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THE CONSTANT SOLUTION METHOD FOR SOLVING LARGE1

SCALE DIFFERENTIAL SYLVESTER MATRIX EQUATION WITH2

TIME INVARIANT COEFFICIENTS3

ABDERRAHMAN BOUHAMIDI∗, LAKHDAR ELBOUYAHYAOUI† , AND MOHAMMED4

HEYOUNI‡5

Abstract. This paper is mainly focused on the solution of Sylvester matrix differential equations6
with time independent coefficients. We propose a new approach based on the construction of a7
particular constant solution which allows to construct an approximate solution of the differential8
equation from that of the corresponding algebraic equation. Moreover, when the matrix coefficients9
of the differential equation are large, we combine the constant solution approach with Krylov subspace10
methods for obtaining an approximate solution of the Sylvester algebraic equation, and thus form11
an approximate solution of the large-scale Sylvester matrix differential equation. We establish some12
theoretical results including error estimates and convergence as well as relations between the residuals13
of the differential and its corresponding algebraic Sylvester matrix equation. We also give explicit14
benchmark formulas for the solution of the differential equation.To illustrate the efficiency of the15
proposed approach, we perform numerous numerical tests and make various comparisons with other16
methods for solving Sylvester matrix differential equations.17

Key words. Krylov subspace methods, block Arnoldi, matrix differential Sylvester equation,18
dynamical systems, control, Ordinary differential equations.19

AMS subject classifications. 65F10, 65R3020

1. Introduction. Differential Lyapunov and Sylvester equations are involved21

in many areas of applied mathematics and arise in numerous scientific applications.22

For instance, they play a crucial role in control theory, model order reduction, image23

processing and the list is not exhaustive. In particular, the differential Lyapunov24

matrix equation is a useful tool for stability analysis and control design for linear25

time-dependent systems [2, 3]. In this paper, we are concerned with numerically26

solving the differential Sylvester matrix equation of the form27

(1.1)

{
Ẋ(t) = AX(t) +X(t)B − C, t ∈ [t0, T ]
X(t0) = X0,

28

where [t0, T ] ⊂ R is a closed and bounded time interval with t0, T are the initial and29

final times respectively. We set ∆T = T − t0, the length of the interval [t0, T ]. The30

coefficient matrices A ∈ Rn×n, B ∈ Rs×s and C ∈ Rn×s are constant real matrices.31

The differential Lyapunov matrix equation corresponds to the symmetric case where32

B = AT . Before describing the new proposed method, we refer to the algebraic33

equation canonically associated to (1.1)34

(1.2) AX +X B = C,35

as the corresponding (or associated) algebraic Sylvester equation. To the best of our36

knowledge, despite the importance of differential matrix equations, few works have37

been devoted to their numerical resolution when the matrix coefficients are large.38
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2 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

Adaptation of BDF and/or Rosenbrock methods has been described in [7, 8] (see39

also the references in [5]). However these adaptations usually suffer from a prob-40

lem of numerical data storage. To remedy this problem, combining Krylov subspaces41

techniques with BDF methods or with Taylor series expansions have recently been42

proposed [5,19]. Other existing methods described in the recent literature for solving43

large-scale differential Sylvester matrix equation rely on using the integral formula or44

some numerical ODE solver [20,37]. The strategy we pursue in this manuscript is dif-45

ferent in the sense that our approach for solving differential Sylvester (or Lyapunov)46

matrix equations is based on the use of the constant solution to the differential equa-47

tion. The first result we use indicates that the solution of the differential equation is48

written in terms of the solution of the corresponding algebraic equation. Additionally,49

in the case where the coefficient matrices A and/or B are large, we combine the new50

expression of the solution with some projection techniques on Krylov subspace, such51

as the block Arnoldi algorithm for solving the corresponding algebraic equations or52

for approximating the exponential of a matrix.53

we momentarily assume that the matrix C in (1.1), represents a continuous ma-54

trix function C(t) defined on [t0, T ] and let us consider next, the following classical55

differential linear system56

(1.3)

{
ẋ(t) = A x(t)− c(t),
x(t0) = x0,

57

where A ∈ Rp×p is time independent and x(t), c(t) ∈ Rp for all time t ∈ [t0, T ]. We58

assume that c is a continuous function on the interval [t0, T ]. In this case, the system59

(1.3) has a unique solution x(t) which is differentiable with a continuous derivative60

on [t0, T ]. It is well known that the unique solution of (1.3) may be written under61

the form62

(1.4) x(t) = e(t−t0) A x0 −
∫ t

t0

e(t−u) A c(u) du.63

In many practical situations, the matrix A may be very large. In this case, exploiting64

expression (1.4) for computing the solution x(t) is very expensive. However, when65

the matrix A is large and sparse with a specific structure, some numerical techniques66

may be done to approximate the matrix exponential time a vector [24,32,35]. As, our67

interest is to obtain a good approximate solution to the differential Sylvester equation68

(1.1), we need to consider the matrix A in system (1.3) of size p = n s structured as69

following:70

A = Is ⊗A+BT ⊗ In,71

where the matrices A, B are those given in (1.1). The identity matrices In, Is are of72

size n and s, respectively. The notations BT and ⊗ stand for the transpose of B and73

the Kronecker product of two matrices, respectively. We recall that the Kronecker74

product of two matrices J and K of size nj ×mj and nk ×mk, respectively, is the75

matrix J ⊗K = [Ji,j K] of size nj nk ×mjmk. The following well known properties76

will be used throughout this paper:77

1. (A⊗B) (C ⊗D) = (AC)⊗ (BD),78

2. (A⊗B)T = (AT ⊗BT ),79

3. vec(ABC) = (CT ⊗A) vec(B).80

The vec operator consists in transforming a matrix into a vector by stacking its81

columns one by one to form a single column vector.82
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 3

Let x0, x, c be the vectors such that x0 = vec(X0), x = vec(X), c = vec(C) where83

X0, X(t) and C are appearing in (1.1). In [1], it was written, without any specific84

details of its proof, that the solution of the differential Sylvester matrix equation (1.1)85

is given by the following integral formula86

(1.5) X(t) = e(t−t0)AX0 e
(t−t0)B −

∫ t

t0

e(t−u)A C(u) e(t−u)B du.87

Although the proof of this result does not present any major difficulty, it seemed
interesting to us to give the details of such a proof. Indeed, using the additive com-
mutativity of the matrix exponential which states

eA eB = eA+B ⇐⇒ AB = BA,

and since, the matrices Is ⊗ A and BT ⊗ In commute, then using the properties of88

the Kronecker product, it follows that89

e(t−t0) A = e(t−t0) (Is⊗A+BT⊗In)
90

= e(t−t0) (Is⊗A) e(t−t0) (BT⊗In)
91

= (Is ⊗ e(t−t0)A) (e(t−t0)BT

⊗ In)92

= e(t−t0)BT

⊗ e(t−t0)A.93

Thus,

e(t−t0) A x0 =
[
e(t−t0)BT

⊗ e(t−t0)A
]
vec(X0) = vec(e(t−t0)AX0 e

(t−t0)B),

Finally, this implies that the formula (1.4) giving the solution to the system (1.3)94

leads to the formula (1.5) giving the solution to the differential Sylvester equation95

(1.1).96

From now on, return back to the case where the vector coefficient c in (1.3) and97

also the matrix coefficient C in (1.1) are assumed to be constant functions on the98

interval [t0, T ]. Thus, as the systems (1.1) and (1.3) are mathematically equivalent,99

then for moderate size problems, it is possible to apply directly a numerical integration100

to the system (1.3) or to use (1.4) or the above integral formula (1.5). But, for a large101

system, we will see that it is more interesting to solve the system in the matrix form102

(1.1).103

Note that it is not restrictive to choose X0 = 0 in the initial condition X(t0) = X0104

of (1.1). Indeed, letX(t) denote the exact solution of the system (1.1), then the matrix105

function given by Y (t) = X(t)−X0 is the unique solution of the following system106 {
Ẏ (t) = AY (t) + Y (t)B − C0, t ∈ [t0, T ]
Y (t0) = 0,

107

where
C0 = C − (AX0 +X0B).

