there are several elements in the intersection, say xj0 = x′
l0
, . . . , xjm = x′

lm
so P1 can

get gxj1β , . . . , gxjmβ along with g1 = gxj1 , . . . , gm = gx
jm

that matches the One-More-DH
assumption. Indeed, this scenario arises due to the following reasoning: if P1 possesses a
DHx(.) oracle facilitating the retrieval of m pairs, namely (g1, g

β
1), . . . , (gm, gβm), it is infeasible

for P1 to devise an algorithm A that run in polynomial time and aims to successfully recover
an additional pair (gt, g

β
t), in which 0 ≤ t ≤ m. The intuition behind this is to exploit gt in

order to access the corresponding element within the intersection set. Thus, P2’s privacy is
ensured by the One-More-DH assumption.

We have demonstrated that the neighborhood’s privacy of the two nodes is preserved during
the execution of Crypto’Graph under cryptographic assumptions. One might wonder if this privacy
guarantee could be compromised when we apply the protocol to all pairs of nodes. Indeed, an
honest-but-curious adversary could attempt to infer information from the number of neighbors of
nodes that have been already considered during the protocol and thereby try to reconstruct the
common graph.

Theorem 2 The proposed protocol applied to all nodes is secure against a semi-honest adversary
and the worst-case complexity to recover the entire graph is O(2n

√
n), in which n is the number of

the nodes of the graph.

Proof 2 Let G = (V, E) denote a graph shared between two parties P1 and P2. We have seen that
Crypto’Graph performs the PSI-CA described in Figure 2 on all pairs of nodes in the graphs of P1

denoted as G1 and P2 denoted as G2. Focusing on P1 performing a PSI-CA between x and all
xi ∈ V \ {x}, it does n − 1 PSI-CA and sequentially receives n − 1 outcomes ranging from 0 to
n − 2 (depending on the extent of shared nodes between x and xi in G2). In order to assess the
extent of information that P1 can deduce while executing the protocol, one possibility is to conduct
a brute-force attack. This attack enables to derive an upper bound on the cost incurred by P1 in
reconstructing the merged graph G or at least in determining the neighboring nodes of x ∈ V. Thus,
P1 has |Γ(x) ∩ Γ(xi)| for each xi ∈ V/{x}. Therefore in the worst case, P1 has(

n− 2
n−2
2

)n−1

possible ways of reconstructing the neighborhood of x, which can be bounded by 2n−2
√
n−2

according to

Stirling’s approximation. As a consequence the worst-case complexity of the brute-force attack that
aims at identifying the neighborhood of a specific node is O(2n√

n
). By extending this analysis to

encompass all nodes, the resulting complexity is O(2n
√
n).

5 Application to graph sanitization

Leveraging on our protocol, we can design a privacy-preserving defense mechanism against attempts
to poison data in a GNN application. Hereafter, we provide significant experimental evidences of
the effectiveness of this defense against state-of-the art graph attacks.

8

5.1 Description

Our approach acts as a preprocessing step by helping to privately clean the distributed graph before
downstream learning tasks. The core idea of our approach is to identify suspicious or unlikely edges
in the distributed graph based on the same approach as link prediction, which we refer to link
removal. These suspicious connections could be indicative of malicious intent as it has been shown
in [36]. To obtain a likelihood score for each of the links on the joint network, we run Crypto’Graph
for all the possible pairs of nodes in the network by computing the similarity measures introduced
in Section 3.1. A threshold ti is then set by each party i, such that all links between pairs of nodes
that have a similarity below ti are considered malicious and discarded from Gi.

