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Cognition Center, UMR 8002, Centre National de la Recherche Scientifique, Paris 75006, France; 4Center for Integrative Neuroscience,
Eberhard-Karls-Universität, Tübingen 72076, Germany

Performing a motor response to a sensory stimulus creates a memory trace whose behavioral correlates are classically in-
vestigated in terms of repetition priming effects. Such stimulus–response learning entails two types of associations that are
partly independent: (1) an association between the stimulus and the motor response and (2) an association between the stim-
ulus and the classification task in which it is encountered. Here, we tested whether sleep supports long-lasting stimulus–re-
sponse learning on a task requiring participants (1) for establishing stimulus–classification associations to classify presented
objects along two different dimensions (“size” and “mechanical”) and (2) as motor response (action) to respond with either
the left or right index finger. Moreover, we examined whether strengthening of stimulus–classification associations is pref-
erentially linked to nonrapid eye movement (non-REM) sleep and strengthening of stimulus–action associations to REM
sleep. We tested 48 healthy volunteers in a between-subjects design comparing postlearning retention periods of nighttime
sleep versus daytime wakefulness. At postretention testing, we found that sleep supports consolidation of both stimulus–
action and stimulus–classification associations, as indicated by increased reaction times in “switch conditions”; that is, when,
at test, the acutely instructed classification task and/or correct motor response for a given stimulus differed from that
during original learning. Polysomnographic recordings revealed that both kinds of associations were correlated with
non-REM spindle activity. Our results do not support the view of differential roles for non-REM and REM sleep in the con-
solidation of stimulus–classification and stimulus–action associations, respectively.

[Supplemental material is available for this article.]

Building associations between sensory stimuli and subsequentmo-
tor responses is a fundamental form of learning that supports effi-
cient interactions with the environment. Such stimulus–response
learning is often investigated using repetition priming paradigms
(Henson et al. 2014). Repetition priming describes the phenome-
non in which the same stimulus encountered under the same
task conditions yields faster and more accurate responses (Logan
1990). Such improvements are thought to be due to the bypassing
of one or more processing stages required during initial stimulus
encounters. Conversely, if the same stimulus is re-encountered in
a different context, responses tend to be slower and less accurate
(i.e., negative priming) (Rothermund et al. 2005).

Classically, stimulus–response learningwas assumed to reflect
a unitary association between a task context and a stimulus
prompting a specific action (Logan 1990; Dobbins et al. 2004;
Schnyer et al. 2007). However, there is now substantial evidence in-
dicating that themotor action performed in response to a stimulus
—that is, the stimulus–action association (e.g., a left finger press to
a small object)—is encoded in a memory trace separate from that
underlying the stimulus–classification association (Horner and
Henson 2009; Dennis and Perfect 2013). For example, if during
learning, the task requires the participant to classify stimuli accord-
ing to varying features (e.g., size vs. color), then during a later test,
changing both the task-relevant stimulus feature and themotor re-
sponse slows reaction times (RTs) and increases error rates.
Intriguingly, the two effects have been shown not to interact,
such that changing both the relevant task feature and themotor re-

sponse at the same time yields additive slowing of RTs
(Moutsopoulou and Waszak 2012, 2013; Moutsopoulou et al.
2018). This indicates that the two memory traces are at least partly
independent (Dennis and Perfect 2013;Moutsopoulou et al. 2015).

Stimulus–classification and stimulus–action associations can
persist over extended intervals of up to 1 wk (Moutsopoulou
et al. 2018), which is substantially longer than the timescales typ-
ically examined in studies of priming. This raises the question of
when and how stimulus–response learning is consolidated into
long-term memory. Sleep is known to be an important factor in
memory consolidation and benefits a variety of memory types
(Rasch and Born 2013). Initially, a dual-process model was pro-
posed claiming that rapid eye movement (REM) sleep preferential-
ly consolidates procedural memory, whereas non-REM sleep (i.e.,
stage 2 and slow-wave sleep) is particularly implicated in consoli-
dating declarative memories (Plihal and Born 1997; Fischer et al.
2002; for review, see Rasch and Born 2013). However, later studies
revealed a benefit from non-REM sleep also for procedural types of
memory (e.g., see Aeschbach et al. 2008; Rasch et al. 2009). Current
concepts assume an active systems consolidation process that is es-
tablished during sleep in the hippocampus-dependent episodic
memory system and benefits declarative and procedural types of
memory in parallel (Diekelmann and Born 2010; Sawangjit et al.
2018; Klinzing et al. 2019; Schapiro et al. 2019). According to
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this concept, the consolidation of memo-
ry into long-term storage is particularly
reliant on slow-wave activity (SWA)
during non-REM sleep via a precisely
timed co-occurrence of cortically ini-
tiated slow oscillations (SOs; <1 Hz),
thalamo–cortical spindles (7–15 Hz)
(Steriade and Llinás 1988), and hippo-
campal sharp wave ripples (100–250 Hz)
(Buzsáki 2015). Such SWA co-occurrence
provides privileged temporal windows
during which neuronal activation pat-
terns observed during wakefulness are re-
played (Wilson and McNaughton 1994),
with the replay promoting the reorgani-
zation of the neuronal representations
for a more effective long-term storage.
REM sleep, in this view, may help stabi-
lize the reorganized representations at
the synaptic level (Diekelmann and
Born 2010; Li et al. 2017).

The present study aimed to investi-
gate whether sleep supports the consoli-
dation of stimulus–response learning. To
address this question, we used a priming
paradigm for which long-term learning
effects have been previously demonstrat-
ed (Hsu andWaszak 2012;Moutsopoulou
et al. 2015, 2018). During a learning
phase, pictures of everyday objects were primed such that each ob-
ject was associated with a specific classification task (stimulus–clas-
sification association) and a specific motor response (stimulus–
action association). Test sessions followed half an hour (immediate
test) and (on separate stimuli) 10 h (remote test) after the learning
phase. The strength of stimulus–classification and stimulus–action
associations was assessed in terms of RTs to the originally learned
associations as well as in “switch conditions”; that is, by changing
either the classification task, the correct response action, or both
task and action originally associated with the object. To study
the contributions of sleep, a sleep group and a wake group of par-
ticipants were examined.

