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Sharp habitat shifts, evolutionary tipping points and
rescue: quantifying the perilous path of a specialist

species toward a refugium in a changing environment

Léonard Dekens∗†

September 28, 2023

Abstract

Specialists species thriving under specific environmental conditions in narrow
geographic ranges are widely recognised as heavily threatened by climate deregu-
lation. Many might rely on both their potential to adapt and to disperse toward
a refugium to avoid extinction. It is thus crucial to understand the influence of
environmental conditions on the unfolding process of adaptation. Here, I study
the eco-evolutionary dynamics of a sexually reproducing specialist species in a
two-patch quantitative genetic model with moving optima. Thanks to a separa-
tion of ecological and evolutionary time scales and the phase-line study of the
selection gradient, I derive the critical environmental speed for persistence, which
reflects how the existence of a refugium impacts extinction patterns. Moreover,
the analysis provides key insights about the dynamics that arise on the path to-
wards this refugium. I show that after an initial increase of population size, there
exists a critical environmental speed above which the species crosses a tipping
point, resulting into an abrupt habitat switch. Besides, when selection for local
adaptation is strong, this habitat switch passes through an evolutionary “death
valley”, leading to a phenomenon related to evolutionary rescue, that can promote
extinction for lower environmental speeds than the critical one.

Keywords— adaptation to changing environment, patchy environment, quantitative genetic
model, habitat shift, evolutionary tipping points

1 Introduction
Biological context. Historical data highlight how climate change shifts the spatial dis-
tributions of species across taxa, especially polewards (Parmesan et al. 1999 on butterflies)
or upwards (Lenoir et al. 2008 on plants, Moritz et al. 2008 on mammals). Predicting the
interplay between this change in species distribution and species abundance and persistence
is an ongoing crucial challenge (Ehrlén and Morris 2015) that requires to better understand
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the evolutionary strategies of adaptation in face of climate change (Hoffmann and Sgrò 2011).
One category of species that has been found to be particularly vulnerable to the changing
climate gathers the various types of specialist species (Clavel, Julliard, and Devictor 2011).
As these are adapted to a limited niche width, opportunities to disperse and adapt to a po-
tentially more suitable habitat are sparser, especially in increasingly fragmented environments
(Berg et al. 2010, Adams-Hosking et al. 2012, Hof, Jansson, and Nilsson 2012, Damschen
et al. 2012). This issue highlights the importance of habitats that can act as refugia, which
have already been shown to have played a major part in specialists’ persistence in the past
(Corlett and Tomlinson 2020) and is recognised as a key component in conservation efforts
(Morelli et al. 2016). These refugia can be thermal shelters located polewards to escape the
rising temperatures, hydrological refugia in island-continent systems (McLaughlin et al. 2017,
Ramirez et al. 2020) or edaphic refugia for soil specialists (Corlett and Tomlinson 2020). These
examples emphasize the relevance of incorporating a spatial structure of patchiness in models
of adaptation to climate change to better understand the population dynamics of specialists
species towards refugia in highly fragmented environments (Urban et al. 2016).

Theoretical models of adaptation to a moving optimum in a single habitat:
lag-load. To understand and predict how species adapt to a changing environment, one can
turn to theoretical models. The case of gradually moving environments has been attracting
sustained interest from quantitative genetic models for over thirty years (see a review in [Kopp
and Matuszewski 2014]). One of the first lines of research focused on the demographic and
trait dynamics of a panmictic population living in a single habitat, subjected to stabilizing
selection around an optimal trait moving at a constant speed (Lynch and Lande 1993; Bürger
and Lynch 1995; Lande and Shannon 1996). The analysis highlights how maladaptation to the
changing environment induces a lag between the population’ mean trait and the optimal trait,
which eventually stabilizes. This evolutionary load impacts the demography by decreasing the
population size. Therefore, in this case, these studies derive a simple expression of the critical
rate of environmental change above which the environment changes too fast for the population
to persist and leads to extinction. Key features underlying the analytical results of these studies
resides in the following assumptions: a Gaussian approximation of the trait distribution within
the population and a quadratic selection function implying that maladaptation increases more
steeply away from the optimal trait. This approach has next been extended to include the
effects of plasticity (Chevin, Lande, and Mace 2010), multidimensional quantitative traits
(Duputié et al. 2012), age-structure (Cotto and Ronce 2014; Cotto, Sandell, et al. 2019), or
to examine the influence of the mode of reproduction (Waxman and Peck 1999, Garnier et al.
2022).

Evolutionary tipping points. However, a more recent study [Osmond and Klausmeier
2017] showed that this feature of a constant lag at equilibrium between the mean trait and
the optimal trait is a consequence of the particular quadratic shape of the stabilizing selection
function chosen in the references above, where the selection gradient increases linearly with the
distance between the population’s mean trait and the moving optimum. For other selection
functions where the strength of selection instead fades away from the moving optimum, [Os-
mond and Klausmeier 2017] showed that there exists evolutionary tipping points that, when
crossed by increasing the rate of environmental change, abruptly lead the population to extinc-
tion. This happens because, for these selection functions leading to a change of convexity in
the selection gradient, the lag grows indefinitely past a certain threshold. This feature (among
many others) was also characterized analytically in [Garnier et al. 2022] that investigated more
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broadly the influence of the selection functions on the adaptation of sexually and asexually
reproduction populations to a changing environment. However, while these evolutionary tip-
ping points are linked to particular choices of selection functions in a single habitat framework,
they have been reported to arise in more complex frameworks (Klausmeier et al. 2020). For
example, including an age structure to the population (Cotto and Ronce 2014, Cotto, Sandell,
et al. 2019) allows for feedback loops between the dynamics of the demography and the trait
dynamics to create multiple co-existing equilibria that promote evolutionary tipping points.
This last feature has also been related to tipping points in a broader variety of eco-evolutionary
models (see Dakos et al. 2019): for example, abrupt switching between different developmental
strategies in an oscillatory environment (Botero et al. 2015) or between ecosystem structure
in shallow lake environments (Chaparro-Pedraza 2021).

Spatial structure with changing environment. As spatial structure provides species
with the possibility to disperse when facing a changing environment, several theoretical quan-
titative genetic studies have included a spatial component in their modelling. A particularly
prolific line of research considers a species evolving in a continuous space, extending the con-
cept of a gradually moving optimum in a single habitat to an environmental gradient shifting
gradually at a constant speed. Stemming from the framework introduced by [Pease, Lande,
and Bull 1989], more and more sophisticated models have analyzed how populations can track
the shifting environmental gradient with a constant spatial lag when the speed of the envi-
ronment is below a critical threshold, thus escaping extinction by shifting their spatial range.
They have built extensions to study the influence density-dependence (Polechová, Barton, and
Marion 2009), or a multidimensional adaptive trait (Duputié et al. 2012). More recently, a
study modelling two dispersal modes differing in their mean dispersal distance (pollen and
seed dispersal) shows that long range-dispersal can trigger an ecological niche shift in addition
to the spatial range shift, which buffers the species for larger environmental speeds (Aguilée
et al. 2016). All these analyses rely heavily on the analytical travelling waves toolkit that is
specifically designed to study the long-term effect of dispersal in a continuous space (see Alfaro,
Berestycki, and Raoul 2017, Roques et al. 2020 and Lavigne 2023 for precise mathematical
expansion in the case of asexual populations).

However, these methods are not suited to study the patterns of dispersal in fragmented and
patchy environments, where the demographic dynamics and the trait dynamics are quite diffi-
cult to disentangle, even under stable environment (see Ronce and Kirkpatrick 2001; Hendry,
Day, and Taylor 2001; Dekens 2022 for sexual reproduction and Débarre, Ronce, and Gandon
2013; Mirrahimi 2017; Mirrahimi and Gandon 2020 for asexual ones). Therefore, most mod-
els studying adaptation to a changing and fragmented environment rely mostly on numerical
simulations to explore complex metacommunities dynamics (see Cotto, Wessely, et al. 2017
for such a model with multiple traits, species and an age structure, and Walters and Berger
2019 on the contribution of genetic variance on the time to extinction in a migration-mutation-
selection-drift framework), or to assess the interplay between dispersal and local competition
under a warming climate (Thompson and Fronhofer 2019,McManus et al. 2021). Moreover,
simulations of a quantitative genetic two-patch model suggest that a changing environment
can first lead to sharp declines in subpopulation size with a potential rebound when it sta-
bilizes, but less so for specialists (Bourne et al. 2014). As it is important to quantify these
sharp dynamics and predict the conditions under which they occur, I propose here to analyze
a two-patch quantitative genetic model under changing environment. It aims at improving our
understanding of the evolutionary mechanisms of a specialist species, particularly how they can
potentially leverage the existence of a refugium when their native habitat becomes non viable.
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Indeed, under a changing environment, such a species, while initially being well-adapted to its
native habitat, is expected to lag behind the optimum of the native habitat, and thus closer
to the refugium’s one. Under which conditions do species keep pace with their native habitat?
If the environmental speed is too strong, will they be strained to adapt to the refugium, and if
so, how successfully? To answer these questions, I will, as a starting point, leverage the results
of an analogous model under stable environment [Dekens 2022] that includes the analytical
derivation of the source-sink dynamics characteristic of a specialist species that I use here as
the initial state of the system.

Outline of the paper. In this work, I study the eco-evo dynamics of a sexual population
in a fragmented and changing environment thanks to a two-patch quantitative genetic model
with moving optima. Precisely, I consider a specialist population initially adapted to one of
the two habitats (their native habitat), whose migrants fail to establish in the other one at
first (the refugium). My aim is to predict analytically the dynamics of niche evolution of
this specialist population as a function of the speed of environmental change. To this aim,
in Section 2, I show that, in a regime of small within-family variance allowing to separate
ecological and evolutionary time scales, all the features of the dynamics of adaptation can be
deduced from a simple modification of the phase-line analysis of the selection gradient derived
in a previous study of a two-patch model under stable environment (Dekens 2022). Th results
are presented in Section 3. First, for small environmental speeds, the metapopulation actually
increases in size, as a result of a relative beneficial loss of specialization. Next, there exists an
intermediate critical environmental speed leading to an abrupt habitat switch from the native
habitat to the refugium. Such a switch corresponds to an evolutionary tipping point and is
therefore difficult to reverse. Moreover, above a selection threshold leading to the creation
of a evolutionary "death valley" between the habitats, the population experiences evolution-
ary rescue during the habitat switch. Finally, I quantify the critical speed of environmental
change above which the population becomes too maladapted and goes extinct in this native
habitat/refugium framework. Contrary to the classical prediction in a single-habitat frame-
work, I show that, here, the critical speed is not always increasing with selection strength and
can be discontinuous.