5.2 Experimental evaluation

To assess the benefit of our collaborative approach over individual defense strategies, we evaluate
its effectiveness against various types of attacks. We consider targeted attacks that aim at changing
the class of specific nodes in the graph as well as global attacks that try to decrease the global
classification accuracy over all the nodes. More precisely, we measure the performance of our defense
against the IG-FGSM [36], Nettack [41] and Dice [42] attacks. The FGSM attack, a targeted attack
traditionally applied to continuous image data, has been adapted to the discrete graph context
by Wu and collaborators with the use of integrated gradient, hence the name IG-FGSM. Zugner
and colleagues have proposed Nettack, another targeted attack using gradients to identify high-
impact links and maliciously inject them in the neighborhood of an attacked node. As of Dice, it is
introduced in [42] as a baseline global attack, which simply randomly creates links between nodes
belonging to different classes while removing links between nodes of the same class.

Figure 3: Experimental pipeline for the application of Crypto’Graph to graph sanitization. At the
end of the pipeline, we train simultaneously two GNNs on the different versions of G1 and G2 given
through the pipeline.

Figure 3 represents the experimental pipeline used in this section. Our experiments start by
creating two subgraphs from the Polblogs dataset, as described in Section 4.2. Afterwards, we
inject malicious links into G1 and G2 using the previous attacks. Since Nettack and IG-FGSM are
targeted attacks, we select 20 nodes that will undergo these attacks, while this is not needed for Dice.
Finally, we apply the three different defense strategies on the poisoned graphs before evaluating the
performance of GNNs trained on the sanitized graphs produced by these defenses.

We have identified the following key parameters that might influence the outcome of the defense
mechanisms and subsequently the accuracy of the GNNs trained on sanitized data:

• The thresholds of similarity t1, t2 for link removal. This parameter directly impacts
the number of links removed during the sanitization. Indeed a high threshold might induce
a high false positive rate whereas a low threshold could leave malicious links in the graphs
(i.e., leading to false negatives). Note that for party i, ti ∈ [0, 1] for the Jaccard and cosine
similarities, and ti ∈ N for the common neighbors similarity.

• The common proportion of links ppt in the two graphs. Since the graphs can have

9

overlapping knowledge about the global network, our assumption is that the less they share,
the more a collaborative defense is effective.

• The perturbation rates r1, r2 of the attacks. This factor influences how many malicious
links are introduced by the attacks. More precisely, a perturbation rate of ri on a certain node
x means that the attack is allowed to add at most ri × d(x) links to node x, in which d(x) is
the degree of node x. In contrast, a ri-Dice attack on Gi means that the attack injects exactly
ri × |Ei| malicious links in the entire graph. For this parameter, our hypothesis is that the
more the graphs are attacked, the harder it becomes to recover from such perturbations.

To demonstrate the protection potential of Crypto’Graph, we have studied the performances
of the node classification task on the Polblogs dataset in relation to different ranges of previous
parameters. More precisely, we begin by exploring the impact of the similarity threshold, before
evaluating the variation of the shared proportion of data and finishing with the experiments on the
perturbation rate.

5.2.1 Impact of similarity threshold for defense

In this section, we study the accuracy of GNNs trained on graphs after local and distributed defenses
with different values of t.

Figure 4: Impact of the similarity threshold t for link removal on the accuracy of GNNs trained on
sanitized graphs. The Jaccard, Cosine and Common Neighbors based defenses are presented in the
context of no attack, the FGSM, Nettack as well as Dice attacks.

More precisely, in this series of experiments, the common proportion ppt of links between G1 and
G2 is set to 0.5, r1 = 0 and r2 = 0.5 (i.e., they both share 50% of the data and each own 25% of fresh
and original data). Figure 4 represents the evolution of the average accuracy of GNNs trained on

10

G1 and G2 in three settings: when no attack and no defense have been performed, on the attacked
graphs without defense and on the attacked and sanitized graphs with different defense mechanisms.

We summarize our findings on the impact of the similarity thresholds as follows:

• As expected, different thresholds lead to different graph qualities, which in turn induces varying
performances for the trained GNNs. The same remark can be made for the similarity metric
used for defense.

• The distributed defense mechanisms tend to be better than their local counterparts for most
of the thresholds, especially the optimal one.