We predicted, first, that sleep would benefit the consolidation
of stimulus–response learning in general; that is, both stimulus–
classification and stimulus–action associations would be rein-
forced after sleep. This would be expressed in reduced RTs to stim-
uli re-encountered in the learned context, as well as in enhanced
switch costs; that is, slower responses to probe stimuli presented
with switched task and/or response associations.

Second, we examined the hypothesis that stimulus–action
and stimulus–classification associationswould be enhanced by dif-
ferent sleep-related processes. Specifically, we expected stimulus–
classification associations to primarily depend on non-REM sleep
and its electroencephalogram (EEG) hallmarks (i.e., sleep spindles
and slow oscillations); whereas stimulus–action associationswould
primarily benefit from REM sleep and associated EEG theta activity
(Rasch and Born 2013). To test this second hypothesis, we recorded
polysomnography (PSG) in the sleep group and correlated sleep pa-
rameters with changes in behavioral performance.

Results
The trial time line and experimental time course are shown in
Figure 1. Participants saw pictures of everyday objects that they
were to classify according to either (real-life) size or whether the ob-
ject contained a technicalmechanism. Each stimuluswas preceded

by a cue consisting of two letters whose identity and locations in-
dicated the classification task to be performed as well as the re-
sponse mapping for the upcoming stimulus. During an initial
learning session, each object was shown twice—in the context of
the same classification task and with the same response mapping.
Subsequently, each object was probed once—either before or after
a 10-h retention interval, and in only one of four possible switch
conditions, where either the classification task, the response map-
ping, both, or neither differed from the learning session.
Participants were instructed to respond as fast and as accurately
as possible during the entire experiment.

Sleep increases switch costs
Mean reaction times (RTs) and variances in the different experi-
mental conditions (i.e., sleep and wake groups, immediate and re-
mote tests, and repeat/switch conditions) are summarized in Table
1 and were comparable with previous studies (e.g., Moutsopoulou
et al. 2015, 2018). A separate analysis of the learning period
confirmed participants of both groups indeed learned during this
period, with responses at the second presentation of the prime
being significantly faster than at the first presentation (b=
−67.35, t=−13.09, P<0.001). This learning effect was comparable
between groups (b=−15.31, t=−1.49, P=0.144, for prime×group
interaction).

RTs at the tests were first analyzed for the full repeat (CrAr)
condition, which can be considered as a baseline condition,
because testing was performed under the same classification and
action contingencies as during original learning. There was no ev-
idence that RTs in the full repeat conditions differed as a func-
tion of sleep: We found no significant changes from immediate
test to remote test in either the sleep or wake group (wake: b=
3.64, t=0.36, P=0.720; sleep: b=−8.87, t=−0.86, P=0.390) and
no significant group differences at the remote test (b=−16.79, t=
−0.59, P=0.557). Moreover, RTs for the immediate test were com-
parable, indicating that performances were matched between
groups (b=−4.27, t=−0.14, P=0.887).

A

C

B

Figure 1. Task and experimental procedure. (A) Learning trial: Each trial started with a task cue fol-
lowed by presentation of an object image and ended after a response was given or the time limit of
1800 msec elapsed. (B) Task conditions during immediate and remote tests: Each object could be asso-
ciated with the same classification task and response side as during learning (that is, classification repeat/
action repeat [CrAr]) or presented with switched task or response associations (CrAs, CsAr, and CsAs).
(C) Experimental procedure for wake and sleep groups.
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Second, we analyzed RTs in the different switch conditions.
For this purpose, we calculated action switch costs, classification
switch costs, and full switch costs as the differences between the re-
spective switch condition and the full repeat baseline condition
(CrAr). Thus, positive switch costs refer to slowed RTs in trials
where action/classification conditions differed from those during
the learning period, providing evidence that memory of the origi-
nally encoded stimulus–action and stimulus–classification associa-
tions persisted and interfered with the changed stimulus
conditions.On the other hand, switch costs equal to zerowould in-
dicate that the stimulus associations encoded during learning did
not interfere with performance when the same stimulus is present-
ed with different action/classification associations.

An initial contrast comparing all three switch conditions be-
tween groups indicated higher switch costs in the sleep group (b
=55.48, t=1.92, one-tailed P=0.028). This was followed up with
more specific contrasts investigating the individual switch
conditions.

For action switch costs, we observed a decrease from immedi-
ate to remote test in the wake group (b=−22.24, t=−2.26, P=
0.024) (Fig. 2A), such that they were no longer different from
zero at the remote test (b=−3.94, t=−0.51, P=0.613). In contrast,
in the sleep group, action switch costs increased from immediate to
remote test (b= 24.84, t=2.49, P=0.013) to a level above zero (b=
22.49, t=2.87, P=0.004). The comparison between sleep and
wake groups confirmed that action switch costs evolved differently
from immediate to remote test in the two groups (b=47.08, t=
3.36, P<0.001), and action switch costs were significantly higher
in the sleep than in the wake group at the remote test (b=26.42,
t= 2.39, P=0.017). However, a trend in the opposite direction
was present at the immediate test (b=−20.66, t=−1.89, P=
0.059) (Fig. 2A), possibly reflecting confounding influences of cir-
cadian factors. To address this possibility, we compared subjective
sleepiness (obtainedwith the Stanford Sleepiness Scale [SSS] before
learning and remote test) and vigilance (obtained before learning)
between the sleep and wake groups. The results provided no evi-
dence of differences between the groups (all P>0.422 for respective
main and interaction effects). Moreover, action switch costs at the
remote test remained significantly higher in the sleep than in the
wake group when performance at the immediate test was intro-
duced as a covariate (b=30.98, t=2.33, P= 0.024). These control
analyses suggest that sleep effects on action switch costs are not
substantially confounded by baseline differences between groups
at the immediate test. Taken together, S-A associations appear to
preferentially persist across retention intervals containing sleep.

Classification switch costswere also reduced across thewake re-
tention interval (b=−26.89, t=−2.71, P=0.007) (Fig. 2B), such
that they were not significantly different from zero at the remote

test (b=6.66, t=0.81, P=0.421). There was a similar trend toward
diminished switch costs in the sleep group (b=−16.70, t=−1.66,
P =0.097), but here classification switch costs remained significantly
above zero (b=22.65, t=2.72, P=0.007). Direct comparisons be-
tween sleep andwake groups revealednoevidence that classification
costs evolved differentlyover time (b=10.19, t=0.72, P=0.471), and
therewere nogroupdifferences at the immediate (b=5.80, t=0.50, P
=0.619) or remote (b=15.99, t=1.36, P=0.175) test.

