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THE CONSTANT SOLUTION METHOD FOR SOLVING LARGE
SCALE DIFFERENTIAL SYLVESTER MATRIX EQUATION WITH
TIME INVARIANT COEFFICIENTS

ABDERRAHMAN BOUHAMIDI*, LAKHDAR ELBOUYAHYAOUIf, AND MOHAMMED
HEYOUNTH#

Abstract. This paper is mainly focused on the solution of Sylvester matrix differential equations
with time independent coefficients. We propose a new approach based on the construction of a
particular constant solution which allows to construct an approximate solution of the differential
equation from that of the corresponding algebraic equation. Moreover, when the matrix coefficients
of the differential equation are large, we combine the constant solution approach with Krylov subspace
methods for obtaining an approximate solution of the Sylvester algebraic equation, and thus form
an approximate solution of the large-scale Sylvester matrix differential equation. We establish some
theoretical results including error estimates and convergence as well as relations between the residuals
of the differential and its corresponding algebraic Sylvester matrix equation. We also give explicit
benchmark formulas for the solution of the differential equation.To illustrate the efficiency of the
proposed approach, we perform numerous numerical tests and make various comparisons with other
methods for solving Sylvester matrix differential equations.

Key words. Krylov subspace methods, block Arnoldi, matrix differential Sylvester equation,
dynamical systems, control, Ordinary differential equations.

AMS subject classifications. 65F10, 65R30

1. Introduction. Differential Lyapunov and Sylvester equations are involved
in many areas of applied mathematics and arise in numerous scientific applications.
For instance, they play a crucial role in control theory, model order reduction, image
processing and the list is not exhaustive. In particular, the differential Lyapunov
matrix equation is a useful tool for stability analysis and control design for linear
time-dependent systems [2,3]. In this paper, we are concerned with numerically
solving the differential Sylvester matrix equation of the form

(1.1)

{X@:AX®+X@B—C,tQmﬂ
X (to) = Xo,

where [tg, T] C R is a closed and bounded time interval with tq, T are the initial and
final times respectively. We set Ap = T — tg, the length of the interval [tg, T]. The
coefficient matrices A € R™*"™, B € R**® and C € R™** are constant real matrices.
The differential Lyapunov matrix equation corresponds to the symmetric case where
B = AT. Before describing the new proposed method, we refer to the algebraic
equation canonically associated to (1.1)

(1.2) AX+XB=C,

as the corresponding (or associated) algebraic Sylvester equation. To the best of our
knowledge, despite the importance of differential matrix equations, few works have
been devoted to their numerical resolution when the matrix coefficients are large.
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2 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

Adaptation of BDF and/or Rosenbrock methods has been described in [7, 8] (see
also the references in [5]). However these adaptations usually suffer from a prob-
lem of numerical data storage. To remedy this problem, combining Krylov subspaces
techniques with BDF methods or with Taylor series expansions have recently been
proposed [5,19]. Other existing methods described in the recent literature for solving
large-scale differential Sylvester matrix equation rely on using the integral formula or
some numerical ODE solver [20,37]. The strategy we pursue in this manuscript is dif-
ferent in the sense that our approach for solving differential Sylvester (or Lyapunov)
matrix equations is based on the use of the constant solution to the differential equa-
tion. The first result we use indicates that the solution of the differential equation is
written in terms of the solution of the corresponding algebraic equation. Additionally,
in the case where the coefficient matrices A and/or B are large, we combine the new
expression of the solution with some projection techniques on Krylov subspace, such
as the block Arnoldi algorithm for solving the corresponding algebraic equations or
for approximating the exponential of a matrix.

we momentarily assume that the matrix C in (1.1), represents a continuous ma-
trix function C(t) defined on [tg, T and let us consider next, the following classical
differential linear system

(13) { () = A z(t) — c(t),

x(to) = Zo,

where A € RP*? is time independent and z(t),c(t) € R? for all time ¢ € [to, T]. We
assume that ¢ is a continuous function on the interval [tg, T]. In this case, the system
(1.3) has a unique solution z(¢) which is differentiable with a continuous derivative
on [tg,T]. It is well known that the unique solution of (1.3) may be written under
the form

t

(1.4) a(t) = et A gy — / e A c(u) du.
to

In many practical situations, the matrix A may be very large. In this case, exploiting
expression (1.4) for computing the solution z(t) is very expensive. However, when
the matrix A is large and sparse with a specific structure, some numerical techniques
may be done to approximate the matrix exponential time a vector [24,32,35]. As, our
interest is to obtain a good approximate solution to the differential Sylvester equation
(1.1), we need to consider the matrix A in system (1.3) of size p = n s structured as
following:

A=, A+BT®1I,,

where the matrices A, B are those given in (1.1). The identity matrices I,,, I are of
size n and s, respectively. The notations BT and ® stand for the transpose of B and
the Kronecker product of two matrices, respectively. We recall that the Kronecker
product of two matrices J and K of size n; x m; and ny X my, respectively, is the
matrix J @ K = [J; ; K] of size nj ni x m; my. The following well known properties
will be used throughout this paper:

1. (A®B)(C®D)=(AC)® (BD),

2. (A® B)T = (AT ® BT),

3. vec(ABC) = (CT @ A)vec(B).
The wvec operator consists in transforming a matrix into a vector by stacking its
columns one by one to form a single column vector.

This manuscript is for review purposes only.
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 3

Let g, x, ¢ be the vectors such that zg = vec(Xyp), x = vec(X), ¢ = vec(C) where
Xo, X(t) and C are appearing in (1.1). In [1], it was written, without any specific
details of its proof, that the solution of the differential Sylvester matrix equation (1.1)
is given by the following integral formula

t
(1.5) X(t) = et A xelt=to) B _ / WA C(y) et~ B gy,

to

Although the proof of this result does not present any major difficulty, it seemed
interesting to us to give the details of such a proof. Indeed, using the additive com-
mutativity of the matrix exponential which states

edef =P — AB=BA,

and since, the matrices I, ® A and BT ® I,, commute, then using the properties of
the Kronecker product, it follows that

et—to) A _ ,(t—to) (I:®A+BT®I,)

_ (t—t0) (1.®A4) (t—to) (BT®I,)

= (I, ® e(t=t0) A) (e(t—to)BT ® I,)
_ e(t—to)BT ® plt—to) A

Thus,
6(tfto) A To = [e(t*to) BT ® e(tfto) A] UGC(XO) _ ”Uec(e(tfto) A Xo e(tﬂto) B),

Finally, this implies that the formula (1.4) giving the solution to the system (1.3)
leads to the formula (1.5) giving the solution to the differential Sylvester equation
(1.1).

From now on, return back to the case where the vector coefficient ¢ in (1.3) and
also the matrix coefficient C' in (1.1) are assumed to be constant functions on the
interval [tg, T]. Thus, as the systems (1.1) and (1.3) are mathematically equivalent,
then for moderate size problems, it is possible to apply directly a numerical integration
to the system (1.3) or to use (1.4) or the above integral formula (1.5). But, for a large
system, we will see that it is more interesting to solve the system in the matrix form
(1.1).

Note that it is not restrictive to choose Xy = 0 in the initial condition X (tg) = Xo
of (1.1). Indeed, let X (t) denote the exact solution of the system (1.1), then the matrix
function given by Y (¢) = X (t) — Xj is the unique solution of the following system

{ Y(t) =AY (t)+Y(t)B—Cy, tE€ [to,T]
Y(tO) = Oa

where

Co=C— (AXo+ XoB).