2 Methods
2.1 Model
The model follows a classical setting of quantitative genetic models for heterogeneous envi-
ronments (Ronce and Kirkpatrick 2001; Hendry, Day, and Taylor 2001; Débarre, Ronce, and
Gandon 2013; Mirrahimi and Gandon 2020; Dekens 2022), which is summarized in Fig. 1. It
considers a sexually reproducing species that lives in a fragmented two-patch environment,
where one patch represents the species’ native habitat to which it is specialized and the other
a refugium to which the species is not initially adapted. These habitats are connected by a
back-and-forth migration at a constant rate m > 0. Within each habitat, individuals mate
randomly at a rate r and die from density-dependent regulation at a rate κ > 0 and trait-
dependent stabilizing selection of intensity g > 0. The latter is minimal at a local trait
optimum (θ2(t) in the native habitat and θ1(t) in the refugium, with θ1(t) < θ2(t)) and
decreases quadratically away from it. The two local optima are assumed to shift at the same
constant speed c > 0, which models the action of the shifting environment: θi(t) = (−1)iθ+ct.
Individuals are characterized by a quantitative trait z ∈ R that determines their adaptation
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Refuge
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θ2(t)
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−g(z − θ1(t))2
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−g(z − θ2(t))2

−κN1 −κN2

θ1(t) = −θ + c t θ2(t) = θ + c t

−g(z − θ1(t))2 −g(z − θ2(t))2

z

Figure 1: Two-patch changing environment framework for a quantitative trait
z.
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to the habitat they live in. This quantitative trait is thought to have a highly polygenic basis
with small additive allelic effects, and its inheritance across generations is modelled by the
infinitesimal model (Fisher 1919; Bulmer 1971; Turelli and Barton 1990; Barton, Etheridge,
and Véber 2017. The infinitesimal model in its additive version states that the distribution of
trait within each family is Gaussian, centered on the mean parental trait and with variance
σ2, which reads

(z1, z2) 7→ z1 + z2
2 + N0,σ2 ,

where z1 and z2 represent the two parental traits. The parameter σ2 is the within-family
variance (also called segregational variance). In this model, it is assumed to be constant
across families, time and space. Accordingly, at a time t, the number of individuals born
with a trait z in the habitat i is given by the following formula (also used Turelli and Barton
1990; Mirrahimi and Raoul 2013; Calvez, Garnier, and Patout 2019; Patout 2020; Dekens and
Lavigne 2021; Dekens 2022; Garnier et al. 2022):

Bσ[n](t, z) =
∫∫

R2
G0,σ2

(
z − z1 + z2

2

)
n(t, z1)n(t, z1)

N(t) dz1dz2. (1)

We consider the dynamics of the local trait distributions given by:


∂tn1(t, z) = rBσ[n1](t, z) − g(z − θ1(t))2n1(t, z) − κN1(t)n1(t, z) + m (n2(t, z) − n1(t, z)) ,

∂tn2(t, z) = rBσ[n2](t, z) − g(z − θ2(t))2n2(t, z) − κN2(t)n2(t, z) + m (n1(t, z) − n2(t, z)) .

(2)
The environment changes through time at a constant speed c which is modelled by

a linear increase of the local optima: θ1 = −θ + ct and θ2 = θ + ct.

2.2 Overview of the analysis
In this section, I explain how to conveniently transform the PDE system (2) in order to
isolate the influence of the changing environment, which allows to leverage the main ideas
of the analysis under stable environment done in [Dekens 2022]. In fact, I show that,
in a chosen regime of small within-family variance, the full dynamics of the local trait
distributions can be summarized by the dynamics of two time-dependent variables: the
ratio of the two subpopulations sizes and the metapopulation’s mean trait. Moreover, I
show that, in the final system S, the environmental change directly influences only the
dynamics of the latter, and only linearly. I refer the interested reader who wishes to
learn about all the mathematical details underlying this section to Appendix A.

1. Small within-variance regime and moving-frame reference. I place the
analysis in the regime where the within-family variance σ2 is small compared to the
difference between the local optima (θ2 − θ1 = 2θ). This is likely to be the case after
a long time at equilibrium under stabilizing selection and stable environment. In this
regime, the local genetic variances are expected to remain small, so local mean traits
take a long time to shift under the action of local selection (see Dekens 2022). Therefore,
it is practical to rescale the time to match the timescale of the evolution of the local
mean traits. Moreover, it is also convenient to place the analysis in the moving-frame
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reference whose speed matches the environmental speed, in which the local optimal
traits are fixed. In the first paragraph of Appendix A, I detail how to do so along with
rescaling other variables and parameters to get a dimensionless system from (2). From
now on, I will refer to these rescaled quantities, which will be not bolded.

2. Initial specialized population. In all what follows, I examine the case where
selection is strong enough relative to migration for specialization to exist at equilibrium
and be stable under a stable environment: 1 + 2m < 5g (see Proposition 4.2 of Dekens
2022). Moreover, I also assume that selection is upper bounded when migration is strong
to ensure that this specialist equilibrium is viable, which reads: g(m − 1) < m2 (see
also Proposition 4.2 of Dekens 2022). Under these conditions, there exist two viable
specialist equilibria according to mirrored source-sink dynamics. For the initial state
of the system, I choose the equilibrium describing a species specialized in the native
habitat whose precise characterization is indicated in the Proposition 4.2 of [Dekens
2022].

3. Gaussian approximation of local trait distributions. In the chosen regime of
small within-family variance, arguments developed in [Dekens 2022] ensure that the local
trait distributions are approximately Gaussian, with a small variance (twice the within-
family variance). Therefore, the moment-based ODE system describing the dynamics of
the subpopulations sizes and the local mean traits is closed (see (8)). I choose to report
the analysis on this moment-based ODE system instead of the full PDE system on the
local trait distributions (see the second paragraph of Appendix A for details about the
derivation of such a moment-based system).

4. Separation of time scales and limit system. To disentangle the coupled dy-
namics of the subpopulations sizes and the local mean traits, one can leverage the fact
that the local selection terms driving the dynamics of the mean traits are proportional
to the small local genetic variances (see Eq. (8)). Therefore, there exists a separation
of time scale between fast ecological phenomena (birth/death/migration) and slow evo-
lutionary ones (shift of the local mean traits by selection), similarly as in the analysis
of [Dekens 2022]. In the third paragraph of Appendix A, I show that this leads to a
final system whose complexity is greatly reduced, as it only involves the ratio between
subpopulations sizes ρ(t) := N2(t)

N1(t) and the metapopulation’s mean trait Z(t). It reads
PZ(t)(ρ(t)) = 0,

dZ
dt

= −c + 2g
[

ρ(t)− 1
ρ(t)

ρ(t)+ 1
ρ(t)

− Z(t)
]

(Z(0), ρ(0)) =
(
Z∗

spec, ρ∗
spec

)
,

(S)

where PZ is a third-order polynomial whose coefficients depend on Z (details can be
found in Lemma 1 of Dekens 2022) and

(
Z∗

spec, ρ∗
spec

)
are the initial values defined in A.

The keen reader might notice that S is almost the same as the analogous one derived
in [Dekens 2022] under stable environment. The only but crucial difference is that here,
the changing environment pushes the metapopulation’s mean trait Z(t) backwards with
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a speed −c, which results in a lag (remember that the analysis is done in the moving-
frame reference). Although this could look like a rather benign change, it leads to very
rich dynamics that I detail in Section 3. In the next subsection, I explain how to use S
in a simple way to predict these dynamics.

2.3 Predicting the new equilibrium under a changing environ-
ment with a phase lines’ study

Consider the first line of S. For a given average trait in the metapopulation Z(t), it
states that ρ(t) is a (positive) root of PZ(t). In the case where such a root is uniquely
defined, ρ(t) can be seen as a well-defined function of Z(t) which I thus note ρ(Z(t))
(see Section 3 of [Dekens 2022] for the analytical conditions under which this happens).
In this case, one can circumvent the first algebraic equation of S to reduce the analysis
to to the following differential equation only on Z(t):

dZ
dt

= −c + F c=0(Z(t)),
Z(0) = Z∗

spec,
(Eauto)

where I define the function F c=0(Z) := 2g
[

ρ(Z)− 1
ρ(Z)

ρ(Z)+ 1
ρ(Z)

− Z
]

that does not depend directly
on the environmental change. Biologically, the function F c=0 can be interpreted as the
selection gradient under stable environment (c = 0; note that the trait variance
does not appear because it it scaled to 1 in the time scale considered). It represents the
selection force pushing the mean trait Z(t) towards an optimum which integrates the
demographic feedback on the ecological dynamics on the evolutionary ones. Precisely,
this optimum depends on the balance between the two subpopulation sizes ρ(Z)− 1

ρ(Z)
ρ(Z)+ 1

ρ(Z)
(I

recall that ρ(Z) is the ratio between the subpopulation sizes when the mean trait is Z).
The differential equation Eauto does not involve time directly as a variable, so it is

qualified as autonomous. The dynamics described by such an equation are conveniently
studied through its phase line, which is the graph of the function Z 7→ −c + F c=0(Z)
(right-hand side of (Eauto)). When it is positive (resp. negative), Z(t) increases (resp.
decreases), so the equilibria are located where it cancels (they are stable when the slope is
negative and unstable when it is positive). Notice that the only impact of the changing
environment is only a vertical translation of the phase-line under stable environment
(positive values of c correspond to downward translations). This implies that it can
drive some stable-environment equilibria to disappear or to shift. More precisely, the
new equilibrium obtained from the initial specialist state is located at the rightmost
intersection of the downward-shifted phase line and the x-axis that has a negative slope
(see Fig. 2 for an illustration).