Given that we found consistently enhancing effects of sleep
on stimulus–action but not on stimulus–classification associations,
we directly compared the effects of sleep versus wakefulness on the
two types of switch costs at the remote test. The corresponding
contrast, however, did not support the view that sleep specifically
increases action switch costs (b=10.43, t=0.82, P=0.412). Instead,
a contrast testing the main effect of sleep across action and classi-
fication contingencies indicated consistently higher switch costs
in the sleep group (b=42.41, t=2.24, P= 0.026). In sum, these re-
sults provide limited evidence for an enhancing effect of sleep on
S-C associations similar to that on S-A associations.

When classification task and action jointly switched, the asso-
ciated full switch costs remained constant across immediate and re-
mote tests in the wake group (b=−10.58, t=−1.06, P=0.288),
whereas a marginally significant decrease was seen after sleep (b=
−18.93, t=−1.89, P=0.059) (Fig. 2C). Full switch costs remained
above zero at the remote test in both groups (wake: b=18.73, t=
2.11, P=0.038; sleep: b=31.80, t=3.54, P<0.001). There were no
significant differences between sleep andwake groups at the imme-
diate (b=21.42, t=1.71, P=0.091) or remote (b=13.07, t=1.03, P=
0.304) test or across immediate and remote tests (b=−8.36, t=
−0.59, P=0.554). To test whether effects of sleep on switch costs
differed in the full switch compared with the two single switch
conditions, we implemented a contrast comparing the full switch
with the single switch conditions between groups at the postreten-
tion test. This did not yield any evidence for an interactive effect
with sleep (b=16.27, t=0.85, P=0.394).

Sleep enhances accuracy
Error rates were low overall and comparable with previous studies.
They were generally higher at the remote test [mean± SEM; imme-
diate test: 3.93 ±0.419; remote test: 4.68±0.471; χ2(1) = 8.15, P=
0.004 for immediate/remote main effect]. Moreover, participants
performed better in classification repeat than classification switch
trials [χ2(1) = 36.83, P<0.001].

Importantly, error rates at the remote test were distinctly low-
er in the sleep than in the wake group [b=0.58, z= 2.94, P=0.003;
χ2(1) = 5.17, P= 0.023 for the sleep/wake× immediate/remote inter-
action] (for pairwise comparison, see Fig. 2D). In the wake group,

Table 1. Mean RTs and SEMs in milliseconds for learning and test trials in wake and sleep groups

Classification repeat Classification switch

Action repeat Action switch Action repeat Action switch

Wake Learning First 858.37 (24.56)
Second 798.67 (23.37)

Test Immediate 708.66 (21.02) 726.96 (20.76) 742.21 (22.78) 737.96 (22.56)
Remote 712.30 (19.98) 708.36 (19.86) 718.96 (21.20) 731.03 (21.10)

Sleep Learning First 855.47 (25.08)
Second 780.46 (22.85)

Test Immediate 704.39 (21.46) 702.03 (21.21) 743.73 (23.27) 755.11 (23.02)
Remote 695.51 (20.37) 718.00 (20.27) 718.16 (21.63) 727.31 (21.53)

Note: Classification versus action repeat versus switch refers to the response to a given stimulus in the context of either the same classification task (size vs.
mechanalness) or action mapping (left/right index finger) as during the learning period or with the respective other classification task and action. “First” and
“second” refer to the first and second presentations of a stimulus during learning. SEMs are in parentheses.
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error rates increased from immediate to remote test (b=−0.39, z=
−4.03, P<0.001), while they remained unchanged in the sleep
group (b=−0.04, z=−0.38, P=0.705). Wake and sleep groups did
not differ at the immediate test (b=0.23, z=1.15, P=0.251).

Control analyses excluded that the reduced error rate at the re-
mote test in the sleep group reflected a speed–accuracy trade-off in
performance. First, error rates at the remote test were not correlated
with RTs in the sleep group (r=−0.02, P=0.913). Second, RTs at the
remote test were closely comparable between the groups (P=
0.918). Finally, separate analyses of RTs for error responses and of
omission rates at the remote test did not reveal any groupdifferenc-
es (error RTs, P=0.553; omissions, P=0.481), excluding that partic-
ipants in the sleep group sacrificed response speed for accuracy.

Sleep spindles predict reaction time effects
Using polysomnographic data, we analyzed whether sleep archi-
tecture and oscillatory signatures of memory processing during

sleep are related to behavioral performance. These analyses focused
on the conditions where sleep and wake groups differed in behav-
ior at the remote test. Sleep parameters of interest were correlated
with performance changes across the retention interval (i.e., re-
mote test–immediate test). A summary of sleep architecture and
sleep oscillations is shown in Table 2.

We did not observe any significant correlation between sleep
parameters and performance for the full-repeat baseline condition
(CrAr; all P>0.090), whichmatcheswith the absence of sleep/wake
group differences in behavioral performance in this condition.
There were no significant correlations between action switch costs
(CrAs–CrAr) and sleep parameters when considering non-REM
sleep as a whole (Table 3). Given previous data indicating that mo-
tor memory consolidation might be specifically associated with
spindle activity during stage 2 sleep (Genzel et al. 2009), we con-
ducted additional exploratory analyses separately for stage
2. Indeed, higher numbers of slow spindles and fast spindles dur-
ing stage 2 sleep predicted increased action switch costs at the

A B

DC

Figure 2. RT switch costs and accuracy at the immediate and remote tests for the wake (green) and sleep (black) groups. (A) Action switch costs de-
creased across the wake retention interval but increased across the sleep interval. (B) Classification switch costs decreased across both wake and sleep re-
tention intervals. (C) If classification task and action jointly switched, full switch costs slightly decreased across retention intervals and remained above zero
in both wake and sleep groups. (D) Accuracy only decayed across the wake retention interval, leading to a higher accuracy for the sleep than the wake
group at remote test. Means ± SEM are indicated (dot plots overlaid). Asterisks above individual conditions indicate significant differences from zero.
(***) P<0.001, (**) P<0.01, (*) P<0.05.
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remote test (slow spindles, maximum correlation at F3, r=0.45,
t(20) = 2.24, P=0.037; fast spindles, C4, r=0.54, t(19) = 2.78, P=
0.012) (cf. Fig. 3). These coefficients also differed from those re-
vealed for SWS (Fisher’s Z= 2.42 and Z=2.54, P=0.016 and P=
0.011, respectively).