We may first solve the previous differential equation to get Y (t) and then deduce the108

solution X(t) = Y (t) +X0 of the differential equation (1.1).109

To end this section, we give some useful notations. The Frobenius inner product
is defined by

〈Y,Z〉 = tr(Y T Z), Y, Z ∈ Rl×q,

This manuscript is for review purposes only.



4 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

where tr(M) denotes the trace of a matrix M . The associated Frobenius norm is
denoted by ‖Y ‖ =

√
〈Y, Y 〉. For a bounded matrix valued function G defined on the

interval [t0, T ], we consider the following uniform convergence norm

‖G‖∞ = sup
t∈[t0, T ]

‖G(t)‖.

The outline of this paper is as follows: In Section 2, we introduce our proposed method110

which will be called the Constant Solution Method (CSM in short), describe some of111

it’s properties and give some theoretical results. A summarized and brief description112

of the corresponding algorithm, will also be given. In Section 3, we combine CSM with113

the block Arnoldi algorithm for solving algebraic Sylvester matrix equations in order114

to tackle large-scale differential Sylvester equations. The two cases: full and low-rank115

are discussed. Moreover, we establish theoretical results expressing the residual of116

the differential equation in terms of that of the algebraic equation. We also establish117

some theoretical results on the convergence and on the error estimates provided by the118

constant solution method. In section 4 which is devoted to numerical experiments, we119

first show how to generate a benchmark differential Sylvester matrix equation with a120

known exact solution. To the best of our knowledge, this construction is new and has121

never been proposed before. The numerical results section continues with several set122

of experiments whose results indicate that CSM is an efficient and robust method. As123

usual, the last section is devoted to a brief conclusion.124

2. The constant solution method for the differential Sylvester matrix125

equation. In the integral Formula (1.5), quadrature methods are needed to compute126

numerically the approximate solution. Thus, when one (or both) of the matrix coef-127

ficients A or B is (or are) large and has (or have) no particular exploitable structure,128

the computation of the integral may be expensive or even unfeasible. In this section,129

we use another expression for the solution of the system (1.1) which is given in terms130

of the solution of the corresponding algebraic Sylvester matrix equation (1.2). This131

expression avoids the use of quadrature methods since it does not contain an integral.132

To the best of our knowledge, the approach we describe in this section has never been133

exploited in the context of solving large scale differential Sylvester matrix equations.134

However, it is based on the classical and simple technique of adding a particular135

constant solution to the general solution of the homogeneous differential equation to136

form the general solution of a linear differential equation of order one with constant137

coefficients. Next, we give the following theorem, which gives a useful and interesting138

expression of the unique solution of the system (1.1). The result of this theorem is139

known in the literature [6,15], but, in practice, it has not been exploited numerically140

to give approximate solutions. This theorem is not difficult to establish. However, in141

order to facilitate the reading of the present work, it seems interesting to us to give142

the proof of this theorem.143

Theorem 2.1. Suppose that the matrices A and B in the system (1.1) are such144

that σ(A) ∩ σ(−B) = ∅, where σ(M) denotes the spectrum of the matrix M , then the145

unique and exact solution X∗(t) of the system (1.1) is given by146

(2.1) X∗(t) = e(t−t0)A
(
X0 − X̃∗

)
e(t−t0)B + X̃∗,147

where X̃∗ is the unique and exact solution of the algebraic Sylvester equation (1.2).148
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 5

Proof. The general solution of the homogeneous differential equation associated
to (1.1) is given by

Z(t) = et A Y et B ,

where Y ∈ Rn×s is some constant matrix. Since σ(A) ∩ σ(−B) = ∅, the algebraic149

Sylvester equation (1.2) has a unique solution X̃∗ (see, e.g [25, Thm. 2.4.4.1]). Now,150

as X̃∗ is a constant matrix function (i.e., X̃∗(t) = X̃∗), then it can be seen as a151

particular solution of the differential equation152

Ẋ(t) = AX(t) +X(t)B − C.153

It follows that the general solution of the previous differential equation is given by154

X(t) = et A Y et B + X̃∗.155

Finally, since the unique solution of the differential equation (1.1) must satisfy the156

initial condition X∗(t0) = X0, it follows that X∗(t0) = et0 A Y et0 B + X̃∗ = X0.157

The last equality implies Y = e−t0 A
(
X0 − X̃∗

)
e−t0 B and expression (2.1) follows158

immediately.159

In the remainder of this paper, we assume that the matrices A and B in (1.1)160

satisfy the condition161

σ(A) ∩ σ(−B) = ∅.162

The following property shows the behavior of the matrix solution X∗(t) as the interval163

[t0, T ] becomes very more and more large, namely, as the final time T goes to +∞.164

Proposition 2.2. [29, Chapter 8] Suppose that the coefficients A and B in the
system (1.1) are stable matrices, then the unique solution X∗(t) of the differential
system (1.1) satisfies

lim
T→+∞

‖X∗(T )− X̃∗‖ = 0,

where X̃∗ is the unique solution of the corresponding algebraic Sylvester equation (1.2).165

In the remainder of this section, we suppose that the matrix coefficients A and B166

are of moderate size. In this case, an approximate solution to the algebraic Sylvester167

equation (1.2) may be obtained by a direct solver such as the Bartels-Stewart al-168

gorithm, the Schur decomposition, or the Hammarling method [4, 18, 21, 30, 40]. A169

common point to all these methods is first the computation of the real Schur forms170

of the coefficient matrices using the QR algorithm. Then, the original equation is171

transformed into an equivalent form that is easier to solve by a forward substitution.172

Now, suppose that X̃a is an approximate solution to X̃∗ the exact solution of the173

Sylvester algebraic equation (1.2), it follows that an approximate solution Xa(t) to174

X∗(t) the exact solution of the Sylvester differential equation (1.1) can be expressed175

in the following form.176

(2.2) Xa(t) = e(t−t0)A
(
X0 − X̃a

)
e(t−t0)B + X̃a.177

Here, as A and B are assumed to be of moderate size, we also assume that both178

exponential e(t−t0)A and e(t−t0)B are computed exactly. To establish an upper bound179
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6 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

for the error norm, let us introduce the algebraic error Ẽ and the differential error180

E(t) given by181

Ẽ = X̃∗ − X̃a, and E(t) = X∗(t)−Xa(t), ∀t ∈ [t0, T ],182

respectively. Finally, recalling that ∆T = T − t0 and ‖E‖∞ = sup
t∈[t0, T ]

||E(t)||, we183

have the following result184

Proposition 2.3. In the case where the matrix exponential is computed exactly,185

we have186

‖E‖∞ ≤
(

1 + e∆T (‖A‖+‖B‖)
)
‖Ẽ‖,187

where E and Ẽ are the errors associated to the approximate solutions Xa(t) and X̃a188

respectively.189

Proof. Subtracting (2.2) from (2.1), we get

E(t) = X∗(t)−Xa(t) = e(t−t0)A Ẽ e(t−t0)B + Ẽ, ∀t ∈ [t0, T ],

and from the triangular inequality, we obtain

||E(t)|| ≤ ||e(t−t0)AẼ e(t−t0)B ||+ ||Ẽ||, ∀t ∈ [t0, T ].