3 Results
Under a fixed environment (c = 0) and in the parameter range where a specialist
species exists and is viable ([1 + 2m < 5g] ∧ [g(m − 1) < m2]), the analysis done in
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(a) c = 0. (b) c1 > 0.

(c) c2 > c1 > 0.

Figure 2: Illustration of the selection gradient’s phase line (purple dark line)
(Eauto) for several environmental speeds (top left: stable environment c = 0, top
right: environmental speed c1 > 0, bottom left: environmental speed c2 > c1 > 0; for
all subfigures: g = 0.7, m = 0.5). The local quadratic selection functions are indicated
by the thick faded blue (refugium) and green (native habitat) curves. The grey area
called the "Death Plain" refers to a non-viable region (where a metapopulation with
such a mean trait has negative growth rate at low density). In each subfigure, the mean
trait at equilibria under changing environment at a given speed is indicated by a filled
circle (resp. Z∗

spec, Z∗
1 and Z∗

2). Notice how Z∗
1 remains quite close to the initial state

under stable environment Z∗
spec (Fig. 2b), while Z∗

2 is far from it, closer to the refugium’s
optimum than to the native habitat’s one (Section 2.3).
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[Dekens 2022] shows that the selection gradient under stable environment F c=0 cancels
three times: in −Z∗

spec, 0 and Z∗
spec, with respectively negative, positive and negative

slopes (see Fig. 2a). This means that there exist three equilibria: two mirrored stable
equilibria describing specialization to each habitat with respective mean traits −Z∗

spec
and Z∗

spec, separated by an unstable equilibrium describing a generalist species (equally
maladapted to both habitats). To understand the impact of a changing environment on
the long-term adaptation of the focal species, I describe below the effect of increasing
environmental speeds and increasing selection strengths on these equilibria. In my
illustrations (Fig. 3, Fig. 4 and Fig. 5), I keep a constant intermediate migration rate
for the sake of clarity (m = 0.5). I address sensitivity issues by displaying the analogous
figures for a lower migration rate (m = 0.2) in Appendix G. Moreover, I test the results
derived in this section with those from individual-based simulations in Appendix F
(see in particular Fig. 6) to account for the influence of sampling effects and random
demographic fluctuations .

3.1 Small environmental change: lagging behind the native
habitat and beneficial loss of specialization?

For small speeds of environmental changes, the phase line indicates that the metapopula-
tion’s mean trait at equilibrium Z∗ lags behind the initial value Z∗

spec and thus increases
its distance with the native habitat’s optimum (set at 1). This is reminiscent of the
single-habitat models (see Kopp and Matuszewski 2014 for a review). However, on the
contrary to these single-habitat models, where lagging is always deleterious for the pop-
ulation size, this can lead to an increase of the metapopulation size for small enough
speeds of environmental change. In fact, I show in Appendix B that, regarding the tran-
sient dynamics at all environmental speeds, the metapopulation size actually increases
immediately after the start of the environmental shift (at t ≈ 0), as the mean trait Z
starts lowering down from Z∗

spec. This initial increase in the metapopulation size occurs
because, when the mean trait Z∗ starts lagging behind its initial value, it actually be-
comes closer to the refugium’s optimum. Therefore, the immediate loss of population
in the native habitat is overcompensated by the immediate gain of population in the
refugium (even if it remains small), because the increase in adaptation for a trait far
from an optimum is greater than the loss of it closer to an optimum when the selection
functions are quadratic. This effect thus relies quite heavily on the precise shape of the
selection functions, in particular their tails (for example, it does not occur when the
selection functions are linear). This initial increase does not last, as, eventually, the lag
with the native habitat increases and the increase of adaptation to the refugium is not
enough to compensate the decrease of adaptation to the native habitat.

A related phenomenon is that, for very small speeds of environmental change, the
metapopulation moves to an equilibrium Z∗ ≲ Z∗

spec for which its size is actually greater
that initially. The population as a whole is less specialized to the native habitat and
benefits from its relative adaptation to the refugium.
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3.2 Abrupt switch from the native habitat to the refugium:
tipping point

In the last paragraph, we explained that, while for small environmental changes, the
metapopulation can actually increase, it eventually starts dropping down as the lag
increases. However, as opposed to the single-habitat model, the road to extinction here
is not straight-forward, because of the existence of the refugium. I will first describe
how this impacts the new equilibrium that is reached by the metapopulation, and next
what can occur at the transient dynamics level on the path to this equilibrium.

New equilibrium. To determine the new equilibrium state reached by the population
when the environment changes at speed c, one has to study the downward shifted phase
line. As the phase line is smooth, it reaches a maximum value on [0, 1]. I call this max-
imum value cswitch := max

Z∈[0,Zspec]
F c=0(Z), which is reached when Z = Zswitch > 0. This

means that, for environmental change’s speeds that are lower c ≤ cswitch, the metapopu-
lation mean trait reaches an equilibrium value Z∗ that is between Zswitch and Z∗

spec and
thus closer from the native habitat’s optimum than the refugium’s one. Consequently,
the metapopulation still remains in majority in the native habitat. However, for envi-
ronmental change’s speeds that are even just greater than cswitch, the metapopulation
cannot reach an equilibrium with a positive mean trait Z∗, as the phase line resulting
from a downward translation does not cancel on [0, 1] anymore (see an example in Sec-
tion 2.3). In our case, the only stable equilibrium that is left corresponds to a mean trait
Z∗ that is negative and even lower than −Z∗

spec, which is the mean trait of a metapop-
ulation specialized to the refugium under a stable environment (c = 0). This means
that the metapopulation completely reverses its habitat preference and now lags behind
−Z∗

spec, and becomes relatively better adapted to the refugium. This shift from native
habitat to refugium is abrupt, because increasing the environmental speed even slightly
above cswitch makes the possibility of remaining mainly in the native habitat completely
disappear (see an illustration in Fig. 3a).

Tipping point. Moreover, once the metapopulation’s mean trait has dropped
abruptly below −Z∗

spec, lowering the speed of environmental change back under cswitch
(ie. translating the phase line slightly upward) does not result in the reversal of the
habitat switch. Indeed, the metapopulation is now trapped in the basin of stability of
specialization to the refugium. This indicates that the mean trait in the metapopulation
has crossed a tipping point: for the metapopulation to become specialized in the native
habitat again, the environment needs to actually change in the other direction, passing
from a speed cswitch to a speed −cswitch (for symmetrical reasons).

Transient dynamics of the habitat switch. From the previous paragraphs, we
know that the metapopulation will switch from mainly inhabiting the native habitat to
the refugium when c ≥ cswitch, because the new equilibrium is below −Z∗

spec. However,
the latter does not describe how the switch occurs along the transient trajectory of
the species. To do so, I will distinguish between two cases: intermediate selection
(1+2m

5 < g < 1) and strong selection (g > 1).
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(a) g ≤ 1. (b) 1 < g ≤ g̃(m).

(c) g̃(m) < g ≤ ĝ(m). (d) ĝ(m) < g.

Figure 3: Critical transition speeds for increasing selection with m = 0.5 (from
top to bottom, left to right, g = 0.7, 1.1, 1.4, 1.8). The tipping point provoking a habitat
switch (cswitch = max

Z∈[0,Zspec]
F c=0(Z)) is indicated in blue, and the speeds corresponding to

the non-viability area are indicated in orange (cdeath valley) and in crimson ((cdeath plain).
Below g = 1, the death valley does not exist (Fig. 3a). Between 1 and g̃(m), the switch
occurs before entering the death valley (Fig. 3b). For g > g̃(m), the switch occurs
within the death valley. Below ĝ(m), the switch brings to a viable equilibrium (Fig. 3c)
whereas it leads to extinction above (Fig. 3d).

12



1. Intermediate selection (1+2m
5 < g < 1): in this case, the analysis of viability

done in Proposition 3.1 of [Dekens 2022] shows that the whole path that the
mean trait Z(t) takes to go from lagging behind Z∗

spec to lagging behind −Z∗
spec

is viable. This means that for each Z ∈ [−Z∗
spec, Z∗

spec], the metapopulation size
N(Z) (defined through the ratio ρ(Z) satisfying the first line of S, see the details
in B e.g.) is positive. This occurs because the selection is not strong enough for
the local growth rates at low density to be both negative at any given mean trait
of the metapopulation Z ∈ [−Z∗

spec, Z∗
spec]. An example of this configuration is

displayed in Fig. 3a.

2. Strong selection (g > 1): in this case, the analysis of viability done in Propo-
sition 3.1 of [Dekens 2022] shows that the converse happens. The path from the
native habitat’s optimum to the refugium crosses a non-viable stretch in the mid-
dle, that we call the death valley, which extends from −Zdeath valley to Zdeath valley,
where

Zdeath valley =

√√√√ (g + 1 − m)
g

−
√

1
g2 [m2 − 4g (m − 1)] > 0.

