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A B S T R A C T

Specialist species thriving under specific environmental conditions in narrow geographic ranges are widely
recognized as heavily threatened by climate deregulation. Many might rely on both their potential to adapt
and to disperse towards a refugium to avoid extinction. It is thus crucial to understand the influence of
environmental conditions on the unfolding process of adaptation. Here, I study the eco-evolutionary dynamics
of a sexually reproducing specialist species in a two-patch quantitative genetic model with moving optima.
Thanks to a separation of ecological and evolutionary time scales and the phase-line study of the selection
gradient, I derive the critical environmental speed for persistence, which reflects how the existence of a
refugium impacts extinction patterns and how it relates to the cost of dispersal. Moreover, the analysis provides
key insights about the dynamics that arise on the path towards this refugium. I show that after an initial
increase of population size, there exists a critical environmental speed above which the species crosses a tipping
point, resulting into an abrupt habitat switch. In addition, when selection for local adaptation is strong, this
habitat switch passes through an evolutionary ‘‘death valley’’, leading to a phenomenon related to evolutionary
rescue, which can promote extinction for lower environmental speeds than the critical one.
1. Introduction

Biological context. Historical data highlights how climate change shifts
the spatial distributions of species across taxa, especially polewards
(Parmesan et al., 1999 on butterflies) or upwards in elevation (Lenoir
et al., 2008 on plants, Moritz et al., 2008 on mammals). Predicting
the interplay between changes in species distribution and species abun-
dance and persistence is a crucial ongoing challenge (Ehrlén and Mor-
ris, 2015). It requires in particular a better understanding of the evolu-
tionary strategies of adaptation in the face of climate change (Hoffmann
and Sgrò, 2011). Among all species, specialist species have been found
to be particularly vulnerable to the changing climate (Clavel et al.,
2011). Since they are adapted to a limited niche width, opportu-
nities to disperse and adapt to a potentially more suitable habitat
are sparser, especially in increasingly fragmented environments (Berg
et al., 2010, Adams-Hosking et al., 2012, Hof et al., 2012, Damschen
et al., 2012). This issue highlights the importance of habitats that
can act as refugia, which have already been shown to have played a
major part in specialists’ persistence in the past (Corlett and Tomlinson,
2020). Such refugia are recognized as key components in conservation
efforts (Morelli et al., 2016). They can be thermal shelters located
polewards to escape the rising temperatures, hydrological refugia in

E-mail addresses: leonard.dekens@gmail.com, leonard.dekens@crick.ac.uk.

island-continent systems (McLaughlin et al., 2017, Ramirez et al., 2020)
or edaphic refugia for soil specialists (Corlett and Tomlinson, 2020).
These examples emphasize the relevance of incorporating a patchy
spatial structure in models of adaptation to climate change to better un-
derstand the population dynamics of specialists species towards refugia
in highly fragmented environments (Urban et al., 2016).

Theoretical models of adaptation to a changing environment in a single
habitat: lag-load. To understand and predict how species adapt to a
changing environment, one can turn to theoretical models. The case of
gradually changing environments has been attracting sustained interest
from modellers and theoreticians in quantitative genetics for over thirty
years (see a review in Kopp and Matuszewski, 2014). One of the first
lines of research focused on the demographic and trait dynamics of a
panmictic population living in a single habitat, subjected to stabilizing
selection around an optimal trait moving at a constant speed (Lynch
and Lande, 1993; Bürger and Lynch, 1995; Lande and Shannon, 1996).
The analysis highlights how maladaptation to the changing environ-
ment induces a lag between the population’ mean trait and the optimal
trait, which eventually stabilizes. This evolutionary load impacts the
demography by decreasing the population size. In this case, these
https://doi.org/10.1016/j.tpb.2024.09.001
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studies derive a simple expression of the critical rate of environmental
change above which the environment changes too fast for the popula-
tion to persist and leads to extinction. The analytical results of these
studies depend on the following assumptions: a Gaussian approxima-
tion of the trait distribution within the population and a quadratic
selection function implying that fitness decreases more steeply away
from the optimal trait. This approach has been extended to include the
effects of plasticity (Chevin et al., 2010), multidimensional quantitative
traits (Duputié et al., 2012), age-structure (Cotto and Ronce, 2014;
Cotto et al., 2019) and the influence of the mode of reproduction
(Bürger, 1999, Waxman and Peck, 1999, Bürger, 2000, Garnier et al.,
2023).

Evolutionary tipping points. A more recent study (Osmond and Klaus-
meier, 2017) showed that the result of constant lag at equilibrium
between the mean trait and the optimal trait is a consequence of the
particular quadratic shape of the stabilizing selection function chosen in
the references above. With this type of selection function, the selection
gradient increases linearly with the distance between the population’s
mean trait and the moving optimum. For selection functions where the
strength of selection instead fades away from the moving optimum,
Osmond and Klausmeier (2017) showed that there exist evolutionary
tipping points that abruptly lead the population to extinction upon a
slight increase in the speed of environmental change. This happens
because the lag between the mean trait and the optimal trait grows
indefinitely past a certain threshold due to a change of convexity in
the considered selection gradient. This feature (among others) was also
characterized analytically in Garnier et al. (2023) who investigated
more broadly the influence of the selection functions on the adapta-
tion of sexually and asexually reproducing populations to a changing
environment. However, while these evolutionary tipping points are
linked to particular choices of selection functions in a single habitat
framework, they have also been reported to arise in more complex
frameworks (Klausmeier et al., 2020). For example, including an age
structure in the population (Cotto and Ronce, 2014, Cotto et al., 2019)
allows for feedback loops between the dynamics of the demography and
of traits to create multiple co-existing equilibria that promote evolu-
tionary tipping points. This last feature has also been related to tipping
points in a broader variety of eco-evolutionary models (see Dakos et al.,
2019): for example, abrupt switching between different developmental
strategies in an oscillatory environment (Botero et al., 2015) or between
ecosystem structure in shallow lake environments (Chaparro-Pedraza,
2021).

Spatial structure with a changing environment. As spatial structure pro-
vides species with the possibility to disperse when facing a changing
environment, several theoretical quantitative genetic studies have in-
cluded a spatial component in their models. A particularly rich line of
research considers a species evolving in a continuous space, extend-
ing the concept of a gradually moving optimum in a single habitat
to an environmental gradient shifting gradually at a constant speed.
Stemming from the framework introduced by Pease et al. (1989),
more and more sophisticated models have analysed how populations
can track the shifting environmental gradient with a constant spatial
lag when the speed of the environment is below a critical threshold,
thus escaping extinction by shifting their spatial range. Extensions of
this work study the influence of density-dependence (Polechová et al.,
2009), or a multidimensional adaptive trait (Duputié et al., 2012).
More recently, a study modelling two dispersal modes differing in their
mean dispersal distance (pollen and seed dispersal) showed that long
range-dispersal can trigger an ecological niche shift in addition to the
spatial range shift, which buffers the species for greater environmental
speeds (Aguilée et al., 2016). All these analyses rely heavily on the
analytical travelling waves toolkit that is specifically designed to study
the long-term effect of dispersal in a continuous space (see Alfaro et al.,
2017, Roques et al., 2020 and Lavigne, 2023 for precise mathematical
treatments of the case of asexual populations).
26 
However, these methods are not well suited to study the pat-
terns of dispersal in fragmented and patchy environments, where the
demographic dynamics and the trait dynamics are quite difficult to
disentangle, even under a stable environment (see Ronce and Kirk-
patrick, 2001; Hendry et al., 2001; Holt et al., 2003; Dekens, 2022
for sexual reproduction and Débarre et al., 2013; Mirrahimi, 2017;
Mirrahimi and Gandon, 2020 for asexual ones). Therefore, most models
studying adaptation to a changing and fragmented environment rely
mostly on numerical simulations to explore complex metacommunity
dynamics (see Cotto et al., 2017 for such a model with multiple
traits, species and an age structure, and Walters and Berger, 2019 on
the contribution of genetic variance on the time to extinction in a
migration–mutation–selection–drift framework), or to assess the inter-
play between dispersal and local competition under a warming climate
(Thompson and Fronhofer, 2019, McManus et al., 2021). Moreover,
simulations of a quantitative genetic two-patch model suggest that a
changing environment can first lead to sharp declines in subpopula-
tion size with a potential rebound when it stabilizes, but less so for
specialists (Bourne et al., 2014).

As it is important to quantify these sharp dynamics and predict
the conditions under which they occur, I propose here to analyse a
two-patch quantitative genetic model under a changing environment
that considers a specialist species that is initially well adapted to its
native habitat. This model aims at improving our understanding of the
evolutionary mechanisms the specialist species undergoes to potentially
leverage the existence of a refugium when the native habitat becomes
nonviable. Indeed, under a changing environment, such a species is
expected to lag behind the optimum of the native habitat, and thus
to be closer to the refugium’s one. Under which conditions do species
keep pace with their native habitat? If the environmental speed is too
great, will they be forced to adapt to the refugium, and if so, how
successfully? To answer these questions, I will start by leveraging the
results of an analogous model under stable environment (Dekens, 2022)
that includes the analytical derivation of the source–sink dynamics
characteristic of a specialist species.

Outline of the paper. In this work, I study the eco-evo dynamics of a
sexual population in a fragmented and changing environment thanks
to a two-patch quantitative genetic model with moving optima. More
precisely, I consider a specialist population initially adapted to one of
the two habitats (their native habitat), whose migrants fail to establish
themselves in the other one at first (the refugium). My aim is to
analytically predict the dynamics of niche evolution of this specialist
population as a function of the speed of environmental change. To carry
out this aim, in Section 2, I show that, in a regime of small within-
family variance allowing a separation of ecological and evolutionary
time scales, all features of the dynamics of adaptation can be deduced
from a simple modification of the phase-line analysis of the selection
gradient derived in a previous study of a two-patch model under stable
environment (Dekens, 2022).

The results are presented in Section 3. Firstly, for low environmental
speeds, the metapopulation actually increases in size, as it benefits
from becoming less specialized to the native habitat. In addition, there
exists an intermediate critical environmental speed leading to an abrupt
habitat switch from the native habitat to the refugium. Such a switch
corresponds to an evolutionary tipping point and is therefore difficult to
reverse. Moreover, above a selection threshold leading to the creation
of an evolutionary ‘‘death valley’’ between the habitats, the popula-
tion can experience an evolutionary rescue during the habitat switch.
Finally, I quantify the critical speed of environmental change above
which the population becomes too maladapted and goes extinct in this
native habitat/refugium framework. Contrary to the classical prediction
in a single-habitat framework, I show that the critical speed does not

always increase with selection strength and can be discontinuous.
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2. Methods

2.1. Model

The model follows a classical framework of quantitative genetic
models for heterogeneous environments with continuous time (Ronce
and Kirkpatrick, 2001; Hendry et al., 2001; Débarre et al., 2013; Mir-
rahimi and Gandon, 2020; Dekens, 2022), which is illustrated in Fig. 1.
It considers a sexually reproducing species that lives in a fragmented
two-patch environment, where one patch represents the species’ native
habitat, to which it is initially specialized, and the other a refugium, to
which the species is initially not adapted. These habitats are connected
by backward and forward migration at a constant instantaneous rate
𝒎 ∈ R∗

+, meaning that, during each infinitesimally small time interval
𝑑𝒕 ≪ 1, an average proportion 𝒎 × 𝑑𝒕 of the population migrate from
each habitat to the other. Moreover, individuals are characterized by
the value of a quantitative trait 𝒛 ∈ R, which quantifies their adaptation
to their local habitat. In each habitat (indexed by 𝑖), the subpopulation
is thus described by its temporal trait distribution 𝒏𝑖(𝒕, 𝒛) (𝒕 is the
time variable). Within each habitat 𝑖, individuals mate randomly at
a constant rate 𝒓 ∈ R∗

+ and die due to two biological processes. The
first is density-dependent regulation at a rate 𝜿 × 𝑵 𝒊(𝒕) > 0, where
𝑵 𝒊(𝒕) ∶= ∫R 𝒏𝑖(𝒕, 𝒛)𝑑𝒛 is the local subpopulation size at time 𝒕 and
𝜿 ∈ R∗

+ is a constant multiplicative parameter representing the pressure
of competition for resources. The individuals also suffer from a lethal
local stabilizing selection depending on the value of their quantitative
trait 𝒛 ∈ R. More precisely, death by stabilizing selection is minimalized
at a local trait optimum (𝜽𝟐(𝒕) in the native habitat and 𝜽𝟏(𝒕) in the
refugium, with 𝜽𝟏(𝒕) < 𝜽𝟐(𝒕)) and decreases quadratically away from
it according to the selection function 𝒛 ↦ −𝒈 × (𝒛 − 𝜽𝑖(𝒕))2 (in habitat
𝑖). In the last expression, 𝒈 ∈ R∗

+ is a constant parameter representing
the strength of the local stabilizing selection (a larger 𝒈 leads to a
stronger death rate away from the local optimum, all else being held
equal). The two local optima are assumed to shift at the same constant
speed 𝒄 > 0, which models the action of the shifting environment:
𝜽𝒊(𝒕) = (−1)𝑖𝜽 + 𝒄𝒕. Individuals are characterized by a quantitative trait
whose value 𝒛 ∈ R determines their adaptation to the habitat they live
in. This quantitative trait is thought to have a highly polygenic basis
with small additive allelic effects, and its inheritance across generations
is modelled by the infinitesimal model (Fisher, 1919; Bulmer, 1971;
Turelli and Barton, 1990; Barton et al., 2017). The infinitesimal model
in its additive version states that the distribution of the trait within
each family is Gaussian, centred on the mean parental trait and with
variance 𝝈2, which reads

(𝒛𝟏, 𝒛𝟐) ↦
𝒛𝟏 + 𝒛𝟐

2
+0,𝝈2 ,

where 𝒛𝟏 and 𝒛𝟐 represent the two parental traits. The parameter 𝝈2 is
the within-family variance (also called segregational variance). In this
model, it is assumed to be constant across families, time and space.
Accordingly, at a time 𝒕, the number of individuals born with a trait
f value 𝒛 in the habitat 𝑖 is given by the following formula (also used

by Turelli and Barton, 1990; Mirrahimi and Raoul, 2013; Calvez et al.,
2019; Patout, 2023; Dekens and Lavigne, 2021; Dekens, 2022; Garnier
et al., 2023):

𝝈 [𝒏𝑖](𝒕, 𝒛) = ∬R2
𝐺0,𝝈2

(

𝒛 −
𝒛𝟏 + 𝑧2

2

)

𝒏𝑖(𝒕, 𝒛𝟏)
𝒏𝑖(𝒕, 𝒛𝟏)
𝑵 𝑖(𝒕)

𝑑𝒛𝟏𝑑𝒛𝟐. (1)

We consider the dynamics of the local trait distributions given by:

𝜕𝒕𝒏𝟏(𝒕, 𝒛) = 𝒓𝝈 [𝒏𝟏](𝒕, 𝒛) − 𝒈(𝒛 − 𝜽𝟏(𝒕))2𝒏𝟏(𝒕, 𝒛) − 𝜿𝑵𝟏(𝒕)𝒏𝟏(𝒕, 𝒛)
+𝒎

(

𝒏𝟐(𝒕, 𝒛) − 𝒏𝟏(𝒕, 𝒛)
)

,

𝜕𝒕𝒏𝟐(𝒕, 𝒛) = 𝒓𝝈 [𝒏𝟐](𝒕, 𝒛) − 𝒈(𝒛 − 𝜽𝟐(𝒕))2𝒏𝟐(𝒕, 𝒛) − 𝜿𝑵𝟐(𝒕)𝒏𝟐(𝒕, 𝒛)
+𝒎

(

𝒏 (𝒕, 𝒛) − 𝒏 (𝒕, 𝒛)
)

.

(𝑷 )
𝟏 𝟐 b
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2.2. Overview of the analysis

In this section, I explain how to conveniently transform the PDE
system (𝑷 ) in order to isolate the influence of the changing environ-
ment, which allows leveraging the main ideas of the analysis under
stable environment done in Dekens (2022). Indeed, I show that, in a
chosen regime of small within-family variance, the full dynamics of
local trait distributions can be summarized by the dynamics of two
time-dependent variables: the ratio of the two subpopulation sizes and
the mean trait of the metapopulation. In addition, I show that in the
final system (𝑆0), the environmental change directly influences only the
dynamics of the latter, and only linearly. I refer the interested reader
who wishes to learn about all the mathematical details underlying this
section to Appendix A.