• In some situations, the defense mechanisms even allow for a better performance than on the
clean graphs. We believe that this could be due to the fact that the defense removes the
outliers from the data and that this helps for the GNNs tasks. This is an interesting finding
that can motivate the usage of such defenses even when it is not clear if the graphs have been
attacked.

• The Dice attack surprisingly improves the quality of the graphs. To understand this, one
should remember that this attack is really simplistic, and thus might actually add absent but
likely connections in the graphs, making them more useful for learning.

5.2.2 Impact of shared proportion of links

Since the global network can be distributed in many ways, we study the impact of the distribution
of links over G1 and G2.

Figure 5: Impact of the shared proportion (ppt) of links between G1 and G2 on the accuracy of
the defense based on the different similarity metrics (Jaccard, Cosine and Common Neighbors),
depending on the type of attack used (no, FGSM, Nettack and Dice).

Namely, we vary the proportion ppt of common links owned by G1 and G2 such that ppt ranges
from 0 (E1∩E2 = ∅) to 1 (E1 = E2). t1 and t2 are set to be the thresholds providing the best accuracy
for each metric, r1 = 0 and r2 = 0.5. As before, three settings are considered for the evaluation
: no attack and no defense have been conducted, attacks have been performed without subsequent
defense and finally attack and defense have been deployed.

From the results of this series of experiments, we derive the following observations:

11

Figure 6: Impact of the perturbation rate of the attacks on the accuracy of a GNN trained on
sanitized graph. The amount of perturbation is denoted as (r1, r2) on top of histograms. The first
and second bar of each metric (i.e, each color) represents the accuracy gain for G1 and G2.

• The distributed defense metrics stay consistently better than the local ones over the whole
range of proportions.

• The quality of the local defenses grows with the proportion and gets near (sometimes exceeds)
the performance of distributed defenses, meaning that the more each graph already shares
links with the other, the more they can get from a local defense. This directly matches our
initial assumption.

• Overall, the distributed defenses are more constant than the local ones across multiple in-
stances, which represents another advantage for them. Indeed in practice, one is more likely
to choose a defense with a high and stable quality overtime.

12

• Again, the defense mechanisms (especially the distributed ones) make the graphs even better
than if they were not attacked in the case of the IG-FGSM and Nettack attacks

• As before, the Dice attack slightly improves the accuracy obtained on an attacked graph.

To demonstrate the performance of Crypto’Graph against different attack rates, we also evaluate
the accuracy of GNNs trained on graphs sanitized after various forces of attack.

5.2.3 Impact of perturbation rates

To realize this, we study the combinations of three perturbation rates {0, 0.5, 1} for r1 and r2 with
ppt = 0.5. Here, we show the accuracy gain of the distributed metrics over their local equivalents,
with a positive margin meaning that the distributed metric is better that the local one, whereas
a negative one favors the local metric. The results presented in Figure 6 lead us to the following
conclusions:

• Overall, each graph can find a positive margin for each of the scenarios. This is especially
important as the two graphs are not necessarily sanitized using the same defense metric,
which leaves room for each graph owner to choose the metric that best suits them.

• Often, the most attacked graph is the one with the lowest accuracy gain, which validates our
assumption that high perturbation rates are more difficult to overcome.

• A perturbation rate of 1 is extreme, but in many of the reasonable scenarios, it appears that
it is not too costly for the least attacked graph to cooperate and that it is always beneficial
for the most attacked one to do so.

6 Conclusion

In this article, we have proposed Crypto’Graph, a protocol for privacy-preserving distributed link
prediction. Crypto’Graph is more efficient than the other state-of-the-art methods both in terms
of computation and communication, by one to several orders of magnitude, while reaching exactly
the same utility. Additionally, our protocol is able to compute different similarity metrics, allowing
for data owners to choose the best one according to their specific needs. We also demonstrate that
Crypto’Graph is secure against external eavesdroppers and against honest-but-curious participants.
Based on Crypto’Graph, we build a distributed defense mechanism against data poisoning in graph
neural networks application scenarios. Our experiments show that this mechanism is effective to
mitigate those attacks and can even be beneficial in the absence of attack. We also show that the
more disjoint the data of the participants is, the more beneficial it is for them to cooperate via our
distributed defense mechanism. Those benefits vary according to the power of the data poisoning
attack. In reasonable attack scenarios, cooperation is a good strategy while it is a little more complex
in extreme ones.