As the environmental change does not directly affect the subpopulation sizes, it
also does not affect the boundaries of this death valley (see for example Fig. 3b).
Concretely, when Z(t) enters the death valley, the metapopulation has a negative
growth rate at low density and starts declining exponentially toward extinction.
If the new equilibrium is in the death valley, the population goes extinct. How-
ever, if the mean trait Z(t) enters the death valley while going through a habi-
tat switch/tipping point (for c ≥ cswitch)), it means that, from the start of the
transient trajectory, it is attracted by the new equilibrium Z∗ beyond the death
valley (Z∗ < −Z∗

spec < −Zdeath valley). Thus, the switch occurs and forces the
mean trait Z(t) to cross the death valley without stopping. In our determinis-
tic model, this leads to dynamics of evolutionary rescue as the metapopulation
manages to have its mean trait exiting the death valley before going extinct. The
metapopulation then eventually bounces back primarily in the refugium. How-
ever, if selection is above a threshold depending on the migration rate denoted
g̃(m), the possibility of switching between habitats occurs within the death valley
(0 < Zswitch < Zdeath valley; see Fig. 3c). So, if the environmental speed c is such
that cdeath valley := F c=0(Zdeath valley) ≤ c ≤ cswitch, the metapopulation is trapped
at a stable equilibrium within the death valley without having the possibility to
switch habitats, and goes extinct (see Fig. 4f for an illustration). The analytical
expression for cdeath valley is given by (see Appendix Appendix C for the derivation):

cdeath valley = 2gZdeath valley

 2
Z2

death valley + 1 + m−1
g

− 1
 . (3)

3.3 Lagging behind the refugium: connecting to the single-
habitat models

From the previous section, if c ≥ cswitch, the metapopulation switches from lagging
behind the native habitat (0 < Z∗ < Z∗

spec < 1) to lagging behind the refugium
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(Z∗ < −1 < Z∗
spec). The two configurations are not symmetrical. In the former sit-

uation, the metapopulation’s mean trait is between the two local optima, so the situa-
tion is a compromise between adapting to the native habitat or the refugium. On the
contrary, in the later situation, adaptation to the native habitat is really poor and the
metapopulation relies entirely on the refugium. It is therefore reasonable to assume that
the ratio between the subpopulation sizes reflect this: ie ρ∗ = N∗

2
N∗

2
≪ 1 (this is hinted by

the monotony of Z 7→ ρ(Z) with quadratic selection functions, see Appendix E). Using
this in the right-hand side of the second line of S leads to an approximation of the lag
of Z∗ behind the refugium’s optimum (−1):

−1 − Z∗ ≈
≤

c

2g
. (4)

Simulations suggest that this approximation is quite accurate, as the native habitat’s
influence on the metapopulation has almost completely faded, and the analysis now
connects to the single-habitat framework, in which the lag is exactly (4) (note that in
the timescale that is considered here, the population variance in trait is scaled to 1).

3.4 Critical speed for the metapopulation’s extinction
A crucial quantity in single-habitat models of adaptation to an environmental shift is
the critical speed for persistence, below which the environmental changes slowly enough
for the population to adapt and persist, and above which it changes too fast and the
population goes extinct. In my two-habitats framework, persistence is not as clear-cut,
as was pointed in the before-to-last section, where intermediate environmental speeds
led to extinction. Instead, I use here the critical speed for extinction of the population
cextinct as the smallest speed such that ∀c ≥ cextinct, the population goes extinct at
equilibrium. In this section, I explicit cextinct.

To do so, I rely once more on the analysis of viability under a stable environment
in the Section 3.2 of [Dekens 2022]. It indicates that there exists a lower bound that I
call Zdeath plain below which the metapopulation’s mean trait Z always leads to negative
growth rates at low density (leading to extinction), where:

Zdeath plain = −

√√√√ (g + 1 − m)
g

+
√

1
g2 [m2 − 4g (m − 1)].

This lower bound Zdeath plain < 0 defines a corresponding environmental speed cdeath plain :=
F c=0(Zdeath plain) whose analytical expression reads (see a proof in C):

cdeath plain = 2gZdeath plain

 2
Z2

death plain + 1 + m−1
g

− 1
 . (5)

Moreover, there exists a selection threshold depending on the migration rate ĝ(m) > 1
such that cswitch ≤ cdeath plain below and conversely above. Two cases can happen:

1. if g ≤ ĝ(m), for c ∈ [cswitch, cdeath plain], the metapopulation switches to the
refugium and lags behind the local optimum, but closely enough that it man-
ages to persist (see Fig. 3a, Fig. 3b and Fig. 3c). If c ≥ cdeath plain, the lag in
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(a) g = 0.7 (b) g = 0.7

(c) g = 1.1 (d) g = 1.1

(e) g = 1.4 (f) g = 1.4

(g) g = 1.8 (h) g = 1.8

Figure 4: Equilibrium mean trait Z∗ (left panel) and metapopulation size
N∗ (right panel) as functions of the environmental speed c (x-axis), for
increasing selection strengths corresponding to the ones used in Fig. 3 (top
to bottom: g = 0.7, 1.1, 1.4, 1.8 ; with m = 0.5). Curves correspond to the
analytical solution of Eq. (S) (green in the native habitat, blue in the refugium), and
the dots are given by simulated numerical resolutions of Eq. (7). The vertical ticks in the
left panel’s figures indicate cswitch (blue), cdeath plain (crimson) and cdeath valley (orange).
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the refugium after the switch is too large and extinction occurs. Therefore, in
this case, the critical speed for extinction is cdeath plain (see Fig. 4b, Fig. 4d and
Fig. 4f). However, for some values of g, extinction can also occur for intermediate
environmental speeds that are lower than the critical speed cdeath plain. Indeed,
there exists a intermediate selection threshold g̃(m) < ĝ(m) beyond which the
switch occurs within the death valley (0 < Zswitch < Zdeath valley, see Fig. 3c). This
means that for intermediate speed c ∈ [cdeath valley, cswitch], the metapopulation is
trapped within the death valley without the possibility to switch, and goes extinct
(see Fig. 4f).

2. if g ≥ ĝ(m) > 1, we have cdeath plain < cswitch. Moreover, I show in Appendix D
that, when g ≥ 1, the following inequality always holds: cdeath valley < cdeath plain.
Therefore, as in this case the switch always occurs within the death valley (0 <
Zswitch < Zdeath valley), for c ∈ [cdeath valley, cswitch], the metapopulation is stuck
within the death valley without the opportunity to switch and goes extinct sim-
ilarly as in the first case. However, in that case, when c ≥ cswitch and the switch
toward the refugium does occur, it brings the population to a equilibrium where
the lag with respect to the refugium’s optimum is too large and provokes extinction
(see Fig. 3d). Therefore, in this case, the critical speed for extinction is cdeath valley
(see Fig. 4h).

From what came above, the critical speed of environmental change displays two key
features in this two-patch framework . It is discontinuous at g = ĝ(m), because it
passes from cdeath plain (g ≤ ĝ(m)) to cdeath valley (g > ĝ(m)), with cdeath valley < cdeath plain.
Consequently, it is also non-increasing with respect to increasing selection (see Fig. 5).

4 Discussion
Summary In this work, a two-patch quantitative genetic model with moving optima
was used to analyse the eco-evolutionary dynamics of a sexually reproducing specialist
species in a fragmented and changing environment comprising of its native habitat and
a refugium. In a regime where the within-family variance is small, a separation of eco-
logical and evolutionary time scales allows to reduce the complexity of the analysis to a
phase-line study of the selection gradient. First, I show that small enough environmental
speeds can actually be beneficial in terms of abundance thanks to a beneficial reduction
of specialization. Moreover, for larger environmental speeds, there exists an evolution-
ary tipping point corresponding to a sharp habitat switch from the native habitat to the
refugium. With strong selection, this shift brings the population to cross a death valley
between the two habitats’ optima in the trait space, where the population size momen-
tarily plummets and eventually rebounds when it reaches across, leading to evolutionary
rescue. I finally compute the critical speed of environmental speed above which the pop-
ulation always goes extinct. This critical speed does not need to be increasing and can
be discontinuous with respect to increasing selection strengths, especially with strong
local selection.
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Figure 5: Analytical predictions of the critical speed of environmental change
(black line) with increasing selection (x-axis), with m = 0.5. The coloured
lines represent the different particular speeds that the analysis has identified and come
from the analytical formula (3) for cdeath valley and (5) for cdeath plain and the identification
of cswitch given in Section 3.2. The three vertical dotted lines delineate four selection
regions corresponding to the ones illustrated in Fig. 3 and Fig. 4 (g ≤ 1; 1 < g ≤ g̃(m));
g̃(m) < g ≤ ĝ(m)) and g > ĝ(m)).
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Critical speed of environmental change: fragmented spatial structure versus
single-habitat. In Section 3.4, I derive the critical speed of environmental change
above which the population goes extinct because it is too maladapted as a whole. Be-
cause of the fragmented nature of the two-patch environment available to the focal
population and the existence of the refugium, this critical speed differs in a number
of features as compared to the one classically derived in a single-habitat framework
with quadratic selections (Lynch and Lande 1993; Bürger and Lynch 1995; Kopp and
Matuszewski 2014).

First, here, the analysis shows that increased selection strength does not always
equate to the population tracking the changing environment more efficiently, as it is the
case in a single habitat with a quadratic selection function. More precisely, above a se-
lection threshold, the critical speed of environmental change lowers down from cdeath plain
to cdeath valley in a discontinuous fashion. This is due to the fact that with strong selec-
tion, the population can stay trapped within the rift between the habitats without the
possibility to switch. A related result (even though it does not impact the critical speed
of environmental speed) is that the population can go extinct for intermediate speeds
of environmental change, which does not occur with a single-habitat framework.

Moreover, one could think that, because of the existence of the refugium, the popula-
tion would be sheltered from extinction for larger environmental speeds than the critical
speed derived in the analogous single-habitat models. Indeed, once the population has
switched to lag behind the refugium, its adaptation is almost entirely determined by
the dynamics within the refugium, as the migrants sent to the native habitat are too
maladapted to make any significant contribution by gene flow. Therefore, the resulting
dynamics are then very similar to the ones derived in the single-habitat framework,
except for one major difference: the cost of dispersal. Due to the constant migration
between habitats, there is a constant loss of population from the refugium that is not
replenished. Thus, for a given lag in the refugium close to the critical one, the corre-
sponding metapopulation size, approximated by the population size in the refugium, is
actually smaller than without migration. Consequently, the critical environmental speed
given by the present two-patch model is always lower than in single-habitat models.