The Frobenius norm being multiplicative (that is ‖AB‖ ≤ ‖A‖ ‖B‖), this implies
that ‖esM‖ ≤ es ‖M‖ for all s ≥ 0 and for any square matrix M . Thus,

||E(t)|| ≤
(

1 + e(t−t0) (‖A‖+‖B‖)
)
‖Ẽ‖, ∀t ∈ [t0, T ].

As E is a continuous matrix function on the interval [t0, T ], (t − t0) ≤ ∆T and190

‖E‖∞ = sup
t∈[t0, T ]

||E(t)||, then the desired result follows obviously.191

Le us now introduce R(t) and R̃ the residuals associated to the differential and192

algebraic Sylvester matrix equations, respectively. These residuals are defined by193

(2.3)

{
R(t) = Ẋa(t)− (AXa(t) +Xa(t)B − C) , t ∈ [t0, T ],

R̃ = C −
(
AX̃a + X̃aB

)
,

194

and satisfy the following proposition.195

Proposition 2.4. In the case where the matrix exponential is computed exactly,
the residual for the differential equation, is time independent and we have

R(t) = R̃, ∀t ∈ [t0, T ].

Proof. From (2.2), we have

Ẋa(t) = e(t−t0)A
(
A (X0 − X̃a) + (X0 − X̃a)B

)
e(t−t0)B .

On the other hand, we have

AXa(t)+Xa(t)B = e(t−t0)A
(
A (X0 − X̃a) + (X0 − X̃a)B

)
e(t−t0)B+AX̃a+X̃aB.
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 7

Then subtracting one of the two previous relations from the other, we get

R(t) = Ẋa(t)− (AXa(t) +Xa(t)B − C) = C −
(
AX̃a + X̃aB

)
= R̃.

196

Before ending this section, we sketch in Algorithm 2.1 below the main steps197

that must be followed to obtain approximations Xk = Xa(tk) to the solution of the198

differential Sylvester equation (1.1) at different nodes tk, (k = 1, . . . , N) of a suitable199

discretization of the time interval [t0, T ].200

Algorithm 2.1 Constant Solution Method in the case of moderate size (CSM)

1: Input: The matrices A, B, C, the initial and final times t0, T , the number N of
nodes and the step time δT .

2: Output: X1, . . . , XN , (where Xk = Xa(tk)), (1 ≤ k ≤ N)
3: Solve the algebraic Sylvester equation: AX + X B = C, to get an approximate

solution X̃a to the exact solution X̃∗.
4: for k = 1, . . . , N do
5: Compute: tk = tk−1 + δT ;

6: Compute: Xk = e(tk−t0)A
(
X0 − X̃a

)
e(tk−t0)B + X̃a;

7: end for

3. Block Arnoldi for solving large-scale differential Sylvester matrix201

equations. It is well known that computing the matrix exponential may be ex-202

pensive when the matrix is very large. Thus, expression (2.1) may not be directly203

exploitable in the case of large scale matrix coefficients. In the following, we will see204

how to circumvent this difficulty using projection methods onto some Krylov sub-205

space. Indeed, in addition to allowing us to obtain a good approximation of the exact206

solution of the algebraic Sylvester equation (1.2), Krylov subspace methods are also207

a useful tool to compute the action of matrix exponential on a block vector with a208

satisfactory accuracy. During the last three decades, various projection methods on209

block, global or extended Krylov subspaces have been proposed to solve Sylvester210

matrix equations (or other similar equations) whose coefficients are large and sparse211

matrices [9–11, 16, 22, 23, 26–28]. The common idea behind these methods is to first212

reduce the size of the original equation by constructing a suitable Krylov basis, then213

solve the obtained low dimensional equation by means of a direct method such as the214

Hessenberg-Schur method or the Bartels-Stewart algorithm [4,18], and finally recover215

the solution of the original large equation from the smaller one. For a complete over-216

view of the main methods for solving algebraic Sylvester or Lyapunov equations, we217

refer to [3, 13, 39] and the references therein. In order to be as general as possible218

and not to impose restrictive assumptions, we opt for a resolution of the Sylvester (or219

Lyapunov) equation using the block Arnoldi process rather than the extended block220

Arnoldi process since the latter requires that the coefficient matrices A and B are non221

singular. This last condition may not be fulfilled in many practical cases.222

We recall that projection techniques on block Krylov subspaces for solving matrix223

differential equations were first proposed in [19,20] by exploiting the integral formula224

(1.5) and approximating the exponential of a matrix times a block of vectors or by225

solving a projected low-dimensional differential Sylvester matrix equation by means226

of numerical integration methods such as the backward differentiation formula (BDF)227

[12].228
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8 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

As said before, the approach we follow in this work is different from the one229

proposed in [19, 20]. It consists of exploiting formula (2.1), instead of the integral230

formula (1.5), which is less expensive. To have at hand an adequate basis of the231

considered Krylov subspace, we will use the block Arnoldi process described in the232

next subsection.233

3.1. The block Arnoldi process. Let M be an l × l matrix and V an l × s234

block vector. We consider the classical block Krylov subspace235

Km(M,V ) = Range([V,M V, . . . ,Mm−1 V ])236

=

{
m−1∑
k=0

Mk V Ωk, Ωk ∈ Rs×s, 0 ≤ k ≤ m− 1

}
.237

The block Arnoldi process, described in Algorithm 3.1, generates an orthonormal basis238

VMm of the block Krylov subspace Km(M,V ).239

Algorithm 3.1 The block Arnoldi process (BA)

1: Input: M a matrix of size l × l, V a matrix of size l × s and m an integer.

2: Output: VMm+1 and HMm satisfying (3.1)–(3.3).
3: Get V1 by computing the QR decomposition of V , i.e., V = V1 Λ1;
4: for j = 1, . . . ,m do
5: Compute U = M Vj ;
6: for i = 1, 2, . . . , j do
7: Hi,j = V Ti U ;
8: U = U − ViHi,j ;
9: end for

10: Get Vj+1 and Hj+1,j by computing the QR decomposition of U ,
i.e., U = Vj+1Hj+1,j .

11: Set Hi,j = 0 for i > j + 1

12: Define VMj+1 = [V1, . . . , Vj , Vj+1] and HMj = (Hk,`)1≤k≤j+1,1≤`≤j
13: end for

Suppose that the upper triangular matrices Hj+1,j are full rank then, since the240

above algorithm involves a Gram-Schmidt procedure, the obtained block vectors241

V1, V2, . . . , Vm (Vi ∈ Rl×s) have their columns mutually orthogonal. Hence, after242

m steps, Algorithm 3.1 generates an orthonormal basis VMm = [V1, V2, . . . , Vm] of the243

block Krylov subspace Km(M,V ) and a block upper Hessenberg matrix HMm whose244

non zeros blocks are the Hi,j ∈ Rs×s. We have the following and useful algebraic245

relations [17,36].246

M VMm = VMm+1 HMm = VMm HMm +VMm+1H
M
m+1,m (E(s)

m )T ,(3.1)247 (
VMm

)T
M VMm = HMm ,(3.2)248 (

VMm
)T

VMm = Ims,(3.3)249

where HMm = (VMm+1)T M VMm ∈ R(m+1) s×ms, Hi,j ∈ Rs×s is the (i, j) block of HMm250

and E(s)
m is the matrix of the last s columns of the ms×ms identity matrix Ims, i.e.251