1. Small within-variance regime and moving-frame reference. I place the
analysis in the regime where the within-family variance 𝝈2 is small
compared to the difference between the local optima (𝜽𝟐 − 𝜽𝟏 = 2𝜽).
This is likely to be the case after a long time at equilibrium under
stabilizing selection and stable environment. I then introduce a small
parameter 𝜀2 ∶= 2𝝈2

𝜽2
≪ 1 underlying this regime of small within-family

ariance. In this regime, the local genetic variances are expected to
emain small (of order 𝜀2), so local mean traits take a long time to shift
nder the action of local selection (see Dekens (2022)). Therefore, it is
ractical to rescale the time to match the timescale of the evolution of
he local mean traits. It is also convenient to place the analysis in the
oving-frame reference whose speed matches the environmental speed

nd in which the local optimal traits are fixed. In the first paragraph
f Appendix A, I detail how to rescale the variables and parameters of
y model according to (7) in order to get the following dimensionless

ystem (𝑃𝜀) from (𝑷 ):

𝜀2𝜕𝑡𝑛𝜀,1(𝑡, 𝑧) − 𝜀2𝑐𝜕𝑧𝑛𝜀,1(𝑡, 𝑧) = 𝜀[𝑛𝜀,1](𝑡, 𝑧) − 𝑔(𝑧 + 1)2𝑛𝜀,1(𝑡, 𝑧)
−𝑁𝜀,1(𝑡)𝑛𝜀,1(𝑡, 𝑧) + 𝑚

(

𝑛𝜀,2(𝑡, 𝑧) − 𝑛𝜀1 (𝑡, 𝑧)
)

,

𝜀2𝜕𝑡𝑛𝜀,2(𝑡, 𝑧) − 𝜀2𝑐𝜕𝑧𝑛𝜀,2(𝑡, 𝑧) = 𝜀[𝑛𝜀,2](𝑡, 𝑧) − 𝑔(𝑧 − 1)2𝑛𝜀,2(𝑡, 𝑧)
−𝑁𝜀,2(𝑡)𝑛𝜀,2(𝑡, 𝑧) + 𝑚

(

𝑛𝜀,1(𝑡, 𝑧) − 𝑛𝜀,2(𝑡, 𝑧)
)

.

(𝑃𝜀)

rom now on, I will refer to these rescaled quantities, which will be
ot bolded.

. Parameter range considered and initial specialized population. In all
hat follows, I examine the case where the parameter of the strength
f selection 𝑔 is large enough relative to the migration rate 𝑚 such that
pecialist equilibria exist and are stable under a stable environment:
+ 2𝑚 < 5𝑔 (see Proposition 4.2 of Dekens, 2022). With the original
arameters, the last condition equates to 𝒓 + 2𝒎 < 5𝒈𝜽2. I also assume
hat this strength of selection parameter 𝑔 is bounded by above when
he migration rate 𝑚 is strong (𝑚 > 1) such that the identified specialist
quilibria are viable, which reads: 𝑔(𝑚 − 1) < 𝑚2 (see also Proposition
.2 of Dekens, 2022). With the original parameters, the last condition
quates to 𝒈𝜽2(𝒎 − 𝒓) < 𝒎2. Under these conditions, there exist two
iable specialist equilibria according to mirrored source–sink dynamics
see also Ronce and Kirkpatrick, 2001; Holt et al., 2003). For the initial
tate of the system, I choose the equilibrium describing a species spe-
ialized in the native habitat whose precise characterization is indicated
n the Proposition 4.2 of Dekens (2022).

. Gaussian approximation of local trait distributions. In the chosen
egime of small within-family variance 𝜀2 ≪ 1, the arguments de-
eloped in Dekens (2022) ensure that the local trait distributions are
pproximately Gaussian, with a small variance 𝜀2 (twice the within-
amily variance). Therefore, the moment-based ODE system describing
he dynamics of the subpopulations sizes and the local mean traits
s closed (see (𝑀𝜀)). I choose to report the analysis on this moment-
ased ODE system instead of the full PDE system on the local trait
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Fig. 1. Two-patch changing environment framework for a quantitative trait.
d
o
a
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distributions (see the second paragraph of Appendix A for details about
the derivation of such a moment-based system).

4. Separation of time scales and limit system. To disentangle the coupled
dynamics of the subpopulations sizes and the local mean traits, one can
leverage the fact that the local selection terms driving the dynamics of
the mean traits are proportional to the small local genetic variances(see
(𝑀𝜀)). This implies that the moment-based system (𝑀𝜀) can be refor-

ulated as (𝑆𝜀) that highlights the interplay between fast and slow
ynamics (see Appendix A). More precisely, there exists a separation of
ime scale between fast ecological phenomena (birth/death/migration)
nd slow evolutionary ones (shift of the local mean traits by selection),
imilarly to the analysis of Dekens (2022). In the third paragraph of Ap-
endix A, I show that this leads to a limit system with greatly reduced
omplexity, as it only involves the ratio between subpopulations sizes
(𝑡) ∶= 𝑁2(𝑡)

𝑁1(𝑡)
and the metapopulation’s mean trait 𝑍(𝑡) as variables. This

limit system reads

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑍(𝑡)(𝜌(𝑡)) = 0, 𝜌(𝑡) > 𝑓1(𝑍(𝑡)),

𝑑𝑍
𝑑𝑡 = −𝑐 + 2𝑔

[

𝜌(𝑡)− 1
𝜌(𝑡)

𝜌(𝑡)+ 1
𝜌(𝑡)

−𝑍(𝑡)

]

(𝑍(0), 𝜌(0)) =
(

𝑍∗
spec, 𝜌

∗
spec

)

.

(𝑆0)

n the next paragraphs, I describe and interpret biologically each com-
onent of (𝑆0).

The algebraic equality in the first line of (𝑆0) describes the fact that,
n the considered slow timescale at any given time 𝑡, the system is at
cological equilibrium. This ecological equilibrium depends on the cur-
ent metapopulation mean trait 𝑍(𝑡). The ratio of subpopulation sizes
(𝑡) defining this ecological equilibrium is solution of the third-order
olynomial

𝑍(𝑡)(𝑋) ∶= 𝑋3 − 𝑓1(𝑍(𝑡))𝑋2 + 𝑓2(𝑍(𝑡))𝑋 − 1,

where 𝑓1(𝑍) ∶= 1+ 𝑔
𝑚 (𝑍+1)2− 1

𝑚 and 𝑓2(𝑍) ∶= 1+ 𝑔
𝑚 (𝑍−1)2− 1

𝑚 (further
etails can be found in Lemma 1 of Dekens, 2022). The inequality of
he first line in (𝑆0) represents the constraint that this ecological equi-
ibrium must define a positive population size. This translates that the

cope of the limit system (𝑆0) is restricted to describe the evolutionary
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dynamics of persisting populations (while indicating in contrast the
range of parameters where the population is expected to go extinct).
Importantly, non-trivial dynamics close to extinction are necessarily not
well captured by this limit system. Additionally, one might notice that
the first line is not directly impacted by the speed of environmental
change 𝑐. This is because the ecological equilibrium revolves around the
subpopulation sizes, which are not impacted directly by the changing
environment, in line with Remark A.1 (see also the paragraph above
(𝑀𝜀) in Appendix A).

The second line involves a differential equation describing the slow
dynamics of the metapopulation mean trait 𝑍. These dynamics are
influenced by environmental change through the term −𝑐 and by a
combination of the two local stabilizing selections through the term

2𝑔

[

𝜌(𝑡)− 1
𝜌(𝑡)

𝜌(𝑡)+ 1
𝜌(𝑡)

−𝑍(𝑡)

]

. More precisely, this last term can be interpreted as

the selection gradient pushing with a strength 𝑔 towards the following

trait optimum 𝜃(𝑡) ∶=
𝜌(𝑡)− 1

𝜌(𝑡)

𝜌(𝑡)+ 1
𝜌(𝑡)

. This composite optimum integrates the

emographic feedback of the ecological dynamics on the evolutionary
nes. Notice also that the trait variance of the metapopulation does not
ppear in this selection gradient. This is because, as mentioned after
8) in Appendix A, the slow timescale involved in the evolutionary
ynamics of the metapopulation mean trait 𝑍 is precisely the one

where the trait variance in the metapopulation scales to 1, so as to
follow the action of selection on 𝑍.

Finally,
(

𝑍∗
spec, 𝜌

∗
spec

)

are the initial values defined in Appendix A.
The keen reader might notice that (𝑆0) is almost the same as the

analogous one derived in Dekens (2022) under stable environment.
The only but crucial difference is that here, the changing environment
pushes the metapopulation’s mean trait 𝑍(𝑡) backwards with a speed
−𝑐, which results in a lag (remember that the analysis is done in the
moving-frame reference). Although this could look like a rather benign
change, it leads to very rich dynamics that I detail in Section 3. In the
next subsection, I explain how to use (𝑆0) in a simple way to predict
these dynamics.

Remark 2.1 (Analytical Relationship Between of (𝑃𝜀) and (𝑆0) and Their
Biological Scope). I would like to stress the respective advantages and
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drawbacks of the two settings underlying the analysis here. The first is
represented by the PDE system (𝑃𝜀) that considers a small but positive
within-family variance 𝜀2

2 > 0. It is the most relevant biologically,
as it corresponds to a clear biological and quantitative hypothesis
about the within-family variance. In this parameter regime, I derive
the closed ODE system (𝑆𝜀) from (𝑃𝜀). However, in both (𝑃𝜀) and (𝑆𝜀),
the different dynamics at play (ecological and evolutionary) are too
tangled for analysis to be tractable. That is why I further introduce
the limit system (𝑆0). Its solutions are obtained by convergence of
solutions of (𝑆𝜀) when 𝜀 vanishes, in the range of parameters where the
solutions of (𝑆𝜀) describe a viable population. Its analytical complexity
is sufficiently reduced so that the analysis can progress forward with
the aim to get an approximation of the steady states of (𝑃𝜀). However,
one needs to keep in mind that the limit case is of interest only as long
as the solutions of (𝑆0) are a good approximation of the solutions of (𝑃𝜀)
hat are ultimately the most biologically meaningful. In particular, it is
mportant to stress that the convergence of the solutions of (𝑆𝜀) towards
he solutions of (𝑆0) is not necessarily ensured when they describe
on-viable states of the population. Therefore, for such states, which
ill play an important role in some part of the subsequent analysis,

he solutions of (𝑃𝜀) (or (𝑆𝜀)) can actually be quite different from the
olutions of (𝑆0). This is why it is crucial to also rely on numerical
esolutions of (𝑃𝜀) to get a complete depiction of the dynamics of the
opulation for those cases in order to decipher whether the steady
tates derived from (𝑆0) are actually reached.

‘

.3. Predicting the new equilibrium under a changing environment with a
hase lines’ study

Consider the first line of (𝑆0). For a given average trait in the
etapopulation 𝑍(𝑡), it states that 𝜌(𝑡) is a (positive) root of 𝑃𝑍(𝑡). In

the case where such a root is uniquely defined, 𝜌(𝑡) can be seen as a
well-defined function of 𝑍(𝑡). In this case, I use the notation 𝜌(𝑍(𝑡)) (see
Section 3 of Dekens, 2022 for the analytical conditions under which this
happens). In this case, one can circumvent the first algebraic equation
of (𝑆0) to reduce the analysis to the following autonomous differential
equation only on 𝑍 (ie. the time variable is not directly involved):
{

𝑑𝑍
𝑑𝑡 = −𝑐 +  𝑐=0(𝑍), 𝜌(𝑍) > 𝑓1(𝑍),
𝑍(0) = 𝑍∗

spec,
(𝐸auto)

where I define the function  𝑐=0(𝑍) ∶= 2𝑔

[

𝜌(𝑍)− 1
𝜌(𝑍)

𝜌(𝑍)+ 1
𝜌(𝑍)

−𝑍

]

that does

not depend directly on the environmental change. In line with the
biological interpretation of (𝑆0) detailed in the last subsection, the
unction  𝑐=0 can be interpreted as the selection gradient under
table environment. Note that the trait variance does not appear
ecause it has been scaled to 1 in the considered time scale.

The dynamics described by autonomous equations such as (𝐸auto)
re conveniently studied through their phase line, which is the graph
f the function 𝑍 ↦ −𝑐 +  𝑐=0(𝑍) (right-hand side of (𝐸auto)). When

it is positive (resp. negative), 𝑍(𝑡) increases (resp. decreases), so the
equilibria are located where it vanishes (they are stable when the slope
is negative and unstable when it is positive). Notice that the only impact
of the changing environment is a vertical translation of the phase-line
under stable environment (positive values of 𝑐 correspond to downward
translations). This implies that it can drive some stable-environment
equilibria to disappear or to shift. More precisely, the new equilibrium
obtained from the initial specialist state is located at the rightmost
intersection of the downward-shifted phase line and the 𝑥-axis that
has a negative slope (see Fig. 2 for an illustration). This graphical
identification of the equilibria of (𝐸auto) allows bypassing the lack of
explicit analytical expressions for the equilibria analogous to the ones
found in Section 4 of Dekens (2022). Here, the changing environment
breaks the symmetry of the system that was algebraically instrumental
in Dekens (2022), which renders (𝐸auto) too convoluted to be fully

nalysed.
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3. Results

Under a fixed environment (𝑐 = 0) and in the parameter range
where a specialist species exists and is viable ([1 + 2𝑚 < 5𝑔] ∧
[𝑔(𝑚 − 1) < 𝑚2]), the analysis done in Dekens (2022) shows that the
election gradient under stable environment  𝑐=0 vanishes three times:
n −𝑍∗

spec, 0 and 𝑍∗
spec, with negative, positive and negative slopes

espectively (see Fig. 2(a)). This means that there exist three equilibria:
wo mirrored stable equilibria describing specialization to each habitat
ith respective mean traits −𝑍∗

spec and 𝑍∗
spec, separated by an unstable

quilibrium describing a generalist species (equally maladapted to both
abitats). To understand the impact of a changing environment on the
ong-term adaptation of the focal species, I describe below the effect
f increasing environmental speeds and increasing selection strengths
n these equilibria. In my illustrations (Figs. 3, 5 and 6), I keep a
onstant intermediate migration rate for the sake of clarity (𝑚 = 0.5). I
ddress sensitivity issues by displaying the analogous figures for a lower
igration rate (𝑚 = 0.2) in Appendix K. I also test the results derived in

his section with those from individual-based simulations in Appendix J
see in particular Fig. 7) to account for the influence of sampling effects
nd random demographic fluctuations.

.1. Small environmental change: lagging behind the native habitat and
eneficial loss of specialization?

For small environmental change speeds, the phase line indicates
hat the metapopulation’s mean trait at equilibrium 𝑍∗ lags behind
he initial value 𝑍∗

spec and thus its distance from the native habitat’s
ptimum (set at 1) increases. This is reminiscent of single-habitat
odels (see Kopp and Matuszewski (2014) for a review). However,

ontrary to single-habitat models where lagging is always deleterious
or population size, this can lead to an increase of metapopulation
ize for small enough environmental change speeds. In fact, I show
n Appendix C that, for the transient dynamics at all environmental
peeds, the metapopulation size actually increases immediately after
he start of the environmental shift (at 𝑡 ≈ 0), as the mean trait 𝑍
tarts decreasing from 𝑍∗

spec. This initial increase in metapopulation
ize occurs because when the mean trait 𝑍∗ starts lagging behind its
nitial value, it actually becomes closer to the refugium’s optimum.
he immediate loss of population in the native habitat is therefore
vercompensated by the immediate gain of population in the refugium
even if it remains small), because the increase in adaptation for a trait
ar from an optimum is greater than the loss closer to an optimum
hen the selection functions are quadratic. This effect relies quite
eavily on the precise shape of the selection functions, in particular
heir tails (for example, it does not occur when the selection functions
re linear). The initial increase does not last, as, eventually, the lag
ith the native habitat increases and the increased adaptation to the

efugium is not enough to compensate for the decreased adaptation to
he native habitat.

A related phenomenon is that, for very small speeds of environmen-
al change, the metapopulation moves to an equilibrium 𝑍∗ ≲ 𝑍∗

spec for
hich its size is actually greater than its initial size. The population as a
hole is less specialized to the native habitat and benefits from relative
daptation to the refugium.

.2. Abrupt switch from the native habitat to the refugium: tipping point

In the last paragraph we explained that while for small environ-
ental changes, the metapopulation can actually increase, it eventually

tarts dropping as the lag increases. However, as opposed to the single-
abitat model, the path to extinction here is not straight-forward
ecause of the existence of the refugium. I will first describe how this
mpacts the new equilibrium that is reached by the metapopulation,
nd then what can occur at the transient dynamics level on the path to
his equilibrium.
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Fig. 2. Illustration of the selection gradient’s phase line (purple dark line) (𝐸auto) for several environmental speeds (top left: stable environment 𝑐 = 0, top right:
environmental speed 𝑐1 > 0, bottom left: environmental speed 𝑐2 > 𝑐1 > 0; for all subfigures: 𝑔 = 0.7, 𝑚 = 0.5). The local quadratic selection functions are indicated by the thick
faded blue (refugium) and green (native habitat) curves. The grey area called the ‘‘Death Plain’’ refers to a non-viable region (where a metapopulation with such a mean trait has
negative growth rate at low density). In each subfigure, the mean trait at equilibrium under a changing environment at a given speed is indicated by a filled circle (resp. 𝑍∗

spec , 𝑍
∗
1

and 𝑍∗
2 ). Notice how 𝑍∗

1 remains quite close to the initial state under stable environment 𝑍∗
spec (Fig. 2(b)), while 𝑍∗

2 is far from it, closer to the refugium’s optimum than to the
native habitat’s one (Fig. 2(c)).
New equilibrium. To determine the new equilibrium state reached by
the population when the environment changes at speed 𝑐, one has to
study the downward shifted phase line. As the phase line is smooth,
it reaches a maximum value into [0, 1]. I call this maximum value
𝑐switch ∶= max

𝑍∈[0,𝑍∗
spec]

 𝑐=0(𝑍), which is reached when 𝑍 = 𝑍switch > 0.