We may first solve the previous differential equation to get Y (¢) and then deduce the
solution X (t) = Y (t) + Xy of the differential equation (1.1).
To end this section, we give some useful notations. The Frobenius inner product
is defined by
(V,2)=u(Y" 2), Y, ZeR™,

This manuscript is for review purposes only.
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4 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

where tr(M) denotes the trace of a matrix M. The associated Frobenius norm is
denoted by [|Y]| = 4/(Y,Y). For a bounded matrix valued function G defined on the
interval [tg, T], we consider the following uniform convergence norm

1Glloo = sup_[[G(#)].

tElto, T

The outline of this paper is as follows: In Section 2, we introduce our proposed method
which will be called the Constant Solution Method (CSM in short), describe some of
it’s properties and give some theoretical results. A summarized and brief description
of the corresponding algorithm, will also be given. In Section 3, we combine CSM with
the block Arnoldi algorithm for solving algebraic Sylvester matrix equations in order
to tackle large-scale differential Sylvester equations. The two cases: full and low-rank
are discussed. Moreover, we establish theoretical results expressing the residual of
the differential equation in terms of that of the algebraic equation. We also establish
some theoretical results on the convergence and on the error estimates provided by the
constant solution method. In section 4 which is devoted to numerical experiments, we
first show how to generate a benchmark differential Sylvester matrix equation with a
known exact solution. To the best of our knowledge, this construction is new and has
never been proposed before. The numerical results section continues with several set
of experiments whose results indicate that CSM is an efficient and robust method. As
usual, the last section is devoted to a brief conclusion.

2. The constant solution method for the differential Sylvester matrix
equation. In the integral Formula (1.5), quadrature methods are needed to compute
numerically the approximate solution. Thus, when one (or both) of the matrix coef-
ficients A or B is (or are) large and has (or have) no particular exploitable structure,
the computation of the integral may be expensive or even unfeasible. In this section,
we use another expression for the solution of the system (1.1) which is given in terms
of the solution of the corresponding algebraic Sylvester matrix equation (1.2). This
expression avoids the use of quadrature methods since it does not contain an integral.
To the best of our knowledge, the approach we describe in this section has never been
exploited in the context of solving large scale differential Sylvester matrix equations.
However, it is based on the classical and simple technique of adding a particular
constant solution to the general solution of the homogeneous differential equation to
form the general solution of a linear differential equation of order one with constant
coeflicients. Next, we give the following theorem, which gives a useful and interesting
expression of the unique solution of the system (1.1). The result of this theorem is
known in the literature [6,15], but, in practice, it has not been exploited numerically
to give approximate solutions. This theorem is not difficult to establish. However, in
order to facilitate the reading of the present work, it seems interesting to us to give
the proof of this theorem.

THEOREM 2.1. Suppose that the matrices A and B in the system (1.1) are such
that c(A) No(—B) = 0, where o(M) denotes the spectrum of the matriz M, then the
unique and exact solution X*(t) of the system (1.1) is given by

(2.1) X*(t) = elt—t0) A (XO - )?) elt=t0) B 4 X+,

where X* is the unique and ezxact solution of the algebraic Sylvester equation (1.2).

This manuscript is for review purposes only.
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 5

Proof. The general solution of the homogeneous differential equation associated
to (1.1) is given by
Z(t)=etY el B,

where Y € R"™ is some constant matrix. Since o(A4) No(—B) = 0, the algebraic
Sylvester equation (1.2) has a unique solution X* (see, e.g [25, Thm. 2.4.4.1]). Now,
as X* is a constant matrix function (i.e., X*(t) = X*), then it can be seen as a
particular solution of the differential equation

X(t)=AX(t)+ X(t)B - C.
It follows that the general solution of the previous differential equation is given by
X(t)=eYeP + X"

Finally, since the unique solution of the differential equation (1.1) must satisfy the
initial condition X*(to) = Xo, it follows that X*(fo) = e 4Y el B 4 X* = X,.
The last equality implies Y = et 4 (Xo - X *) e~t B and expression (2.1) follows
immediately. 0

In the remainder of this paper, we assume that the matrices A and B in (1.1)
satisfy the condition

o(A)No(—=B)=0.

The following property shows the behavior of the matrix solution X*(t) as the interval
[to, T] becomes very more and more large, namely, as the final time T' goes to +oo.

PROPOSITION 2.2. [29, Chapter 8] Suppose that the coefficients A and B in the
system (1.1) are stable matrices, then the unique solution X*(t) of the differential
system (1.1) satisfies

lim || X*(T) - X*|| =0,
T—+o0

where X* is the unique solution of the corresponding algebraic Sylvester equation (1.2).

In the remainder of this section, we suppose that the matrix coefficients A and B
are of moderate size. In this case, an approximate solution to the algebraic Sylvester
equation (1.2) may be obtained by a direct solver such as the Bartels-Stewart al-
gorithm, the Schur decomposition, or the Hammarling method [4, 18,21, 30,40]. A
common point to all these methods is first the computation of the real Schur forms
of the coefficient matrices using the QR algorithm. Then, the original equation is
transformed into an equivalent form that is easier to solve by a forward substitution.
Now, suppose that X, is an approximate solution to X* the exact solution of the
Sylvester algebraic equation (1.2), it follows that an approximate solution X, (t) to
X*(t) the exact solution of the Sylvester differential equation (1.1) can be expressed
in the following form.

(2.2) Xa(t) = elt=t 4 (XO - Xa) et B L X,

Here, as A and B are assumed to be of moderate size, we also assume that both
exponential e(t=t0) 4 and e(*=10) B are computed exactly. To establish an upper bound

This manuscript is for review purposes only.
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6 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

for the error norm, let us introduce the algebraic error E and the differential error
E(t) given by

E=X*—X, and BE(t)=X"(t)— Xa(t), Vte€ [to, T],
respectively. Finally, recalling that Ay = T — tp and ||Fljlc = sup [|E(?)|], we

telto, T)
have the following result

PROPOSITION 2.3. In the case where the matriz exponential is computed exactly,
we have

I1E ]| < (1 +6AT(HAH+HBH)) I1E],

where E and E are the errors associated to the approzimate solutions X, (t) and )?a
respectively.

Proof. Subtracting (2.2) from (2.1), we get
E(t) = X*(t) — X,(t) = !0 A BB L BVt € [ty T),
and from the triangular inequality, we obtain
IE@)]] < ([ AE ) B + || B||, Vt € [to, T).

The Frobenius norm being multiplicative (that is ||A B < ||A] || B]|), this implies
that [|es M| < e*IMIl for all s > 0 and for any square matrix M. Thus,

B < (1+ o) QAHIED) B, vt € [ro, 7).

As E is a continuous matrix function on the interval [tg, T, (t — to) < Ar and

|Ellcc = sup [|E(t)]|, then the desired result follows obviously. |
telto, T

Le us now introduce R(t) and R the residuals associated to the differential and
algebraic Sylvester matrix equations, respectively. These residuals are defined by

R(t) = Xa(t) - (AXa(t) + Xa(t) B - C)v te [t07 T],
(2:3) E = - (A% +X.B),

and satisfy the following proposition.

PROPOSITION 2.4. In the case where the matriz exponential is computed exactly,
the residual for the differential equation, is time independent and we have

R(t) =R, Vte€[to, T).
Proof. From (2.2), we have
Xo(t) = elt=to) 4 (A (Xo — Xa) + (Xo — Xa) B) e(t=to) B,
On the other hand, we have

AX,(t)+ X (t) B =ell )4 (A (Xo — Xa) + (Xo — Xa) B) et B L AX,+X,B.

This manuscript is for review purposes only.