E(s)
m = [0s×(m−1) s, Is]

T . In the following, we will use the notation252

(3.4) VMm,s = VMm+1H
M
m+1,m (E(s)

m )T .253
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CSM FOR SOLVING DIFFERENTIAL SYLVESTER MATRIX EQUATION 9

3.2. Full rank case. Here, we suppose that A is a large matrix while B is254

relatively smaller, i.e., s� n. We also assume that the right-hand side C is full rank,255

i.e. rank(C) = s. Also, for simplicity reasons, we took X0 = 0 in the initial condition,256

since, as mentioned in the introduction, it is not restrictive.257

To obtain approximate solutions to the algebraic Sylvester equation (1.2), one258

can use the block Arnoldi method in which we consider approximate solutions that259

have the following form260

(3.5) X̃m = VAm Ỹm,261

where VAm is the orthonormal Krylov basis generated by applying m iterations of262

Algorithm 3.1 to the pair (A,C). Let R̃m be the algebraic residual given by263

(3.6) R̃m = C −
(
AX̃m + X̃mB

)
.264

The correction Ỹm, is obtained by imposing the Petrov-Galerkin condition265

(VAm)T R̃m = 0ms×s.266

Thus, taking into account the relations (3.1)–(3.3) and (3.5), it follows that Ỹm is the267

solution of the reduced Sylvester equation268

HAm Y + Y B = Cm,269

where HAm = (VAm)T A VAm and Cm = (VAm)T C. Note that from Algorithm 3.1, we270

also get that C = VAm Cm. Now, if σ(HAm) ∩ σ(−B) = ∅, then the previous Sylvester271

equation admits a unique solution which can be obtained by a direct method [4,18]. In272

addition, from the relations (3.1)-(3.3), the residual R̃m satisfies the following relation273

(3.7) R̃m = −V Am,s Ỹm.274

According to [32,34], the following approximation to e(t−t0)A X̃∗ holds275

e(t−t0)A X̃∗ ' VAm e(t−t0) HA
m (VAm)T X̃m.276

It follows, that an approximate solution Xm(t), for t ∈ [t0, T ], to the exact solution
X∗(t) of the differential Sylvester matrix equation (1.1) may be obtained by

Xm(t) = −VAm e(t−t0) HA
m (VAm)T X̃m e

(t−t0)B + X̃m.

Taking into account (3.5), it follows that277

(3.8) Xm(t) = VAm Ym(t), t ∈ [t0, T ],278

where279

(3.9) Ym(t) = −e(t−t0) HA
m Ỹm e

(t−t0)B + Ỹm, t ∈ [t0, T ].280

This matrix function satisfies the following result.281

Proposition 3.1. The matrix function Ym(t) given by (3.9) is the unique solu-282

tion of the reduced differential Sylvester matrix equation283

(3.10)

{
Ẏ (t) = HAm Y (t) + Y (t)B − Cm, t ∈ [t0, T ]
Y (t0) = 0.

284
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Proof. The derivative of the matrix function Ym(t) as given by (3.9) is

Ẏm(t) = −e(t−t0) HA
m

(
HAm Ỹm + ỸmB

)
e(t−t0)B , t ∈ [t0, T ].

On the other hand, we have285

286

HAm Ym(t) + Ym(t)B − Cm = −e(t−t0) HA
m

(
HAm Ỹm + ỸmB

)
e(t−t0)B

287

+ HAm Ỹm + ỸmB − Cm, t ∈ [t0, T ].288289

Thus, it follows that

Ẏm(t)−
(
HAm Ym(t) + Ym(t)B − Cm

)
= 0,

and additionally, Ym(t) satisfies the initial condition Ym(t0) = 0.290

Remark 3.2. Proposition 3.1 shows that another way to obtain an approximation291

of Ym(t) can be the resolution of the projected and reduced differential equation (3.9)292

by using an adequate numerical ODE solver such as Runge-Kutta or BDF solvers.293

We recall that such technique was used in [19,20]. In our proposed method, we don’t294

use such approach, but instead, we solve the reduced algebraic equation and take into295

account approximations (3.8) and (3.10) to get an approximate solution to the low296

dimensional differential matrix equation (3.9).297

Now, let Rm(t) be the residual associated to the approximate solution Xm(t), i.e.,298

(3.11) Rm(t) = Ẋm(t)− (AXm(t) +Xm(t)B − C), t ∈ [t0, T ].299

The following proposition gives an expression for this residual.300

Proposition 3.3. The residual for the differential equation is given by301

Rm(t) = −V Am,s Ym(t)(3.12)302

= V Am,s e
(t−t0) HA

m Ỹm e
(t−t0)B + R̃m,(3.13)303

where R̃m is the algebraic residual given in (3.6). Moreover304

(3.14) (VAm)T Rm(t) = 0ms×s, ∀t ∈ [t0, T ].305

Proof. Replacing, in (3.11), Xm(t) by its expression given by (3.8), we get

Rm(t) = VAm Ẏm(t)−A VAm Ym(t)− VAm Ym(t)B + C.

Then, using (3.1), we obtain306

Rm(t) = VAm Ẏm(t)−
(
VAm HAm +V Am,s

)
Ym(t)− VAm Ym(t)B + VAm Cm.307

= VAm
(
Ẏm(t)−

[
HAm Ym(t) + Ym(t)B − Cm

])
− V Am,s Ym(t).308

As Ym(t) is the solution of (3.10), we then get (3.12). Now, according to (3.9), we
obtain

Rm(t) = V Am,s e
(t−t0) HA

m Ỹm e
(t−t0)B − V Am,s Ỹm.

Finally, from (3.7), we get (3.13) and the relation (3.14) follows immediately.309
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Note that if HAm and B are stable, i.e, all the eigenvalues of HAm and B belong to
the half part of C whose real part is negative. It follows that,

lim
T→+∞

e(T−t0) HA
m = 0s×s and lim

T→+∞
e(T−t0)B = 0s×s.

Then, using (3.13), we get310

lim
T→+∞

Rm(T ) = R̃m.311

In addition and as done in the previous section, we consider the differential error312

Em given by313

Em(t) = X∗(t)−Xm(t), ∀t ∈ [t0, T ].314

We recall that Xm(t) and X∗(t) are the approximate and exact solutions to the315

differential equation, respectively. The following result gives an error estimate for316

error norm Em.317

Theorem 3.4. At step m, the following error estimate holds

‖Em‖∞ ≤
(
e∆T (‖A‖+‖B‖) − 1

‖A‖+ ‖B‖

)
(rAm + zAm),

where318

rAm = ‖R̃m‖ = ‖HA
m+1,m Y m‖ and zAm = ‖HA

m+1,m Zm‖,319

with Y m, Zm are the matrices of size s × s formed by the s last rows of Ỹm and320

Zm := e∆T HA
m Ỹme

∆T B respectively.321

Proof. From (2.3) and the differential Sylvester matrix equation (1.1), we have

Ėm(t) = Ẋ∗(t)− Ẋm(t) = A (X∗(t)−Xm(t)) + (X∗(t)−Xm(t)) B −Rm(t),

with Em(t0) = 0. Thus, the function Em(t) satisfies the following differential Sylvester
matrix equation{

Ėm(t) = AEm(t) + Em(t)B −Rm(t), t ∈ [t0, T ]
Em(t0) = 0.

So, Em(t) may be written by the following integral formula

Em(t) = −
∫ t

t0

e(t−s)ARm(t) e(t−s)B ds.