Fragmented spatial structure with moving optima versus to time-shifting
environmental gradient in a continuous space. It would be tempting to use
the present analysis as a literal stepping stone, by adding patches in a linear fashion to
connect asymptotically with the continuous space models of adaptation to a time-shifting
environmental gradient. However, I think that some cautions are needed when passing at
the limit, because the space granularity is instrumental to obtain the qualitative results
of this study, especially with strong selection. Indeed, with strong selection, a death
valley of negative growth rate at low density appears between the two habitats, which is
a key feature of fragmented environments whose translation in the continuous space limit
is all but clear. Nevertheless, here, it underpins a significant part of the most original
results, as the sharp dynamics of evolutionary rescue, but also the non-monotonicity of
extinction (which can occur at lower environmental speeds than the critical one) and
the discontinuous nature of the critical speed of environmental change with respect to
increasing selection strength. The last two results differ from the results of quantitative
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genetics models considering an environmental gradient shifting at a constant speed in a
continuous space setting (Pease, Lande, and Bull 1989; Polechová, Barton, and Marion
2009; Duputié et al. 2012; Aguilée et al. 2016; Alfaro, Berestycki, and Raoul 2017).
Indeed, all of them conclude that there exists a critical speed under which the population
always persist and beyond which it goes extinct. Note that there exists some variation
due to the particular framework of each studies: for example, the mean trait speed can
be lower than the environmental speed (which does not happen here) due to long range
pollen dispersal (Aguilée et al. 2016) or in the case of a steep environmental gradient
leading to a limited range equilibrium (Polechová, Barton, and Marion 2009). However,
in both cases, it remains continuous with respect to increasing selection strength at the
transition between qualitatively different equilibria.

That said, one can draw some qualitative parallels between this study and the frame-
work of [Polechová, Barton, and Marion 2009]. Indeed, their authors show that increas-
ing selection intensity (all else being held equal), therefore increasing the steepness of
the environmental gradient, leads from a uniform range equilibrium (where the species
invade the whole space and tracks the environmental gradient uniformly in space, with
the same speed) to a limited range equilibrium (where the species only only significantly
persists in a bounded spatial range and tracks the environmental gradient at a lower
speed). This result is an extension of the one obtained in the study of [Kirkpatrick and
Barton 1997] with stable environment (see also Mirrahimi and Raoul 2013; Raoul 2017).
This echoes the passage from a generalist species equilibrium when selection is weak rel-
ative to migration (g ≤ 1 + 2m) to a specialist species equilibrium when the converse
holds (g > 1 + 2m) in the stable environment framework of [Dekens 2022] (note that,
here, the study exclusively focuses on the parameter range g > 1 + 2m so on specialist
species). However, as pointed out, the major difference is that the fragmented nature
of the environment allows for sharp dynamics to occur that does not seem to exist in
the continuous space setting. To reconcile the two frameworks will require additional
technical work.

Evolutionary tipping points in dynamics of structured populations. In Sec-
tion 3.2, the analysis identifies tipping points in the dynamics of the population’s mean
trait that lead to sharp habitat switches. When the environmental speed is below a
threshold cswitch, the population’s mean trait lags behind the native habitat’s optimum,
but is closer from it than from the refugium’s optimum. Therefore, the bulk of the popu-
lation is still located in the native habitat. (Just) Above the threshold, the population’s
mean trait shifts abruptly to lag behind the refugium’s optimum, far from the native
habitat’s one. Consequently, the population is suddenly relatively better adapted to the
refugium. This sudden change of niche is difficult to reverse, because lowering down
the environmental speed just below the threshold will not restore the initial configura-
tion, as the population remains "trapped" in the refugium’s basin of stability. Restoring
the population in its native habitat actually would require to completely reverse the
environmental change, with the opposite speed (cswitch → −cswitch.

Mathematically, one can visualize and predict such a tipping point thanks to the
phase line study described in Section 3.2. A tipping point corresponds to a local maxi-
mum of the selection gradient (in our case the rightmost behind the initial mean trait).
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Assuming the selection gradient is smooth and non-constant, a sufficient analytical con-
dition for the existence of a local maximum of the selection gradient is the co-existence
of multiple equilibria (located where the selection gradient cancels). This is in agree-
ment with what occurs in a single-habitat framework under changing environment with
non-quadratic selection functions for which maladaptation stabilizes away from the op-
timum ([Osmond and Klausmeier 2017], [Garnier et al. 2022]). Indeed, in this case, the
selection gradient under stable environment cancels in the optimum trait and converges
to 0 in −∞. Heuristically, this means that the situation with an infinite lag is an asymp-
totic equilibrium. Therefore, between −∞ and the optimal trait, the selection gradient
reaches a local maximum, which corresponds to the evolutionary tipping point identi-
fied in the aforementioned studies. In these cases, past the tipping point, the lag grows
indefinitely, so the population becomes extinct abruptly. In the present work, this does
not occur, because the local selection functions are quadratic. Past the tipping point,
the mean trait jumps on the stable branch of the selection gradient near the refugium’s
optimum, so the population switches habitats abruptly and the lag stabilizes behind
the refugium’s optimum. Moreover, here, either the jump brings the population to a
viable state, or it was already extinct for environmental speeds just below the tipping
point. So, in the present case, the evolutionary tipping point does not lead to an abrupt
extinction, only to lagging behind the refugium’s optimum. However, this lack of ex-
tinction following a tipping point here might strongly be linked to the particular choice
of quadratic selection functions.

To summarize, this work suggests that evolutionary tipping points can arise in stage-
structured populations’ dynamics because of non-monotonic selection gradients, even
with quadratic selection functions. This feature might be facilitated by naturally exist-
ing feedback loops between demography and evolution in these kind of models. Indeed,
these lead to selection gradients towards integrative optimal traits that depend on the
demographic state of the system, itself a function of the evolutionary state. For exam-
ple, in the present work, this optimal trait is ρ(Z)− 1

ρ(Z)
ρ(Z)+ 1

ρ(Z)
, where ρ(Z) = N2(Z)

N1(Z) is the ratio
between the two subpopulation sizes when the metapopulation mean trait is Z. A com-
parison with the analogous optimal trait obtained in the age-structured model [Cotto,
Sandell, et al. 2019] suggests a correspondence between the elasticities quantifying the
sensitivity of the population growth rate with respect to given transitions in their life
cycle (introduced in Barfield, Holt, and Gomulkiewicz 2011) and the demographic terms
ρ(Z) and 1

ρ(Z) here. In our model, these quantities might thus be interpreted as being
proportional to the elasticities linked to migration from one patch to the other. As
such, they ponder the two local optima to build an integrative optimal trait for the
global adaptation the metapopulation. Therefore, linking evolutionary tipping points
and adaptation of stage-structure populations might come down to understanding the
influence of such integrative optimal traits that account for different components of
fitness on the co-existence of multiple equilibria in the system.

Constrains in niche evolution and evolutionary rescue. The phenomenon of
evolutionary rescue that is highlighted in Section 3.2 occurs because of the interplay be-
tween the sharp habitat switch and the existence of a death valley between the two local
optima. This death valley is an area of the trait space (in our case, around Z = 0) where

20



the growth rate at low density is negative and occurs when local stabilizing selection
functions decline fast enough away from the optima. When the environmental speeds
exceeds the threshold corresponding to the habitat switch, the still positive mean trait
is attracted to an equilibrium with a negative mean trait. Therefore, during the habitat
switch, it crosses the death valley. As soon as it enters it, the population size declines
exponentially as the mean trait keeps lowering down to reach the lower bound of the
death valley, where the growth rate at low density becomes positive again, which leads
to a rebound of the population. This death valley connects with the concept of "funda-
mental niche limits" in moving optimum models highlighted in the review of [Klausmeier
et al. 2020]. In a changing environment, it might happen that the species adapt not
only by shifting its spatial distribution, but also by shifting its niche, like in [Aguilée
et al. 2016]. However, it might happen that the niche is also biologically constrained,
defining regions of positive and negative growth rate at low density (the latter in our
case comprising the death valley). If the adaptive trajectory crosses such a region, the
population size plummets, but can be saved if if comes back into the fundamental niche
(see Fig. 6 of Klausmeier et al. 2020 for an illustration). It is noteworthy to point
out that this phenomenon of evolutionary rescue, as in our case, does not rely on the
advent of beneficial de novo mutations, rather on standing genetic variation within the
population prior to entering the death valley. This standing genetic variation is due to
the redundancy of the highly polygenic genetic architecture with numerous small effects
that shift in frequency along the adaptive trajectory and segregates due to sexual repro-
duction. Moreover, the model I use here does not allow to directly study the trajectory
of the population within the death valley. In particular, the analysis does not allow to
quantify the speed with which the mean trait crosses the death valley versus the de-
cline of the population, which would inform on the probability of rescue. In fact, since
the framework used here is deterministic, rescue always occurs and the metapopulation
carries on, sometimes reaching a non-extinct equilibrium.

Limits of the model. The last paragraph introduces some of the limits of the model
presented in this paper. Although its deterministic features allow both to work with
clear assumptions in a well-defined framework and to derive clear-cut results, they are
not equipped to capture finer phenomena, in particular the ones where stochasticity
is central. To account for the influence of sampling effects and random demographic
fluctuations, I performed supplementary individual-based simulations (IBS) described in
Appendix F and compare their results with the analytical predictions of my model (see
Fig. 6). The first conclusion is that the results of the IBS are in excellent agreement with
the analytical predictions of the present model whenever the equilibrium state of the
population is either far from extinction, or definitely extinct. However, as the IBS are
subject to random demographic fluctuations, they give a more nuanced conclusion when
my model predicts that the population gets rescued to get through the death valley. In
fact, they show that the metapopulation does not get rescued in a significant part of
replicate simulations. However, in some replicate simulations, it does, and then the IBS
result in an equilibrium that is very close to the one my analysis predicted (see Fig. 6d).
The IBS give an estimation of the probability of rescue (which cannot be quantified by
my approach) and put in perspective the analytical predictions derived here: the latter
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describe the equilibrium well, conditional on the metapopulation getting rescued.
To take matters even further than accounting for the influence of demographic

stochasticity and sampling effects, one might focus on the central hypothesis of this
model, the one about the within-family segregational variance. A key feature that
makes the model analytically tractable is that it is fixed, therefore summarizing in one
parameter all the details of the underlying genetic architecture (the IBS I performed
make the same assumption in order to isolate the influence of population dynamics’
stochasticity). A first direct consequence is that this framework does not account for
the biological constraints that a finite genetic architecture imposes on the possible phe-
notypic range. The latter would be necessarily bounded and will be exceeded in the
long run by a never-ending shifting optimum, making it impossible for the population
to adapt without de novo mutations (connecting once again with the fundamental niche
limits of Klausmeier et al. 2020). Furthermore, it is known that in a finite population in
a stable environment, this segregational variance becomes eroded by inbreeding through
time (see Barton, Etheridge, and Véber 2017 for a quantification of the error that builds
up). This is presumably enhanced during rescue events, where the population goes
through a significant bottleneck, which is known to reduce the within-family genetic
variance severely (or conversely, increase the probability of identity). Whereas in our
model, the population picks up after an episode of rescue with the same segregational
variance, allowing it to persist in the long run in some cases by stabilizing its lag with
the refugium’s optimum, I presume that stochastic individual-based simulations with
explicit genetic architecture would show that an extinction debt can accumulate as a
result of maladaptation and the loss of genetic variance, dooming the population quite
soon after the rebound (relating to the concept introduced in Tilman et al. 1994). To
quantify both the probability of evolutionary rescue and the long-term consequences of
the loss of genetic variance would require to adopt a stochastic modellign approach with
an explicit genetic architecture.