This means that, for environmental change’s speeds that are lower
𝑐 ≤ 𝑐switch, the metapopulation mean trait reaches an equilibrium
value 𝑍∗ that is between 𝑍switch and 𝑍∗

spec and thus closer from the
native habitat’s optimum than the refugium’s one. Consequently, the
metapopulation still retains a majority in the native habitat. However,
for environmental change’s speeds that are greater than 𝑐switch, the
metapopulation cannot reach an equilibrium with a positive mean trait
𝑍∗, as the phase line resulting from a downward translation does not
cancel into [0, 1] anymore (see an example in Fig. 2(c)). In our case, the
only stable equilibrium that is left corresponds to a mean trait 𝑍∗ that
is negative and even lower than −𝑍∗

spec, which is the mean trait of a
metapopulation specialized to the refugium under a stable environment
(𝑐 = 0). This means that the metapopulation completely reverses its habitat
preference and now lags behind −𝑍∗

spec, and becomes relatively better
adapted to the refugium. This shift from native habitat to refugium is
abrupt, because increasing the environmental speed even slightly above
30 
𝑐switch makes the possibility of remaining mainly in the native habitat
completely disappear (see an illustration in Fig. 3(a)).

Remark 3.1. The critical speed of habitat switch 𝑐switch is defined
implicitly as the maximum value of  𝑐=0(𝑍) over a closed interval.
Obtaining an explicit analytical expression requires maximizing the
selection gradient under stable environment  𝑐=0(𝑍) with the (inde-
pendent) constraint 𝑃𝑍 (𝜌) = 0 coming from the ecological equilibrium.
It is therefore too convoluted to be displayed here.

Tipping point. Once the metapopulation’s mean trait has dropped
abruptly below −𝑍∗

spec, lowering the speed of environmental change
back under 𝑐switch (ie. translating the phase line slightly upward) does
not result in the reversal of the habitat switch. The metapopulation is
now trapped in the basin of stability of specialization to the refugium.
This indicates that the mean trait in the metapopulation has crossed
a tipping point: for the metapopulation to become specialized to the
native habitat again, the environment needs to actually change in the
other direction, passing from a speed 𝑐switch to a speed −𝑐switch (because
 𝑐=0 is antisymmetric, see Appendix B).
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Fig. 3. Critical transition speeds for increasing selection with 𝒎 = 𝟎.𝟓 (from top to bottom, left to right, 𝑔 = 0.7, 1.1, 1.4, 1.8). The tipping point provoking a habitat switch
(𝑐switch = max

𝑍∈[0,𝑍∗
spec ]

 𝑐=0(𝑍)) is indicated in blue, and the speeds corresponding to the non-viability area are indicated in orange (𝑐death valley) and in crimson ((𝑐death plain). Below 𝑔 = 1,

the death valley does not exist (Fig. 3(a)). Between 1 and 𝑔̃(𝑚), the switch occurs before entering the death valley (Fig. 3(b)). For 𝑔 > 𝑔̃(𝑚), the switch occurs within the death
valley. Below 𝑔̂(𝑚), the switch brings to a viable equilibrium (Fig. 3(c)) whereas it leads to extinction above (Fig. 3(d)).
Transient dynamics of the habitat switch. From the previous paragraphs,
we know that the metapopulation will switch from mainly inhabiting
the native habitat to the refugium when 𝑐 ≥ 𝑐switch, because the new
equilibrium is below −𝑍∗

spec. However, the latter does not describe the
transient trajectory of the species during the switch. To do so, I will
distinguish between two cases: intermediate selection ( 1+2𝑚5 < 𝑔 < 1)
and strong selection (𝑔 > 1).

1. Intermediate selection ( 1+2𝑚5 < 𝑔 < 1): in this case, the viability
analysis done in Proposition 3.1 of Dekens (2022) shows that the
whole path of the mean trait 𝑍(𝑡) (from lagging behind 𝑍∗

spec to
lagging behind −𝑍∗

spec) is viable. This means that for each 𝑍 ∈
[−𝑍∗

spec, 𝑍
∗
spec], the metapopulation size 𝑁(𝑍) (defined through

the ratio 𝜌(𝑍) satisfying the first line of (𝑆0), see the details
in C e.g.) is positive. This occurs because the selection is not
strong enough for the local growth rates at low density to both
be negative at any given mean trait of the metapopulation 𝑍 ∈
[−𝑍∗

spec, 𝑍
∗
spec]. An example of this configuration is displayed in

Fig. 3(a).
2. Strong selection (𝑔 > 1): in this case, the viability analysis done

in Proposition 3.1 of Dekens (2022) shows that the converse
happens. The path from the native habitat’s optimum to the
refugium crosses a non-viable stretch in the middle, that I call
the death valley. The death valley extends from −𝑍 to
death valley
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𝑍death valley, where

𝑍death valley =

√

√

√

√

(𝑔 + 1 − 𝑚)
𝑔

−

√

1
𝑔2

[

𝑚2 − 4𝑔 (𝑚 − 1)
]

> 0. (2)

Notice that, as the environmental change does not directly affect
the subpopulation sizes, it also does not affect 𝑍death valley, ie
the boundaries of the death valley (see for example Fig. 3(b)).
The corresponding speed of environmental change 𝑐death valley is
given by (see Appendix D for the derivation):

𝑐death valley = 2𝑔𝑍death valley

⎛

⎜

⎜

⎝

2
𝑍2

death valley + 1 + 𝑚−1
𝑔

− 1
⎞

⎟

⎟

⎠

. (3)

My aim here is to describe accurately the population dynamics
within the death valley. To do so, I need to distinguish between
the two settings as stated in Remark 2.1. Indeed, the keen reader
would have observed that the death valley is a region where the
population is not viable, thereby the convergence of solutions of
(𝑆𝜀) to solutions of (𝑆0) is not ensured. As a result, substantial
discrepancies between the two models can occur. We highlight
the differences by comparing the dynamics of the limit system
(𝑆0) (dashed curves on Fig. 4) with the dynamics of the system
(𝑃𝜀) with small positive within-family variance 𝜀 > 0 (plain
curves on Fig. 4).
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Fig. 4. Transient dynamics of the metapopulation’s size 𝑵(𝒕) (upper panel) and mean trait 𝒁(𝒕) (lower panel), for increasing environmental change speeds (dark to
light colours, one out of three of those in Fig. 5) and increasing selection strengths corresponding to the ones used in Fig. 3 (left to right, top to bottom quadrants:
𝒈 = 𝟎.𝟕, 𝟏.𝟏, 𝟏.𝟒, 𝟏.𝟖 ; with 𝒎 = 𝟎.𝟓). The solid lines correspond to the dynamics given by (𝑃𝜀) with 𝜀 = 0.05, whereas the dashed ones correspond to the dynamics according to
(𝑆0). In Fig. 4(b), Fig. 4(c) and Fig. 4(d), the thin horizontal lines labelled 𝑍𝐷𝑉 in the lower panels indicate the value of 𝑍death valley. The thin vertical dotted lines in both panels
indicate the entry time to the death valley given different speeds 𝑐 ≥ 𝑐death valley.
Under the limit model (𝑆0), the dynamics within the death valley
are straightforward: the population goes extinct as soon as its
mean trait 𝑍 reaches the death valley and the habitat switch
cannot occur. The system (𝑆0) follows the condition 𝜌(𝑡) >
𝑓1(𝑍(𝑡)) (ensuring the viability of the metapopulation), which
is violated as soon as the metapopulation’s mean trait enters the
death valley (see the dynamics represented with dashed lines in
Fig. 4(b), Fig. 4(c) and Fig. 4(d) - the entry times to the death
32 
valley correspond to the vertical dotted lines). This means that,
at this time, the metapopulation goes extinct.
However, numerical resolutions of (𝑃𝜀) with a small and positive
within-family variance parameter 𝜀 = 0.05 paint a different
and more nuanced picture. Approximately when the population
enters the death valley (𝑍𝜀 ≈ 𝑍death valley), the population size
collapses to very low levels. However, the population survives and
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its mean trait keeps evolving towards lower values. It will eventu-
ally exit the death valley, leading to a rebound of the population
(see the dynamics represented with solid lines in Fig. 4(b) and
Fig. 4(c) - the metapopulation size rebounds are located after
the vertical dotted lines). These features of the joint trajectory
of the population size and of its mean trait are typical of the
phenomenon of evolutionary rescue (Holt et al., 2003). But how
should one interpret it? Although the precise mathematical anal-
ysis is challenging to derive, here is an attempt to unpack the
intuition behind these dynamics.
When 𝑍𝜀(𝑡) enters the death valley, the growth rate of the
metapopulation at low density becomes negative. As a result, its
size declines exponentially towards extinction. Since we consider
here an environmental change with speed 𝑐 ≥ 𝑐switch, the new
equilibrium lies beyond the death valley (because it lies beyond
the refugium’s optimum). As such, it attracts the mean trait 𝑍𝜀(𝑡)
from the beginning of the transient trajectory. 𝑍𝜀(𝑡) therefore
enters the death valley while going through a habitat switch
(for 𝑐 ≥ 𝑐switch). This implies that the switch occurs and forces
the mean trait 𝑍𝜀(𝑡) to cross the death valley. What follows
is a race between the metapopulation’ mean trait 𝑍𝜀(𝑡) exiting
the death valley before the metapopulation goes extinct. In our
deterministic model where the metapopulation can survive even
at very low sizes (an extreme example is displayed with 𝑐 = 1.67
in Fig. 4(c)), the mean trait always succeeds in exiting the death
valley before extinction, so the metapopulation size eventually
bounces back, primarily in the refugium (at least for some time).
These two types of dynamics given on the one hand by the
limit system (𝑆0) and on the other hand by (𝑃𝜀) are strikingly
different. The analysis of the former indicates that the death
valley cannot be crossed, ensuring immediate extinction as soon
as the metapopulation’s mean trait enters it. In contrast, numer-
ical simulations of the latter suggest that the metapopulation
always manages to linger on at low levels while its mean trait
crosses the death valley, leading to evolutionary rescue. How can
we make sense of this discrepancy? Since the behaviour of the
metapopulation at low density appears to be instrumental, I have
used stochastic individual-based simulations (presented in Ap-
pendix J) to clarify the conclusions. Their result is interestingly
in-between the two deterministic predictions derived from (𝑆0)
and (𝑃𝜀). Indeed, while the majority of stochastic trajectories
do go extinct in the death valley (black squares between the
orange and red ticks in Fig. 7(d)), a number of them do not
(corresponding to the black circles in Fig. 7(d)) and their final
state is well predicted by the phase line analysis once in the
refugium (corresponding to the blue line in Fig. 7(d)).

3.3. Critical speed of environmental change for extinction

A crucial quantity in single-habitat models of adaptation to an
environmental shift is the critical speed of environmental change for
persistence, below which the environmental changes slowly enough for
the population to adapt and persist, and above which it changes too fast
and the population goes extinct. In the two-habitats framework that I
consider here, persistence is not as clear-cut, as I will highlight cases
in what follows where intermediate environmental speeds can lead to
extinction. Instead, I thus use here the critical speed of environmental
change for extinction 𝑐extinct as the smallest speed such that ∀𝑐 ≥ 𝑐extinct,
the population goes extinct at equilibrium. In this section, I give an
explicit expression for 𝑐extinct.

To do so, I rely once more on the viability analysis under a stable
environment in Section 3.2 of Dekens (2022). It indicates that there
exists a lower bound that I call 𝑍death plain, below which the metapop-
ulation’s mean trait 𝑍 always leads to negative growth rates at low
density (leading to extinction), where:

𝑍death plain = −

√

√

√

√

(𝑔 + 1 − 𝑚)
+

√

1
2

[

𝑚2 − 4𝑔 (𝑚 − 1)
]

. (4)

𝑔 𝑔 t
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his lower bound 𝑍death plain < 0 defines a corresponding environmen-
tal speed 𝑐death plain ∶=  𝑐=0(𝑍death plain) whose analytical expression
reads (see a proof in D):

𝑐death plain = 2𝑔𝑍death plain

⎛

⎜

⎜

⎝

2
𝑍2

death plain + 1 + 𝑚−1
𝑔

− 1
⎞

⎟

⎟

⎠

. (5)

At this point, similarly as in Section 3.2, I need to separately
present the results derived from the dynamics of the system (𝑃𝜀) which
considers a small and positive within-family variance 𝜀2 and the ones
derived from the dynamics of the limit system (𝑆0). As I explained in
Section 3.2, the metapopulation always goes extinct when switching
through the death valley according to (𝑆0) while this does not need
to be the case according to (𝑃𝜀). This discrepancy naturally results
in a discrepancy in the critical speed for extinction between the two
settings, shown in Fig. 6 (solid black line for (𝑃𝜀) and dashed black
line for (𝑆0)). I will discuss how to connect the two sets of results using
the results of additional individual-based simulations that I conducted
(Appendix J).

Critical speed of environmental change according to (𝑃𝜀). From the phase-
line analysis of (𝐸auto), there exists a selection strength threshold 𝑔̂(𝑚) >
1 defined such that 𝑐switch ≤ 𝑐death plain below and conversely above (the
explicit expression 𝑔̂(𝑚) is too convoluted to be displayed for the same
reason stated for 𝑐switch in Remark 3.1, but it is graphically represented
by the rightmost vertical dotted line in Fig. 6). This selection strength
threshold is instrumental in distinguishing between two cases:

1. 𝑔 ≤ 𝑔̂(𝑚): for 𝑐 ∈ [𝑐switch, 𝑐death plain], the metapopulation
switches to the refugium and lags behind the local optimum, but
closely enough that it manages to persist (see Fig. 3(a), Fig. 3(b)
and Fig. 3(c)). For 𝑐 ≥ 𝑐death plain, the lag in the refugium after
the switch is too large and extinction occurs. Therefore, in this
case, the critical speed for extinction is 𝑐death plain (see Fig. 5(b),
Fig. 5(d) and Fig. 5(f)).
Moreover, even if it does not impact the critical speed for ex-
tinction, it should be noted that for some values of 1 < 𝑔 < 𝑔̂(𝑚),
extinction can also occur for intermediate environmental speeds
𝑐 that are lower than the critical speed 𝑐death plain. This happens
when the closest new stable equilibrium is located within the
death valley without the possibility to be rescued by a habitat
switch, which requires 𝑐death valley ≤ 𝑐 < 𝑐switch. In this case,
the population ends up being trapped in the death valley and
goes extinct. This situation requires the selection strength 𝑔 to
be above a threshold dependent on the migration rate that I note
𝑔̃(𝑚) > 1, defined as the one leading to 𝑍death valley = 𝑍switch.
For lower selection strengths than 𝑔̃(𝑚), the switch occurs before
the metapopulation’s mean trait enters the death valley, while
for larger ones, it occurs within the death valley. The analytical
expression of 𝑔̃(𝑚) is too convoluted to be displayed similarly
to that of 𝑐switch (see Remark 3.1). However, it is graphically
represented by the second vertical dotted line in Fig. 6.

2. if 𝑔 ≥ 𝑔̂(𝑚) > 1, we have 𝑐death plain < 𝑐switch. Additionally, I show
in Appendix E that, when 𝑔 ≥ 1, the following inequality always
holds: 𝑐death valley < 𝑐death plain. Therefore, the switch always
occurs within the death valley (0 < 𝑍switch < 𝑍death valley). For
𝑐 ∈ [𝑐death valley, 𝑐switch], the metapopulation is stuck within the
death valley without the opportunity to switch and goes extinct
similarly as described above. However, conclusions differ from
the first case for 𝑐 ≥ 𝑐switch: the switch towards the refugium
does occur, but it brings the population to a equilibrium where
the lag with respect to the refugium’s optimum is too large and
provokes extinction (see Fig. 3(d)). Therefore, in this case, the
critical speed for extinction is 𝑐death valley (see Fig. 5(h)).

It is noteworthy to highlight that, from the results described above,

he critical speed of environmental change displays two key features
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Fig. 5. Equilibrium mean trait 𝒁∗ (left panel) and metapopulation size 𝑵∗ (right panel) as functions of the environmental speed 𝒄 (𝒙-axis), for increasing selection
strengths corresponding to the ones used in Fig. 3 (top to bottom: 𝒈 = 𝟎.𝟕, 𝟏.𝟏, 𝟏.𝟒, 𝟏.𝟖 ; with 𝒎 = 𝟎.𝟓). Solid and dotted curves correspond to the analytical steady states given
by (𝑆0) (green in the native habitat, blue in the refugium), and the large dots are given by end results of simulated numerical resolutions of (𝑃𝜀) with 𝜀 = 0.05. The squared dots
indicate results from the simulations used in Fig. 4. The vertical ticks in the left panel’s figures indicate 𝑐switch (blue), 𝑐death plain (crimson) and 𝑐death valley (orange).
in this two-patch framework. It is discontinuous at 𝑔 = 𝑔̂(𝑚), because
it jumps from 𝑐death plain (𝑔 ≤ 𝑔̂(𝑚)) to 𝑐death valley (𝑔 > 𝑔̂(𝑚)), with
𝑐death valley < 𝑐death plain. Consequently, it is also non-increasing with
respect to increasing selection (see Fig. 6).

Critical speed of environmental change according to (𝑆0). The main dif-
ference regarding the critical speed of environmental change between
34 
(𝑃𝜀) and (𝑆0) comes from the difference of behaviour with respect to
the death valley.