Passing to the norm, for all t ∈ [t0, T ], we get

‖Em(t)‖ ≤
∫ t

t0

‖e(t−s)ARm(t) e(t−s)B‖ ds ≤ ‖Rm(t)‖
∫ t

t0

‖e(t−s)A‖ ‖e(t−s)B‖ ds.

As, ‖eαM‖ ≤ eα‖M‖ for α ≥ 0 and M = A or M = B, we obtain that, for all
t ∈ [t0, T ],

‖Em(t)‖ ≤ ‖Rm(t)‖
∫ t

t0

e(t−s) (‖A‖+‖B‖) ds.
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This gives after integration that, for all t ∈ [t0, T ] we have

‖Em(t)‖ ≤
(
e(t−t0) (‖A‖+‖B‖) − 1

‖A‖+ ‖B‖

)
‖Rm(t)‖.

Then using (3.13) and the triangular inequality, we get

‖Em(t)‖ ≤
(
e(t−t0) (‖A‖+‖B‖) − 1

‖A‖+ ‖B‖

)
(rAm + zAm), for all t ∈ [t0, T ].

Finally, the desired result is obtained by passing to the uniform norm.322

Now, we point out that (3.12) provides a cheap formula for computing at each node323

tk the norm rm,k := ‖Rm(tk)‖ of the residual associated to the approximate solution324

Xm,k := Xm(tk). This formula avoids computing matrix vector products with the325

large coefficient matrix A since we have326

(3.15) rm,k := ‖Rm(tk)‖ = ‖HA
m+1,m (E(s)

m )T Ym,k‖ = ‖HA
m+1,m Y m,k‖,327

where Y m,k = (E(s)
m )T Ym,k is the matrix of size s× s formed by the last s rows of the328

matrix Ym,k := Ym(tk).329

Finally, we end this section by summarizing in Algorithm 3.2 our proposed method330

that is the block Arnoldi combined with the constant solution method (BA-CSM)331

applied for full-rank differential Sylvester equations332

3.3. Low-rank case. Now, we consider the case where both A and B are large333

matrices. In addition, the coefficient C appearing in the right-hand side is assumed334

to be low rank and is given under the factored form C = E FT where E ∈ Rn×r335

and F ∈ Rs×r. We also, assume for simplicity reasons that the initial condition336

is such that X0 = 0. To obtain approximate solutions to the low-rank algebraic337

Sylvester equation (1.2), we can use the block Arnoldi method in which we consider338

approximate solutions that have the form339

(3.16) X̃m = VAm Ỹm (VBm)T ,340

where VAm, VBm are the orthonormal matrices obtained by running m iterations of341

Algorithm 3.1 applied to the pairs (A,E) and (BT , F ) respectively. Enforcing the342

following Petrov-Galerkin condition343

(VAm)T R̃m VBm = 0mr×mr,344

to the algebraic residual R̃m given by345

(3.17) R̃m = E FT − (AX̃m + X̃mB).346

Multiplying (3.17) on the left by (VAm)T and on the right by VBm and taking into347

account relations (3.1)–(3.3) and (3.16), it follows immediately, that Ỹm is the solution348

of the reduced projected Sylvester equation349

(3.18) HAm Y + Y (HBm)T = Em F
T
m,350

where HAm = (VAm)T A VAm, HBm = (VBm)T BT VBm are the mr × mr upper block351

Hessenberg matrices generated by the block Arnoldi process and Em = (VAm)T E,352
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Algorithm 3.2 Block Arnoldi Constant Solution Method (BA-CSM) (Full-rank case)

1: Input: The matrices A, B, C, the initial and final times t0, T , a tolerance tol > 0,
a maximum number of iterationsMmax, a step-size parameter p andN the number
of nodes in the time discretization.

2: Output Xm,1, . . . , Xm,N , where Xm,k = Xm(tk), (1 ≤ k ≤ N)
3: Compute δT = (T − t0)/N .
4: for m = 1, . . . ,Mmax do
5: Compute V Am to update the orthonormal basis VAm =

[
V A1 , . . . , V Am

]
and get the

m-th block of HAm by applying Algorithm 3.1 to (A,C);
6: if m is a multiple of p then
7: Compute: Cm = (VAm)T C.

8: Solve the reduced Sylvester equation: HAm Ỹm + ỸmB = Cm.
9: for k = 1, . . . , N do

10: Compute tk = tk−1 + δT .

11: Compute Ym,k := Ym(tk) = −e(tk−t0) HA
m Ỹm e

(tk−t0)B + Ỹm.
12: Compute rm,k = ‖HA

m+1,m Y m,k‖.
13: end for
14: Compute rmax = max{rm,1, . . . , rm,N}
15: if rmax < tol then
16: go to line 20;
17: end if
18: end if
19: end for
20: for k = 1, . . . , N do
21: The approximate solution Xm,k at time tk is Xm,k = VAm Ym,k.
22: end for

Fm = (VBm)T F . Note that from Algorithm 3.1, we also get that E = VAm Em and353

F = VBm Fm. Here also, if σ(HAm) ∩ σ(−HBm) = ∅, then equation (3.18) admits a354

unique solution which can be computed using a standard direct method such as those355

described in [4,18]. Using the relation (3.1)–(3.2) and from the relations (3.16)–(3.18),356

we get357

(3.19) R̃m = −V Am,r Ỹm (VBm)T − VAm Ỹm (V Bm,r)
T ,358

where V Am,r = V Am+1H
A
m+1,m (E(r)

m )T and V Bm,r = V Bm+1H
B
m+1,m (E(r)

m )T . We also notice359

that, according to [32,34], an approximation to e(t−t0)A X̃∗e(t−t0)B may be obtained360

as361

e(t−t0)A X̃∗ e(t−t0)B ' VAm e(t−t0) HA
m (VAm)T X̃m VBm e(t−t0) (HB

m)T (VBm)T .362

Then, it follows, that an approximate solution Xm(t) to the exact solution X∗(t) of
the differential Sylvester matrix equation (1.1) may be given by

Xm(t) = −VAm e(t−t0) HA
m (VAm)T X̃m VBm e(t−t0) (HB

m)T (VBm)T + X̃m.

Taking into account (3.16) gives that363

(3.20) Xm(t) = VAm Ym(t) (VBm)T , t ∈ [t0, T ],364
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where365

(3.21) Ym(t) = −e(t−t0) HA
m Ỹme

(t−t0) (HB
m)T + Ỹm, t ∈ [t0, T ].366

As in the full-rank case, we have the following proposition.367

Proposition 3.5. The matrix function Ym(t) given by (3.21) is the unique solu-368

tion of the reduced differential Sylvester matrix equation369

(3.22)

{
Ẏ (t) = HAm Y (t) + Y (t) (HBm)T − Em FTm, t ∈ [t0, T ]
Y (t0) = 0.

370

Proof. The derivative of the matrix function Ym(t) as given by (3.21) is

Ẏm(t) = −e(t−t0) HA
m

(
HAm Ỹm + Ỹm(HBm)T

)
e(t−t0) (HB

m)T , t ∈ [t0, T ].

On the other hand, we have371
372

HAm Ym(t) + Ym(t) (HBm)T − Em FTm =373

− e(t−t0) HA
m

(
HAm Ỹm + Ỹm (HBm)T

)
e(t−t0) (HB

m)T
374

+ HAm Ỹm + Ỹm (HBm)T − Em FTm.375376

Thus, it follows that

Ẏm(t)−HAm Ym(t)− Ym(t) (HBm)T + Em F
T
m = 0.