Classification switch costs (CsAr–CrAr) (Table 3B) were posi-
tively correlated with total sleep time (r=0.50, t(21) = 2.63, P=
0.016) and consequently negatively correlated with time awake af-
ter sleep onset (r=−0.44, t(21) =−2.25, P=0.035). Higher numbers
of slow and fast spindles during non-REM sleep predicted increased
classification switch costs at the remote test (slow spindles, F3, r=
0.51, t(20) = 2.66, P=0.015; fast spindles, P3, r=0.58, t(21) = 3.25, P
=0.004) (Fig. 3). There were no correlations of sleep parameters
with full switch costs. As to performance accuracy, larger ampli-
tudes of slow spindles predicted higher global accuracy at the re-
mote test (F4, r=0.45, t(21) = 2.33, P=0.030). In contrast, there
was no evidence for links between behavioral performance and
SO activity, SO–spindle coupling, REM duration, or REM theta in
either action switch or classification switch conditions. Given
our interest in a potential role of REM sleep in consolidating S-R
learning, we conducted additional Bayesian analyses to investigate

whether the data support the absence of REM effects. This was not
the case for either action switch costs (maximal BF01 = 1.5) or accu-
racy (maximal BF01 = 2.47), and only modest evidence for the null
hypothesis was seen for classification switch cost (maximal BF01 =
3.52; BF01 > 3 at three out of six electrodes).

Taken together, these results indicate a positive association of
classification switch costs with non-REM spindles. For action
switch costs, a similar association was seen in exploratory analyses
restricted to sleep stage 2.

Discussion
The association of perceived stimuli with subsequent motor re-
sponses is a fundamental form of learning. Based on findings
that such stimulus–response learning comprises at least two partly
independent memory traces (that is, stimulus–action and stimu-
lus–classification associations) (Moutsopoulou and Waszak
2012, 2013), we examined whether its long-term persistence relies
on sleep-dependent mechanisms of memory consolidation
(Diekelmann and Born 2010; Moutsopoulou et al. 2018) and, in

Table 2. Sleep architecture and characteristics of sleep oscillations (means, with SEMs in parentheses)

(A) Sleep architecture
TST WASO & MT Stage 2

latency
SWS

latency
Stage 1 Stage 2 SWS REM Non-REM

453.4 (8.2) 13.6 (3.2) 3.7 (0.4) 15.8 (1.1) 47.8 (4.1) 231.7 (7.9) 90.9 (8.4) 78.3 (4.7) 322.6 (6.8)
(B) Sleep architecture

Non-REM sleep Stage 2 sleep SWS

Count Density Amplitude Count Density Amplitude Count Density Amplitude

Slow spindles Frontal 1203 (84) 3.88 (0.24) 32.49 (6.78) 779 (70) 3.34 (0.25) 33.39 (6.96) 422 (57) 4.52 (0.48) 30.66 (6.39)
Fast spindles Central 1625 (54) 5.27 (0.11) 28.27 (5.89) 1273 (58) 5.48 (0.13) 28.61 (5.97) 344 (45) 3.66 (0.19) 26.33 (5.49)

Parietal 1647 (59) 5.34 (0.13) 27.78 (5.79) 1307 (62) 5.62 (0.17) 28.28 (5.90) 341 (46) 3.59 (0.21) 25.61 (5.34)
SOs Frontal 1684 (73) 5.46 (0.19) 167.70 (34.97) 523 (43) 2.21 (0.12) 174.80 (36.45) 1170 (83) 13.33 (0.48) 165.24 (34.46)

Central 1552 (76) 5.03 (0.20) 146.90 (30.63) 453 (35) 1.92 (0.10) 146.78 (30.61) 1086 (83) 12.39 (0.45) 145.40 (30.32)
Parietal 1520 (78) 4.92 (0.21) 133.76 (27.89) 402 (34) 1.69 (0.11) 130.36 (27.18) 1118 (83) 12.68 (0.48) 134.91 (28.13)

(A) Total sleep time (TST), wake time after sleep onset (WASO), movement time (MT), and latency (from sleep onset) of stage 2 sleep and slow-wave sleep
(SWS), as well as time spent in sleep stages 1 and 2, SWS (3 +4), REM sleep, and non-REM sleep (stage 2+ SWS), are indicated in minutes. (B) Counts, density
(per minute), and amplitude (in microvolts) of sleep oscillations are summarized during non-REM sleep, including stage 2 sleep and SWS.

Table 3. Correlations between sleep oscillations and behavioral performance

Non-REM sleep

Count Density Amplitude

(A) Δ Action switch costs
Slow spindles Frontal 0.13/0.14 0.14/0.13 −0.30/−0.30
Fast spindles Central 0.22/0.25 0.30/0.31 −0.23/−0.11

Parietal 0.17/0.16 0.19/0.16 −0.12/−0.15
SOs Frontal −0.26/−0.18 −0.35/−0.26 −0.31/−0.32

Central −0.28/−0.12 −0.37/−0.18 −0.40a/−0.37
Parietal −0.22/−0.23 −0.31/−0.32 −0.31/−0.29

(B) Δ Classification switch costs
Slow spindles Frontal 0.51b/0.47b 0.45b/0.38a 0.11/0.02
Fast spindles Central 0.56c/0.55b 0.41a/0.31 0.19/0.20

Parietal 0.58c/0.51b 0.41b/0.30 0.23/0.17
SOs Frontal 0.24/0.25 −0.03/−0.02 0.07/0.00

Central 0.18/0.29 −0.06/0.04 0.06/0.06
Parietal 0.23/0.27 0.01/0.05 0.12/0.09

(A) Correlations between sleep oscillations and action switch costs during non-REM sleep. Correlation coefficients are shown for individual EEG channels, with F3,
C3, and P3 shown at the left, and F4, C4, and P4 shown at the right. (B) Correlations between sleep oscillations and classification switch costs.
aP< 0.10.
bP<0.05.
cP< 0.01.