As explained in Remark 2.1, the dynamics given by (𝑃𝜀) and (𝑆0)
should be very similar on sections of the transient trajectories where
the metapopulation is viable (thus where the convergence when 𝜀 → 0
is ensured). Consequently, when 𝑔 < 1 (ie. when the death valley does not
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Fig. 6. Analytical predictions of the critical speed of environmental change with
increasing selection (𝒙-axis), with 𝒎 = 𝟎.𝟓. The solid black line corresponds to the
critical speed of environmental change according to the deterministic dynamics given
by (𝑃𝜀) with a small within-family variance 𝜀 > 0, while the dashed black indicate
the ones given by the limit system (𝑆0). The dichotomy between the two reflect the
stochastic nature of the evolutionary rescue phenomenon (see the results of the IBS
in Appendix J for an illustration). The coloured lines represent the different particular
speeds that the analysis has identified and come from the analytical formula (3) for
𝑐death valley and (5) for 𝑐death plain and the identification of 𝑐switch given in Section 3.2. The
three vertical dotted lines delineate four selection regions corresponding to the ones
illustrated in Figs. 3 and 5 (𝑔 ≤ 1; 1 < 𝑔 ≤ 𝑔̃(𝑚); 𝑔̃(𝑚) < 𝑔 ≤ 𝑔̂(𝑚) and 𝑔 > 𝑔̂(𝑚)). The
dotted–dashed grey line represents the critical speed of environmental change without
migration, which coincides with the analogous quantity in single-habitats studies.

exist), the critical speed for environmental change according to (𝑆0) is the
same as the one according to (𝑃𝜀), which is 𝑐death plain.

However, there can potentially be significant discrepancies between
the solutions of (𝑃𝜀) and (𝑆0) on parts of the transient trajectories
where the metapopulation’s growth rate at low density is negative and
extinction is looming (thus where the convergence when 𝜀 → 0 is not
ensured). The latter is especially the case when the threat of extinction
is only fleeting because the metapopulation only transiently crosses
a non-viable stretch. One example is the case of the death valley’s
crossing, as explained in Section 3.2. Consequently, when 𝑔 ≥ 1 and
the death valley does exist between the two habitats’ optimal traits,
the critical speed of environmental change according to (𝑆0) can be
different from the one according to (𝑃𝜀):

1. if 1 ≤ 𝑔 ≤ 𝑔̃(𝑚): in this case, when 𝑐 ≥ 𝑐switch, the habitat
switch starts in a viable region ahead of entering the death valley
(𝑍switch ≥ 𝑍death valley). However, as the habitat switch unfolds,
the metapopulation’s mean trait reaches the death valley and
extinction occurs. As a result the critical speed of environmental
change is lower than 𝑐switch. Moreover, for 𝑐 < 𝑐switch, the new
equilibrium is located between the initial state (𝑍∗

asym) and the
threshold corresponding to the habitat switch 𝑍switch < 𝑍∗

asym.
Since the death valley upper boundary is lower than 𝑍switch
for 1 ≤ 𝑔 ≤ 𝑔̃(𝑚), the new equilibrium is viable and the
metapopulation persists.
Consequently, the critical speed of environmental change for 1 ≤
𝑔 ≤ 𝑔̃(𝑚) is 𝑐switch.

2. if 𝑔 ≥ 𝑔̃(𝑚): in this case, the habitat switch, if it happens, starts
within the death valley (−𝑍death valley < 𝑍switch ≤ 𝑍death valley).
Moreover, as 𝑐switch is defined as the maximal value of  𝑐=0

on [0, 1] and 𝑐death valley =  𝑐=0(𝑍death valley) with 𝑍death valley ∈
[0, 1], we have 𝑐death valley ≤ 𝑐switch. This implies that, for 𝑐 ≥
𝑐 , the metapopulation’s mean trait enters at one point
death valley
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in the death valley and extinction follows. Conversely, for 𝑐 ≤
𝑐death valley, the metapopulation lags behind the native habitat’s
optimal trait in a viable manner without switching (because
𝑐 ≤ 𝑐death valley ≤ 𝑐switch). Therefore, if 𝑔 ≥ 𝑔̃(𝑚), the critical speed
of environmental change is 𝑐death valley.

Similarly, as highlighted in the last paragraph regarding (𝑃𝜀), the critical
speed of environmental change here is also discontinuous and non-increasing
with respect to the selection strength (jumping from 𝑐death valley to 𝑐switch
at 𝑔 = 1).

Connecting the two-faced results of (𝑃𝜀) and (𝑆0) thanks to individual-
based simulations (Appendix J). The findings of the last two paragraphs
detailing the critical speed of environmental change are noticeably dif-
ferent between (𝑃𝜀) and (𝑆0). This can be better visualized in Fig. 6 by
the discrepancy between the black solid line (representing the critical
speed according to (𝑃𝜀)) and the black dashed line (same according to
(𝑆0)). The only difference is when the selection strength 𝑔 is between 1
(appearance of the death valley) and 𝑔̂(𝑚), above which (𝑃𝜀) and (𝑆0)
agree on the critical speed being 𝑐death valley. This is due to the fact that
the transient trajectories of (𝑃𝜀) and (𝑆0) handle the crossing (or not)
of the death valley very differently, as explained in Section 3.2 and
illustrated in Fig. 4(b) and Fig. 4(c).

However, one could argue that on the contrary, with regard to
Fig. 5, both (𝑃𝜀) and (𝑆0) seem to agree on the equilibrium metapop-
ulation size (right panel) and mean trait (left panel). What is going on
there? The subtlety is that the solid lines in Fig. 5 do not represent
the end point of dynamics given by (𝑆0), but rather the steady states
cancelling the l.h.s of the differential equation featured in (𝑆0), irre-
spective of whether they can be reached from the considered initial
state. Remember that, according to Remark 2.1, the convergence of
solutions of (𝑆𝜀) towards solutions of (𝑆0) is actually ensured on
parts of the transient trajectories where the solutions describe a viable
metapopulation. Imagine that the initial point of the dynamics was the
start of the metapopulation’s rebound after crossing the death valley
according to (𝑃𝜀). Then, in this situation, the solutions of (𝑆0) and (𝑃𝜀)
would agree on the whole trajectory and the equilibrium state of the
metapopulation according to (𝑃𝜀) would be well approximated by the
one according to (𝑆0). It is thus the crossing of the death valley during
the transient trajectories that introduces the discrepancy on the critical
speeds given by (𝑃𝜀) and (𝑆0). Specifically, this discrepancy is due to
how fleeting extinctions (when the metapopulation’ size stays very low
for some time) are handled by both settings.

The stochastic individual-based simulations (subsequently denoted
IBS) that I performed with the same parameters as in Fig. 5 and that
are presented in Appendix J shed some useful insights on the latter
aspect. Indeed, they should be close to (𝑃𝜀) when the metapopula-
tion size is large. Their results are summarized in a similar figure
to Fig. 5, but where the numerical final states of the deterministic
dynamics following (𝑃𝜀) are replaced by the final states of the IBS
Fig. 7. Moreover, I display the median final metapopulation’ size both
between all replicate simulations (black squares) and between replicate
simulations where the metapopulation persists (black circles), as well as
the full variance between replicates (vertical black lines). For most sets
of parameters, this distinction between replicates where the metapop-
ulation persists versus all replicates does not matter and is not visible.
However, one can observe that in Fig. 7(d), the two are not necessarily
the same. For intermediate speeds of environmental change, while the
majority of replicates do go extinct (black squares on the 𝑥-axis), the
final states of the ones that persist (black circles on the blue line) are
well predicted by the coloured lines corresponding to steady states of
(𝑆0). They also match the final states of the corresponding numerical
resolutions of (𝑃𝜀). This helps connect the results derived from the
system with a small but positive within-family variance (𝑃𝜀) and from
the asymptotic one (𝑆0). The dichotomy between their results exactly
reflects the dichotomy between the possible steady states according to
a stochastic version of the model. When the crossing of the death valley
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is involved, the steady states of (𝑃𝜀) match the steady states of stochastic
dynamics conditioned on persistence, whereas the ones of (𝑆0) match the
steady states of stochastic dynamics conditioned on extinction. As soon as
there is some within-family variance, albeit very small as in (𝑃𝜀), there
is a chance that in the declining population, a few individuals are born
with traits that are exceptionally fit to cross the death valley. At the
limit of vanishing variance as in (𝑆0), the lack of variance annihilates
this chance and the metapopulation never crosses the death valley.
Consequently, the two deterministic settings capture a different feature of
the stochastic dynamics at low metapopulation’s size within the death valley
(optimistic and pessimistic). Ultimately, this questions the well-posedness
of the critical speed of environmental change in this two-habitat frame-
work that can exhibit two-faced dynamics of adaptation to changing
environment.

3.4. Comparison with results from single-habitat models

Lagging behind the refugium. From the previous section, if 𝑐 ≥ 𝑐𝑠𝑤𝑖𝑡𝑐ℎ,
the metapopulation switches from lagging behind the native habitat
(0 < 𝑍∗ < 𝑍∗

spec < 1) to lagging behind the refugium (𝑍∗ < −1 < 𝑍∗
spec).

The two configurations are not symmetrical. In the former situation, the
metapopulation’s mean trait is between the two local optima, so the
situation is a compromise between adapting to the native habitat or
the refugium. However, in the latter situation, adaptation to the native
habitat is extremely poor and the metapopulation relies entirely on
the refugium, at least when the migration is not too strong, e.g. 𝑚 ≤
. It is therefore reasonable to assume that the ratio between the
ubpopulation sizes reflect this: ie 𝜌∗ =

𝑁∗
2

𝑁∗
1

≪ 1 (this is hinted by
the monotony of 𝑍 ↦ 𝜌(𝑍) with quadratic selection functions, see
Appendix I). Using this in the right-hand side of the second line of (𝑆0)
leads to an approximation of the lag of 𝑍∗ behind the refugium’s optimum
(−1):

−1 −𝑍∗ ≈
≤

𝑐
2𝑔

. (6)

Simulations suggest that this approximation is quite accurate, as the
native habitat’s influence on the metapopulation has almost completely
faded, and the analysis now connects to the single-habitat framework
applied to the refugium, in which the lag is exactly the left-hand side
of (6) (see Kopp and Matuszewski (2014) and recall that the population
variance in trait is here rescaled to 1 in the considered timescale and
that the width of the fitness function is 1

2𝑔 ).

he cost of dispersal. Although the mean trait’s lag behind the
efugium’s optimum once the switch has occurred (𝑐 ≥ 𝑐switch) is

similar to the analogous quantity in a single-habitat framework, the
orresponding metapopulation size differs from its counterpart from single-
abitat models as it is here burdened by the cost of dispersal as well as
o the selective cost due to the lag. To see this, let us assume that
igration is not too strong 𝑚 ≤ 1. In this case, one can reasonably
se the same assumption on the ratio between the subpopulation sizes
s above: 𝜌∗ =

𝑁∗
2

𝑁∗
1
≪ 1. The latter reflects the fact that, after the switch,

he population in the native habitat is very small compared to the
efugium’s because it is extremely maladapted and inward migration
s limited. Then, the total metapopulation size can be approximated by
he size of the refugium’s population: 𝑁∗ = 𝑁∗

1 +𝑁∗
2 = 𝑁∗

1 (1+𝜌∗) ≈ 𝑁∗
1 .

hus, using the expression of 𝑁∗
1 = 𝑚𝜌∗ − 𝑚𝑓1(𝑍∗) at equilibrium

iven by Lemma 1 of Dekens (2022), one can derive the following
pproximation:
∗ ≈ 𝑚𝜌∗ − 𝑚𝑓1(𝑍∗)

= 𝑚𝜌∗ + 1 − 𝑔(𝑍∗ + 1)2 − 𝑚

≈ 1 − 𝑔(𝑍∗ + 1)2 − 𝑚.

he latter clearly suggests that the migration rate 𝑚 directly lowers
he metapopulation size as compared to the analogous quantity in a
 f
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ingle-habitat.1 Indeed, the latter would be equal to 1 − 𝑔(𝑍∗ + 1)2

(recall that the population’s trait variance is rescaled to 1 in the
considered timescale). The approximation of 𝑁∗ above highlights the
fact that random migration reliably makes the adaptation of specialist
species to a fragmented environment more challenging than without
migration. Indeed, even after the species has switched to specialize to
the refugium, the constant back and forward migration continues. This
means that a constant stream of individuals continues to migrate from
the refugium to the native habitat where they are even more likely to
die very shortly after arriving. This results effectively into a smaller
metapopulation size compared to the case without migration (𝑚 = 0).

The cost of dispersal on the metapopulation’s size logically impacts
the critical speed for persistence. In Appendix G, I show that, all else
being held equal, an increased migration rate directly leads to a lower
critical speed of environmental change when 𝑔 ≤ 𝑔̂(𝑚) (the evidence
suggests the same when 𝑔 ≥ 𝑔̂(𝑚) but is less direct). This occurs because
the death plain extends further towards the refugium. More precisely,
I show that

1. the boundary of the death plain 𝑍death plain as defined by Eq. (4)
is an increasing function of the migration rate 𝑚. As 𝑍death plain is
always negative, this effectively means that, when the migration
rate increases, the death plain extends closer to the optimal trait
in the refugium and the population’s trait lag needs to be smaller
for it to persist once the shift to the refugium has occurred.

2. the critical environmental speed 𝑐death plain above which the popula-
tion enters the death plain is a decreasing function of the migration
rate 𝑚. This means that, when the migration rate increases and
the selection pressure 𝑔 is kept fixed below 𝑔̂(𝑚), the critical
speed of environmental change is directly lowered (as it is equal
to 𝑐death plain in this case, see Fig. 6) and the population can only
persists in the refugium at smaller environmental speeds. When
the selection pressure 𝑔 is above 𝑔̂(𝑚), the previous conclusion
is not as straightforward, as in this case the critical speed for
environmental change is 𝑐death valley, not 𝑐death plain. However, as
shown in Appendix E, 𝑐death valley is always lower than 𝑐death plain,
while the difference between the two vanishes when 𝑔 becomes
large (and 𝑚 ≤ 1 - see Appendix F). This suggests that 𝑐death valley
globally follows the same decreasing trend with respect to the
migration rate when 𝑔 is large enough. For consistency’s sake, I
lastly compute that both 𝑐death plain and 𝑐death valley (when 𝑔 ≥ 1)
converge to the critical speed derived in single-habitats models
when the migration rate vanishes.

There is a final non-intuitive layer to the effect of migration in
fragmented and changing environments that I want to draw attention
to. It concerns the metapopulation’s mean trait instead of its size. The
first paragraph of this section highlights that, when 𝑔 ≤ 𝑔̂(𝑚), the
equilibrium mean trait 𝑍∗ is approximately equal to −1 − 𝑐

2𝑔 (where
−1 is the optimal trait in the refugium). However, to draw a fair
comparison to the case without migration, one should compare the
latter to the equilibrium mean trait with respect to the native habitat,
where the optimal trait is 1, leading to an equilibrium mean trait of
1− 𝑐

2𝑔 . This means that, even if the metapopulation only persists for smaller
speeds of environmental change in fragmented environments compared to if
it were restricted to the sole native habitat, it explores a larger trait interval
by switching to the refugium (up to −1 − 𝑐

2𝑔 versus 1 − 𝑐
2𝑔 ).

4. Discussion

Summary. In this work, a two-patch quantitative genetic model with
moving optima was used to analyse the eco-evolutionary dynamics of

1 One should however note that the accuracy of the approximation derived
ere becomes less clear when migration becomes strong, as the validity of the
irst assumption that 𝜌∗ ≪ 1 presumably deteriorates.
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a sexually reproducing specialist species in a fragmented and changing
environment consisting of its native habitat and a refugium. In a regime
where the within-family variance is small, a separation of ecological
and evolutionary time scales allows reducing the complexity of the
analysis to a phase-line study of the selection gradient. First, I showed
that small enough environmental speeds can actually be beneficial in
terms of abundance thanks to a beneficial reduction of specialization.
For larger environmental speeds, there exists an evolutionary tipping
point corresponding to a sharp habitat switch from the native habitat
to the refugium. With strong selection, this shift leads the population
to cross a death valley between the two habitats’ optima in trait
space, where the population size temporarily plummets and possibly
eventually rebounds (leading to evolutionary rescue). I finally compute
the critical speed of environmental speed above which the population
always goes extinct. This critical speed does not need to be increasing
and can be discontinuous with respect to increasing selection strengths,
especially with strong local selection.

Critical speed of environmental change: fragmented spatial structure versus
single-habitat. In Section 3.3, I derived the critical speed of environ-
mental change above which the population goes extinct because it is
too maladapted as a whole. Because of the fragmented nature of the
two-patch environment and the existence of the refugium, this critical
speed differs in a number of ways as compared to the one classically
derived in a single-habitat framework with quadratic selections (Lynch
and Lande, 1993; Bürger and Lynch, 1995; Kopp and Matuszewski,
2014).

First, here, the analysis shows that increased selection strength does
not always equate to the population tracking the changing environment
more efficiently, as in a single habitat with a quadratic selection
function. More precisely, above a selection threshold, the critical speed
of environmental change decreases discontinuously from 𝑐death plain to
𝑐death valley (or potentially 𝑐switch). This is due to the fact that with strong
selection, the population can stay trapped within the rift between the
habitats without begin able to switch. A related result (even though
it does not impact the critical speed of environmental change) is that
the population can go extinct for intermediate speeds of environmental
change (ie. strictly below the critical speed), which does not occur with
a single-habitat framework. Another striking difference is that here, the
critical speed for environmental change can have two very different
values for some sets of parameters depending on the interplay between
within-family variance and stochastic demographic fluctuations at low
density during the crossing of the death valley (see Section 3.3).