Moreover, Ym(t) satisfies the initial condition Ym(t0) = 0.377

Next, the following proposition gives a useful expression of the residual which is378

defined, in the low-rank case, by379

(3.23) Rm(t) = Ẋm(t)− (AXm(t) +Xm(t)B − E FT ), t ∈ [t0, T ].380

381

Proposition 3.6. The residual for the differential equation is given by382

Rm(t) = −V Am,r Ym(t) (VBm)T − VAm Ym(t) (V Bm,r)
T ,(3.24)383

= V Am,r F̃m(t) (VBm)T + VAm F̃m(t) (V Bm,r)
T + R̃m,(3.25)384

where F̃m(t) = e(t−t0) HA
m Ỹm e

(t−t0) (HB
m)T and R̃m is the algebraic residual given by385

(3.17). In addition,386

(3.26)
(
VAm
)T

Rm(t) VBm = 0mr×mr, ∀t ∈ [t0, T ].387

Proof. Using the definition (3.23) of the residual Rm(t) and replacing Xm(t) by
its expression given in (3.20), we get

Rm(t) = VAm Ẏm(t) (VBm)T −A VAm Ym(t) (VBm)T − VAm Ym(t) (VBm)T B + E FT .

Now, using the algebraic relation (3.1) in which M is replaced either by A or by B,388

we obtain389

Rm(t) = VAm Ẏm(t) (VBm)T −
(
VAm HAm +V Am,r

)
Ym(t) (VBm)T390

−VAm Ym(t)
(

(HBm)T (VBm)T + (V Bm,r)
T
)

+ VAm Em F
T
m (VBm)T .391
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This may be arranged as following392

Rm(t) = VAm
(
Ẏm(t)− HAm Ym(t)− Ym(t)(HBm)T + Em F

T
m

)
(VBm)T393

−V Am,r Ym(t) (VBm)T − VAm Ym(t) (V Bm,r)
T .394

Taking into account (3.22), we get (3.24). The relation (3.25) follows by replac-395

ing Ym(t) by its expression (3.21) and taking into account (3.19). Finally, (3.26) is396

straightforward since VAm and VBm are orthogonal matrices.397

Similarly to the full rank case, let us remark that if HAm and HBm are stable, then398

lim
T→+∞

Rm(T ) = R̃m.399

As in the previous subsection, we have the following error estimates.400

Theorem 3.7. Let Xm(t), for t ∈ [t0, T ], be the approximate solution at a step
m given by (3.20) and (3.21) and let Em(t) = X∗(t)−Xm(t) be the error. Then, we
have the following error estimate:

||Em||∞ ≤
(
e∆T (‖A‖+‖B‖) − 1

‖A‖+ ‖B‖

) √
(rAm + zAm)

2
+ (rBm + zBm)

2
,

where rAm = ‖HA
m+1,m Y m‖, rBm = ‖HB

m+1,m Y m‖, zAm = ‖HA
m+1,m Zm‖ and zBm =401

‖HB
m+1,m Zm‖. The matrices Y m and Zm are of size r × r and formed by the r last402

rows of Ỹm and Zm := e∆T HA
m Ỹme

∆T HB
m respectively.403

Proof. As previously done in the proof of Theorem 3.4, we obtain by similar
arguments that, for all t ∈ [t0, T ] we have

‖Em(t)‖ ≤
(
e(t−t0) (‖A‖+‖B‖) − 1

‖A‖+ ‖B‖

)
‖Rm(t)‖.

From (3.25) and (3.19), we get

Rm(t) = V Am,r

(
F̃m(t)− Ỹm

)
(VBm)T + VAm

(
F̃m(t)− Ỹm

)
(V Bm,r)

T .

As the n×n matrices V Am,r

(
F̃m(t)− Ỹm

)
(VBm)T and VAm

(
F̃m(t)− Ỹm

)
(V Bm,r)

T are

F -orthogonal, then

〈V Am,r
(
F̃m(t)− Ỹm

)
(VBm)T |VAm

(
F̃m(t)− Ỹm

)
(V Bm,r)

T 〉 = 0.

Therefore

‖Rm(t)‖2 =
∥∥∥V Am,r (F̃m(t)− Ỹm

)
(VBm)T

∥∥∥2

+
∥∥∥VAm (F̃m(t)− Ỹm

)
(V Bm,r)

T
∥∥∥2

.

Now, using the triangular inequality, we get that for all t ∈ [t0, T ], we have404 ∥∥∥V Am,r (F̃m(t)− Ỹm
)

(VBm)T
∥∥∥ ≤ rAm + zAm.405

and similarly, we also have406 ∥∥∥VAm (F̃m(t)− Ỹm
)

(V Bm,r)
T
∥∥∥ ≤ rBm + zBm.407

which completes the proof.408
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To continue the description of the present method, we notice that (3.24) enables us409

to check if ‖Rm(t)‖ < tol -where tol is some fixed tolerance-, without having to410

compute extra products involving the large matrices A and B. More precisely, we411

have412

(3.27) ‖Rm(t)‖ =
√
‖HA

m+1,m (E(r)
m )T Ym(t)‖2 + ‖Ym(t) E(r)

m (HB
m+1,m)T ‖2.413

We end this subsection by recalling that in the case of large scale problems, and as
suggested in [23,38], it is important to get the approximate solution Xk := Xm(tk) at
each time tk as a product of two low rank matrices. If Yk = V ΣWT is the singular
value decomposition of Yk, where Σ = diag[σ1, σ2, . . . , σmr] is the diagonal matrix of
the singular values of Yk sorted in decreasing order, then by considering Vl and Wl

the mr × l matrices of the first l columns of V and W corresponding respectively
to the l singular values of magnitude greater than some tolerance τ , we get for each
k = 1, . . . , N

Xk ≈ ZAk (ZBk )T ,

where ZAk = VAm Vl Σ
1/2
l and ZBk = VBm Wl Σl

1/2.414

415

The block Arnoldi combined with the Constant Solution Method (BA-CSM) for416

solving the differential Sylvester matrix equation, in the case where C is low rank,417

i.e., C = EFT , is summarized in Algorithm 3.3.418

4. Numerical experiments. In this section, a series of numerical tests will be419

presented to examine the performance and potential of Algorithms 2.1, 3.2 and 3.3.420

We have compared our proposed method which is based on relation (2.1) with the one421

described in [20] and which is based on the integral formula (1.5). We recall that the422

algorithms described in [20] only provide an approximate solution at the final time T423

and moreover they only deal with the case of low-rank differential equations. Thus,424

we modified Algorithm 1 proposed in [20] so that it provides an approximate solution425

Xm,k = Xm(tk) at each node tk of the discretization of the time interval [0, T ] as it426

is the case in Algorithm 3.3. Moreover, we have drafted two other codes based on the427

integral formula (1.5) and equivalent to Algorithm 2.1 and Algorithm 3.2428

It should be noted that in all the examples given here, we suppose that X0 the429

matrix appearing in the initial condition of (1.1) is equal to zero, i.e., X0 = 0n×s.430

Furthermore, we consider different time intervals [t0, T ] where t0 = 0 is fixed once431

and for all, while T is indicated in each example. The time interval [0, T ] is divided432

into sub-intervals of constant length δT = T
N where N is the number of nodes. All433

the numerical experiments were performed using MATLAB and have been carried434

out on an Intel(R) Core(TM) i7 with 2.60 GHz processing speed and 16 GB memory.435

In order to implement the different algorithms described in this work, we used the436

following MATLAB functions:437

- expm: it allows to calculate the exponential of a square matrix. This function438

is based on a scaling and squaring algorithm with a Padé approximation [24].439

- lyap: it allows to solve Sylvester or Lyapunov matrix equations. For our440

purposes, the instruction lyap(A,B,-C) delivers the matrix X solution of the441

algebraic Sylvester equation AX +X B = C.442

- integral: it allows to calculate numerically an integral, using the arguments443

”ArrayValued” and ”true”.444

Furthermore, we precise that when the constant solution or integral formula meth-445

ods are combined with the block Arnoldi process to obtain an approximate solution446
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Algorithm 3.3 Block Arnoldi Constant Solution Method (BA-CSM) (Low-rank case)

1: Input: The matrices A, B, E, F , the initial and the final times t0, T , a tolerance
tol > 0, a maximum number of iterations Mmax, a step-size parameter p, the
number N of nodes in the time discretization and the tolerance τ for the truncated
SVD.