196
197
198
199
200

216

218
219
220
221
222
223
224
225
226
227
228

CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 7

Then subtracting one of the two previous relations from the other, we get

R(t) = Xo(t) — (AX4(t) + Xa(t) B—C) = C — (A)?a +X, B) - R

|

Before ending this section, we sketch in Algorithm 2.1 below the main steps
that must be followed to obtain approximations X, = X, (¢x) to the solution of the
differential Sylvester equation (1.1) at different nodes tx, (k = 1,..., N) of a suitable
discretization of the time interval [to, T

Algorithm 2.1 Constant Solution Method in the case of moderate size (CSM)

1: Input: The matrices A, B, C, the initial and final times ¢y, T, the number N of
nodes and the step time J7.
2: Output: Xy,..., Xy, (where Xi, = X, (tx)), (1 <k < N)

3: Solve the algebraic Sylvester equation: AX + X B = C, to get an approximate
solution X, to the exact solution X*.

4: for k=1,...,N do

5:  Compute: t = tp_1 + Or;

6: Compute: X = eltr—to)A (XO - )A(:a) e(te—to) B X

7: end for

3. Block Arnoldi for solving large-scale differential Sylvester matrix
equations. It is well known that computing the matrix exponential may be ex-
pensive when the matrix is very large. Thus, expression (2.1) may not be directly
exploitable in the case of large scale matrix coefficients. In the following, we will see
how to circumvent this difficulty using projection methods onto some Krylov sub-
space. Indeed, in addition to allowing us to obtain a good approximation of the exact
solution of the algebraic Sylvester equation (1.2), Krylov subspace methods are also
a useful tool to compute the action of matrix exponential on a block vector with a
satisfactory accuracy. During the last three decades, various projection methods on
block, global or extended Krylov subspaces have been proposed to solve Sylvester
matrix equations (or other similar equations) whose coefficients are large and sparse
matrices [9-11,16,22,23,26-28]. The common idea behind these methods is to first
reduce the size of the original equation by constructing a suitable Krylov basis, then
solve the obtained low dimensional equation by means of a direct method such as the
Hessenberg-Schur method or the Bartels-Stewart algorithm [4, 18], and finally recover
the solution of the original large equation from the smaller one. For a complete over-
view of the main methods for solving algebraic Sylvester or Lyapunov equations, we
refer to [3,13,39] and the references therein. In order to be as general as possible
and not to impose restrictive assumptions, we opt for a resolution of the Sylvester (or
Lyapunov) equation using the block Arnoldi process rather than the extended block
Arnoldi process since the latter requires that the coefficient matrices A and B are non
singular. This last condition may not be fulfilled in many practical cases.

We recall that projection techniques on block Krylov subspaces for solving matrix
differential equations were first proposed in [19,20] by exploiting the integral formula
(1.5) and approximating the exponential of a matrix times a block of vectors or by
solving a projected low-dimensional differential Sylvester matrix equation by means
of numerical integration methods such as the backward differentiation formula (BDF)
[12].

This manuscript is for review purposes only.
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8 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

As said before, the approach we follow in this work is different from the one
proposed in [19,20]. It consists of exploiting formula (2.1), instead of the integral
formula (1.5), which is less expensive. To have at hand an adequate basis of the
considered Krylov subspace, we will use the block Arnoldi process described in the
next subsection.

3.1. The block Arnoldi process. Let M be an [ x [ matrix and V an [l X s
block vector. We consider the classical block Krylov subspace

K, (M, V) = Range([V,MV,...,M™ ' V])

m—1
—{ZM’“VQk, Q) € R¥%5, ogkgml}.
k=0

The block Arnoldi process, described in Algorithm 3.1, generates an orthonormal basis
VM of the block Krylov subspace K,, (M, V).

Algorithm 3.1 The block Arnoldi process (BA)
1: Input: M a matrix of size [ x [, V a matrix of size [ X s and m an integer.
2: Output: V%H and ﬁi,vl[ satisfying (3.1)—(3.3).
3: Get V7 by computing the QR decomposition of V', i.e., V =V Ay;
4: for j=1,...,mdo
5. Compute U = M Vj;
fori=1,2,...,5 do
Hi,j = V;T U;
U=U-V;H,
:  end for
10:  Get Vj4;1 and Hj1; by computing the QR decomposition of U,
i.@., U= V}_._l Hj+1,j-
11:  Set H;j =0fori>j+1
12: Define V%l = [‘/1, ey V}, ‘/;‘+1] and ij = (Hk7g)1§kgj+171§g§j
13: end for

6
7
8: 3
9

Suppose that the upper triangular matrices ;1 ; are full rank then, since the
above algorithm involves a Gram-Schmidt procedure, the obtained block vectors

Vi, Va,.. ., Vi (Vi € Rlxs) have their columns mutually orthogonal. Hence, after
m steps, Algorithm 3.1 generates an orthonormal basis V%I = [V4,Va,..., V] of the
M

block Krylov subspace K,,(M,V) and a block upper Hessenberg matrix H,, whose
non zeros blocks are the H; ; € R°*®. We have the following and useful algebraic
relations [17,36].

(3.1) M VM = VM H, = VY EY VML Y (ST
T
(32) (V) MV =mH),

(3.3) (Vﬂg )T VM — 1,

where T = (VM )T M VM ¢ RO sxms pr. - ¢ R9XS is the (i, j) block of HY
and IEE:) is the matrix of the last s columns of the m s x m s identity matrix I, s, i.e.
Ef;i) = [0sx (m—1) s> I]T. In the following, we will use the notation

(3.4) VM =M HM L (ES)T.

m—+1,m m

This manuscript is for review purposes only.
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 9

3.2. Full rank case. Here, we suppose that A is a large matrix while B is
relatively smaller, i.e., s < n. We also assume that the right-hand side C'is full rank,
i.e. rank(C) = s. Also, for simplicity reasons, we took Xy = 0 in the initial condition,
since, as mentioned in the introduction, it is not restrictive.

To obtain approximate solutions to the algebraic Sylvester equation (1.2), one
can use the block Arnoldi method in which we consider approximate solutions that
have the following form

(3.5) Xpn=V2Y,,

where Vﬁb is the orthonormal Krylov basis generated by applying m iterations of
Algorithm 3.1 to the pair (A, C). Let R,, be the algebraic residual given by

(3.6) B =C— (A)Z’m+)~(m B).
The correction ffm, is obtained by imposing the Petrov-Galerkin condition
(Vﬁ)T Em = 0Tns><s~

Thus, taking into account the relations (3.1)~(3.3) and (3.5), it follows that Y, is the
solution of the reduced Sylvester equation

HA Y +Y B=C,

where H2 = (VA)T A V2 and C,, = (VA)T C. Note that from Algorithm 3.1, we
also get that C' = V2 C,,. Now, if ¢(H%) N o(—B) = 0, then the previous Sylvester
equation admits a unique solution which can be obtained by a direct method [4,18]. In
addition, from the relations (3.1)-(3.3), the residual R,, satisfies the following relation

(3.7) Ry = -V Y.
According to [32,34], the following approximation to e(*~t) 4 X* holds
et=to) Ay ~ Vﬁ e(t—to) Hy, (V,‘;‘L)T X

It follows, that an approximate solution X,,(t), for ¢ € [tg, T}, to the exact solution
X*(t) of the differential Sylvester matrix equation (1.1) may be obtained by

X (t) = — VA l—to) BL (pANT 5 o(t=to) B X

Taking into account (3.5), it follows that

(3.8) Xn(t) =V Y, (1), telto, T),
where
(3.9) Vi(t) = —ett0 EL Y, oWt B L ¥t e [t T.

This matrix function satisfies the following result.

PROPOSITION 3.1. The matriz function Y,,(t) given by (3.9) is the unique solu-
tion of the reduced differential Sylvester matrixz equation

Y(t) = HAY@#)+Y{#)B—-Cp, telto, T)
(3.10) {Y(to) 0 0

This manuscript is for review purposes only.
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Proof. The derivative of the matrix function Y;,(¢) as given by (3.9) is
Vi () = —e(t—to) Ex (H,?L Yo + Vin B) et B ¢ [t T).