Moreover, one could be led to think that, because of the existence
of the refugium, the population would be sheltered from extinction for
larger environmental speeds than the critical speed derived in the anal-
ogous single-habitat models. Indeed, once the population has switched
to lag behind the refugium, its adaptation is almost entirely determined
by the dynamics within the refugium, as the migrants sent to the native
habitat are too maladapted to make any significant contribution by
gene flow. Therefore, the resulting dynamics are then very similar
to the ones derived in the single-habitat framework, except for one
major difference: the cost of dispersal, as highlighted by the results
presented in Section 3.4. Indeed, I showed there that an increased
migration rate reliably translates into a lower critical environmental
speed for extinction. The intuition behind this lies in the constant
back and forward migration between habitats. As the latter keeps on
operating even after the species switches to specialize to the refugium,
it effectively leads to a constant loss of population from the refugium
that is not replenished. Thus, for a given lag in the refugium close to
the critical one, the corresponding metapopulation size, approximated
by the population size in the refugium, is actually smaller than without
migration. Consequently, the critical environmental speed given by the

present two-patch model is always lower than in single-habitat models.

37 
Fragmented spatial structure with moving optima versus time-shifting en-
vironmental gradient in a continuous space. It would be tempting to
use the present analysis as a literal stepping stone, by adding patches
in a linear fashion in the hope of connecting the continuous space
models of adaptation asymptotically to a time-shifting environmental
gradient. However, I think that some caution is needed when passing
at the limit, because the space granularity is instrumental to obtain
the qualitative results of this study, especially with strong selection.
Indeed, with strong selection, a death valley of negative growth rate at
low density appears between the two habitats, which is a key feature
of fragmented environments whose translation in the continuous space
limit is all but clear. Nevertheless, here, it underpins a significant part
of the most original results (the sharp dynamics of evolutionary rescue),
but also the non-monotonicity of extinction (which can occur at lower
environmental speeds than the critical one) and the discontinuous
nature of the critical speed of environmental change with respect to
increasing selection strength. The last two results differ from the results
of quantitative genetics models considering an environmental gradient
shifting at a constant speed in a continuous space framework (Pease
et al., 1989; Polechová et al., 2009; Duputié et al., 2012; Aguilée et al.,
2016; Alfaro et al., 2017). Indeed, all of them conclude that there
exists a critical speed under which the population always persist and
beyond which it goes extinct. Note that there exists some variation
due to the particular framework of each studies: for example, the mean
trait speed can be lower than the environmental speed (which does not
happen here) due to long range pollen dispersal (Aguilée et al., 2016)
or in the case of a steep environmental gradient leading to a limited
range equilibrium (Polechová et al., 2009). However, in both cases, the
critical speed remains continuous with respect to increasing selection
strength at the transition between qualitatively different equilibria.

That said, one can draw some qualitative parallels between this
study and the framework of Polechová et al. (2009). Indeed, the authors
show that increasing the steepness of the environmental gradient (all
else begin equal) leads from a uniform range equilibrium (where the
species invade the whole space) to a limited range equilibrium (where
the species only significantly persists in a bounded spatial range). This
result is an extension of that obtained in the study of Kirkpatrick and
Barton (1997) with stable environment (see also (Mirrahimi and Raoul,
2013; Raoul, 2017)). This echoes the passage from a generalist species
equilibrium when selection is weak relative to migration (𝑔 ≤ 1+2𝑚) to

specialist species equilibrium when the converse holds (𝑔 > 1+2𝑚) in
the stable environment framework of Dekens (2022) (note that, here,
the study exclusively focuses on the parameter range 𝑔 > 1 + 2𝑚 so on
specialist species). However, as pointed out, the major difference is that
the fragmented nature of the environment allows for sharp dynamics
to occur that does not seem to exist in the continuous space viewpoint.
Reconciling the two frameworks will require additional technical work.

Evolutionary tipping points in dynamics of structured populations. In Sec-
tion 3.2, the analysis identifies tipping points in the dynamics of the
population’s mean trait that lead to sharp habitat switches. When the
environmental speed is below a threshold 𝑐switch, the population’s mean
trait lags behind the native habitat’s optimum, but is closer from it than
from the refugium’s optimum. Therefore, the bulk of the population
is still located in the native habitat. (Just) above the threshold, the
population’s mean trait shifts abruptly to lag behind the refugium’s op-
timum, far from the native habitat’s one. Consequently, the population
is suddenly relatively better adapted to the refugium than to the native
habitat. This sudden change of niche is difficult to reverse, because
lowering the environmental speed just below the threshold will not
restore the initial configuration, as the population remains ‘‘trapped’’ in
the refugium’s basin of stability. Restoring the population in its native
habitat actually would require completely reversing the environmental
change, with the opposite speed (𝑐switch → −𝑐switch).

Mathematically, one can visualize and predict such a tipping point

thanks to the phase line study described in Section 3.2. A tipping point
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corresponds to a local maximum of the selection gradient (in our case
the rightmost behind the initial mean trait). Assuming the selection
gradient is smooth and non-constant, a sufficient analytical condition
for the existence of a local maximum of the selection gradient is the co-
existence of multiple equilibria (located where the selection gradient
vanishes). This is in agreement with what occurs in a single-habitat
framework under a changing environment with non-quadratic selection
functions where maladaptation stabilizes away from the optimum (Os-
mond and Klausmeier, 2017, Garnier et al., 2023). Indeed, in this case,
the selection gradient under stable environment vanishes at the optimal
trait and converges to 0 in −∞. Heuristically, this means that the
ituation with an infinite lag is an asymptotic equilibrium. Therefore,
etween −∞ and the optimal trait, the selection gradient reaches a
ocal maximum, which corresponds to the evolutionary tipping point
dentified in the aforementioned studies. In these cases, past the tipping
oint, the lag grows indefinitely, so the population abruptly becomes
xtinct. In the present work, this does not occur because the local
election functions are quadratic. Past the tipping point, the mean
rait jumps on the stable branch of the selection gradient near the
efugium’s optimum, so the population switches habitats abruptly and
he lag stabilizes behind the refugium’s optimum. Moreover, here,
ither the jump brings the population to a viable state, or it was already
xtinct for environmental speeds just below the tipping point. So, in the
resent case, the evolutionary tipping point does not lead to an abrupt
xtinction. However, this lack of extinction following a tipping point
ight be strongly linked to the particular choice of quadratic selection

unctions used here.
To summarize, this work suggests that evolutionary tipping points

an arise in stage-structured populations’ dynamics because of non-
onotonic selection gradients, even with quadratic selection functions.
his feature might be facilitated by naturally existing feedback loops
etween demography and evolution in these kinds of models. Indeed,
hese lead to integrative optimal traits that depend on the demographic
tate of the system, itself a function of the evolutionary state. For

xample, in the present work, this optimal trait is
𝜌(𝑍)− 1

𝜌(𝑍)

𝜌(𝑍)+ 1
𝜌(𝑍)

, where

(𝑍) = 𝑁2(𝑍)
𝑁1(𝑍) is the ratio between the two subpopulation sizes when

he metapopulation mean trait is 𝑍. A comparison with the analo-
ous optimal trait obtained in the age-structured model (Cotto et al.,
019) suggests a correspondence between the elasticities quantifying
he sensitivity of the population growth rate with respect to given
ransitions in their life cycle (introduced in Barfield et al., 2011) and the
emographic terms 𝜌(𝑍) and 1

𝜌(𝑍) here. In our model, these quantities
might thus be interpreted as being proportional to the elasticities linked
to migration from one patch to the other. As such, they weight the two
local optima to build an integrative optimal trait for global adaptation
of the metapopulation. Therefore, linking evolutionary tipping points
and adaptation of stage-structured populations might come down to
understanding the influence of such integrative optimal traits that ac-
count for different components of fitness on the co-existence of multiple
equilibria in the system.

Constrains in niche evolution and evolutionary rescue. The phenomenon
of evolutionary rescue that is highlighted in Section 3.2 occurs because
of the interplay between the sharp habitat switch and the existence
of a death valley between the two local optima. This death valley is
an area of the trait space (in our case, around 𝑍 = 0) where the
rowth rate at low density is negative and occurs when local stabilizing
election functions decline fast enough away from the optima. When
he environmental speeds exceeds the threshold corresponding to the
abitat switch, the mean trait is attracted to an equilibrium beyond
he death valley. Therefore, during the habitat switch, the mean trait
s led to cross the death valley. As soon as it steps in the death valley,
he population size declines exponentially. Meanwhile, if there is even
little trait variance within the population (as per (𝑃𝜀)), the mean trait

eeps decreasing to reach the lower bound of the death valley, where

38 
the growth rate at low density becomes positive again, which leads to
a rebound of the population. Conversely, without variance (as per the
limit model (𝑆0)), the population goes extinct within the valley. This
death valley connects with the concept of ‘‘fundamental niche limits’’
in moving optimum models highlighted in the review of Klausmeier
et al. (2020). In a changing environment, species can adapt not only
by shifting its spatial distribution, but also by shifting its niche, like
in Aguilée et al. (2016). However, it might happen that the niche is
also biologically constrained, defining regions of positive and negative
growth rate at low density (the latter in our case comprising the death
valley). If the adaptive trajectory crosses such a region, the population
size plummets, but can be saved if it comes back into the fundamental
niche (see Fig. 6 of Klausmeier et al. (2020) for an illustration). It is
noteworthy to point out that this phenomenon of evolutionary rescue,
as in our case, does not rely on the advent of beneficial de novo
mutations, rather on standing genetic variation within the population
prior to entering the death valley. This standing genetic variation is
due to the redundancy of the highly polygenic genetic architecture
with numerous small effects that shift in frequency along the adaptive
trajectory and segregate due to sexual reproduction.

Limits of the model. The deterministic model that I use allows working
with clear assumptions in well-defined settings (𝑃𝜀) and (𝑆0). They
thus lead to clear-cut results. However, these deterministic systems are
not equipped to capture some finer phenomena, in particular those
where the metapopulation size is very small, which makes stochasticity
central. This is for example the case with the transient crossing of the
death valley. As was hinted throughout Section 3, and especially in
Section 3.2 and Section 3.3, my approach there shows some limits. I
showed there that the discrepancies between the two sets of results
derived from (𝑃𝜀) and (𝑆0) can be reconciled when considering the
results of the supplementary individual-based simulations (IBS) that I
performed originally to account for the influence of sampling effects
and random demographic fluctuations (detailed in Appendix J). On the
one hand, the results of the IBS are in excellent agreement with the
numerical resolutions of (𝑃𝜀) as well as the analytical steady states
of (𝑆0) whenever the equilibrium state of the population is either far
from extinction, or definitely extinct. On the other hand, as the IBS are
subject to random demographic fluctuations, they give a more nuanced
conclusion than what either the models (𝑃𝜀) or (𝑆0) predict about the
evolutionary rescue phenomenon across the death valley (always rescue
according to the former and always extinction according to the latter).
In fact, within the considered parameter range, the IBS show that the
metapopulation does not get rescued in the majority of the replicate
simulations, as predicted by the dynamics of (𝑆0). However, in some
replicate simulations, it does, and then the IBS result in an equilibrium
matching both the numerical results of (𝑃𝜀) and the steady states
analysis of (𝑆0) (the latter being conditioned on having crossed the
death valley — see Fig. 7(d)). This is because the crossing of the death
valley requires exceptionally fit individuals, who could never have been
born in the limit of vanishing within-family variance (underpinning
(𝑆0)) and who are reliably born in the deterministic model (𝑃𝜀) with a
small and positive within-family variance. In reality, this is modulated
by chance and translates into a probability of rescue, which the IBS
can give an estimation of (and which cannot be quantified by my
approach).

To take matters even further than accounting for the influence of
demographic stochasticity and sampling effects, one might focus on
the central hypothesis of this model, namely about the within-family
segregational variance. A key feature that makes the model analytically
tractable is that the within-family segregational variance is fixed, there-
fore summarizing in one parameter all the details of the underlying
genetic architecture (the IBS I performed make the same assumption
in order to isolate the influence of population dynamics’ stochasticity).
A first direct consequence is that this model does not account for the
biological constraints that a finite genetic architecture imposes on the
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possible phenotypic range. The latter would be necessarily bounded
and will be exceeded in the long run by a never-ending shifting op-
timum, making it impossible for the population to adapt without de
novo mutations (connecting once again with the fundamental niche
limits of Klausmeier et al. (2020)). Furthermore, it is known that in
a finite population in a stable environment, this segregational variance
becomes eroded by inbreeding through time (see Barton et al. (2017)
for a quantification of the error that builds up). This is presumably
enhanced during rescue events, where the population goes through
a significant bottleneck, which is known to reduce the within-family
genetic variance severely (or conversely, increase the probability of re-
latedness). The erosion of within-family variance is likely to drastically
change the occurrence of evolutionary rescue across the death valley
as can be hinted by the striking dichotomy between the dynamics of
(𝑃𝜀) and (𝑆0) around the death valley (see Section 3.2 and Section 3.3).
Specifically, whereas in (𝑃𝜀), the population picks up after an episode
of rescue with the same segregational variance, allowing it to persist
in the long run in some cases by stabilizing its lag with the refugium’s
optimum, I presume that stochastic individual-based simulations with
explicit genetic architecture would show that an extinction debt can
accumulate as a result of maladaptation and the loss of genetic vari-
ance, dooming the population quite soon after the rebound (relating
to the concept introduced in Tilman et al. (1994)). Quantifying both
the probability of evolutionary rescue and the long-term consequences
of the loss of genetic variance would require adopting a stochastic
modelling approach with an explicit genetic architecture.

Perspectives. As detailed above, a modelling choice that harbours the
potential to significantly change the qualitative results of moving opti-
mum quantitative genetic models is the one about the (local) selection
function. Indeed, for example, in the single-habitat framework, Osmond
and Klausmeier (2017), Klausmeier et al. (2020) and Garnier et al.
(2023) highlight how choosing a selection function where maladapta-
tion stabilizes away from the optimum instead of quadratic selection
functions where maladaptation increases faster and faster away from
the optimum leads to the occurrence of evolutionary tipping points.
One can thus wonder how making similar choices would alter the
results here and how to analyse a model with different selection func-
tions. As a matter of fact, the analytical steps used in this study
(justification of the Gaussian approximation of local trait distributions
under small within-family variance and separation of ecological and
evolutionary time scales leading to the phase line study) are robust
to using other selection functions: I focused here on the quadratic
case here because it permits derivation of explicit analytical results.
With another choice of selection function, the precise expression and
properties of the phase line linked to the selection gradient will de-
pend on the particular choice and will potentially lead to qualitatively
different results. However, the general method used here for analysing
the resulting phase line is also transferable to another one arising from
a different selection gradient.

The major hypothesis underpinning the analysis and therefore the
results is that the within-family variance due to the segregation of
the many small-effect loci underlying the adaptive quantitative trait
is small compared to the distance between the local optima (but also
more generally all the other parameters). This regime has been the
analytical frame of several studies modelling trait inheritance with the
infinitesimal model (Calvez et al., 2019; Patout, 2023; Garnier et al.,
2023; Dekens, 2022). It provides sufficient standing genetic variance
for selection to shift the population’s mean trait, albeit on a slower
time scale than the ecological dynamics governed by birth, death and
migration processes, which allows one to justify the Gaussian approxi-
mation of local trait distribution that is classical for quantitative genetic
models. As this hypothesis leads to the sharp dynamics presented in
Section 3, one could ask what would happen if one relaxes this assump-
tion. Beyond a purely theoretical question, this could have practical
implications for conservation purposes: in the case of niche specialist
39 
species facing climate change, would it be beneficial to try and increase
the standing genetic variance to promote local adaptation and would
this make the species more resilient to greater environmental speeds?
A further study is required to address this issue.

CRediT authorship contribution statement

Léonard Dekens: Writing – review & editing, Writing – original
draft, Methodology, Investigation, Formal analysis, Conceptualization.

Data availability

The codes to reproduce the figures of this article are available at
https://github.com/ldekens/two-patch-model-changing-environment.

Acknowledgements

I first thank Vincent Calvez and two anonymous reviewers for
reviewing this manuscript and offering great suggestions to improve it,
and Ophélie Ronce for initially introducing me to the biological ques-
tion underlying this work and for subsequent insightful discussions.
I also thank Sepideh Mirrahimi, Amandine Véber and Sally Otto for
valuable feedback. I greatly thank Áine McColgan and James DiFrisco
for language editing of the manuscript. I thank the Foundation for
Mathematical Sciences in Paris (FSMP) for funding my work during
my time at the MAP5 department of the Université Paris Cité in Paris.
I also acknowledge having received partial funding from the ANR
project DEEV ANR-20-CE40-0011-01 and from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 865711). This work was
supported by the Francis Crick Institute, which receives its core funding
from Cancer Research UK (CC2240), the UK Medical Research Council
(CC2240), and the Wellcome Trust, United Kingdom (CC2240).