2: Output Xm,1, . . . , Xm,N , where Xm,k := Xm(tk), (1 ≤ k ≤ N)
3: Compute δT = (T − t0)/N .
4: for m = 1, . . . ,Mmax do
5: Compute V Am and V Bm to update the orthonormal bases VAm =

[
V A1 , . . . , V Am

]
,

VBm =
[
V B1 , . . . , V Bm

]
and get the m-th blocks of HAm and HBm by applying

Algorithm 3.1 to (A,E) and (BT , F ) respectively;
6: if m is a multiple of p then
7: Compute: Em = (VAm)T E and Fm = (VBm)T F .

8: Solve the reduced Sylvester equation: HAm Ỹm + Ỹm (HBm)T = Em F
T
m.

9: for k = 1, . . . , N do
10: Compute tk = tk−1 + δT .

11: Compute Ym,k := Ym(tk) = −e(tk−t0) HA
m Ỹm e

(tk−t0) (HB
m)T + Ỹm.

12: Compute rm,k =
√
‖HA

m+1,m (E(r)
m )T Yk‖2 + ‖Yk E(r)

m (HB
m+1,m)T ‖2.

13: end for
14: Compute rmax = max{rm,1, . . . , rm,N}
15: if rmax < tol then
16: go to line 20;
17: end if
18: end if
19: end for
20: for k = 1, . . . , N do
21: Compute the SVD of Yk, i.e., Yk = U ΣWT where Σ = diag[σ1, . . . , σmr] and

σ1 ≥ . . . ≥ σmr;
22: Find l such that σl+1 ≤ τ < σl and let Σl = diag[σ1, . . . , σl];

23: Form ZAk = VAm Ul Σ
1/2
l and ZBk = VBm Wl Σ

1/2
l ;

24: The approximate solution Xm,k at time tk is Xm,k ≈ ZAk (ZBk )T .
25: end for

to the differential equation, the iterations are stopped as soon as the dimension of the447

Krylov subspace generated by the block Arnoldi process reaches a maximum value448

m = Mmax = 110 or as soon as the maximal norm rmax computed by the algo-449

rithm is lower than 10−10 µ where µ = ‖A‖ + ‖B‖ + ‖C‖ in the full rank case and450

µ = ‖A‖+‖B‖+‖E‖ ‖F‖ in the low rank case. We also mention that in the numerical451

examples, the right-hand side C or its factors E and F were generated randomly.452

453

To compare the performances of the Constant Solution method (in short CS or CS-454

BA when combined with the block Arnoldi process) with those of the Integral Formula455

method (in short IF or IF-BA when combined with the block Arnoldi process), we456

used the following comparison criteria:457

- TR: the time ratio between the CPU-time of CS and IF methods or between
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18 A. BOUHAMIDI, L. ELBOUYAHYAOUI, AND M. HEYOUNI

CS-BA and IF-BA methods which are defined by

TR =
cpu-time(CS)

cpu-time(IF)
or TR =

cpu-time(CS-BA)

cpu-time(IF-BA)
.

- RDN: the relative difference norm between XCS-BA and XIF-BA which are the
approximate solutions delivered by the constant solution and the integral for-
mula methods respectively when they are combined the block Arnoldi process.

RDN = max
k=0,1,...,N

‖XCS-BA
k −XIF-BA

k ‖
‖XIF-BA

k ‖
.

We point out that this criteria is used when the exact solution of the differ-458

ential Sylvester equation is not available.459

- REN: the relative error norm between the exact solution and an approximate
solution obtained either by a constant solution based algorithm or by an
integral formula based algorithm. More precisely, letting XExact be the exact
solution computed by (4.2), we define the following quantities :

RENCS-BA = max
k=0,1,...,N

‖XCS-BA
k −XExact

k ‖
‖XExact

k ‖

and

RENIF-BA = max
k=0,1,...,N

‖XIF-BA
k −XExact

k ‖
‖XExact

k ‖
.

Before to start the numerical experiments and tests, we will show in the next460

subsection, how to construct a differential Sylvester equation which have a known461

exact benchmark solution.462

4.1. A benchmark example. To the best of our knowledge, there is no Known463

benchmark explicit solution for large-scale differential and Sylvester matrix equations.464

Here, we show how to construct a benchmark differential Sylvester equation whose465

exact solution is known and with which we can confront the approximate solutions466

provided by the different compared methods.467

Let K,R ∈ Rp0×p0 be two nilpotent matrices, of index p0 ≥ 3 i.e., Kp0 = Rp0 =468

0p0 and let A0 ∈ Rn0,×n0 , B0 ∈ Rs0,×s0 , X0, C ∈ Rn×s where n = p0 n0 and469

s = p0 s0. The integer p0 is a small integer. We also choose two real numbers α, β470

and we consider the matrices471

(4.1) A = αIn +A0 ⊗K, B = βIs +B0 ⊗R,472

We easily have, for any real t and for any matrix X of size n× s:

et AXet B =
(p0−1∑
i=0

p0−1∑
j=0

ti+j Li,j(X)
)
e(α+β) t,

where Li,j(X) is defined by Li,j(X) =
1

i!j!
(Ai0 ⊗ Ki)X(Bj0 ⊗ Rj). Assuming that

α + β < 0, then the unique solution X̃∗ of the algebraic matrix Sylvester equation
AX +XB = C is given by the formula (see [31]),

X̃∗ = −
∫ +∞

0

et A C et B dt.
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A straightforward calculations give

X̃∗ =

p0−1∑
i=0

p0−1∑
j=0

(−1)i+j

(α+ β)i+j+1
Ci,j ,

where Ci,j =
1

i!j!
(Ai0 ⊗ Ki)C(Bj0 ⊗ Rj). Then, using the formula (2.1), the unique

solution of the differential Sylvester matrix equation

X ′(t) = AX(t) +X(t)B − C,

satisfying the initial condition X(t0) = X0, is the matrix function X∗(t) given by

X∗(t) = e(t−t0)A (X0 − X̃∗) e(t−t0)B + X̃∗.

It follows that473

(4.2) X∗(t) =

p0−1∑
i=0

p0−1∑
j=0

[
(t−t0)i+je(α+β) (t−t0) Li,j(X0−X̃∗)+

(−1)i+j

(α+ β)i+j+1
Li,j(C)

]
.474

We may also obtain the solution X∗(t) of the differential Sylvester matrix equation
by using the integral formula (1.5), since we have

X∗(t) = e(t−t0)AX0 e
(t−t0)B −

∫ t

t0

e(t−u)A C e(t−u)B du.