Perspectives. As detailed above, a modelling choice that harbours the potential to
significantly change the qualitative results of moving optimum quantitative genetic mod-
els is the one about the (local) selection function. Indeed, for example, in the single-
habitat framework, [Osmond and Klausmeier 2017], Klausmeier et al. 2020 and Garnier
et al. 2022 highlight how choosing a selection function where maladaptation stabilizes
away from the optimum instead of quadratic selection functions where maladaptation
increases faster and faster away from the optimum leads to the occurrence of evolution-
ary tipping points. One can thus wonder how making a similar choices would alter the
results here and how to analyze a model with different selection functions. As a matter
of fact, the analytical steps used in this study (justification of the Gaussian approx-
imation of local trait distributions under small within-family variance and separation
of ecological and evolutionary time scales leading to the phase line study) are robust
to using other selection functions: I focused here on the quadratic case here because it
allows to derive explicit analytical results. With another choice of selection function, the
precise expression and properties of the phase line linked to the selection gradient will
depend on the particular choice and potentially lead to qualitatively different results.
However, the general method used here for analyzing the resulting phase line is also
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transferable to another one arising from a different selection gradient.
Besides, the major hypothesis underpinning the analysis and therefore the results

is that the within-family variance due to the segregation of the many small-effect loci
underlying the adaptive quantitative trait is small compared to the distance between
the local optima (but also more generally all the other parameters). This regime has
been the analytical frame of several studies modelling the trait inheritance with the
infinitesimal model (Calvez, Garnier, and Patout 2019; Patout 2020; Garnier et al. 2022;
Dekens 2022). It provides sufficient standing genetic variance for selection to act upon
to shift the population’s mean trait, albeit on a slower time scale than the ecological
dynamics governed by birth, death and migration processes, which allows one to justify
the Gaussian approximation of local trait distribution that is classical for quantitative
genetic models. As this hypothesis leads to the sharp dynamics presented in Section 3,
one could ask what would happen if one relaxes this assumption. Beyond a purely
theoretical question, this could have concrete implications for conservation purposes: in
the case of niche specialist species facing climate change, would it beneficial to try and
increase the standing genetic variance to promote local adaptation and would it make it
more resilient to greater environmental speeds? A further study is required to address
this issue.

Data availability
The codes to reproduce the figures of this artile are available at https://github.com/ldekens/two-
patch-model-changing-environment.
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A Detailed derivation of the limit system S

Dimensionless system In the regime where the within-family variance σ2 is small
compared to the difference between the local optima (θ2 − θ1 = 2θ), it is convenient
to define the following rescaled variables and parameters to get a dimensionless system
from (2):

ε :=
√

2σ

θ
, t := ε2rt, z := z − ct

θ
, c := c

ε2rθ
, g := gθ2

r
, m := m

r
,

nε,i(t, z) := κ

r
ni(t, z), Nε,i(t) = κ

r
Ni(t),

(6)

and the infinitesimal model reproduction operator Bε[nε,i](t, z) = Bσ[ni](t, z). Rescal-
ing (2) according to (6) yields the following system:



ε2∂tnε,1(t, z) − ε2c∂znε,1(t, z) = Bε[nε,1](t, z) − g(z + 1)2nε,1(t, z) − Nε,1(t)nε,1(t, z)
+m (nε,2(t, z) − nε1(t, z)) ,

ε2∂tnε,2(t, z) − ε2c∂znε,2(t, z) = Bε[nε,2](t, z) − g(z − 1)2nε,2(t, z) − Nε,2(t)nε,2(t, z)
+m (nε,1(t, z) − nε,2(t, z)) .

(7)
The change in the trait variable z := z−ct

θ
means that we place ourselves in the moving-

window frame which moves at the same speed as the environment. In this referential,
the local optima are fixed, but the environmental shift’s action appears in an additional
advection term (where the factor ε2 comes from the change in the time variable):

∂tni(t, z) = ε2∂tnε,i(t, z) − ε2c∂znε,i(t, z) .
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Moment-based system in the regime of small within-family variance. In the
regime of small within-family variance, [Dekens 2022] showed that the moment-based
system obtained from integrating (7) is closed, as the trait distributions nε,1 and nε,2 are
approximately Gaussian, of small variance 2ε2. Its derivation is similar as in [Dekens
2022], except for the advection term −c∂znε,i due to the changing environment, whose
integration I detail below.

As the local distributions nε,i are expected to stay concentrated, the speed of the
environmental change does not impact directly the dynamics of the subpopulations sizes
at the main order, as

∫
R

∂znε,i(t, z)dz ≈ 0. However, it does impact directly the dynamics
of the local mean traits, since one can integrate by parts to obtain

1
Nε,i

∫
R

cz∂znε,i(t, z)dz ≈ − c

Nε,i

∫
R

nε,i(t, z)dz = −c.

Due to the last computation, the moment-based system obtained from integrating (7)
here yields

ε2 dNε,i

dt
= [1 − Nε,i(t) − g(zε,i(t) − (−1)i)2 − gε2] Nε,i(t) + m

(
Nε,j(t) − Nε,i(t)

)
+ O(ε4),

ε2 dzε,i

dt
= −ε2c + 2ε2g((−1)i − zε,i(t)) + mNε,j(t)

Nε,i(t) (zε,j(t) − zε,i(t)) + O(ε4).
(8)

Separation of time scales. Introducing the same slow-fast variables δε := zε,2−zε,1
2ε2

(trait discrepancy between habitats) and Zε := zε,2+zε,1
2 (average trait in the metapop-

ulation) and denoting by ρε > 0 the ratio between subpopulation sizes: ρε := N2,ε

N1,ε
as in

[Dekens 2022], one can obtain the following slow-fast system from (8):


ε2 d[Nε,1,Nε,2,δε]

dt
= G(Zε, [Nε,1, Nε,2, δε]) + ε2νN,ε(t),

dZε

dt
= −c + 2g

[
m
2g

δε

(
ρε − 1

ρε

)
− Zε

]
+ ε2νZ,ε(t),

(Zε(0), [Nε,1, Nε,2, δε](0)) =
(

Z∗
spec,

[
N∗

1,spec, N∗
2,spec, δ∗

spec := 2g
m

(
ρ∗

spec + 1
ρ∗

spec

)−1
])

.

(Sε)
The function G and the residues νN,ε and νZ,ε are defined identically as in [Dekens 2022]
(Eq. 18).

Remark A.1 (Direct influence of the environmental change in Sε). The fast dynamics
of the subpopulation sizes encoded by G (first line of (Sε)) are independent from the
environmental shift, because the latter only directly impacts the dynamics on the local
mean traits in (8) (second line). This results in the term −c in the slow dynamics on
the average trait Zε (second line of (Sε)).

Remark A.2 (Initial conditions: asymmetrical equilibrium for specialists of habitat
2.). The initial state of the system

(
Z∗

spec,
[
N∗

1,spec, N∗
2,spec, δ∗

spec

])
has two particularities

that follow its definition in Proposition 4.2 in [Dekens 2022]. First, it describes a spe-
cialist species that is mainly adapted to the native habitat (Z∗

spec > 0 is close to its local
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optimum) and mainly inhabits this habitat (N∗
2,spec is much larger than N∗

1,spec, which
means that ρ∗

spec > 1). Second, the initial specialist population hereby described is at
equilibrium under a stable environment (c = 0). This means that it both cancels the fast
dynamics of the subpopulation sizes represented by the function G in Sε:

G
(
Z∗

spec,
[
N∗

1,spec, N∗
2,spec, δ∗

spec

])
= 0,

and the slow dynamics of the average trait Zε (right-hand side of the second equation of
Sε at the main order when c = 0):

m

2g
δ∗

spec

(
ρ∗

spec − 1
ρ∗

spec

)
− Z∗

spec =
ρ∗

spec − 1
ρ∗

spec

ρ∗
spec + 1

ρ∗
spec

− Z∗
spec = 0. (9)

The two previous remarks justifies the separation of time scales, as it relies on the
local stability of the fast dynamics, which is the same as in [Dekens 2022]. Therefore,
the time scales between demographic dynamics and trait dynamics can be separated
when ε → 0, as stated by Theorem 3.1 of [Dekens 2022], whereby the solutions of (Sε)
converge to the solutions (Z(t), [N1(t), N2(t), δ(t)]) of the following system:

G(Z(t), [N1(t), N2(t), δ(t)]) = 0,
dZ
dt

= −c + 2g
[

m
2g

δ(t)
(
ρ(t) − 1

ρ(t)

)
− Z(t)

]
(Z(0), [N1, N2, δ](0)) =

(
Z∗

spec,
[
N∗

1,spec, N∗
2,spec, δ∗

spec

])
.