On the other hand, we have

H, Yin(t) + Yn(t) B = Cpp = e~ 5o (W, ¥, 4 ¥,y B) o708
+qu, ?m‘F}A}mB—Cm, t e [to, T]

Thus, it follows that
V() = (i You() + Yin(t) B = Ci ) = 0,

and additionally, Y;,,(¢) satisfies the initial condition Y, (tg) = 0. 0

Remark 3.2. Proposition 3.1 shows that another way to obtain an approximation
of Y,,,(t) can be the resolution of the projected and reduced differential equation (3.9)
by using an adequate numerical ODE solver such as Runge-Kutta or BDF solvers.
We recall that such technique was used in [19,20]. In our proposed method, we don’t
use such approach, but instead, we solve the reduced algebraic equation and take into
account approximations (3.8) and (3.10) to get an approximate solution to the low
dimensional differential matrix equation (3.9).

Now, let R,,(t) be the residual associated to the approximate solution X,,(t), i.e.,
(3.11) R(t) = Xon(t) — (AXp(t) + X)) B—=C), t€to, T).

The following proposition gives an expression for this residual.

PROPOSITION 3.3. The residual for the differential equation is given by
(3.12) R (t) = =V You(t)
(3.13) = VA et Hn gy ot B R
where Ry, is the algebraic residual given in (3.6). Moreover
(3.14) (Vi) Rin(t) = O sxs, ¥t € [to, T1.

Proof. Replacing, in (3.11), X,,,(¢) by its expression given by (3.8), we get

Rp(t) = VA Y, (t) — AVA Y, (t) = V2 V,,(t) B+ C.
Then, using (3.1), we obtain
Ron(t) = Vi, You(t) = (Vi By Vil ) You(t) = Vi, You(t) B+ Vi, Co.
= Vit (Von () = [FL Yin(®) + You (1) B = Cun] ) = Vi Yon 0.

As Y, (¢) is the solution of (3.10), we then get (3.12). Now, according to (3.9), we
obtain . _
Ry(t) = Vi el Hnyl elt=to) B _yd 'y

Finally, from (3.7), we get (3.13) and the relation (3.14) follows immediately. d
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Note that if H;?L and B are stable, i.e, all the eigenvalues of H,‘?@ and B belong to
the half part of C whose real part is negative. It follows that,
(T—to) HA

lim e m =04y and  lim el
T—+o0 T—4o00

T-t) B — Osxs-

Then, using (3.13), we get

lim Ry (T) = R
T—+o0

In addition and as done in the previous section, we consider the differential error
E,, given by
E,.(t) = X*(t) — X,n(t), Vt € [to, T).

We recall that X,,(t) and X*(t) are the approximate and exact solutions to the
differential equation, respectively. The following result gives an error estimate for
error norm F,,.

THEOREM 3.4. At step m, the following error estimate holds

ArAIIBI _
Folleo < r'rAn+Z;?L )
Il < (“appar—) 0+ )

where
i = Bl = [ Hi1 i Yool and 2 = (| Hop iy Zinl:
wWith Yo, Zm are the matrices of size s X s formed by the s last rows of Y, and
T 1= AT Ho, Y,,e2T B respectively.
Proof. From (2.3) and the differential Sylvester matrix equation (1.1), we have
En(t) = X*(t) = Xpn(t) = A (X*(t) = Xon (1) + (X* (1) = Xin(t)) B = Rin(t),

with E,(to) = 0. Thus, the function E,, (¢) satisfies the following differential Sylvester
matrix equation

En(t) = AEu,(t)+ En(t) B — Ry(t), tel[to,T]
{Em(to) = 0.

So, E,,(t) may be written by the following integral formula

t
E,.(t) = —/ eB=IAR (1) et=9) B (s,
to
Passing to the norm, for all ¢ € [ty, T, we get
t t
IEw®l < [ 114 Ry (t) e~ Pl ds < ||Ru (1) / et A [|et =) F || ds.
to tO

As, [leM] < Ml for o > 0 and M = A or M = B, we obtain that, for all
te [t07 T]a

t
| Em ()] < | R (8] / =) (IAI+IBID) 5.
to
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This gives after integration that, for all ¢ € [tg, T] we have

. et (AHIED 1\
< .
IBne < (i Er—) 1RO

Then using (3.13) and the triangular inequality, we get

m

e(t=to) (IAI+IIBI) — 1)
r

| Em (@) < ( AT+ 1B (rd 4+ 224, for all t € [to, T1.

Finally, the desired result is obtained by passing to the uniform norm. 0

Now, we point out that (3.12) provides a cheap formula for computing at each node
ty the norm 7, := || Ry, (tx)| of the residual associated to the approximate solution
Xmk = Xy (ty). This formula avoids computing matrix vector products with the
large coefficient matrix A since we have

(3.15) P 7= [ R ()l = 1 Hop 1 m BT Yol = I Hip g1 Yol

where Y, = (ES))T Yook is the matrix of size s x s formed by the last s rows of the
matrix Y, x := Yo, ().

Finally, we end this section by summarizing in Algorithm 3.2 our proposed method
that is the block Arnoldi combined with the constant solution method (BA-CSM)
applied for full-rank differential Sylvester equations

3.3. Low-rank case. Now, we consider the case where both A and B are large
matrices. In addition, the coefficient C' appearing in the right-hand side is assumed
to be low rank and is given under the factored form C = EFT where E € R"*"
and F € R°*". We also, assume for simplicity reasons that the initial condition
is such that Xy = 0. To obtain approximate solutions to the low-rank algebraic
Sylvester equation (1.2), we can use the block Arnoldi method in which we consider
approximate solutions that have the form

(3.16) X = Vi Vi (VE)T,
where V2 VB are the orthonormal matrices obtained by running m iterations of

Algorithm 3.1 applied to the pairs (A, E) and (BT, F) respectively. Enforcing the
following Petrov-Galerkin condition

(V;?L)T Em Vﬁ = Omrxmr
to the algebraic residual R, given by
(3.17) Ry =EFT —(AX,, + X, B).

Multiplying (3.17) on the left by (V4)T and on the right by VZ and taking into
account relations (3.1)—(3.3) and (3.16), it follows immediately, that Y, is the solution
of the reduced projected Sylvester equation

(3.18) HA Y +Y (HE) = B, FL,

where HY = (V)T AVA HEZ = (VB)T BT VB are the mr x mr upper block
Hessenberg matrices generated by the block Arnoldi process and E,, = (Vﬁl)T b,

This manuscript is for review purposes only.
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Algorithm 3.2 Block Arnoldi Constant Solution Method (BA-CSM) (Full-rank case)

1: Input: The matrices A, B, C, the initial and final times ¢y, T', a tolerance tol > 0,
a maximum number of iterations M., , a step-size parameter p and N the number
of nodes in the time discretization.

2: Output Xm71, - ,Xm,N, where Xm,k = Xm(tk), (1 <k< N)

3: Compute dr = (T — t9)/N.

4: form=1,..., M4, do

5. Compute V2 to update the orthonormal basis Vfl = [VlA, cen Vrf] and get the
m-th block of H2 by applying Algorithm 3.1 to (4, C);

6: if m is a multiple of p then

7: Compute: C,,, = (V)T C.

8: Solve the reduced Sylvester equation: Hfl f/m + )7m B =0C,,.

9: for k=1,...,N do

10: Compute tp = tp_1 + op.