Appendix A. Detailed derivation of the limit system (𝑺𝟎)

Dimensionless system. In the regime where the within-family variance
𝝈2 is small compared to the difference between the local optima (𝜽𝟐 −
𝜽𝟏 = 2𝜽), it is convenient to define the following rescaled variables and
parameters to get a dimensionless system from (𝑷 ):

𝜀 ∶=

√

2𝝈
𝜽

, 𝑡 ∶= 𝜀2𝒓𝒕, 𝑧 ∶= 𝒛− 𝒄𝒕
𝜽

, 𝑐 ∶= 𝒄
𝜀2𝒓𝜽

, 𝑔 ∶=
𝒈𝜽2

𝒓
,

𝑚 ∶= 𝒎
𝒓
, 𝑛𝜀,𝑖(𝑡, 𝑧) ∶=

𝜿
𝒓
𝒏𝒊(𝒕, 𝒛), 𝑁𝜀,𝑖(𝑡) =

𝜿
𝒓
𝑵 𝒊(𝒕),

(7)

and the infinitesimal model reproduction operator 𝜀[𝑛𝜀,𝑖](𝑡, 𝑧) = 𝝈
𝒏𝒊](𝒕, 𝒛). Notice in particular that the time is rescaled according to the
mount of small variance generated by reproduction events (of order
𝜀2

2 ). Rescaling (𝑷 ) according to (7) yields (𝑃𝜀) that I recall here for the
sake of completeness:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀2𝜕𝑡𝑛𝜀,1(𝑡, 𝑧) − 𝜀2𝑐𝜕𝑧𝑛𝜀,1(𝑡, 𝑧) = 𝜀[𝑛𝜀,1](𝑡, 𝑧) − 𝑔(𝑧 + 1)2𝑛𝜀,1(𝑡, 𝑧)
−𝑁𝜀,1(𝑡)𝑛𝜀,1(𝑡, 𝑧) + 𝑚

(

𝑛𝜀,2(𝑡, 𝑧) − 𝑛𝜀1 (𝑡, 𝑧)
)

,

𝜀2𝜕𝑡𝑛𝜀,2(𝑡, 𝑧) − 𝜀2𝑐𝜕𝑧𝑛𝜀,2(𝑡, 𝑧) = 𝜀[𝑛𝜀,2](𝑡, 𝑧) − 𝑔(𝑧 − 1)2𝑛𝜀,2(𝑡, 𝑧)
−𝑁𝜀,2(𝑡)𝑛𝜀,2(𝑡, 𝑧) + 𝑚

(

𝑛𝜀,1(𝑡, 𝑧) − 𝑛𝜀,2(𝑡, 𝑧)
)

.

(𝑃𝜀)

The change in the trait variable 𝑧 ∶= 𝒛−𝒄𝒕
𝜽 means that we place ourselves

in the moving-frame reference that moves at the same speed as the
environment. In this referential, the local optima are fixed, but the
environmental shift’s action appears in an additional advection term
(where the factor 𝜀2 comes from the change in the time variable):

𝜕𝒕𝒏𝒊(𝒕, 𝒛) = 𝜀2𝜕𝑡𝑛𝜀,𝑖(𝑡, 𝑧) − 𝜀2𝑐𝜕𝑧𝑛𝜀,𝑖(𝑡, 𝑧) .

https://github.com/ldekens/two-patch-model-changing-environment
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Moment-based system in the regime of small within-family variance. In
this paragraph, I justify shifting the analysis from the full system (𝑃𝜀)
escribing the dynamics of the local trait distributions 𝑛𝜀1 (𝑡, 𝑧), 𝑛𝜀,2(𝑡, 𝑧),
o a moment-based system (𝑀𝜀) obtained from (𝑃𝜀) by integration and
hat describes the joint dynamics of the subpopulation sizes 𝑁𝜀,1(𝑡),
𝜀,2(𝑡) (obtained by applying the integral operator ∫R ⋅ 𝑑𝑧 to (𝑃𝜀)) and

he local mean traits 𝑧𝜀,1(𝑡), 𝑧𝜀,2(𝑡) (with 𝑧𝜀,𝑖(𝑡) ∶= ∫R 𝑧 𝑛𝑖,𝜀(𝑡, 𝑧)𝑑𝑧 in
abitat 𝑖.) Indeed, in the regime of small within-family variance, Dekens
2022) showed that this moment-based system obtained by integration
s closed, as the trait distributions 𝑛𝜀,1 and 𝑛𝜀,2 are both approximately
aussian with a small variance 2𝜀2. The derivation of the moment-
ased system is similar as in Dekens (2022) for most terms, except for
he advection term −𝑐𝜕𝑧𝑛𝜀,𝑖 that comes from the changing environment.
detail its integration in what follows.

As the local distributions 𝑛𝜀,𝑖 are expected to stay concentrated, the
peed of the environmental change does not directly impact the dynam-
cs of the subpopulations sizes at the main order, as ∫R 𝜕𝑧𝑛𝜀,𝑖(𝑡, 𝑧)𝑑𝑧 ≈ 0.
owever, it does impact directly the dynamics of the local mean traits,

ince one can integrate by parts to obtain

1
𝑁𝜀,𝑖 ∫

R

𝑐𝑧𝜕𝑧𝑛𝜀,𝑖(𝑡, 𝑧)𝑑𝑧 ≈ − 𝑐
𝑁𝜀,𝑖 ∫

R

𝑛𝜀,𝑖(𝑡, 𝑧)𝑑𝑧 = −𝑐.

Due to the last computation, the moment-based system obtained from
integrating (𝑃𝜀) here yields

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜀2 𝑑𝑁𝜀,𝑖

𝑑𝑡
=
[

1 −𝑁𝜀,𝑖(𝑡) − 𝑔(𝑧𝜀,𝑖(𝑡) − (−1)𝑖)2 − 𝑔𝜀2
]

𝑁𝜀,𝑖(𝑡)
+𝑚

(

𝑁𝜀,𝑗 (𝑡) −𝑁𝜀,𝑖(𝑡)
)

+ (𝜀4),

𝜀2 𝑑𝑧𝜀,𝑖
𝑑𝑡

= −𝜀2𝑐 + 2𝜀2𝑔((−1)𝑖 − 𝑧𝜀,𝑖(𝑡)) + 𝑚𝑁𝜀,𝑗 (𝑡)
𝑁𝜀,𝑖(𝑡)

(𝑧𝜀,𝑗 (𝑡) − 𝑧𝜀,𝑖(𝑡)) + (𝜀4).

(𝑀𝜀)

eparation of time scales. Introducing the same slow–fast variables
𝜀 ∶= 𝑧𝜀,2−𝑧𝜀,1

2𝜀2 (trait discrepancy between habitats) and 𝑍𝜀 ∶= 𝑧𝜀,2+𝑧𝜀,1
2

(average trait in the metapopulation) and denoting by 𝜌𝜀 > 0 the ratio
between subpopulation sizes: 𝜌𝜀 ∶= 𝑁2,𝜀

𝑁1,𝜀
as in Dekens (2022), one can

obtain the following slow–fast system from (𝑀𝜀):

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀2 𝑑
𝑑𝑡

⎛

⎜

⎜

⎜

⎝

𝑁𝜀,1

𝑁𝜀,2

𝛿𝜀

⎞

⎟

⎟

⎟

⎠

= 𝐺(𝑍𝜀, 𝑁𝜀,1, 𝑁𝜀,2, 𝛿𝜀) + 𝜀2𝜈𝑁,𝜀(𝑡),

𝑑𝑍𝜀
𝑑𝑡 = −𝑐 + 2𝑔

[

𝑚
2𝑔 𝛿𝜀

(

𝜌𝜀 −
1
𝜌𝜀

)

−𝑍𝜀

]

+ 𝜀2𝜈𝑍,𝜀(𝑡),

(𝑍𝜀(0), 𝑁𝜀,1, 𝑁𝜀,2, 𝛿𝜀(0)) =
(

𝑍∗
spec, 𝑁

∗
1,spec, 𝑁

∗
2,spec, 𝛿

∗
spec

)

,

(𝑆𝜀)

where 𝛿∗spec ∶= 2𝑔
𝑚

(

𝜌∗spec +
1

𝜌∗spec

)−1
, with 𝜌∗spec ∶=

𝑁∗
2,spec

𝑁∗
1,spec

.

Note that the term 𝛿𝜀, which represents the difference between the
two local mean traits, directly involves the within-family variance small
parameter 𝜀2 at its denominator. This highlights the fact that the two
local mean traits are very close to one another in this regime. Moreover,
the function 𝐺 ∶ R×

(

R∗
+
)2 ×R → R3 and the residues 𝜈𝑁,𝜀 and 𝜈𝑍,𝜀 are

defined identically as in Dekens (2022) (Eq. (18)). In particular, 𝐺 is
defined according to the following (for (𝑍,𝑁1, 𝑁2, 𝛿) ∈ R×

(

R∗
+
)2 ×R):

𝐺(𝑍,𝑁1, 𝑁2, 𝛿) =

⎛

⎜

⎜

⎜

⎝

[

1 −𝑁1 − 𝑔(𝑍 + 1)2 − 𝑚
]

𝑁1 + 𝑚𝑁2
[

1 −𝑁2 − 𝑔(𝑍 − 1)2 − 𝑚
]

𝑁2 + 𝑚𝑁1

2 𝑔 − 𝑚
(

𝑁2
𝑁1

+ 𝑁1
𝑁2

)

𝛿

⎞

⎟

⎟

⎟

⎠

. (8)

Remark A.1 (Direct Influence of the Environmental Change in (𝑆𝜀)). The
fast dynamics of the subpopulation sizes encoded by 𝐺 (first line of
(𝑆𝜀)) are independent from the environmental shift, because the latter
only directly impacts the dynamics on the local mean traits in (𝑀 )
𝜀
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(second line). This results in the term −𝑐 in the slow dynamics on the
average trait 𝑍𝜀 (second line of (𝑆𝜀)).

Remark A.2 (Initial Conditions: Asymmetrical Equilibrium for Specialists
of Habitat 2.). The initial state of the system

(

𝑍∗
spec, 𝑁

∗
1,spec, 𝑁

∗
2,spec, 𝛿

∗
spec

)

has two particularities that follow its definition in Proposition 4.2 in
Dekens (2022). First, it describes a specialist species that is mainly
adapted to the native habitat (𝑍∗

spec > 0 is close to its local optimum)
and mainly inhabits this habitat (𝑁∗

2,spec is much larger than 𝑁∗
1,spec,

which means that 𝜌∗spec > 1). Second, the initial specialist population
hereby described is at equilibrium under a stable environment (𝑐 = 0).
This means that it both cancels the fast dynamics of the subpopulation
sizes represented by the function 𝐺 in (𝑆𝜀):

𝐺
(

𝑍∗
spec, 𝑁

∗
1,spec, 𝑁

∗
2,spec, 𝛿

∗
spec

)

= 0R3 ,

and the slow dynamics of the average trait 𝑍𝜀 (right-hand side of the
second equation of (𝑆𝜀) at the main order when 𝑐 = 0):

𝑚
2𝑔

𝛿∗spec

(

𝜌∗spec −
1

𝜌∗spec

)

−𝑍∗
spec =

𝜌∗spec −
1

𝜌∗spec

𝜌∗spec +
1

𝜌∗spec

−𝑍∗
spec = 0. (9)

The two previous remarks justifies the separation of time scales, as
it relies on the local stability of the fast dynamics, which is the same
as in Dekens (2022). Therefore, the time scales between demographic
dynamics and trait dynamics can be separated when 𝜀 → 0, as stated by
Theorem 3.1 of Dekens (2022), whereby the solutions of (𝑆𝜀) converge
to the solutions

(

𝑍(𝑡), 𝑁1(𝑡), 𝑁2(𝑡), 𝛿(𝑡)
)

of the following system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐺(𝑍(𝑡), 𝑁1(𝑡), 𝑁2(𝑡), 𝛿(𝑡)) = 0R3 ,
𝑑𝑍
𝑑𝑡 = −𝑐 + 2𝑔

[

𝑚
2𝑔 𝛿(𝑡)

(

𝜌(𝑡) − 1
𝜌(𝑡)

)

−𝑍(𝑡)
]

(𝑍(0), 𝑁1(0), 𝑁2(0), 𝛿(0)) =
(

𝑍∗
spec, 𝑁

∗
1,spec, 𝑁

∗
2,spec, 𝛿

∗
spec

)

.

(𝑆)

Note also that the (slow) timescale for the differential equation on
he second line of (𝑆𝜀) corresponds precisely to the timescale of how
election shifts the metapopulation mean trait 𝑍𝜀. In other words, it
s precisely the one where the variance in trait in the metapopulation
cales to 1. There are two advantages to (𝑆). First, due to the separation
f time scales, the demographical dynamics are instantly resolved for
ny current value of the average trait in the metapopulation 𝑍(𝑡) (as the
irst line of (𝑆) is an algebraic equation, not a differential one). Second,
he metapopulation is monomorphic, which is revealed by the fact that
he dynamical variable 𝑍(𝑡) is the average trait in the metapopulation.
his is because the gene flow by migration occurs at the fast time scale,
s opposed to the shift of local mean traits due to selection. As a result,
he two local mean traits merge on the fast time scale into 𝑍(𝑡), which
hen moves slowly according to the gradient of selection represented by
he right-hand side of the second line of (𝑆). More precisely, the latter
ushes towards an integrative optimum 𝑚

2𝑔 𝛿(𝑡)
(

𝜌(𝑡) − 1
𝜌(𝑡)

)

resulting
rom the demographical balance of the system.

Moreover, the analysis done in Dekens (2022) allows to further
implify the system (𝑆). It shows that the population can actually be
ully described by its average mean trait 𝑍 and the ratio between
ubpopulations sizes 𝜌 = 𝑁2

𝑁1
. Their dynamics are given by (𝑆0).

Appendix B. Antisymmetry of the selection gradient under a sta-
ble environment  𝒄=𝟎

Recall that the selection gradient under a stable environment is
defined as

 𝑐=0(𝑍) ∶= 2𝑔
⎡

⎢

⎢

𝜌(𝑍) − 1
𝜌(𝑍)

𝜌(𝑍) + 1
−𝑍

⎤

⎥

⎥

,

⎣ 𝜌(𝑍) ⎦
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where the ratio of subpopulation sizes at (ecological) equilibrium 𝜌(𝑍)
(when the metapopulation mean trait is 𝑍) is defined as the largest root
of 𝑃𝑍 (𝑋) = 𝑋3−𝑓1(𝑍)𝑋2+𝑓2(𝑍)𝑋−1, where 𝑓1(𝑍) = 1+ 𝑔

𝑚 (𝑍+1)2− 1
𝑚

nd 𝑓2(𝑍) = 1 + 𝑔
𝑚 (𝑍 − 1)2 − 1

𝑚 . 𝑓1 and 𝑓2 are similar because of the
symmetry in the environment: the migration rate is the same for both
directions and the selection strength parameter 𝑔 is the same in both
habitats.

One can compute that 𝑓1(−𝑍) = 1 + 𝑔
𝑚 (−𝑍 + 1)2 − 1

𝑚 = 𝑓2(𝑍). This
mplies in turn that 𝑃−𝑍 (1∕𝑋) = −𝑋3𝑃𝑍 (𝑋). As 𝜌(𝑍) is defined as the

largest root of 𝑃𝑍 , we thus obtained that 𝜌(−𝑍) = 1
𝜌(𝑍) . Combining the

latter with the fact that 𝑓 ∶ R∗
+,→ R, 𝑥 ↦

𝑥− 1
𝑥

𝑥+ 1
𝑥

satisfies 𝑓
(

1
𝑥

)

= −𝑓 (𝑥)

results in  𝑐=0 being antisymmetric.

Appendix C. Metapopulation size’s initial increase

In this appendix, I show that 𝑑(𝑁1+𝑁2)
𝑑𝑡 (𝑡 = 0) > 0, which implies

that, when the environment starts changing, the metapopulation size
increases. The intuition is that at the start of environmental change,
the initially deserted refugium becomes more suited to support the
species as the native habitat becomes less suited. However, because of
the quadratic selections functions and the sign of 𝑍∗

spec > 0, the gain of
quality in the refugium is greater (with an initial selection gradient of
2𝑔(𝑍∗

spec + 1) that the loss of quality in the native one (with an initial
selection gradient of −2𝑔(𝑍∗

spec − 1)).

Proof. Following the notations of Lemma 1 in Dekens (2022), I define
𝜌 ∶= 𝑁2

𝑁1
the ratio of subpopulation sizes and the following polynomial

orm: 𝑃𝑍 (𝑋) ∶= 𝑋3 − 𝑓1(𝑍)𝑋2 + 𝑓2(𝑍)𝑋 − 1, with 𝑓1(𝑍) ∶= 1 + 𝑔
𝑚 (𝑍 +

)2 − 1
𝑚 and 𝑓2(𝑍) ∶= 1 + 𝑔

𝑚 (𝑍 − 1)2 − 1
𝑚 .

From Lemma 1 in Dekens (2022), for 𝑍 ∈ R, the triplet (𝑁1, 𝑁2, 𝛿) ∈
R∗
+
)2 × R is a fast equilibrium at the level 𝑍 (ie. 𝐺(𝑍,𝑁1, 𝑁2, 𝛿) = 0)

f and only if 𝑃𝑍 (𝜌) = 0 and 𝜌 > max(0, 𝑓1(𝑍)). If this is the case,

𝑁1, 𝑁2, 𝛿) is given by
(

𝑚(𝜌 − 𝑓1(𝑍)), 𝑚
(

1
𝜌 − 𝑓2(𝑍)

)

, 2𝑔
𝑚
(

𝜌+ 1
𝜌

)

)

.

The system (𝑆) is therefore equivalent to

𝑃𝑍(𝑡) (𝜌(𝑡)) = 0, 𝜌(𝑡) > max(0, 𝑓1(𝑍(𝑡))),
𝑑𝑍(𝑡)
𝑑𝑡 = −𝑐 + 2𝑔

[

𝜌(𝑡)2−1
𝜌(𝑡)2+1

−𝑍(𝑡)
]

,

(𝑍(0), 𝜌(0)) =
(

𝑍∗
spec,

𝑁∗
2,spec

𝑁∗
1,spec

)

.