Sleep consolidates S-R learning

www.learnmem.org 179 Learning & Memory

 Cold Spring Harbor Laboratory Press on September 28, 2023 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


addition, whether these mechanisms differ between action- and
classification-related associations. In terms of reaction times, we
found that sleep does not improve stimulus–response performance
when stimuli are re-encountered in the learned context; that is, in
the full repeat baseline condition, where both task and response
mapping were the same as during learning. However, when the re-
sponse mapping changed at the test after the retention interval,
the sleep group showed increased RTs, indicating improved consol-
idation of stimulus–action associations. A weaker sleep effect was
seen when the classification task changed: Here, sleep preserved
higher RTs across the retention interval, although this effect did
not reach significance in a direct comparison with the wake condi-
tion. Finally, sleep effects were least pronounced in comparisons
limited to the full switch condition, where both responsemapping
and classification task changed compared with the learning con-
text. Nevertheless, a global beneficial effect of sleep was seen
when data from all three switch conditions were compared be-
tween sleep and wake groups. Moreover, sleep improved perfor-
mance accuracy compared with the wake group across all
conditions. Behavioral signs of enhanced stimulus–action and
stimulus–classification associations (i.e., increased switch costs)
in the sleep group were predicted by fast and slow spindle activity
during non-REM sleep. For action switch costs, this associationwas
only observed for spindles during sleep stage 2. Taken together,
these findings support the hypothesis that sleep consolidates
stimulus–response learning, with a pronounced effect on stimu-
lus–action associations and a weaker effect on stimulus–classifica-
tion associations. Both effects appear related to non-REM
sleep spindles. On the other hand, our findings do not provide ev-
idence for the notion that differential mechanisms related to
non-REM versus REM sleep are selectively implicated in strength-
ening stimulus–action and stimulus–classification associations,
respectively.

Despite its effects on stimulus–action and stimulus–classifica-
tion associations, sleep did not lead to behavioral changes in the
full repeat condition,which represents the simplest task condition.
This means that postlearning sleep does not alter thememory trac-
es to an extent that would lead to immediate RT advantages.
Nevertheless, the combination of equivalent reaction times in
this conditionwith higher accuracy after sleep confirms the notion
that sleep improves stimulus–response learning overall. The fact
that beneficial effects of sleep were expressed in switch costs—
that is, increased RTs in conditions conflicting with original learn-
ing rather than decreased RTs in the full repeat condition—might

also point to effects of sleep on higher-level aspects of the associat-
ive representation (e.g., related to decision-making) rather than on
lower-level priming-related aspects. Indeed, previous studies on
the effects of sleep on priming tasks yielded mixed results
(Gaskell et al. 2019; Shaikh and Coulthard 2019; Sánchez-Mora
and Tamayo 2021).

Sleep also did not affect RTs in the most complex condition;
that is, the full switch condition, where both the classification
task and the response mapping differed from the original learning
context. This result was unexpected, given previous studies show-
ing that stimulus–action and stimulus–classification associations
can independently vary, such that effects on action and classifica-
tion switch costs add up linearly (Moutsopoulou et al. 2018).
Against this backdrop, one might have expected that effects of
sleep on stimulus–action and stimulus–classification switch costs
likewise add up to an even more prominent increase in RTs.
Instead, we did not observe any difference in full switch perfor-
mance between the sleep and wake groups. This outcome does
not question the view that stimulus–action and stimulus–classifi-
cation associations are at least partially independent but hints at
the presence of currently unknown processes involved in the con-
solidation (or retrieval) of these associations that interact with the
brain states of sleep andwakefulness, underlining themultifaceted
nature of sleep’s contribution to sensorimotor learning (King et al.
2017). An intriguing speculation in this regard is that consolida-
tion processes during sleep promote the integrative (and interde-
pendent) processing of both kinds of association, resulting in
relatively diminished switch costs specifically in the full switch
condition. A similar sleep-induced promotion of integrated pro-
cessing has been revealed in the spatial domain, where sleep after
encoding fostered the integration of landmark-based hippocampal
and local, boundary-based striatal representations (Noack et al.
2021).

Indeed, the view that sleep simultaneously strengthens sepa-
rate stimulus–action and stimulus–classification association as well
their integration would nicely concur with themain finding of our
sleep analysis, linking the strengthening of both stimulus–action
and stimulus–classification associations to the same oscillatory
mechanism; that is, non-REM spindle activity. Using optogenetic
induction of thalamic spindles, studies inmice have demonstrated
a causal role of non-REM sleep spindles in triggering systems con-
solidation processes in the hippocampal–neocortical episodic
memory system (Latchoumane et al. 2017). In particular, sleep
spindles appear to coordinate hippocampal memory replay with

A B

Figure 3. (A) Slow (green triangles) and fast (black circles) spindle activity in stage 2 sleep positively correlated with action switch costs (remote test–
immediate test). (B) Slow and fast spindle activity during non-REM sleep (stage 2 sleep + SWS) positively correlated with classification switch costs. Results
are shown for the sites of maximum correlations.
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processes of synaptic plasticity underlying the strengthening of as-
sociative memories at the cortical level (Bergmann et al. 2012;
Niethard et al. 2018). In our study, the relationship between spin-
dles and stimulus–action associations was more pronounced in
separate analyses of stage 2 sleep (Malerba et al. 2022), and there
were no consistent correlations between behavioral performance
and slow oscillations. These findings suggest that slow oscillatory
activity is less essential for the consolidation of S-R learning, con-
sistent with previous reports using a range of experimental para-
digms (e.g., see Payne et al. 2009; Cunningham et al. 2021; Lutz
et al. 2021). This might be related to the permissive role of slow os-
cillations, which, although driving thalamic spindle generation,
cannot overcome refractoriness in spindle generation (Ngo et al.
2015).