11: Compute Yy, = Y, (t) = _e(tr—to) Hy, ?m eltr—to) B 4 f/m

12: Compute 7, = ||H;2+1,m Ykl

13: end for

14: Compute Tmaee = max{rm1,...,"m N}

15: if 7,0 < tol then

16: go to line 20;

17: end if

18: end if

19: end for

20: for k=1,...,N do
21:  The approximate solution X, ;, at time ¢y is X, 1, = V;‘,‘l Yo k-
22: end for

F,, = (VB)T F. Note that from Algorithm 3.1, we also get that E = V2 E,, and
F = VB FE,. Here also, if o(H2) N o(—HE) = 0, then equation (3.18) admits a
unique solution which can be computed using a standard direct method such as those
described in [4,18]. Using the relation (3.1)—(3.2) and from the relations (3.16)—(3.18),

we get

(3.19) Em = _an?,r ?m (Vg)T - V’rél f/m (qu,r)Ta
where VA =V HE (ECNHT and Ve =VE HE, (ECNT . We also notice

that, according to [32,34], an approximation to e(!=%) 4 X*¢(t=t0) B jmay be obtained
as

plt=to) A Y (t—t0) B Vé lt=to) HA (V;‘z)T )?m Vﬁ e(t_to)(Hﬁ)T (Vﬁ)T-

Then, it follows, that an approximate solution X,,(¢) to the exact solution X*(t) of
the differential Sylvester matrix equation (1.1) may be given by

X (t) = — VA el=to) B (yANT ¥ B oli=to) ()T (yBYT 4 X
Taking into account (3.16) gives that

(320) Xm(t) - Vi Ym(t) (V’YB;.)T7 te [t07 T]a
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where
A

(3.21) Yy (t) = —elt=t0) Hu y7o(t=to) )" Ly ¢ e [to, T

As in the full-rank case, we have the following proposition.

PROPOSITION 3.5. The matriz function Yy, (t) given by (3.21) is the unique solu-
tion of the reduced differential Sylvester matriz equation

(3.22) { Y(t)=H,, Y(t)+ Y (t) ( )T — En FL,  t€ [to, T)

Y (to) = 0.
Proof. The derivative of the matrix function Y;,(t) as given by (3.21) is
Vi (t) = —elt—to) H, (Hf,‘l Yo + ?m(Hﬁ)T) et=t0) HDT 4 e [, T1.
On the other hand, we have
H, Yoo () + Yo (8) (H2)T = En Fyy =
_ plt—to) H, (Hi Y, +Y, (Hg)T) (t—to) (HE)”
+HA Y, + Y, 2 - E,, FT.

Thus, it follows that
Vi (t) = Hip Vi (t) = Vi () (H2)T + E, FL = 0.

Moreover, Yy, (t) satisfies the initial condition Y;,(to) = 0. ad

Next, the following proposition gives a useful expression of the residual which is
defined, in the low-rank case, by

(3.23) Ro(t) = X (t) — (AX(t) + X)) B— EFT), telty, T).

PROPOSITION 3.6. The residual for the differential equation is given by
(3.24) R (t) = =Vl You (1) (V)T = Vi Yo (1) (V7,07
(3.25) — VA, B(t) (VE)T VA Fou(t) (V2T + Rom,
where ﬁm(t) = e(t—to) Hp, ffm e(t=to) )™ gng Em is the algebraic residual given by
(3.17). In addition,
AT B
(3.26) (Vm> Ron(t) VB = O, VE € [to, T.

Proof. Using the definition (3.23) of the residual R,,(t) and replacing X,,(t) by
its expression given in (3.20), we get

Ry (t) = Vi, Yo (8) (V)T = AV Yo (8) (V)T = Vi, Yo () (V)" B+ EFT.

Now, using the algebraic relation (3.1) in which M is replaced either by A or by B,
we obtain

Ron(t) = Vi, Yo (1) (V)T = (Vi i 4V, ) You(8) (V)T

~ Vi Yault) (BT (VE)T + (VE)T) + Vit B B (VAT
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This may be arranged as following
Ron(t) = Vi, (Yau (t) = By Yon (1) = Yo HE)T + By Fif ) (V2T
Vit Y () (Vi) T = Vi You (8) (Vi)
Taking into account (3.22), we get (3.24). The relation (3.25) follows by replac-

ing Y;,,(t) by its expression (3.21) and taking into account (3.19). Finally, (3.26) is
straightforward since V4 and V2 are orthogonal matrices. d

Similarly to the full rank case, let us remark that if Hf}l and Hﬁ are stable, then
lim Ry, (T) = Ry
A B (D) = B
As in the previous subsection, we have the following error estimates.

THEOREM 3.7. Let X,,(t), fort € [to, T, be the approzimate solution at a step
m gwen by (3.20) and (3.21) and let By, (t) = X*(t) — X (t) be the error. Then, we
have the following error estimate:

GAr(IAI+IBI) _ 1 5 5

where 18 = [HA 1 Vol vB = 1HE 1 Tl 28 = 1Hik s ol and 25 =
IHE 1 Zml. The matrices Y v, and Z, are of size r x r and formed by the r last

~ A =~ B .
rows of Yy, and Z,, := €27 B Y, e27 Wi respectively.

Proof. As previously done in the proof of Theorem 3.4, we obtain by similar
arguments that, for all ¢ € [tg, T] we have

. _ (S aaED _ g
m (¢ m (E
1501 < (“—apar—) 10!

From (3.25) and (3.19), we get

Ba(®) = Vi (Fon() = Vi) (V)T 4+ Vi (Fn(t) = V) (ViE ).

As the n x n matrices V,;‘L‘m (Fm(t) - ffm) (VBT and V2 (ﬁm(t) - )7m> (VE )T are

m,r

F-orthogonal, then
WVids (Bu®) = V) (VE)TI V2, (Fnt) = Vo) (VE)T) =0,

Therefore

1B = [V (B)) = For) (V| 4 [V (Bt - %) 207

Now, using the triangular inequality, we get that for all ¢ € [tg, T], we have
Vit (Bt = V) (V)T <+ 2
and similarly, we also have

m m

ij,t (Fn(t) = V) (V)T ‘ <rB B

which completes the proof. 0
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16 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

To continue the description of the present method, we notice that (3.24) enables us
to check if ||R,,(t)|] < tol -where tol is some fixed tolerance-, without having to
compute extra products involving the large matrices A and B. More precisely, we
have

(3.27) [Rm (8)]| = \/IIH£+1,m EDT Y (012 + [ Yon (8) ES (HE 1 )T 12

We end this subsection by recalling that in the case of large scale problems, and as
suggested in [23,38], it is important to get the approximate solution X}, := X, (t) at
each time t; as a product of two low rank matrices. If Y, = VX W7 is the singular
value decomposition of Yy, where ¥ = diag[o,09,...,0., ] is the diagonal matrix of
the singular values of Y} sorted in decreasing order, then by considering V; and W,
the mr x [ matrices of the first [ columns of V' and W corresponding respectively
to the [ singular values of magnitude greater than some tolerance 7, we get for each
k=1,...,N
Xi ~ 20 (ZP)T,

where Z{2 = VA V;5]/% and ZB = VE w;5,1/2,

The block Arnoldi combined with the Constant Solution Method (BA-CSM) for
solving the differential Sylvester matrix equation, in the case where C is low rank,
ie., C = EFT, is summarized in Algorithm 3.3.