As a defense against the graph reconstruction attack presented above (which we have shown to
be quite difficult to carry in the worst case in our security analysis), we consider as future works the
application of methods like the occasional injection of dummy links in the graphs or an adaptation
of differential privacy in our context. We would also like to propose a method for a private and
efficient choice of the defense threshold, which we assume known by each of the party in our current
solution. Finally in another direction, we would like to better understand the security of our method
by exploring more in-depth attack strategies and also combining several similarity metrics to better
counter these attacks.

References

[1] SEC 2: Recommended Elliptic Curve Domain Parameters, 2010.

[2] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social Net-
works, 25(3):211–230, 2003. URL: https://www.sciencedirect.com/science/article/pii/
S0378873303000091, doi:10.1016/S0378-8733(03)00009-1.

[3] Dario Antweiler, David Sessler, Maxim Rossknecht, Benjamin Abb, Sebastian Ginzel, and Jörn
Kohlhammer. Uncovering chains of infections through spatio-temporal and visual analysis of
covid-19 contact traces. Computers & Graphics, 106:1–8, 2022.

13

https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://doi.org/10.1016/S0378-8733(03)00009-1

[4] Md. Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. Secure approximation of
edit distance on genomic data. BMC Medical Genomics, 10, 07 2017. doi:10.1186/

s12920-017-0279-9.

[5] Bellare, Namprempre, Pointcheval, and Semanko. The one-more-rsa-inversion problems and
the security of chaum’s blind signature scheme. Journal of Cryptology, 16:185–215, 2003.

[6] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and private computation of car-
dinality of set intersection and union. In International Conference on Cryptology and Network
Security, pages 218–231. Springer, 2012.

[7] Sumit Kumar Debnath and Ratna Dutta. Provably secure fair mutual private set intersection
cardinality utilizing bloom filter. In Kefei Chen, Dongdai Lin, and Moti Yung, editors, Informa-
tion Security and Cryptology, pages 505–525, Cham, 2017. Springer International Publishing.

[8] Sumit Kumar Debnath, Pantelimon Stănică, Tanmay Choudhury, and Nibedita Kundu. Post-
quantum protocol for computing set intersection cardinality with linear complexity. IET Infor-
mation Security, 14(6):661–669, 2020. URL: https://ietresearch.onlinelibrary.wiley.
com/doi/abs/10.1049/iet-ifs.2019.0315, arXiv:https://ietresearch.onlinelibrary.

wiley.com/doi/pdf/10.1049/iet-ifs.2019.0315, doi:10.1049/iet-ifs.2019.0315.

[9] Didem Demirag, Mina Namazi, Erman Ayday, and Jeremy Clark. Privacy-preserving link
prediction. In Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas, and Nicola Dragoni, editors,
Data Privacy Management, Cryptocurrencies and Blockchain Technology, pages 35–50, Cham,
2023. Springer International Publishing.

[10] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.

[11] Changyu Dong and Grigorios Loukides. Approximating private set union/intersection cardi-
nality with logarithmic complexity. IEEE Transactions on Information Forensics and Security,
12(11):2792–2806, 2017. doi:10.1109/TIFS.2017.2721360.

[12] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In Christian Cachin and Jan L. Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, pages 1–19, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[13] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for networks. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, page 855–864, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2939672.2939754.

[14] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 370–389, 2020. doi:10.1109/EuroSP48549.2020.00031.

[15] Paul Jaccard. Etude de la distribution florale dans une portion des alpes et du jura. Bulletin
de la Societe Vaudoise des Sciences Naturelles, 1901.