While our sleep analyses revealed a link to non-REM spindles
for the effects of sleep on both stimulus–action and stimulus–clas-
sification associations, we obtained no cues pointing to a possible
contribution of REM sleep in this consolidation process. Although
additional Bayesian analyses did not provide support for the null
hypothesis, the absence of evidence for an effect of REM sleep ar-
gues against the view derived from early studies that REM sleep
plays a specific role in consolidating non-hippocampus-dependent
procedural skills (e.g., see Plihal and Born 1997). In fact, dual-
process concepts of sleep-dependent memory consolidation as-
suming differential functions of non-REM and REM sleep for
hippocampus-dependent declarative memories and non-
hippocampus-dependent procedural memories have been dispro-
ven by recent studies showing that the hippocampus is critical
for the beneficial effects of sleep onmemories traditionally consid-
ered not to depend on hippocampal function (Sawangjit et al.
2018, 2022; Schapiro et al. 2019). In combination with those stud-
ies, the present findings linking enhancements in both stimulus–
action and stimulus–classification association to the same
non-REM spindle mechanism concur with the view of an active
systems consolidation process in which the strengthening of asso-
ciative memories in general is mediated by non-REM sleep. Here,
spindles are thought to coordinate the hippocampal replay of epi-
sodic memory features with synaptic changes mediating the trans-
formation of memory traces into more persisting, and perhaps
more abstract, representations residing in neocortical networks
(Klinzing et al. 2019). However, although the association of in-
creased switch costs with non-REM spindle activity is consistent
with active consolidation based on concurrent reactivation of new-
ly encoded representations, the effects of sleep observed here
might as well reflect a passive action of sleep protecting newly
formed associations from forgetting (Mednick et al. 2011).

Regardless of whether actively supported or passively protect-
ed by sleep, it is tempting to speculate that systems consolidation
of stimulus–response learning in our experiment partly derives
from the fact that participants encountered the overall task struc-
ture, including all switch conditions, already during learning
before the retention interval, thus enabling sleep to support repre-
sentations of higher-order contingencies and task–structure infor-
mation that, after sleep, lead to an enhanced activation and
reinstatement of stimulus–action and stimulus–classification asso-
ciations. This view is to be scrutinized in further experiments.

Materials and Methods

Participants
The study was conducted in accordance with the principles set
forth in the Declaration of Helsinki (World Medical Association
2013) and was approved by the Ethics Committee of the Medical
Faculty at the University of Tübingen. Sample size was calculated
usingG*Power (Faul et al. 2009) to achieve 80%power at 5% α level
to detect an estimated effect of h2

p = 0.15. The latter was based on

results of a previous study, where the same task paradigm as in the
present study was used (Moutsopoulou et al. 2018). Forty-nine par-
ticipants reporting no previous or current neurological or psychiat-
ric disorders, drug abuse, or sleep problems were recruited for the
experiment and paid for participation. All participants had regular
sleep/wake cycles and did not work night shifts during the 4wk be-
fore the experiment. Two participants were excluded from analysis
—one due to insomnia during the experimental night (sleep dura-
tion of 180.5min comparedwith sample level of [mean± SD] 453.4
min±39.3 min), and the other for exceptionally slow RTs and fa-
tigue following the retention interval (mean RT of 1023msec com-
pared with sample level of 739 msec ±99 msec, in line with
self-report of powerlessness, lack of concentration, and bad sleep
quality during the experimental night). The remaining 47 partici-
pants were between 18 and 33 yr old (mean age: 24.26; SD: 3.48; 30
women and 17 men). All were naïve to the study paradigm and
signed an informed consent form before the start of the experi-
ment. They were instructed not to consume alcohol or caffeine
throughout the experiment. All participants spoke German fluent-
ly and were able to follow task instructions.

Stimuli and tasks
A total of 384 pictures of everyday objectswas taken froman online
library (Brady et al. 2008). All pictures were centrally presented in
color against a white background with the same size of 256×256
pixels on a 19-in LCD monitor at a resolution of 1280× 1024 pix-
els. The participants’ task during the learning phase was to classify
each object based on one of two features. One feature was real-life
stimulus size, specifically the question of whether the object was
smaller or larger than a basketball. The other feature referred to
whether the stimulus contained a technical mechanism. Thus, a
pair of scissors would be an object that is smaller than a basketball
and comprising a mechanism, whereas a sofa would be larger than
a basketball and a nonmechanical object.

Each stimulus was preceded by a cue consisting of two letters
presented to the left and right of a fixation cross. The letters indi-
cated both the classification task to be performed on the stimulus
and the response side for the upcoming stimulus. Specifically, the
letters M (presented left) and N (presented right) indicated that a
mechanical versus nonmechanical classification was to be per-
formed, with mechanical objects requiring a left-hand response
and nonmechanical objects requiring a right-hand response.
Similarly, the letter K (for German “kleiner”—smaller, presented
left) and G (for German “größer”—bigger, presented right) indicat-
ed the size classification task, with “smaller” responses mapped to
the left hand and “bigger” responses mapped to the right hand.
Left-hand and right-hand responses were given via a standard key-
board using the “A” and “L” keys, respectively. Participants were
instructed to respond as fast and as accurately as possible during
the entire experiment.

Each trial started with the presentation of the task cue, with
the letters M/N (or N/M) or K/G (or G/K) 200 pixels to the left
and right of the fixation cross. The task cue disappeared after 700
msec and was immediately followed by the central target stimulus.
The target stimulus stayed on the screen for maximally 1800 msec
or until a response was given. Responses were followed by perfor-
mance feedback (“correct,” “wrong,” and “no response”) present-
ed centrally on the screen for 700 msec. For a schematic
depiction of trial and experimental time lines, see Figure 1.

Design and procedure
The experiment was based on a four-factorial mixed design. Two
within-subject factors (classification contingency and action con-
tingency) represented the different conditions used to probe the
strength of the learned stimulus–classification and stimulus–action
associations at the immediate and remote tests. The resulting four
conditions were full repeat (classification repeat/action repeat
[CrAr]; that is, classification task and response side for the present-
ed object stimulus were the same as during the learning phase), ac-
tion switch (classification repeat/action switch [CrAS]),
classification switch (classification switch/action repeat [CsAr]),
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and full switch (classification switch/action switch [CsAs]) (Fig.
1B). Stimuli were randomly assigned to one of the four conditions
while maintaining an equal number of stimuli (i.e., 48) per condi-
tion in each test session. The comparison between immediate and
remote tests yielded a third within-subject factor.

The influence of sleep on stimulus–classification and stimu-
lus–action associations was investigated via a fourth, between-
subjects factor. Upon recruitment, participants were randomly al-
located to the wake or sleep group. The wake group (nwake = 24;
mean age: 24 yr; SD: 3.48 yr) performed the learning phase and
the immediate test in the morning and the remote test in the eve-
ning of the same day. During the intervening retention interval,
the participants left the laboratory to pursue their everyday activi-
ties, with instructions not to take any naps. Participants in the
sleep group (nsleep = 23, 24.52 ±3.54) completed the learning phase
and immediate test in the evening and the remote test the next
morning. During the night, they slept in the laboratory and PSG
was recorded. Participants in the sleep group spent one night in
the sleep laboratory 3–7 d before the main experiment to adapt
to the new environment.