4. Numerical experiments. In this section, a series of numerical tests will be
presented to examine the performance and potential of Algorithms 2.1, 3.2 and 3.3.
We have compared our proposed method which is based on relation (2.1) with the one
described in [20] and which is based on the integral formula (1.5). We recall that the
algorithms described in [20] only provide an approximate solution at the final time T
and moreover they only deal with the case of low-rank differential equations. Thus,
we modified Algorithm 1 proposed in [20] so that it provides an approximate solution
Xk = X (tr) at each node t;, of the discretization of the time interval [0, T as it
is the case in Algorithm 3.3. Moreover, we have drafted two other codes based on the
integral formula (1.5) and equivalent to Algorithm 2.1 and Algorithm 3.2

It should be noted that in all the examples given here, we suppose that Xy the
matrix appearing in the initial condition of (1.1) is equal to zero, i.e., Xo = Opnxs-
Furthermore, we consider different time intervals [tg,T] where t; = 0 is fixed once
and for all, while T is indicated in each example. The time interval [0,7] is divided
into sub-intervals of constant length dr = % where N is the number of nodes. All
the numerical experiments were performed using MATLAB and have been carried
out on an Intel(R) Core(TM) i7 with 2.60 GHz processing speed and 16 GB memory.
In order to implement the different algorithms described in this work, we used the
following MATLAB functions:

- expm: it allows to calculate the exponential of a square matrix. This function
is based on a scaling and squaring algorithm with a Padé approximation [24].

- lyap: it allows to solve Sylvester or Lyapunov matrix equations. For our
purposes, the instruction lyap(A,B,-C) delivers the matrix X solution of the
algebraic Sylvester equation AX + X B =C.

- integral: it allows to calculate numerically an integral, using the arguments
7 ArrayValued” and ”true”.

Furthermore, we precise that when the constant solution or integral formula meth-
ods are combined with the block Arnoldi process to obtain an approximate solution
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Algorithm 3.3 Block Arnoldi Constant Solution Method (BA-CSM) (Low-rank case)

1: Input: The matrices A, B, F, F, the initial and the final times ¢y, T, a tolerance
tol > 0, a maximum number of iterations M, ., a step-size parameter p, the
number N of nodes in the time discretization and the tolerance 7 for the truncated
SVD.

2: Output X, 1,..., X;n n, where X, 1 = X, (t), (1 <k < N)

3: Compute oy = (T — t9)/N.

4: form=1,..., M4, do

5. Compute V2 and V.2 to update the orthonormal bases V;‘,‘l = [VlA, cee Vnﬂ,

VB = [VB,...,V.B] and get the m-th blocks of HA and HZ by applying
Algorithm 3.1 to (A, E) and (BT, F) respectively;

6:  if m is a multiple of p then

7: Compute: E,, = (V)T E and F,, = (VE)T F.

8: Solve the reduced Sylvester equation: H2 Y,, + Y, (HZ)T = E,, FT.
9: for k=1,...,N do

10: Compute ty = tg_1 + op.

11: Compute Y, 1 := Y, (t) = —e(te—to) Hy, Y,, e(te—to) (G Y.

12 Compute ry & = \/IHA 1 (EG)T Va2 + Vi EG) (5, )72
13: end for

14: Compute ey = max{rm 1, .., m,N}

15: if 70 < tol then

16: go to line 20;

17: end if

18: end if

19: end for

20: for k=1,...,N do

21:  Compute the SVD of Yy, i.e., Yy = USWT where ¥ = diag[oy, ..., 0] and
012 ... 2 Omr;

22:  Find [ such that 0,41 < 7 < 07 and let &; = diag[oy,...,0);

23 Form Z& =V2 U,%)/% and ZB = VE W, 5)/?;

24:  The approximate solution X, ; at time t5 is X, ~ Z{* (Z8)T.

25: end for

to the differential equation, the iterations are stopped as soon as the dimension of the
Krylov subspace generated by the block Arnoldi process reaches a maximum value
m = Mpa.: = 110 or as soon as the maximal norm 7,,,, computed by the algo-
rithm is lower than 107'% ;i where p = ||A[| 4 ||B|| + ||C|| in the full rank case and
w=A||+||B||+|E] |F|| in the low rank case. We also mention that in the numerical
examples, the right-hand side C' or its factors E and F' were generated randomly.

To compare the performances of the Constant Solution method (in short CS or CS-

BA when combined with the block Arnoldi process) with those of the Integral Formula

method (in short IF or IF-BA when combined with the block Arnoldi process), we
used the following comparison criteria:

- TR: the time ratio between the CPU-time of CS and IF methods or between

This manuscript is for review purposes only.



460
461
462
463
164
465
466
467
468
169
470
471

472
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CS-BA and IF-BA methods which are defined by

cpu-time(cs) cpu-time(cs-BA)
TR= ———— or TmR= ——M—M=.
cpu-time(1F) cpu-time(IF-BA)
- RDN: the relative difference norm between X ©5-BA and X™¥-BA which are the
approximate solutions delivered by the constant solution and the integral for-
mula methods respectively when they are combined the block Arnoldi process.

|XE3A — X[

R e Pe Y
We point out that this criteria is used when the exact solution of the differ-
ential Sylvester equation is not available.

- REN: the relative error norm between the exact solution and an approximate
solution obtained either by a constant solution based algorithm or by an
integral formula based algorithm. More precisely, letting XF*2°t be the exact
solution computed by (4.2), we define the following quantities :

||XISS—BA o X]S]xact||

RENCS-BA _
S e
and IF-BA Exact
REN'F-BA — X5 5% = X
k=0,1,....N HXkEX‘dCtH

Before to start the numerical experiments and tests, we will show in the next
subsection, how to construct a differential Sylvester equation which have a known
exact benchmark solution.

4.1. A benchmark example. To the best of our knowledge, there is no Known
benchmark explicit solution for large-scale differential and Sylvester matrix equations.
Here, we show how to construct a benchmark differential Sylvester equation whose
exact solution is known and with which we can confront the approximate solutions
provided by the different compared methods.

Let K, R € RP°*P0 he two nilpotent matrices, of index pg > 3 i.e., KP0 = RPo =
0p, and let Ag € R"™*"™ B, € R*>**° X, C € R"™" where n = pyny and
s = pg So- The integer pg is a small integer. We also choose two real numbers «,
and we consider the matrices

(4.1) A=al,+ A K, B=pl;+ By®R,
We easily have, for any real ¢ and for any matrix X of size n x s:

po—1po—1 o
caxets - (35 i L),

i=0 j=0

where L; j(X) is defined by L;;(X) = le(‘% ® KX (B} ® R7). Assuming that

a + B < 0, then the unique solution X* of the algebraic matrix Sylvester equation
AX + XB = C is given by the formula (see [31]),

_ +oo
X*:f/ et Cet B dt.
0
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A straightforward calculations give
po—1po—1 (71)14»]

X=2 2 Gt

i=0 j=0

where C; ; = ZILJI(AB ® K'C(B} ® R7). Then, using the formula (2.1), the unique
solution of the differential Sylvester matrix equation
X'(t)=AX(t)+X(t)B-C,
satisfying the initial condition X (¢9) = X, is the matrix function X*(¢) given by
X*(£) = =) A (X — X elt10) B 4 X+,

It follows that

Po—1po—1 L
* i+j (a — v * —1)"
(4.2) X*(t) = § 0: E O: [(t—to) +iplat+B) (t to)Lm-(Xo—X )+(a(+ﬁ))i+j+1 Li)j(C)]
1= Jj=

We may also obtain the solution X*(¢) of the differential Sylvester matrix equation
by using the integral formula (1.5), since we have

t
X*(t) _ 6(t—to)A X, e(t—to) B _/ e(t—u)A Ce(t—u) B du.

to
It follows that,

po—1po—1

XM= {(t —tg)" el =00) 1 5(Xo) — Ty s (1) Li,j(())},

¢

where the scalar functions Iy (t) are given by Ix(t) = / (t — u)fel @t =gy, The
to

expression of the functions I () are obtained by recursion. Indeed, we have

1
I () — 7( (a+8)(t—to) _ 1)’
o(t) = — e
and for k > 1 by parts integration, we have

L(t) = — i 5 ((t — to)kelatB)(t—to) _ kzk,l(t)).