[16] Hisashi Kashima and Naoki Abe. A parameterized probabilistic model of network evolution
for supervised link prediction. In Sixth International Conference on Data Mining (ICDM’06),
pages 340–349, 2006. doi:10.1109/ICDM.2006.8.

[17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL: https:
//openreview.net/forum?id=SJU4ayYgl.

[18] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Pro-
ceedings of the Twelfth International Conference on Information and Knowledge Management,
CIKM ’03, page 556–559, New York, NY, USA, 2003. Association for Computing Machinery.
doi:10.1145/956863.956972.

14

https://doi.org/10.1186/s12920-017-0279-9
https://doi.org/10.1186/s12920-017-0279-9
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ifs.2019.0315
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ifs.2019.0315
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2019.0315
https://arxiv.org/abs/https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-ifs.2019.0315
https://doi.org/10.1049/iet-ifs.2019.0315
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIFS.2017.2721360
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/ICDM.2006.8
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/956863.956972

[19] Dongxiao Liu, Jianbing Ni, Hongwei Li, Xiaodong Lin, and Xuemin Shen. Efficient and privacy-
preserving ad conversion for v2x-assisted proximity marketing. In 2018 IEEE 15th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS), pages 10–18, 2018. doi:10.1109/
MASS.2018.00014.

[20] Siyi Lv, Jinhui Ye, Sijie Yin, Xiaochun Cheng, Chen Feng, Xiaoyan Liu, Rui Li, Zhao-
hui Li, Zheli Liu, and Li Zhou. Unbalanced private set intersection cardinality proto-
col with low communication cost. Future Generation Computer Systems, 102:1054–1061,
2020. URL: https://www.sciencedirect.com/science/article/pii/S0167739X19316413,
doi:10.1016/j.future.2019.09.022.

[21] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013. URL: http://arxiv.org/abs/1301.3781.

[22] Atsuko Miyaji, Kazuhisa Nakasho, and Shohei Nishida. Privacy-preserving integration of med-
ical data: a practical multiparty private set intersection. Journal of medical systems, 41:1–10,
2017.

[23] Daniel Morales, Isaac Agudo, and Javier Lopez. Private set intersection: A systematic literature
review. Computer Science Review, 49:100567, 2023. URL: https://www.sciencedirect.com/
science/article/pii/S1574013723000345, doi:10.1016/j.cosrev.2023.100567.

[24] Shishir Nagaraja, Prateek Mittal, Chi-Yao Hong, Matthew Caesar, and Nikita
Borisov. BotGrep: Finding P2P bots with structured graph analysis. In 19th
USENIX Security Symposium (USENIX Security 10), Washington, DC, August 2010.
USENIX Association. URL: https://www.usenix.org/conference/usenixsecurity10/

botgrep-finding-p2p-bots-structured-graph-analysis.

[25] M. E. J. Newman. Clustering and preferential attachment in growing networks. Phys. Rev. E,
64:025102, Jul 2001. doi:10.1103/PhysRevE.64.025102.

[26] Kenta Nomura, Yoshiaki Shiraishi, Masami Mohri, and Masakatu Morii. Secure association rule
mining on vertically partitioned data using private-set intersection. IEEE Access, 8:144458–
144467, 2020. doi:10.1109/ACCESS.2020.3014330.

[27] Georgios A Pavlopoulos, Maria Secrier, Charalampos N Moschopoulos, Theodoros G Soldatos,
Sophia Kossida, Jan Aerts, Reinhard Schneider, and Pantelis G Bagos. Using graph theory to
analyze biological networks. BioData mining, 4:1–27, 2011.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, page 701–710, New York, NY, USA, 2014. Association
for Computing Machinery. doi:10.1145/2623330.2623732.

[29] Amanda Cristina Davi Resende and Diego F. Aranha. Faster unbalanced private set intersection.
In Financial Cryptography, volume 10957, pages 203–221. Springer, 2018.

[30] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL: https://networkrepository.com.