The learning task was performed in a quiet, dimly lit room
with the participant seated ∼50 cm away from the computer
screen. Following task instructions, participants performed 16
practice trials to become familiar with the task. Stimuli used during
practicewere not presented during themain experiment. The latter
consisted of learning, immediate test, and remote test sessions.
During learning, each of 384 stimuli was presented twice in ran-
dom order. The same classification task and action mapping ap-
plied to both stimulus instances, thus creating initial stimulus–
classification and stimulus–action associations. The total of 768
stimuli was equally divided into eight blocks, with breaks of 30
sec between blocks. After 30 sec, participants were free to initiate
the next block themselves, thus giving them the opportunity to
take longer breaks if needed. The learning session lasted ∼1 h.

Following learning, participants were told to rest quietly for
30 min. They were not allowed to fall asleep, but their activities
were not otherwise restricted. Then, the immediate test was carried
out, followed by a 10-h retention interval. During this time, the
sleep groupwere equippedwith PSG electrodes and slept in the lab-
oratory. Participants were woken up at 7:00 a.m., leaving 1 h be-
tween wake-up and the remote test, thus ensuring the
dissipation of any sleep inertia (Achermann et al. 1996; Hilditch
and McHill 2019; Occhionero et al. 2021).

During the immediate and remote tests, each of the trained
384 stimuli was shown only once, with an equal number of stimuli
randomly allocated to each of the two test sessions. Both sessions
consisted of two blocks separated by a break of minimally 30 sec
(see above) and lasted ∼15 min each. During learning and test ses-
sions, in addition to trial-by-trial feedback, participants also re-
ceived accuracy feedback at the end of each block to increase
motivation. In addition, a vigilance test (Diekelmann et al. 2013)
and the Stanford Sleepiness Scale (SSS) (Hoddes et al. 1972) were
applied before learning, and the SSS was applied once more before
the remote test.

Polysomnographic recordings and sleep scoring
Polysomnographic recordings of the sleep group were obtained
and digitized at a sampling rate of 500 Hz with a BrainAmpDC sys-
tem (Brain Products GmbH). All data were stored using the Brain
Vision Recorder (version 1.20.0701, Brain Products GmbH). The
electroencephalogram (EEG) was recorded from electrodes at F3,
F4, C3, C4, P3, and P4 according to the international 10–20 system.
In addition, the diagonal electrooculogram (EOG) and submental
electromyogram (EMG) were recorded. All electrodes were refer-
enced to electrodes attached to themastoids (A1 and A2). A ground
electrode was attached to the nasion. EOGs and EMGs were recal-
culated offline as bipolar montages. Before sleep scoring, signals
were filtered between 0.16 and 35 Hz (EEG and EOG) and between
0.16 and 70Hz (EMG). In addition, a 50-Hz notchfilter was applied
to all channels.We used fourth-order zero-phase-shift Butterworth
filters, as implemented in BrainVision Analyzer (Brain Products
GmbH). Visual sleep scoring was conducted offline supported by

custom Matlab scripts and performed based on EOG, EMG, and
EEG (C3 and C4) data in 30-sec epochs, according to standard cri-
teria (Rechtschaffen andKales 1968). Total sleep time (TST; starting
with sleep onset) and time spent in different sleep stages, including
the wake time after sleep onset (WASO), were determined for each
participant. Slow-wave sleep (SWS) was defined by the sum of stage
3 and 4 sleep.

Data preprocessing
All 384 pictures were shown once for all 47 participants as a probe
either in the immediate or remote tests, yielding a total of 18,048
trials. All trials were included in the analysis of performance accu-
racy (both errors and omissions included). To analyze RTs, stimuli
were removed if an error was committed or if no responsewas given
during the time limit in one of three presentations of this stimulus
(two presentations during learning plus one presentation in either
the immediate or the remote test). This ensured that only well-
learned stimulus–classification and stimulus–action associations
were analyzed and led to the exclusion of 16.67% of the trials. To
further avoid potential influences from fast guesses or lack of atten-
tion, we excluded another 7.5% of the trials because they were
above or below two SDs from individualmean RTswithin a specific
test condition (Berger and Kiefer 2021).

In the sleep EEG, slow and fast spindles were automatically
identified during non-REM sleep (stages 2–4) using an algorithm
implemented in the SleepTrip toolbox (http://www.sleeptrip.org;
RRID:SCR_017318) based on previous publications (Mölle et al.
2011;Weber et al. 2021). Individual frequency peaks for slow spin-
dles were identified in the averaged frontal channels (F3 and F4)
from SWS epochs (10.2–12.1 Hz), and peaks for fast spindles
were identified in the averaged central and parietal channels (C3,
C4, P3, and P4) from stage 2 sleep epochs (12.5–14.9 Hz). At these
sites and stages, slow and fast spindles are expected to displaymax-
imum power (Gennaro and Ferrara 2003; Ayoub et al. 2013;
Fernandez and Lüthi 2020). Slow and fast spindle power peaks
were identified for all participants by visual inspection of the nor-
malized power spectrum. Next, the signal of all non-REM sleep ep-
ochs in all channels was filtered with a band-pass of ±1 Hz (−3-dB
cutoff, Butterworth filter) around the identified individual peak
frequency of slow and fast spindles, respectively. A 200-msec slid-
ing window was subsequently used for calculating the root mean
square (RMS) of the signal, and the resulting signal was smoothed
with a moving average of the same window size. We then calculat-
ed the standard deviation (SD) of the filtered signal in each channel
across all non-REM sleep epochs. A spindle event was detected if
the smoothed signal exceeded an amplitude threshold of 1.5 SD
in a given channel for 0.5–2 sec. Local minima and maxima in
the filtered spindle signal were marked as peaks and troughs.
Initial and final threshold crossings were taken as the beginning
and end of a spindle. The largest trough was defined as the spindle
peak. Spindle amplitudewas defined by the potential difference be-
tween the largest trough and largest peak. The frequency of an in-
dividual spindle event was determined by summing the number of
peaks and troughs divided by twice its duration. Spindles events
occurring <0.25 sec apart were merged.