Then, we may show by induction that, for all £ > 0, we have

k

[0 ¢ — £ ¢
0= (a+k6!)’€+1 <;)(_1)2( +ﬂ)£!(t 8 gt = (1)),

Before ending this subsection, let us remark that in this benchmark example, the
matrix C is arbitrary and then can also be taken in the low-rank form C = E FT,
where E € R™*" and F € R**".
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In addition, to show the strengths and limitations of compared methods in various
experimental settings when using this benchmark example, we choose pyg = 3 and we
considered different values for the parameters o and (8 as well as different matrices
Ay and Bg. The matrices K and R are fixed once and for all, as follows

3 8 —19 11 1
K=|-1 -5 11|, R=| 00 0
0 -1 2 -1 0 -1

4.2. Experiment 1. In this first example, the numerical tests are done with
moderate size matrices A and B. We compare the solution provided by our proposed
constant solution method implemented via Algorithm 2.1 with the one obtained using
the integral formula (1.5) as well as with the solutions given by some classical ODE’s
solvers from Matlab. The solvers ode15s, ode23s, ode23t and ode23tb are usually
used for stiff ODE’s, while the other solvers ode45, ode23 and ode113 are used for
non stiff ODE’s. Note that since some ODE solvers behave similarly and in order
not to overload the plots, we only give the results obtained with the four methods
odelbs, ode23s, ode23tb and ode45. In the following two experiments, we consider
the time intervals [0, 7] with T is either 7' = 1 with the number of nodes is N = 10
or T = 10 with the number of nodes is N = 50 which means that the step time is
6r = 0.1 when T = 1 while 67 = 0.2 when T" = 10. Here, we consider the matrices
Ag =gallery(’leslie’,ng), By = gallery(’minij’, sp) with ng = 50 and sg = 10
and the coefficient matrices A, B of the differential Sylvester equations are generated
by (4.1), as explained in the benchmark example. The parameters «, § are equal to
—2 and —1 respectively. As the matrices K, R are those given at the beginning of
section 4, the size of the matrices A, B are now n = 150 and s = 30 respectively.
Here, we point out that the solution computed by Algorithm 2.1 and those computed
by the Algorithm based on integral formula or issued by the Matlab ODE solvers are
compared to the exact one given in (4.2) which is considered as the reference solution

X'ef. Thus, in the plots, we represent the behavior of the norm of the relative error
X, — Xref
N B0
X

as a function of ¢, where t; = k 7. The obtained plots and results are reported below
in Figure 1 and Table 1 respectively.

TABLE 1
The obtained CPU times (in seconds) in Experiment 1.2.

(T, N) Method | CSM IFM | odelbs ode23s | ode23tb | ode45
(1, 10) 0.203 | 12.578 | 43.546 | 750.756 | 108.484 | 0.343
(10, 50) 0.718 | 75.703 | 78.984 | 1574.980 | 226.016 | 0.390

The analysis of results obtained in Experiments 1 shows on the one hand that
the CS and IF methods return the best results in terms of the error norm. The
ode45 solver is the best among the other Matlab solvers, but its performance does
not match that of the CS and IF methods. On the other hand, by comparing the time

ratios between CS and IF which are TR = 12.578 ~ 61 for T =1 and N = 10 and

0.203
75.703
=078 105 for T'= 10 and N = 50. We clearly see that CS is faster than IF

because the former avoids using a quadrature formula as it is the case for the later.
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Fia. 1. Experiment 1: comparison of the relative error norm. The reference solution is given
by (4.2).

4.3. Experiment 2. In this set of numerical tests, the experiments are done
with a relatively large matrix A and a moderate size matrix B. We compare the per-
formances of Algorithm 3.2 -which implements the CS-BA method- and the equivalent
algorithm based on the integral formula combined with the block Arnoldi (IF-BA).
Experiment 2.1. The matrices A and B are obtained from the centered finite dif-
ference discretization of the operators

0 0
LA(u):Au—an—z—gAa—Z—hau

0 0
LB(U):AU—fBafz—gBa*Z—hB%

on the unit square [0, 1] x [0, 1] with homogeneous Dirichlet boundary conditions where

falw,y) = (@ +109%), galz,y) = V222 +y%  halz,y) = 2" — ¢,

and

2 2
fe(z,y) =10y +1, gpz,y)=e """, ha(z,y) = H%Q_i_yz
To generate the coefficient matrices A and B, we used the fdm_2d matrix function
from the LYAPACK toolbox [33] as following A=fdm_2d matrix(ng,fa,94,ha) and
B=fdm_2d matrix(so,fB,98,h5) where ng and sg are the number of inner grid points
in each direction when discretizing the operators L4 and Lp respectively. This gives
AeR™" BeR™ withn=n3 and s = s3.

We examine the performances of CS-BA and IF-BA for four choices of ng and sq
which are (ng, sg) = (30, 3), (ng, so) = (50, 3), (ng, so) = (30,5) and (ng, sg) = (50,5).
The considered time intervals are [0,7] where T =1 and N = 10 or T = 2 and
N = 20. This means that the step time is always 7 = 0.1. In Table 2, we reported
the time ratio (TR) and the relative difference norm (RDN) between the CPU-time of
CS-BA and IF-BA.

Experiment 2.2. In this test, we took Ay =gallery(’hanowa’,1500,-5) and
By = gallery(’leslie’,6) from the Matlab gallery and transform them into A
et B of sizes n = 4500 and s = 18 respectively by using (4.1) in which we took
a = —7 and § = —5. The obtained results for different time intervals which are
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TABLE 2
The obtained times ratio TR and relative difference norms RDN in FExperiment 2.1.

Test Problem || T=1, N =10 T=2, N=20
n s TR RDN TR RDN
900 9 || 141 | 8.111e-15 || 186 | 1.887e-14
2500 9 || 163 | 1.868e-14 || 276 | 3.682e-14
900 25 || 164 | 6.329e-15 || 187 | 1.248¢-14
2500 25 || 177 | 1.723e-14 || 186 | 2.499¢-14

summarized in Table 3 include the time ratio TR and the relative error norms RENCS-BA
REN'F-BA between the approximate solutions X ©SBA = XTF-BA given by CS-BA and
IF-BA respectively and the X¥*a¢t the exact solution computed by (4.2).

TABLE 3
The obtained times ratio TR and relative error norms RE!
with N = 10.

NCS'BA, RENIF-BA i FExperiment 2.2.

T TR | RENCS-BA | RENIF-BA

1 11 | 4.825e-11 | 4.143e-12

5 20 | 1.849e-11 | 9.097e-12
10 30 | 1.244e-11 | 3.387e-12
50 | 1329 | 7.852e-13 | 1.621e-11
100 | 1230 | 7.802e-13 | 1.432¢-11

4.4. Experiment 3. We describe and report here the results of numerical ex-
periments carried out when solving large scale low-rank differential Sylvester or Lya-
punov equations. The performance of CS-BA is compared with that of IF-BA. The
test matrices come either from the centred finite difference discretization of the oper-
ators L4 and Lp defined in the previous experiment, or from the Florida suite sparse
matrix collection [14]. The invoked matrices for our tests from this collection are:
pde900, pde2961, cddel, Chem97ZtZ, thermal, rdb5000, sstmodel, add32
and rwb151.

Experiment 3.1 (a). In this example, the numerical results are those obtained
from solving differential Sylvester equations. The time interval is fixed to [0, 1], (T =
1). The number of nodes is N = 10 which gives a step time é7 = 0.1. The matrices
A€ R™"™ and B € R**® come from the discretization of the operators L4 and Lg. As
indicated previously, the coefficients of the right-hand side E, F' € R™*" are randomly
generated. The obtained results for different sizes n, s and ranks r are summarized
in Table 4.