[31] Ou Ruan, Zihao Wang, Jing Mi, and Mingwu Zhang. New approach to set representation and
practical private set-intersection protocols. IEEE Access, 7:64897–64906, 2019. doi:10.1109/
ACCESS.2019.2917057.

[32] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
doi:10.1109/TNN.2008.2005605.

[33] Liyan Shen, Xiaojun Chen, Dakui Wang, Binxing Fang, and Ye Dong. Efficient and private set
intersection of human genomes. In 2018 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 761–764, 2018. doi:10.1109/BIBM.2018.8621291.

[34] Amit Singhal. Modern information retrieval: A brief overview. Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2001.

15

https://doi.org/10.1109/MASS.2018.00014
https://doi.org/10.1109/MASS.2018.00014
https://www.sciencedirect.com/science/article/pii/S0167739X19316413
https://doi.org/10.1016/j.future.2019.09.022
http://arxiv.org/abs/1301.3781
https://www.sciencedirect.com/science/article/pii/S1574013723000345
https://www.sciencedirect.com/science/article/pii/S1574013723000345
https://doi.org/10.1016/j.cosrev.2023.100567
https://www.usenix.org/conference/usenixsecurity10/botgrep-finding-p2p-bots-structured-graph-analysis
https://www.usenix.org/conference/usenixsecurity10/botgrep-finding-p2p-bots-structured-graph-analysis
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1109/ACCESS.2020.3014330
https://doi.org/10.1145/2623330.2623732
https://networkrepository.com
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1109/ACCESS.2019.2917057
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/BIBM.2018.8621291

[35] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y. Zhao. User
interactions in social networks and their implications. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys ’09, page 205–218, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1519065.1519089.

[36] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Ad-
versarial examples for graph data: Deep insights into attack and defense. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages
4816–4823. International Joint Conferences on Artificial Intelligence Organization, 7 2019.
doi:10.24963/ijcai.2019/669.

[37] Xiaojun Xu, Hanzhang Wang, Alok Lal, Carl A. Gunter, and Bo Li. Edog: Adversarial edge
detection for graph neural networks. In 2023 IEEE Conference on Secure and Trustworthy
Machine Learning (SaTML), pages 291–305, 2023. doi:10.1109/SaTML54575.2023.00027.

[38] Hai-Feng Zhang, Xiao-Jing Ma, Jing Wang, Xingyi Zhang, Donghui Pan, and Kai Zhong.
Privacy-preserving link prediction in multiple private networks. IEEE Transactions on Com-
putational Social Systems, 10(2):538–550, 2023. doi:10.1109/TCSS.2022.3168010.

[39] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, page
5171–5181, Red Hook, NY, USA, 2018. Curran Associates Inc.

[40] Yao Zheng, Bing Wang, Wenjing Lou, and Y. Thomas Hou. Privacy-preserving link prediction
in decentralized online social networks. In Günther Pernul, Peter Y A Ryan, and Edgar Weippl,
editors, Computer Security – ESORICS 2015, pages 61–80, Cham, 2015. Springer International
Publishing.

[41] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural
networks for graph data. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’18, page 2847–2856, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3219819.3220078.

[42] Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via
meta learning. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL: https://openreview.net/
forum?id=Bylnx209YX.

16

https://doi.org/10.1145/1519065.1519089
https://doi.org/10.24963/ijcai.2019/669
https://doi.org/10.1109/SaTML54575.2023.00027
https://doi.org/10.1109/TCSS.2022.3168010
https://doi.org/10.1145/3219819.3220078
https://openreview.net/forum?id=Bylnx209YX
https://openreview.net/forum?id=Bylnx209YX

	Introduction
	Related work
	Preliminaries
	Link prediction
	Graph Neural Networks
	Private Set Intersection

	Protocol
	Description
	Performance results
	Security Model

	Application to graph sanitization
	Description
	Experimental evaluation
	Impact of similarity threshold for defense
	Impact of shared proportion of links
	Impact of perturbation rates

	Conclusion