(10)

Hence, the derivative of the metapopulation size à time 𝑡 = 0 is given
y

𝑑
[

𝑁1 +𝑁2
]

𝑑𝑡
(𝑡 = 0) =

𝑑
[

𝑁1 +𝑁2
]

𝑑𝑍
(𝑍∗

spec) ×
𝑑𝑍
𝑑𝑡

(𝑡 = 0)

= −𝑐 ×
𝑑
[

𝑁1 +𝑁2
]

𝑑𝑍
(𝑍∗

spec),

thanks to (9).
It is therefore sufficient to show that 𝑑[𝑁1+𝑁2]

𝑑𝑍 (𝑍∗
spec) < 0. Recalling

that (𝑁1, 𝑁2) is given by
(

𝑚(𝜌 − 𝑓1(𝑍)), 𝑚( 1𝜌 − 𝑓2(𝑍))
)

where 𝑃𝑍 (𝜌) = 0,
we deduce that:

𝑑
[

𝑁1 +𝑁2
]

𝑑𝑍
(𝑍) = 𝑚

⎛

⎜

⎜

⎜

⎝

𝑑
[

𝜌 + 1
𝜌

]

𝑑𝑍
(𝑍) − 𝑓 ′

1(𝑍) − 𝑓 ′
2(𝑍)

⎞

⎟

⎟

⎟

⎠

= 𝑚
(

𝜌′(𝑍)
(

1 − 1
𝜌(𝑍)2

)

− 𝑓 ′
1(𝑍) − 𝑓 ′

2(𝑍)
)

= 𝑚

(

−
𝜕𝑍𝑃𝑍 (𝜌(𝑍))
𝑃 ′
𝑍 (𝜌(𝑍))

(

1 − 1
𝜌(𝑍)2

)

− 𝑓 ′
1(𝑍) − 𝑓 ′

2(𝑍)

)

,

where I used that 𝜌′(𝑍) × 𝑃 ′
𝑍 (𝜌(𝑍)) + 𝜕𝑍𝑃𝑍 (𝜌) = 0 (since 𝑃𝑍 (𝜌(𝑍)) = 0)

and that 𝑃 ′
𝑍 (𝜌(𝑍)) > 0, since 𝜌(𝑍) is the largest root of 𝑃𝑍 (and has

multiplicity one).
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Moreover, because 𝑃𝑍 (𝑋) = 𝑋3 − 𝑓1(𝑍)𝑋2 + 𝑓2(𝑍)𝑋 − 1 with
𝑓1(𝑍) ∶= 1 + 𝑔

𝑚 (𝑍 + 1)2 − 1
𝑚 and 𝑓2(𝑍) ∶= 1 + 𝑔

𝑚 (𝑍 − 1)2 − 1
𝑚 , we obtain

that
𝑑
[

𝑁1 +𝑁2
]

𝑑𝑍
(𝑍) = 𝑚

(

𝑓 ′
1(𝑍)𝜌(𝑍)2 − 𝑓 ′

2(𝑍)𝜌(𝑍)
𝑃 ′
𝑍 (𝜌(𝑍))

(

1 − 1
𝜌(𝑍)2

)

− 𝑓 ′
1(𝑍) − 𝑓 ′

2(𝑍)

)

=
2𝑔(𝑍 + 1)𝜌(𝑍)2 − 2𝑔(𝑍 − 1)𝜌(𝑍)

𝑃 ′
𝑍 (𝜌(𝑍))

(

1 − 1
𝜌(𝑍)2

)

− 4𝑔𝑍.

ince the computation is performed at 𝑍 = 𝑍∗
spec that satisfies 𝑍∗

spec =
𝜌2(𝑍∗

spec)−1

𝜌2(𝑍∗
spec)+1

, we obtain that

𝑑
[

𝑁1 +𝑁2
]

𝑑𝑍
(𝑍∗

spec) = 4𝑔

⎡

⎢

⎢

⎢

⎣

𝜌4 (𝑍∗
spec )

𝜌2 (𝑍∗
spec )+1

+ 𝜌(𝑍)
𝜌2 (𝑍∗

spec )+1

𝑃 ′
𝑍∗

spec
(𝜌(𝑍∗

spec))

(

𝜌2(𝑍∗
spec) − 1

𝜌2(𝑍∗
spec)

)

−𝑍∗
spec

⎤

⎥

⎥

⎥

⎦

= 4𝑔𝑍∗
spec

[

𝜌3(𝑍∗
spec) + 1

𝑃 ′
𝑍∗

spec
(𝜌(𝑍∗

spec))𝜌(𝑍∗
spec)

− 1

]

=
4𝑔𝑍∗

spec

𝑃 ′
𝑍∗

spec
(𝜌(𝑍∗

spec))𝜌(𝑍∗
spec)

×
[

𝜌3(𝑍∗
spec) + 1 − 𝑃 ′

𝑍∗
spec

(𝜌(𝑍∗
spec))𝜌(𝑍

∗
spec)

]

.

Since 𝑍∗
spec > 0 by hypothesis, that 𝜌

(

𝑍∗
spec

)

=
𝑁2

(

𝑍∗
spec

)

𝑁1
(

𝑍∗
spec

) > 0 is the

argest root of 𝑃𝑍∗
spec

with multiplicity one (see lemma 2 of Dekens
2022)) and that therefore 𝑃 ′

𝑍∗
spec

(𝜌(𝑍∗
spec)) > 0, it is sufficient to

etermine the sign of the term within brackets to conclude:

3
(

𝑍∗
spec

)

+1 − 𝑃 ′
𝑍∗

spec
(𝜌(𝑍∗

spec))𝜌
(

𝑍∗
spec

)

= 𝜌3
(

𝑍∗
spec

)

+ 1 − 3𝜌3
(

𝑍∗
spec

)

+ 2𝑓1
(

𝑍∗
spec

)

𝜌2
(

𝑍∗
spec

)

− 𝑓2
(

𝑍∗
spec

)

𝜌
(

𝑍∗
spec

)

= −𝜌3
(

𝑍∗
spec

)

+ 𝑓1
(

𝑍∗
spec

)

𝜌2 − 𝑃𝑍∗
spec

(

𝜌
(

𝑍∗
spec

))

= −𝜌2
(

𝑍∗
spec

)(

𝜌 − 𝑓1
(

𝑍∗
spec

))

= −𝜌2
(

𝑍∗
spec

) 𝑁1

(

𝑍∗
spec

)

𝑚
< 0.

Hence the result. □

Appendix D. Derivation of 𝒄death valley and 𝒄death plain

Explicit analytical expressions for 𝑐death valley and 𝑐death plain are
available in the parameter range of interest ([1 + 2𝑚 < 5𝑔] ∩ [𝑚2 >
4𝑔(𝑚 − 1)]). One can compute that:

𝑐death plain = 2𝑔𝑍death plain

⎛

⎜

⎜

⎝

2
𝑍2

death plain + 1 + 𝑚−1
𝑔

− 1
⎞

⎟

⎟

⎠

,

with

𝑍death plain = −

√

√

√

√

(𝑔 + 1 − 𝑚)
𝑔

+

√

1
𝑔2

[

𝑚2 − 4𝑔 (𝑚 − 1)
]

< 0.

imilarly, when 𝑔 > 1:

𝑐death valley = 2𝑔𝑍death valley

⎛

⎜

⎜

⎝

2
𝑍2

death valley + 1 + 𝑚−1
𝑔

− 1
⎞

⎟

⎟

⎠

,

with

𝑍death valley =

√

√

√

√

(𝑔 + 1 − 𝑚)
−

√

1
2

[

𝑚2 − 4𝑔 (𝑚 − 1)
]

.

𝑔 𝑔
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Proof. At a dominant trait 𝑍∗, the fast equilibria are defined by
(𝑍∗, 𝑌 ∗) = 0, which is solved by (Lemma 1, Section 3.2 of Dekens

(2022))

(𝑁∗
1 , 𝑁

∗
2 , 𝛿

∗) =

⎛

⎜

⎜

⎜

⎝

𝑚[𝜌(𝑍∗) − 𝑓1(𝑍∗)], 𝑚 𝜌(𝑍∗) [𝜌(𝑍∗) − 𝑓1(𝑍∗)],
2𝑔

𝑚
(

𝜌(𝑍∗) + 1
𝜌(𝑍∗)

)

⎞

⎟

⎟

⎟

⎠

,

(11)

here 𝜌(𝑍∗) is the largest (positive root) of the cubic polynomial

𝑍∗ (𝑋) = 𝑋3 − 𝑓1(𝑍∗)𝑋2 + 𝑓2(𝑍∗)𝑋 − 1,

nd

1(𝑍∗) = 1 +
𝑔
𝑚
(𝑍∗ + 1)2 − 1

𝑚
, 𝑓2(𝑍∗) = 1 +

𝑔
𝑚
(𝑍∗ − 1)2 − 1

𝑚
.

11) implies that the subpopulations sizes 𝑁∗
1 and 𝑁∗

2 are positive if
nd only if 𝑓1(𝑍∗) < 𝜌(𝑍∗). Therefore, the limit of viability occurs for
∗ such that 𝑓1(𝑍∗) = 𝜌(𝑍∗). As 𝜌(𝑍∗) is the largest root of 𝑃𝑍∗ , the

latter leads to 0 = 𝑃𝑍∗ (𝑓1(𝑍∗)) = 𝑓1(𝑍∗)𝑓2(𝑍∗) − 1, whose roots are
±𝑍death plain and ±𝑍death valley. Consequently, the lowest limit of via-
bility occurs at 𝑍∗ = 𝑍death plain < 0. The corresponding critical speed
over which the population goes extinct reads (renaming 𝑍death plain as
𝑍𝐷𝑃 for the computation)

𝑐death plain =  𝑐=0(𝑍𝐷𝑃 ) = 2𝑔
⎛

⎜

⎜

⎝

𝜌(𝑍𝐷𝑃 ) −
1

𝜌(𝑍𝐷𝑃 )

𝜌(𝑍𝐷𝑃 ) +
1

𝜌(𝑍𝐷𝑃 )

−𝑍𝐷𝑃

⎞

⎟

⎟

⎠

= 2𝑔
⎛

⎜

⎜

⎝

𝑓1(𝑍𝐷𝑃 ) −
1

𝑓1(𝑍𝐷𝑃 )

𝑓1(𝑍𝐷𝑃 ) +
1

𝑓1(𝑍𝐷𝑃 )

−𝑍𝐷𝑃

⎞

⎟

⎟

⎠

= 2𝑔
(

𝑓1(𝑍𝐷𝑃 ) − 𝑓2(𝑍𝐷𝑃 )
𝑓1(𝑍𝐷𝑃 ) + 𝑓2(𝑍𝐷𝑃 )

−𝑍𝐷𝑃

)

= 2𝑔

(

4𝑔𝑍𝐷𝑃

2𝑚 − 2 + 2𝑔
(

𝑍2
𝐷𝑃 + 1

) −𝑍𝐷𝑃

)

= 2𝑔𝑍𝐷𝑃

⎛

⎜

⎜

⎝

2
𝑍2

𝐷𝑃 + 1 + 𝑚−1
𝑔

− 1
⎞

⎟

⎟

⎠

.

he same applies to 𝑐death valley and 𝑍death valley. □

ppendix E. Proof that 𝒄death valley < 𝒄death plain for all 𝒈 > 𝟏

Suppose that 𝑔 > 1 in addition to the parameter range of interest
[1 + 2𝑚 < 5𝑔] ∩ [𝑚2 > 4𝑔(𝑚 − 1)]). I rename here 𝑍death plain and
death valley as 𝑍𝐷𝑃 and 𝑍𝐷𝑉 respectively, for the length of this proof. I

ecall that the limit traits for the viability of the population 𝑍𝐷𝑉 >
> 𝑍𝐷𝑃 are defined by their squares being the two real roots of

he polynomial 𝑋2 − 𝑆𝑋 + 𝑃 , with 𝑆 = 2
(

1 + 1−𝑚
𝑔

)

< 4 and 𝑃 =
(

1 − 1
𝑔

)(

1 + 2𝑚−1
𝑔

)

(in the considered parameter range, Proposition 3.2
in Dekens (2022) ensures that the discriminant 𝑆2 − 4𝑃 is positive).
Moreover, standard algebra implies that 𝑆 = 𝑍2

𝐷𝑉 + 𝑍2
𝐷𝑃 > 0 and

𝑃 = 𝑍2
𝐷𝑉 𝑍

2
𝐷𝑃 > 0. For the sake of clarity, I gather all the inequalities

that will be used in the rest of the proof.

4 > 𝑆 = 𝑍2
𝐷𝑉 +𝑍2

𝐷𝑃 > 0, 𝑃 = 𝑍2
𝐷𝑉 𝑍

2
𝐷𝑃 > 0, 𝑆2 > 4𝑃 ,

𝑍𝐷𝑉 > 0 > 𝑍𝐷𝑃 .

Using the expression of 𝑐death plain and 𝑐death valley derived in
ppendix D, one can compute (defining 𝑎 = 2 − 𝑆

2 = 1 + 𝑚−1
𝑔 > 0

nd recalling that
√

𝑃 = −𝑍 𝑍 ):
𝐷𝑃 𝐷𝑉
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𝑐𝐷𝑃 − 𝑐𝐷𝑉

2𝑔
= 𝑍𝐷𝑉 −𝑍𝐷𝑃 +

2𝑍𝐷𝑃

𝑍2
𝐷𝑃 + 𝑎

−
2𝑍𝐷𝑉

𝑍2
𝐷𝑉 + 𝑎

=
(𝑍𝐷𝑉 −𝑍𝐷𝑃 )(𝑍2

𝐷𝑉 + 𝑎)(𝑍2
𝐷𝑃 + 𝑎) + 2𝑍𝐷𝑃 (𝑍2

𝐷𝑉 + 𝑎) − 2𝑍𝐷𝑉 (𝑍2
𝐷𝑃 + 𝑎)

(𝑍2
𝐷𝑉 + 𝑎)(𝑍2

𝐷𝑃 + 𝑎)

=
𝑍𝐷𝑉 −𝑍𝐷𝑃

(𝑍2
𝐷𝑉 + 𝑎)(𝑍2

𝐷𝑃 + 𝑎)

[

(𝑍2
𝐷𝑉 + 𝑎)(𝑍2

𝐷𝑃 + 𝑎) − 2
√

𝑃 − 2𝑎
]

=
𝑍𝐷𝑉 −𝑍𝐷𝑃

(𝑍2
𝐷𝑉 + 𝑎)(𝑍2

𝐷𝑃 + 𝑎)

[

𝑃 + 𝑎2 + 𝑆𝑎 − 2
√

𝑃 − 2𝑎
]

=
𝑍𝐷𝑉 −𝑍𝐷𝑃

(𝑍2
𝐷𝑉 + 𝑎)(𝑍2

𝐷𝑃 + 𝑎)

[(

2 − 𝑆
2

) 𝑆
2

− (2 −
√

𝑃 )
√

𝑃
]

.

(12)

Since 𝑍𝐷𝑉 > 0 > 𝑍𝐷𝑃 , 𝑐𝐷𝑃 −𝑐𝐷𝑉 has the sign of
[(

2 − 𝑆
2

)

𝑆
2 − (2 −

√

𝑃 )
√

𝑃
]

. Defining the function 𝑓 ∶ 𝑥 ↦ 𝑥(2 − 𝑥), it remains to show that
(

𝑆
2

)

> 𝑓 (
√

𝑃 ).

However, on the one hand, from the inequalities above,
√

𝑃 < 𝑆
2 .

On the other hand, from the expression of 𝑃 and 𝑆, one can compute

𝑃 =
(

1 − 1
𝑔

)(

1 + 2𝑚 − 1
𝑔

)

=
(

1 + 𝑚 − 1
𝑔

− 𝑚
𝑔

)(

1 + 𝑚 − 1
𝑔

+ 𝑚
𝑔

)

=
(

1 + 𝑚 − 1
𝑔

)2
− 𝑚2

𝑔2

<
(

1 + 𝑚 − 1
𝑔

)2
=
(

2 − 𝑆
2

)2
.

(13)

As 0 < 𝑆 < 4, we obtain that
√

𝑃 < min
(

𝑆
2 , 2 −

𝑆
2

)

. Hence, since
𝑓 is strictly increasing on [0, 1], that either 𝑆

2 ≤ 1 or 2 − 𝑆
2 ≤ 1, and

that 𝑓
(

𝑆
2

)

= 𝑓
(

2 − 𝑆
2

)

, we deduce that 𝑓
(
√

𝑃
)

< 𝑓
(

𝑆
2

)

, which
concludes the proof.

Appendix F. Proof that 𝒄death plain − 𝒄death valley → 𝟎 when 𝒈 → +∞
𝒎 ≤ 𝟏)

Let me fix 𝑚 ≤ 1. In this case, the parameter range that I consider
hroughout the study ([1 + 2𝑚 < 5𝑔] ∩ [𝑚2 > 4𝑔(𝑚 − 1)]) contains the
alf-line 𝑔 ≥ 1. In this paragraph, I prove that 𝑐death plain − 𝑐death valley
anishes when 𝑔 → +∞.