The SleepTrip toolboxwas also used to detect SOs based on an
automated algorithm validated elsewhere (Ngo et al. 2013). In
brief, in all channels and for all non-REM sleep epochs, the prepro-
cessed signal was filtered between 0.3 and 3.5 Hz (fourth-order
zero-phase Butterworth filter). Potential SOs were derived between
consecutive positive-to-negative zero crossings with a frequency
range of 0.5–1.11 Hz (corresponding to 0.9–2 sec). The mean po-
tential from the down zero crossings to themaximum trough (neg-
ative peak) and the mean amplitude from maximum trough to
peak potential were separately calculated in each channel for all
putative SOs. SOs were detected if their negative peak amplitude
was <1.25 times the mean negative peak and its amplitude differ-
ence (positive peak minus negative peak) was >1.25 times the
mean amplitude difference across all putative SOs.

The co-occurrence of spindles and SOs was determined based
on time points of previously detected events, also as implemented
in SleepTrip. The co-occurrences were considered as SO–spindle
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couplings if the maximal trough of a spindle fell within the time
window between the beginning and the end of a SO (see above).
The SO–spindle couplings were determined for each channel and
for slow and fast spindles, respectively.

Statistical analysis
Statistical analyses were conducted using R (version 4.1.1; R Core
Team 2021). The significance level of all statistical tests was set at
5%, and we report two-tailed results unless noted otherwise.

To analyze RT and accuracy data, we used a linearmixedmod-
el and a generalized linear mixedmodel, respectively (Baayen et al.
2008; R package lme4, Bates et al. 2015). The R package lmerTest
(version 3.1-3) was used to obtain significance values via
Satterthwaite’s approximation of degrees of freedom (Kuznetsova
et al. 2017). The design comprised one between-subjects factor
group (sleep/wake) and three within-subject factors: test session
(immediate/remote), classification contingency (classification
switch/repeat), and action contingency (action switch/repeat).

For RT data, we ran a linear mixed model with all four factors
and their interactions as fixed effects and a random effect structure
consisting of the by-subject random intercepts, by-subject random
slopes for the test sessions (immediate/remote), classification con-
tingency (switch/repeat), action contingency (switch/repeat), task
type (mechanical/nonmechanical vs. size classification), by-item
random intercept, and by-item random slope for task type. This
model takes into account that participants and items usually
showdifferent baseline levels andmayevolve differently across fac-
tor levels. This overall model revealed a significant sleep/wake× re-
cent/remote× action contingency× classification contingency
four-way interaction (b=−65.62, t=−3.28, P=0.001) (see
Supplemental Table S1). We thus used planned contrasts to com-
pare sleep/wake differences for the factor combinations of central
interest. Specifically, we divided switch costs into three subtypes;
that is, action switch costs (caused by a switch of response side be-
tween learning and testing, calculated as CrAs−CrAr), classifica-
tion switch costs (caused by a switch of tasks, calculated as CsAr
−CrAr), and full switch costs (caused by concurrent switches of
task and response side, calculated as CsAs−CrAr). Each type of
switch cost was then submitted to the same planned contrasts to
answer the following questions: (1) Do switch costs diminish
over the retention interval within sleep and wake groups, indicat-
ing memory decay? This was calculated for each group as CrAr
RTremote test−CrAr RTimmediate test and switch costremote test− switch
costimmediate test, respectively. (2) Are switch costs significantly dif-
ferent from zerowithin groups at the remote test, indicating persis-
tence of memory traces? This was calculated for each group as
switch costremote test−0. (3) Do changes in switch costs from recent
to remote test differ between sleep and wake groups, indicating an
effect of sleep on memory consolidation with sleep? This was cal-
culated as (switch costsleep, remote test− switch costsleep, immediate test)
− (switch costwake, remote test− switch costwake, immediate test). If so,
then (4) differences between sleep and wake groups were separately
assessed at immediate and remote test, calculated as CrAr RTsleep−
CrAr RTwake and switch costsleep− switch costwake, respectively.

Based on previous studies (Moutsopoulou et al. 2018), our hy-
potheses regarding accuracy data were less specific. Thus, we ran a
generalized linear mixed model with the same four factors and
their interactions as fixed factors using a binomial link function
to represent the binomial distribution of the dependent variable.
Only by-subject random intercept, by-item random intercept,
and by-item random slope for task type were included as random
effects. This reduced random effect structure was adopted due to
singular-fit issues, indicating that the variances in categorical accu-
racy data were insufficient to reliably estimate the more complex
model adopted for RT analysis. The linear mixedmodel and gener-
alized linear mixed model were fitted using the restricted maxi-
mum likelihood (REML) and the maximum likelihood (Laplace
approximation) methods, respectively.

To connect behavioral performance to sleep architecture and
signatures of memory processing, we calculated Pearson correla-
tions for the sleep group. We focused on the relationship between
behavioral performance in those conditions where it was affected

by sleep and time spent in the different sleep stages (S2, SWS,
and REM), as well as slow and fast spindles, SOs, SO–spindle cou-
pling, and REM theta activity. Specifically, we analyzed slow spin-
dle activity at frontal electrodes (F3 and F4), fast spindle activity at
central and parietal electrodes (C3, C4, P3, and P4), and slow oscil-
lations and REM theta across all six electrodes. Coupling between
SOs and spindles was separately analyzed for slow spindles at fron-
tal channels and for fast spindles at centroparietal channels. Three
of a total of 138 channels across participants were excluded from
analysis due to bad signal quality. Comparisons between correla-
tions were conducted using Fisher’s Z transformation procedure,
implemented in R package cocor (Diedenhofen and Musch
2015). Given that these analyses were performed to explore poten-
tial neurophysiological correlates of behavioral sleep effects, we did
not correct for multiple testing. An overview of all correlations
(Supplemental Tables S2–S4) indicated that the pattern of signifi-
cant results is highly specific and unlikely to be explained by ran-
domly distributed false positives, as they would occur under the
null hypothesis. Additional Bayesian correlation analyses were
conducted in JASP v0.17.1 using a standard stretched beta prior
width of 1.0 to investigate whether null effects in classical analyses
reflected evidence in favor of the null hypothesis.
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