Experiment 3.1 (b). Here, we consider two different time intervals [0, 7] for
T =1 and T = 10 in which the number of sub-intervals is always N = 10. The
matrix A is from the Florida sparse matrix collection. We consider the particular
case B = AT and F = F and report the results obtained when solving low-rank
differential Lyapunov equations. The obtained results for r =2, r = 5 or r = 10 are
displayed in Table 5.

Experiment 3.2 (a). Here, we consider Ao=pde2961 and By=pde900 and
transform them into A et B of sizes n = 8883 and s = 2700 respectively by using (4.1).
In order to confirm the influence of the rank r and/or length T" of the time interval, on
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TABLE 4
The obtained times ratio TR and relative difference norms RDN in Ezperiment 3.1 (a).

Test Problems

n0:40, 80:20 n0=30, 80:30 ’I’LQ:50, 80:50
n = 1600, s =400 || n =900, s =900 || n = 2500, s = 2500
T TR RDN TR RDN TR RDN
2 82 2.528e-14 78 | 5.819e-14 78 1.354e-13
5 || 145 1.906e-14 136 | 1.201e-13 159 1.931e-13
10 || 170 7.256e-14 219 | 2.067e-14 156 1.383e-13
20 || 193 2.647e-14 138 | 6.153e-14 252 2.205e-13
TABLE 5

The obtained times ratio TR and relative difference norms RDN in Ezxperiment 3.1 (b).

Test Problems

A = -cddel A = -Chem97ZtZ || A = -pde2961 A = thermal A = rdb5000

n =961 n = 2541 n = 2961 n = 3456 n = 5000

T r TR RDN TR RDN TR RDN TR RDN TR RDN
2 || 6.8 | 3.988e-15 12 5.465e-15 1.6 | 2.784e-15 || 1.4 | 4.295e-15 14 | 7.863e-13
1 5 17 | 1.032e-14 18 8.376e-15 6.5 | 8.639e-15 || 2.3 | 7.386e-15 42 | 2.892e-13
10 44 | 1.430e-14 50 1.268e-14 13 | 1.386e-14 || 6.1 | 9.442¢-15 83 | 4.434e-13
2 47 | 2.815e-14 15 8.190e-15 12 | 1.002e-14 || 2.5 | 3.592e-15 57 | 3.482e-13
10 5 68 | 1.483e-14 30 1.002e-14 38 | 2.911e-14 10 | 4.631e-15 || 135 | 1.374e-12
10 73 | 2.910e-14 || 110 1.253e-14 57 | 2.713e-14 25 | 7.497e-15 || 255 | 1.617e-12

the performances of the CS and IF methods, we report in Table 6 the results obtained
for two cases : case 1: («,f) = (—3,—1) and case 2: («,) = (—0.7,—-0.4). For
each case, we choose T from the set {2,5,10} and took N = 10 for T'= 2, N = 20 for
T =5 and N =40 for T = 10. The rank r of the factors E and F is equal to r = 5,
r =10 or r = 20.

TABLE 6

The obtained times ratio TR and relative error norms norms RENCS-BA gng REN/F-BA jn B
periment 3.2 (b).

a=-3,=-1 a=-0.76=-04
T r TR RENCS-BA  RgNIF-BA TR RENCS-BA  Rgy IF-BA
5 | 1.277 4.777e-14 4.720e-14 || 1.234 2.641e-11 2.641e-11
2110 || 1.118 5.147e-14 5.049e-14 || 1.139 3.022e-11  3.022e-11
20 || 3.858 5.473e-14 5.311e-14 || 2.331 3.40le-11  3.400e-11
5 || 1.292 4.358¢-14 4.25le-14 || 1.160 2.343e-11 2.343e-11
5110 || 1.371 4.639e-14 4.507e-14 || 1.124 2.728e-11 2.728e-11
20 || 4.230 4.984e-14 4.855e-14 || — — — 3.148e-11  — — —
5 || 1.237 4.358¢-14 4.25le-14 || 1.093 2.343e-11 2.343e-11
10 | 10 || 1.399 4.639e-14 4.507e-14 || 83.424 2.728e-11 2.728¢-11
20 || 3.974 4.984c-14 4.855¢-14 || — — — 3.148¢-11  — — —

We notice that in most of tests, both methods manage to provide a good approx-
imate solution and that the CPU time is in favor of the BA-CS method. However, we
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observed that for small values of @ and § and when the values of r and T are large,
the BA-IF method failed to converge within a reasonable time. The non-convergence
is indicated by 7" — — —=".

Experiment 3.2 (b). In this last set of experiments, we compare the perfor-
mances of the CS and IF methods when they are applied to the solution of low-rank
differential Lyapunov equations. Unlike the previous series of tests, we did not gener-
ate a discretization for the interval [0, 7] and only calculated the approximation X (T°)
at the final time, where 7' = 10. Similarly, the rank of C' = E ET does not vary and
is r = 20. For each experiment with a matrix Ay -which is taken from the Florida
sparse matrix collection [14]-, we considered four values for the scalar « that was used
in the generation of the benchmark example. The size ng of each matrix Ag, the size
n of the benchmark matrix A as well as the obtained results are reported in Table 7.

TABLE 7
Numerical results for Experiment 3.2 (b) with T =10, N =1 and r = 20.

Test Problems
Ap = cddel Ap = pde2961 Ao = sstmodel
ng = 961, n = 2883 ng = 2961, n = 8883 ng = 3345, n = 10035
a TR | RENCS-BA | RENTF-BA TR | RENCS-BA | RENTF-BA TR | RENCS-BA | RENTF-BA
-5 512 | 4.33e-14 | 3.76e-14 227 | 2.14e-14 | 1.18e-14 1.82 | 3.43e-12 | 9.82e-13
-1 ——— | 5.81e-12 ——— || 1087.5 | 5.37e-12 | 1.26e-12 || 200.43 | 6.45e-14 | 6.23e-14
0.5 || ——— | 4.58e-10 — — — || 544.31 | 4.60e-10 | 1.0le-11 || 637.17 | 5.23e-12 | 2.69e-13
0.1 ———| 82307 ——— || === 1.19e-07 ——— || === 3.38-08 -
Test Problems
Ag = thermal Ag = add32 Ap = rwb151
ng = 3456, n = 10368 ng = 4960, n = 14880 ng = 5151, n = 15453
a TR | RENCS-BA | RENTF-BA TR | RENCS-BA | RENTF-BA TR | RENCS-BA | RENTF-BA
-5 1.53 | 2.03e-12 | 1.03e-12 1.48 | 5.17e-15 | 3.90e-15 1.37 | 5.44e-15 | 4.85e-15
-1 1.69 | 2.78e-14 | 2.56e-14 1.45 | 8.00e-15 | 1.29e-15 1.22 | 2.9le-14 | 2.50e-14
-0.5 1.58 | 1.20e-13 | 1.05e-13 1.55 | 5.77e-15 | 1.74e-15 || 391.43 | 1.44e-13 | 1.29¢-13
-0.1 || 277.88 | 1.12¢-10 | 6.94e-11 1.71 | 1.26e-14 | 2.46e-15 || — — — | 7.47e-11 -

5. Conclusion. In this work, we have proposed new techniques for solving
Sylvester and Lyapunov matrix differential equation. Unlike the recent method pro-
posed in [20], our method avoid the integral formula which is very benefit and reduced
the computational cost. The proposed method is very efficient for large scale problem
by exploiting a projection on Krylov subspaces. Numerous numerical tests are used
to show the effectiveness of such proposed method, we have reported some of them
in a specific section. The convergence of such method is proved and a constructive
benchmark example is given.
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