(S0)

There are two advantages to S0. First, due to the separation of time scales, the de-
mographical dynamics are instantly resolved for any current value of the average trait
in the metapopulation Z(t) (as the first line of S0 is an algebraic equation, not a dif-
ferential one). Second, the metapopulation is monomorphic, which is revealed by the
fact that the dynamical variable Z(t) is the average trait in the metapopulation. This
is because the gene flow by migration occurs at the fast time scale, as opposed to the
shift of local mean traits due to selection. As a result, the two local mean traits merge
on the fast time scale into Z(t), which then moves slowly according to the gradient of
selection represented by the right-hand side of the second line of S0. More precisely,
the latter pushes toward an integrative optimum m

2g
δ(t)

(
ρ(t) − 1

ρ(t)

)
resulting from the

demographical balance of the system.
Moreover, the analysis done in [Dekens 2022] allows to further simplify the system

S0. It shows that the population can actually be fully described by its average mean
trait Z and the ratio between subpopulations sizes ρ = N2

N1
. Their dynamics are given

by S.

B Metapopulation size’s initial increase
In this appendix, I show that d(N1+N2)

dt
(t = 0) > 0, which implies that, when the en-

vironment starts changing, the metapopulation size increases. The intuition is that at
the start of environmental change, the initially deserted refugium gets more suited to
support the species as the native habitat becomes less suited. However, because of the
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quadratic selections functions, the gain of quality in the refugium is greater (initial se-
lection gradient of 2g(Z∗

spec +1) that the loss of quality in the native one (initial selection
gradient of −2g(Z∗

spec − 1).

Proof. Following the notations of Lemma 1 in Dekens 2022, I define ρ∗ := N∗
2

N∗
1

the ratio
of subpopulation sizes and the following polynomial form: Pz(X) := X3 − f1(z)X2 +
f2(z)X − 1, with f1(z) := 1 + g

m
(z + 1)2 − 1

m
and f2(z) := 1 + g

m
(z − 1)2 − 1

m
.

From Lemma 1 in [Dekens 2022], for Z∗ ∈ R, [N∗
1 , N∗

2 , δ∗] is a fast equilibrium at
the level Z∗ (ie. G(Z∗, [N∗

1 , N∗
2 , δ∗]) = 0 with (N∗

1 , N∗
2 , δ∗) ∈

(
R∗

+

)2
× R=) if and

only if PZ∗ (ρ∗) = 0 and ρ∗ > max(0, f1(Z∗)). In this case, (N∗
1 , N∗

2 , δ∗) is given by(
m(ρ∗ − f1(Z∗)), m

(
1
ρ∗ − f2(Z∗)

)
, 2g

m(ρ∗+ 1
ρ∗ )

)
.

The system (S0) is therefore equivalent to
PZ∗ (ρ(t)) = 0, ρ(t) > max(0, f1(Z(t))),
dZ(t)

dt
= −c + 2g

[
ρ(t)2−1
ρ(t)2−1 − Z(t)

]
,

(Z∗(0), ρ∗(0)) =
(

Z∗
spec,

N∗
2,spec

N∗
1,spec

)
.

(10)

Hence, the derivative of the metapopulation size à time t = 0 is given by

d [N∗
1 + N∗

2 ]
dt

(t = 0) = d [N∗
1 + N∗

2 ]
dZ∗ (Z∗

spec) × dZ∗

dt
(t = 0)

= −c × d [N∗
1 + N∗

2 ]
dZ∗ (Z∗

spec),

thanks to (9).
It is therefore sufficient to show that d[N∗

1 +N∗
2 ]

dZ∗ (Z∗
spec) < 0. Recalling that (N∗

1 , N∗
2 )

is given by
(
m(ρ∗ − f1(Z∗)), m( 1

ρ∗ − f2(Z∗))
)

where PZ∗(ρ∗) = 0, we deduce that:

d [N∗
1 + N∗

2 ]
dZ∗ (Z) = m

d
[
ρ∗ + 1

ρ∗

]
dZ∗ (Z) − f ′

1(Z) − f ′
2(Z)


= m

(
ρ∗′(Z)

(
1 − 1

ρ∗(Z)2

)
− f ′

1(Z) − f ′
2(Z)

)

= m

(
−∂ZPZ(ρ∗(Z))

P ′
Z∗(ρ∗(Z))

(
1 − 1

ρ∗(Z)2

)
− f ′

1(Z) − f ′
2(Z)

)
,

where I used that ρ∗′(Z) × P ′
Z(ρ∗(Z)) + ∂ZPZ(ρ∗) = 0 (since PZ(ρ∗(Z)) = 0) and that

P ′
Z(ρ∗(Z)) > 0, since ρ∗(Z) is the largest root of PZ (and has multiplicity one).

Moreover, because PZ(X) = X3 − f1(Z)X2 + f2(Z)X − 1 with f1(z) := 1 + g
m

(z +
1)2 − 1

m
and f2(z) := 1 + g

m
(z − 1)2 − 1

m
, we obtain that

d [N∗
1 + N∗

2 ]
dZ∗ (Z) = m

(
f ′

1(Z)ρ∗(Z)2 − f ′
2(Z)ρ∗(Z)

P ′
Z∗(ρ∗(Z))

(
1 − 1

ρ∗(Z)2

)
− f ′

1(Z) − f ′
2(Z)

)

= 2g(Z + 1)ρ∗(Z)2 − 2g(Z − 1)ρ∗(Z)
P ′

Z∗(ρ∗(Z))

(
1 − 1

ρ∗(Z)2

)
− 4gZ.
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Since the computation is perfomed at Z = Zspec that satisfies Zspec = ρ∗2(Zspec)−1
ρ∗2(Zspec)+1 , we

obtain that

d [N∗
1 + N∗

2 ]
dZ∗ (Zspec) = 4g

 ρ∗4(Zspec)
ρ∗2(Zspec)+1 + ρ∗(Z)

ρ∗2(Zspec)+1

P ′
Zspec(ρ∗(Zspec))

(
ρ∗2(Zspec) − 1

ρ∗2(Zspec)

)
− Zspec


= 4gZspec

[
ρ∗3(Zspec) + 1

P ′
Zspec(ρ∗(Zspec))ρ∗(Zspec)

− 1
]

= 4gZspec

P ′
Zspec(ρ∗(Zspec))ρ∗(Zspec)

[
ρ∗3(Zspec) + 1 − P ′

Zspec(ρ
∗(Zspec))ρ∗(Zspec)

]
.

Since Zspec > 0 by hypothesis, that ρ∗ = N∗
2

N∗
1

> 0 is the largest root of PZ with multiplicity
one (see lemma 2 of Dekens 2022) and that therefore P ′

Zspec(ρ∗(Zspec)) > 0, it is sufficient
to determine the sign of the term within brackets to conclude:

ρ∗3(Z) + 1 − P ′
Z(ρ∗(Z))ρ∗(Z) = ρ∗3(Z) + 1 − 3ρ∗3(Z) + 2f1(Z)ρ∗2(Z) − f2(Z)ρ∗(Z)

= −ρ∗3(Z) + f1(Z)ρ∗2 − PZ(ρ∗(Z))
= −ρ∗2(Z)(ρ∗ − f1(Z))

= −ρ∗2(Z)N∗
1

m
< 0.

Hence the result.

C Derivation of cdeath valley and cdeath plain

Explicit analytical expressions for cdeath valley and cdeath plain are available in the parameter
range of interest ([1 + 2m < 5g] ∩ [m2 > 4g(m − 1)]). One can compute that:

cdeath plain = 2gZdeath plain

 2
Z2

death plain + 1 + m−1
g

− 1
 ,

with

Zdeath plain = −

√√√√ (g + 1 − m)
g

+
√

1
g2 [m2 − 4g (m − 1)] < 0.

Similarly, when g > 1:

cdeath valley = 2gZdeath valley

 2
Z2

death valley + 1 + m−1
g

− 1
 ,

with

Zdeath valley =

√√√√ (g + 1 − m)
g

−
√

1
g2 [m2 − 4g (m − 1)].
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Proof. At a dominant trait Z∗, the fast equilibria are defined by G(Z∗Ȳ ∗) = 0, which
is solved by (Lemma 1, Section 3.2 of [Dekens 2022])

(N∗
1 , N∗

2 , δ∗) =
m[ρ(Z∗) − f1(Z∗)], m ρ(Z∗) [ρ(Z∗) − f1(Z∗)], 2g

m
(
ρ(Z∗) + 1

ρ(Z∗)

)
 ,

(11)
where ρ(Z∗) is the largest (positive root) of the cubic polynomial

PZ∗(X) = X3 − f1(Z∗)X2 + f2(Z∗)X − 1,

and
f1(Z∗) = 1 + g

m
(Z∗ + 1)2 − 1

m
, f2(Z∗) = 1 + g

m
(Z∗ − 1)2 − 1

m
.

(11) implies that the subpopulations sizes N∗
1 and N∗

2 are positive if and only if f1(Z∗) <
ρ(Z∗). Therefore, the limit of viability occurs for Z∗ such that f1(Z∗) = ρ(Z∗). As ρ(Z∗)
is the largest root of PZ∗ , the latter leads to 0 = PZ∗(f1(Z∗)) = f1(Z∗)fZ(Z∗)−1, whose
roots are ±Zdeath plain and ±Zdeath valley. Consequently, the lowest limit of viability occurs
at Z∗ = Zdeath plain < 0. The corresponding critical speed over which the population
goes extinct reads (renaming Zdeath plain as ZDP for the computation)

cdeath plain = F c=0(ZDP ) = 2g

ρ(ZDP ) − 1
ρ(ZDP )

ρ(ZDP ) + 1
ρ(ZDP )

− ZDP


= 2g

f1(ZDP ) − 1
f1(ZDP )

f1(ZDP ) + 1
f1(ZDP )

− ZDP

 = 2g

(
f1(ZDP ) − f2(ZDP )
f1(ZDP ) + f2(ZDP ) − ZDP

)

= 2g

(
4gZDP

2m − 2 + 2g (Z2
DP + 1) − ZDP

)
= 2gZDP

 2
Z2

DP + 1 + m−1
g

− 1
 .