From the computation displayed in (12), we have

𝐷𝑃 − 𝑐𝐷𝑉 = 2𝑔 ×
𝑍𝐷𝑉 −𝑍𝐷𝑃

(𝑍2
𝐷𝑉 + 𝑎)(𝑍2

𝐷𝑃 + 𝑎)

[

𝑃 + 𝑎2 + 𝑆𝑎 − 2
√

𝑃 − 2𝑎
]

, (14)

where 𝑎 = 1 + 𝑚−1
𝑔 , 𝑃 =

(

1 + 𝑚−1
𝑔

)2
− 𝑚2

𝑔2
(see Eq. (13)) and 𝑆 =

2
(

1 + 1−𝑚
𝑔

)

.
Moreover, from the expressions of 𝑍𝐷𝑉 in (2) and 𝑍𝐷𝑃 in (4), one

can deduce the following limits: 𝑍𝐷𝑉 ⟶
𝑔→+∞

1 and 𝑍𝐷𝑃 ⟶
𝑔→+∞

−1.
Therefore, as 𝑎 ⟶

𝑔→+∞
1, we obtain that:

𝑐𝐷𝑃 − 𝑐𝐷𝑉 ∼ 𝑔 ×
[

𝑃 + 𝑎2 + 𝑆𝑎 − 2
√

𝑃 − 2𝑎
]

, (15)

Let us show that the sum within brackets in the r.h.s of Eq. (15) is

(

1
𝑔2

)

when 𝑔 → +∞. To that aim, one can compute the following
estimations:

𝑃 = 1 +
2(𝑚 − 1)

𝑔
+ 

(

1
𝑔2

)

,

𝑎2 = 1 +
2(𝑚 − 1)

𝑔
+ 

(

1
𝑔2

)

,

𝑆𝑎 = 2 + 
(

1
𝑔2

)

,

− 2
√

𝑃 = −2 −
2(𝑚 − 1)

𝑔
+ 

(

1
𝑔2

)

,

− 2𝑎 = −2 −
2(𝑚 − 1)

.

(16)
𝑔
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Summing the different estimations of Eq. (16) in Eq. (15) finally yields
that

𝑐𝐷𝑃 − 𝑐𝐷𝑉 = 
𝑔→+∞

(

1
𝑔

)

,

hich concludes.

ppendix G. Cost of dispersal: behaviour of 𝒁death plain and
𝒄death plain with respect to the migration rate 𝒎

In this appendix, I will abbreviate 𝑍death plain and
𝑐death plain as 𝑍𝐷𝑃 and 𝑐𝐷𝑃 . Let 𝑔 > 0 be fixed throughout this appendix.
All the following computations are done for 𝑚 > 0 such that [1 + 2𝑚 <
𝑔] ∩ [𝑚2 > 4𝑔(𝑚 − 1)].

𝐷𝑃 increases with respect to the migration rate 𝑚. Let me first recall the
xpression of 𝑍𝐷𝑃 from (4), denoted here as a function of 𝑚 for the
urpose of this appendix:

𝐷𝑃 (𝑚) = −

√

√

√

√
𝑔 + 1 − 𝑚

𝑚
+

√

𝑚2 − 4𝑔(𝑚 − 1)
𝑔2

< 0.

Next, one can differentiate to find:

𝜕𝑍𝐷𝑃
𝜕𝑚

= −
2
√

𝑚2 − 4𝑔(𝑚 − 1) + 4 𝑔 − 2𝑚

4𝑔𝑍𝐷𝑃 (𝑚)
√

𝑚2 − 4𝑔(𝑚 − 1)
.

Let me first consider the case 𝑔 < 1. In that case, we deduce that
𝑚 ≤ 5 𝑔−1

2 ≤ 5 𝑔−𝑔
2 = 2𝑔. Therefore, as 𝑍𝐷𝑃 (𝑚) is negative, the above

quantity 𝜕𝑚𝑍𝐷𝑃 is positive.
Let me now consider the case 𝑔 ≥ 1. Then, from Remark 4.4

of Dekens (2022), the condition [1 + 2𝑚 < 5𝑔] ∩ [𝑚2 > 4𝑔(𝑚 − 1)] is
equivalent to 𝑚 < 2𝑔

(

1 −
√

1 − 1
𝑔

)

, which is in turn lower than 2𝑔. By
he same argument as above, I obtain that 𝜕𝑚𝑍𝐷𝑃 is positive.

Therefore, 𝑍𝐷𝑃 increases with respect to the migration rate 𝑚.

𝐷𝑃 decreases with respect to the migration rate 𝑚. Let me first recall the
xpression of 𝑐𝐷𝑃 from (5). To do so, it is practical to first define the
ollowing function:

∶ (𝑍,𝑚) ↦ 2𝑔𝑍
⎛

⎜

⎜

⎝

2
𝑍2 + 1 + 𝑚−1

𝑔

− 1
⎞

⎟

⎟

⎠

,

so that we have:

𝑐𝐷𝑃 (𝑚) = 𝑓
(

𝑍𝐷𝑃 (𝑚), 𝑚
)

.

From the latter, one can differentiate and compute (omitting the
ependency of the variables with the migration rate after the first line
n the sake of clarity)
𝜕𝑐𝐷𝑃
𝜕𝑚

(𝑚) =
𝜕𝑓
𝜕𝑚

(

𝑍𝐷𝑃 (𝑚), 𝑚
)

+
𝜕𝑍𝐷𝑃
𝜕𝑚

(𝑚)
𝜕𝑓
𝜕𝑍

(

𝑍𝐷𝑃 (𝑚), 𝑚
)

=
−4𝑍𝐷𝑃

(

𝑍2
𝐷𝑃 + 1 + 𝑚−1

𝑔

)2
+

𝜕𝑍𝐷𝑃
𝜕𝑚

⎛

⎜

⎜

⎜

⎝

𝑐𝐷𝑃
𝑍𝐷𝑃

−
8𝑔𝑍2

𝐷𝑃
(

𝑍2
𝐷𝑃 + 1 + 𝑚−1

𝑔

)2

⎞

⎟

⎟

⎟

⎠

=
𝑐𝐷𝑃
𝑍𝐷𝑃

𝜕𝑍𝐷𝑃
𝜕𝑚

−
4𝑍𝐷𝑃

(

𝑍2
𝐷𝑃 + 1 + 𝑚−1

𝑔

)2

(

1 + 2𝑔𝑍𝐷𝑃
𝜕𝑍𝐷𝑃
𝜕𝑚

)

.

The first term of the l.h.s is negative, since 𝑐𝐷𝑃 > 0, 𝑍𝐷𝑃 < 0 and
𝜕𝑍𝐷𝑃
𝜕𝑚 ≥ 0 (from the previous paragraph). Thus, it suffices to show that

the second term of the l.h.s is also negative, ie. that 1+2𝑔𝑍𝐷𝑃
𝜕𝑍𝐷𝑃
𝜕𝑚 ≤ 0.

o do so, one can use the derivation of 𝜕𝑍𝐷𝑃
𝜕𝑚 in the last paragraph to

deduce that:

1 + 2𝑔𝑍𝐷𝑃
𝜕𝑍𝐷𝑃
𝜕𝑚

≤ 0 ⟺
𝑚 − 2𝑔

√

𝑚2 − 4𝑔(𝑚 − 1)
< 0.

sing the same arguments as in the last paragraph showing that 𝑚 ≤ 2𝑔
n the considered parameter range concludes the proof and shows that

is decreasing with respect to the migration rate 𝑚.
𝐷𝑃 1

43 
ppendix H. Limits of 𝒄death plain and 𝒄death valley as 𝒎 → 𝟎

In this appendix, I will abbreviate 𝑍death plain and 𝑍death valley as
𝐷𝑃 and 𝑍𝐷𝑉 and 𝑐death plain and 𝑐death valley as 𝑐𝐷𝑃 and 𝑐𝐷𝑉 .

From the expressions of 𝑍𝐷𝑃 and 𝑍𝐷𝑉 derived in Appendix D, one
an compute that

𝐷𝑃 = −

√

√

√

√

(𝑔 + 1 − 𝑚)
𝑔

+

√

1
𝑔2

[

𝑚2 − 4𝑔 (𝑚 − 1)
]

⟶
𝑚→0

−
√

1 + 1
𝑔
+ 2

√

𝑔
= −

(

1 + 1
√

𝑔

)

.

Similarly, when 𝑔 ≥ 1, one can compute that

𝑍𝐷𝑉 =

√

√

√

√

(𝑔 + 1 − 𝑚)
𝑔

−

√

1
𝑔2

[

𝑚2 − 4𝑔 (𝑚 − 1)
]

⟶
𝑚→0

√

1 + 1
𝑔
− 2

√

𝑔
= 1 − 1

√

𝑔
.

Now using the expressions of 𝑐𝐷𝑃 and 𝑐𝐷𝑉 derived in Appendix D
along the previously derived results leads to

𝑐𝐷𝑃 ⟶
𝑚→0

−2𝑔

(

1 + 1
√

𝑔

)

⎛

⎜

⎜

⎝

1
1 + 1

√

𝑔

− 1
⎞

⎟

⎟

⎠

= 2
√

𝑔.

Similarly, when 𝑔 ≥ 1, one computes that

𝑐𝐷𝑉 ⟶
𝑚→0

2𝑔

(

1 − 1
√

𝑔

)

⎛

⎜

⎜

⎝

1
1 − 1

√

𝑔

− 1
⎞

⎟

⎟

⎠

= 2
√

𝑔.

The common limit of 𝑐𝐷𝑃 and 𝑐𝐷𝑉 under vanishing migration rate
(𝑚 → 0) coincides with the critical speed of environmental change in
single-habitat models (see for example (Kopp and Matuszewski, 2014)
- recall that the population’s trait variance has been here rescaled to 1
in the considered timescale and that the width of the fitness function
is 1

2𝑔 ).

Appendix I. Monotony of 𝝆(𝒛)

Let 𝑍 ∈ [−1, 1] be such that 𝜌(𝑍) is the only positive root of 𝑃𝑍 (𝑋) =
𝑋3 − 𝑓1(𝑍)𝑋2 + 𝑓2(𝑍)𝑋 − 1 greater than 𝑓1(𝑍), so that the viability of
the metapopulation is ensured (see Dekens (2022) for details). From
𝑃𝑍 (𝜌(𝑍)) = 0, we get

𝜌′(𝑍) = 𝜌(𝑍)
𝑓 ′
1(𝑍)𝜌(𝑍) − 𝑓 ′

2(𝑍)

𝑃 ′
𝑍 (𝜌(𝑍))

. (17)

As 𝜌(𝑍) > 0 is the largest root of 𝑃𝑍 (see Dekens (2022)), 𝑃 ′
𝑍 (𝜌(𝑍)) > 0.

herefore, 𝜌′(𝑍) has the sign of 𝑓 ′
1(𝑍)𝜌(𝑍) − 𝑓 ′

2(𝑍).
Example of monotony : in the case where 𝑓1 is increasing on [−1,+∞[

nd 𝑓2 is decreasing on ] − ∞, 1] (like in the quadratic case), then 𝜌 is
n increasing function of 𝑍 ∈ [−1, 1].

ppendix J. Supplementary figures from stochastic IBS’s results

In this appendix, I compare the analytical predictions regarding the
quilibrium values of the metapopulation size and mean trait derived in
ection 3 with the end results of stochastic individual-based simulations
IBS) meant to provide a stochastic version of the dimensionless system
𝑆𝜀). The migration and selection parameters used in the following
isplay are those used in Fig. 5, which are 𝑚 = 0.5, 𝑔 = 0.7; 1.1; 1.4;
.8.
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Fig. 7. Same as Fig. 5 with final results of stochastic IBS instead of deterministic numerical resolutions. As in Fig. 5, the coloured curves correspond to the analytical
solution of (𝑆0) (green in the native habitat, blue in the refugium). The black squares represent the median quantities from the IBS and the vertical black lines span the results of
98% of the stochastic trajectories. Moreover, regarding the plots of 𝑁∗ (right column), the black circles indicate the median metapopulation size across non-extinct populations.
Mean traits of extinct populations are ill-defined and thus not displayed.
IBS’s design. The IBS are designed as follows. They consider discrete
generations (where the same life cycle unfolds before starting the
next generation) that are also overlapping (individuals can potentially
survive over several generations). For a given selection parameter 𝑔,
𝑁replicates replicate simulations are run first for 100 generations of
burn-in, and next for a fixed number of generations 𝑁gen, which is
44 
sufficient to reach an equilibrium. Moreover, each generation spans a
small time-step 𝑑𝑡 = 10−2, which rescales every biological rate involved
(so that only a few events of birth, death and migration occur during
each generation). Consequently, one time unit spans 100 generations.
The choice of small time-step generations aims at setting the IBS so
that they constitute an accurate stochastic description of the system of
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Fig. 8. Same as Fig. 3, but with 𝑚 = 0.2 and 𝑔 = 0.5, 1.05, 1.3, 1.4 (top to bottom, left to right).
differential Eqs. (𝑆𝜀), which considers per essence (infinitesimally)
small time steps. For 𝑔 = 0.7; 1.1; 1.4; 1.8, 𝑁replicates = 250; 1000; 1000; 1000
and 𝑁gen = 3.5 × 106; 2 × 106; 106; 5 × 105. The large number of
replicates meant to ensure that (rare) evolutionary rescue events would
be captured in most cases. Notice that the number of replicates for
𝑔 = 0.7 is relatively low (250, which is still quite large), as the
analysis predicts that no evolutionary rescue is expected in this case
and that cutting the number of replicate simulations speeds up the
computational time. Each replicate simulation is run according to the
same following scheme:

⋄ Each habitat has the same carrying capacity 𝐾 = 104 individuals.
Initially, there are ⌊𝑁∗

1,spec × 𝐾⌋ individuals in the refugium and
⌊𝑁∗

2,spec ×𝐾⌋ individuals in the native habitat, where 𝑁∗
1,spec and

𝑁∗
2,spec are the rescaled equilibrium subpopulations sizes under

stable environment indicated in Proposition 4.2 of Dekens (2022).
Their traits are randomly drawn from a Gaussian distribution of
mean 𝑍∗

spec and with a small variance 𝜀2, with 𝜀2 = 5 × 10−3.
⋄ First, the environment is stable during 100 generations. Next, the

environment changes with a speed 𝜀2𝑐, meaning that in habitat
𝑖 and at generation 𝑡 after the burn-in, the local optimal trait is
given by 𝜃𝑖(𝑡) = 𝜃𝑖(0) + 𝜀2𝑐𝑡, with 1 ≤ 𝑡 ≤ 𝑁gen.

⋄ At each generation 𝑡, the following life cycle unfolds over a
timespan 𝑑𝑡:

1. Reproduction event: in each subpopulation 𝑖, a random
number of individuals are uniformly sampled across the
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subpopulation according to a Binomial distribution of mean
𝑁𝑖(𝑡) × 𝑑𝑡 (ie. 𝑁𝑖(𝑡) × 𝑑𝑡 individuals chosen on average).
For each of these individuals, a mate is uniformly chosen
at random within the same subpopulation. Their mating
produces a single child who is added to the same sub-
population and whose trait is drawn randomly from a
Gaussian distribution centred on the mean parental trait
and with variance 𝜀2

2 . At the end of the reproduction event,
the subpopulation size is 𝑁post reprod

𝑖 (𝑡) (which is thus on
average equal to 𝑁𝑖(1 + 𝑑𝑡)).

2. Selection-density regulation event: in each subpopulation
living in habitat 𝑖 with optimal trait 𝜃𝑖(𝑡), each individual
faces a selection-density regulation trial, according to its
trait 𝑧 and the current subpopulation size 𝑁post reprod

𝑖 (𝑡).
Precisely, individuals survive according to independent
Bernoulli random variables with parameters given by:

exp
[

−𝑔 × 𝑑𝑡 ×
(

𝑧 − 𝜃𝑖(𝑡)
)2
]

× exp

[

−
𝑑𝑡 ×𝑁post reprod

𝑖 (𝑡)
𝐾

]

.

The first exponential term quantifies the probability of
surviving through the trait-dependent selection process for
individuals with trait 𝑧. The second exponential represents
the probability of surviving the density regulation process
within a subpopulation of 𝑁post reprod

𝑖 (𝑡). Any individual
who fails the trial is removed and the subpopulation size
at the end of this phase is 𝑁post sel-regul(𝑡).
𝑖
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Fig. 9. Same as Fig. 5, but with 𝑚 = 0.2 and 𝑔 = 0.5, 1.05, 1.3, 1.4 (top to bottom).
3. Migration event: in each subpopulation 𝑖 independently,
a random number of migrants is drawn according to a
Poisson distribution of parameter 𝑚 × 𝑑𝑡 ×𝑁post sel-regul

𝑖 (𝑡).
These migrants are then removed from their current sub-
population and added to the other one.

IBS’s results. The comparison between the analytical predictions of the
equilibrium variables (𝑍∗ the metapopulation mean trait and 𝑁∗ the
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metapopulation size) and the analogous final quantities of the IBS is
displayed in Fig. 7. The overall conclusion is that the IBS are in excel-
lent agreement with the predictions, especially for the metapopulation
mean trait 𝑍∗ conditional on persistence (left column). The same can
be said for the metapopulation size, albeit with more variance near
extinction (vertical black lines, representing 98% of the trajectories)
as expected by random stochastic fluctuations. These have a striking
impact when the metapopulation relies on evolutionary rescue, which
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Fig. 10. Same as Fig. 6, but with 𝑚 = 0.2.

is predicted to occur when 𝑔 > 1 (bottom three lines), and is highlighted
particularly in Fig. 7(d). Notice that for the 6th, 7th and 8th environ-
mental speeds, the median metapopulation size (black squares) is 0,
indicating extinction. However, the variance between replicates can be
high and the median metapopulation size of non-extinct populations
(black circles) is very close to the analytically predicted metapopulation
size. The IBS give some quantitative indications that the probability
of rescue is probably less than half and more than 1∕𝑁replicates =
10−3 (whereas this probability of rescue cannot be quantified from
my analysis). Moreover, it shows that when the population does get
rescued, its final state is accurately predicted by my analysis.

Appendix K. Supplementary figures with low migration rate 𝒎 =
𝟎.𝟐

See Figs. 7–10.
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