The same applies to cdeath valley and Zdeath valley.

D Proof that cdeath valley < cdeath plain for all g > 1
Suppose that g > 1 in addition to the parameter range of interest ([1+2m < 5g]∩ [m2 >
4g(m − 1)]). I rename here Zdeath plain and Zdeath valley as ZDP and ZDV respectively, for
the length of this proof. I recall that the limit traits for the viability of the population
ZDV > 0 > ZDP are defined by their squares being the two real roots of the polynomial
X2 −SX +P , with S = 2

(
1 + 1−m

g

)
< 4 and P =

(
1 − 1

g

) (
1 + 2m−1

g

)
(in the considered

parameter range, Proposition 3.2 in [Dekens 2022] ensures that the discriminant S2 −4P
is positive). Moreover, standard algebra implies that S = Z2

DV + Z2
DP > 0 and P =

Z2
DV Z2

DP > 0. For the sake of clarity, I gather all the inequalities that will be used in
the rest of the proof.

4 > S = Z2
DV + Z2

DP > 0, P = Z2
DV Z2

DP > 0, S2 > 4P, ZDV > 0 > ZDP .
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Using the expression of cdeath plain and cdeath valley derived in Appendix C, one can compute
(defining a = 2 − S

2 ):

cDP − cDV

2g
= ZDV − ZDP + 2ZDP

Z2
DP + a

− 2ZDV

Z2
DV + a

= (ZDV − ZDP )(Z2
DV + a)(Z2

DP + a) + 2ZDP (Z2
DV + a) − 2ZDV (Z2

DP + a)
(Z2

DV + a)(Z2
DP + a)

= ZDV − ZDP

(Z2
DV + a)(Z2

DP + a)
[
(Z2

DV + a)(Z2
DP + a) − 2

√
P − 2a

]
= ZDV − ZDP

(Z2
DV + a)(Z2

DP + a)
[
P + a2 + Sa − 2

√
P − 2a

]
= ZDV − ZDP

(Z2
DV + a)(Z2

DP + a)

[(
2 − S

2

)
S

2 − (2 −
√

P )
√

P
]

.

Since ZDV > 0 > ZDP , cDP − cDV has the sign of
[(

2 − S
2

)
S
2 − (2 −

√
P )

√
P
]
. Defining

the function f : x 7→ x(2 − x), it remains to show that f
(

S
2

)
> f(

√
P ).

However, on the one hand, from the inequalities above,
√

P < S
2 . On the other hand,

from the expression of P and S, one can compute

P =
(

1 − 1
g

)(
1 + 2m − 1

g

)

=
(

1 + m − 1
g

− m

g

)(
1 + m − 1

g
+ m

g

)

=
(

1 + m − 1
g

)2

− m2

g2

<

(
1 + m − 1

g

)2

=
(

2 − S

2

)2
.

As 0 < S < 4, we obtain that
√

P < min
(

S
2 , 2 − S

2

)
. Hence, since f is strictly increasing

on [0, 1], that either S
2 ≤ 1 or 2 − S

2 ≤ 1, and that f
(

S
2

)
= f

(
2 − S

2

)
, we deduce that

f
(√

P
)

< f
(

S
2

)
, which concludes the proof.

E Monotony of ρ(z)
Let z be such that ρ(z) is the only positive root of Pz(X) = X3 − f1(z)X2 + f2(z)X − 1
greater than f1(z), so that viability is ensured (see Dekens 2022 for details). From
Pz(ρ(z)) = 0, we get

ρ′(z) = f ′
1(z)ρ(z) − f ′

2(z)
P ′

z(ρ(z)) . (12)

As ρ(z) is the largest root of Pz (see Dekens 2022), P ′
z(ρ(z)) > 0. Therefore, ρ′(z) has

the sign of f ′
1(z)ρ(z) − f ′

2(z).
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Example of monotony: in the case where f1 is increasing on [−1, +∞[ and f2 is
decreasing on ] − ∞, 1] (like in the quadratic case), then ρ is an increasing function of
z ∈ [−1, 1].

F Supplementary figures from stochastic IBS’s re-
sults

In this appendix, I compare the analytical predictions regarding the equilibrium values
of the metapopulation size and mean trait derived in Section 3 with the end results of
stochastic individual-based simulations (IBS) with discrete and overlapping generations.
The migration and selection parameters used in the following display are those used in
Fig. 4, which are m = 0.5, g = 0.7, 1.1, 1.4, 1.8.

IBS’s design. The IBS are designed as follows. For a given selection parameter g,
Nreplicates replicate simulations are run for a fixed number of generations Ngen that is
sufficient to reach the equilibrium, after 100 generations of burn-in. Moreover, each
generation spans a small time-step dt = 10−2 (so that only a few events occur at each
generation). For g = 0.7, 1.1, 1.4, 1.8, Nreplicates = 250, 1000, 1000, 1000 and Ngen =
3.5 × 106, 2 × 106, 106, 5 × 105. The large number of replicates meant to ensure that
(rare) evolutionary rescue events would be captured in most cases. Notice that the
number of replicates for g = 0.7 is relatively low (250, which is still quite large), as the
analysis predicts that no evolutionary rescue is expected in this case and that cutting
the number of replicate simulations speeds up the computational time. Each replicate
simulation is run according to the following:

⋄ Each habitat has the same carrying capacity K = 104 individuals. Initially, there
are ⌊N∗

1,spec × K⌋ individuals in the refugium and ⌊N∗
2,spec × K⌋ individuals in the

native habitat, where N∗
1,spec and N∗

2,spec are the rescaled equilibrium subpopula-
tions sizes under stable environment indicated in Proposition 4.2 of [Dekens 2022].
Their traits are randomly drawn from a Gaussian distribution of mean Z∗

spec and
with a small variance ε2, with ε2 = 5 × 10−3.

⋄ First, the environment is stable during 100 generations. Next, the environment
changes with a speed ε2c, meaning that in habitat i and at generation t after the
burn-in, the local optimal trait is given by θi(t) = θi(0) + ε2ct, with 1 ≤ t ≤ Ngen.

⋄ At each generation t, the following life cycle happens:

1. Reproduction event: in each subpopulation i, a random number of individuals
are uniformly sampled across the subpopulation (Ni(t)×dt individuals chosen
on average). For each of these individuals, a mate is uniformly chosen at
random within the same population. Their mating produces a child added
to the subpopulation and whose trait is drawn randomly from a Gaussian
distribution centered on the mean parental trait and with variance ε2

2 . At
the end of the reproduction event, the subpopulation size is Npost reprod

i (t).
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2. Selection-competition event: in each subpopulation living in habitat i with
optimal trait θi(t), each individual faces a selection-competition trial, accord-
ing to its trait z and the current subpopulation size Npost reprod

i (t). Precisely,
individuals survive according to independent Bernoulli random variables with
parameters given by:

exp
[
−g × dt (z − θi(t))2 − dt × Npost reprod

i (t)
K

]
.

Any individual who fails the trial is removed and the subpopulation size at
the end of this phase is Npost sel-comp

i (t).
3. Migration event: in each subpopulation i independently, a random number

of migrants is drawn according to a Poisson distribution of parameter m ×
dt × Npost sel-comp

i (t). These migrants are then removed from their current
subpopulation and added to the other one.

IBS’s results The comparison between the analytical predictions of the equilibrium
variables (Z∗ the metapopulation mean trait and N∗ the metapopulation size) and the
analogous final quantities of the IBS is displyed in Fig. 6. The overall conclusion is that
the IBS are in excellent agreement with the predictions, especially for the metapopula-
tion mean trait Z∗ conditional on persistence (left column). The same can be said for
the metapopulation size, albeit with more variance near extinction (vertical black lines,
representing 98% of the trajectories) as expected by random stochastic fluctuations.
These have a striking impact when the metapopulation relies on evolutionary rescue,
which is predicted to occur when g > 1 (bottom three lines), and is highlighted particu-
larly in Fig. 6d. Notice that for the 6th, 7th and 8th environmental speeds, the median
metapopulation size (black squares) is 0, indicating extinction. However, the variance
between replicates can be high and the median metapopulation size of non-extinct pop-
ulations (black circles) is very close to the analytically predicted metapopulation size.
The IBS give some quantitative indications that the probability of rescue is probably
less than half and more than 1/Nreplicates = 10−3 (whereas this probability of rescue
cannot be quantified from my analysis). Moreover, it shows that when the population
does get rescued, its final state is accurately predicted by my analysis.

G Supplementary figures with low migration rate
m = 0.2.
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(a) g = 0.7 (b) g = 0.7

(c) g = 1.1 (d) g = 1.1

(e) g = 1.4 (f) g = 1.4

(g) g = 1.8 (h) g = 1.8

Figure 6: Same as Fig. 4 with final results of stochastic IBS instead of deter-
ministic numerical resolutions. As in Fig. 4, the colored curves correspond to the
analytical solution of Eq. (S) (green in the native habitat, blue in the refugium). The
black squares represent the median quantities from the IBS and the vertical black lines
span the results of 98% of the stochastic trajectories. Moreover, regarding the plots
of N∗ (right column), the black circles indicate the median metapopulation size across
non-extinct populations. Mean traits of extinct populations are ill-defined and thus not
displayed. 38



(a) g ≤ 1. (b) 1 < g ≤ g̃(m).

(c) g̃(m) < g ≤ ĝ(m). (d) ĝ(m) < g.

Figure 7: Same as Fig. 3, but with m = 0.2 and g = 0.5, 1.05, 1.3, 1.4 (top to
bottom, left to right).
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(a) g ≤ 1. (b) g ≤ 1.

(c) 1 < g ≤ g̃(m). (d) 1 < g ≤ g̃(m).

(e) g̃(m) < g ≤ ĝ(m). (f) g̃(m) < g ≤ ĝ(m).

(g) ĝ(m) < g. (h) ĝ(m) < g.

Figure 8: Same as Fig. 4, but with m = 0.2 and g = 0.5, 1.05, 1.3, 1.4 (top to
bottom).
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Figure 9: Same as Fig. 5, but with m = 0.2.
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