It follows that,475

X∗(t) =

p0−1∑
i=0

p0−1∑
j=0

[
(t− t0)i+je(α+β) (t−t0) Li,j(X0)− Ii+j(t)Li,j(C)

]
,476

where the scalar functions Ik(t) are given by Ik(t) =

∫ t

t0

(t − u)ke(α+β) (t−u)du. The

expression of the functions Ik(t) are obtained by recursion. Indeed, we have

I0(t) =
1

α+ β

(
e(α+β)(t−t0) − 1

)
,

and for k ≥ 1 by parts integration, we have

Ik(t) =
1

α+ β

(
(t− t0)ke(α+β)(t−t0) − kIk−1(t)

)
.

Then, we may show by induction that, for all k ≥ 0, we have

Ik(t) =
k!

(α+ β)k+1

( k∑
`=0

(−1)`
(α+ β)` (t− t0)`

`!
e(α+β)` (t−t0) − (−1)k

)
.

Before ending this subsection, let us remark that in this benchmark example, the477

matrix C is arbitrary and then can also be taken in the low-rank form C = E FT ,478

where E ∈ Rn×r and F ∈ Rs×r.479
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In addition, to show the strengths and limitations of compared methods in various
experimental settings when using this benchmark example, we choose p0 = 3 and we
considered different values for the parameters α and β as well as different matrices
A0 and B0. The matrices K and R are fixed once and for all, as follows

K =

 3 8 −19
−1 −5 11

0 −1 2

 , R =

 1 1 1
0 0 0
−1 0 −1

 .
4.2. Experiment 1. In this first example, the numerical tests are done with

moderate size matrices A and B. We compare the solution provided by our proposed
constant solution method implemented via Algorithm 2.1 with the one obtained using
the integral formula (1.5) as well as with the solutions given by some classical ODE’s
solvers from Matlab. The solvers ode15s, ode23s, ode23t and ode23tb are usually
used for stiff ODE’s, while the other solvers ode45, ode23 and ode113 are used for
non stiff ODE’s. Note that since some ODE solvers behave similarly and in order
not to overload the plots, we only give the results obtained with the four methods
ode15s, ode23s, ode23tb and ode45. In the following two experiments, we consider
the time intervals [0, T ] with T is either T = 1 with the number of nodes is N = 10
or T = 10 with the number of nodes is N = 50 which means that the step time is
δT = 0.1 when T = 1 while δT = 0.2 when T = 10. Here, we consider the matrices
A0 =gallery(’leslie’,n0), B0 = gallery(’minij’,s0) with n0 = 50 and s0 = 10
and the coefficient matrices A, B of the differential Sylvester equations are generated
by (4.1), as explained in the benchmark example. The parameters α, β are equal to
−2 and −1 respectively. As the matrices K, R are those given at the beginning of
section 4, the size of the matrices A, B are now n = 150 and s = 30 respectively.
Here, we point out that the solution computed by Algorithm 2.1 and those computed
by the Algorithm based on integral formula or issued by the Matlab ODE solvers are
compared to the exact one given in (4.2) which is considered as the reference solution
Xref. Thus, in the plots, we represent the behavior of the norm of the relative error

tk →
‖Xk −Xref

k ‖
‖Xref

k ‖

as a function of tk where tk = k δT . The obtained plots and results are reported below480

in Figure 1 and Table 1 respectively.481

Table 1
The obtained CPU times (in seconds) in Experiment 1.2.

(T , N) Method CSM IFM ode15s ode23s ode23tb ode45

(1, 10) 0.203 12.578 43.546 750.756 108.484 0.343

(10, 50) 0.718 75.703 78.984 1574.980 226.016 0.390

The analysis of results obtained in Experiments 1 shows on the one hand that482

the CS and IF methods return the best results in terms of the error norm. The483

ode45 solver is the best among the other Matlab solvers, but its performance does484

not match that of the CS and IF methods. On the other hand, by comparing the time485

ratios between CS and IF which are TR =
12.578

0.203
' 61 for T = 1 and N = 10 and486

TR =
75.703

0.718
' 105 for T = 10 and N = 50. We clearly see that CS is faster than IF487

because the former avoids using a quadrature formula as it is the case for the later.488
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Fig. 1. Experiment 1: comparison of the relative error norm. The reference solution is given
by (4.2).

4.3. Experiment 2. In this set of numerical tests, the experiments are done
with a relatively large matrix A and a moderate size matrix B. We compare the per-
formances of Algorithm 3.2 -which implements the CS-BA method- and the equivalent
algorithm based on the integral formula combined with the block Arnoldi (IF-BA).
Experiment 2.1. The matrices A and B are obtained from the centered finite dif-
ference discretization of the operators

LA(u) = ∆u− fA
∂u

∂x
− gA

∂u

∂y
− ha u

LB(u) = ∆u− fB
∂u

∂x
− gB

∂u

∂y
− hB u,

on the unit square [0, 1]×[0, 1] with homogeneous Dirichlet boundary conditions where

fA(x, y) = (x+ 10 y2), gA(x, y) =
√

2x2 + y2, hA(x, y) = x2 − y2,

and

fB(x, y) = 10x y + 1, gB(x, y) = e−x
2−y2 , hA(x, y) =

1

1 + x2 + y2
.

To generate the coefficient matrices A and B, we used the fdm 2d matrix function489

from the LYAPACK toolbox [33] as following A=fdm 2d matrix(n0,fA,gA,hA) and490

B=fdm 2d matrix(s0,fB ,gB ,hB) where n0 and s0 are the number of inner grid points491

in each direction when discretizing the operators LA and LB respectively. This gives492

A ∈ Rn×n, B ∈ Rs×s with n = n2
0 and s = s2

0.493

We examine the performances of CS-BA and IF-BA for four choices of n0 and s0494

which are (n0, s0) = (30, 3), (n0, s0) = (50, 3), (n0, s0) = (30, 5) and (n0, s0) = (50, 5).495

The considered time intervals are [0, T ] where T = 1 and N = 10 or T = 2 and496

N = 20. This means that the step time is always δT = 0.1. In Table 2, we reported497

the time ratio (TR) and the relative difference norm (RDN) between the CPU-time of498

CS-BA and IF-BA.499

Experiment 2.2. In this test, we took A0 =gallery(’hanowa’,1500,-5) and500

B0 = gallery(’leslie’,6) from the Matlab gallery and transform them into A501

et B of sizes n = 4500 and s = 18 respectively by using (4.1) in which we took502

α = −7 and β = −5. The obtained results for different time intervals which are503
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Table 2
The obtained times ratio TR and relative difference norms RDN in Experiment 2.1.

Test Problem T = 1, N = 10 T = 2, N = 20

n s TR RDN TR RDN

900 9 141 8.111e-15 186 1.887e-14

2500 9 163 1.868e-14 276 3.682e-14

900 25 164 6.329e-15 187 1.248e-14

2500 25 177 1.723e-14 186 2.499e-14

summarized in Table 3 include the time ratio TR and the relative error norms RENCS-BA,504

RENIF-BA between the approximate solutions XCS-BA, XIF-BA given by CS-BA and505

IF-BA respectively and the XExact the exact solution computed by (4.2).506

Table 3
The obtained times ratio TR and relative error norms RENCS-BA, RENIF-BA in Experiment 2.2.

with N = 10.

T TR RENCS-BA RENIF-BA

1 11 4.825e-11 4.143e-12

5 20 1.849e-11 9.097e-12

10 30 1.244e-11 3.387e-12

50 1329 7.852e-13 1.621e-11

100 1230 7.802e-13 1.432e-11

4.4. Experiment 3. We describe and report here the results of numerical ex-507

periments carried out when solving large scale low-rank differential Sylvester or Lya-508

punov equations. The performance of CS-BA is compared with that of IF-BA. The509

test matrices come either from the centred finite difference discretization of the oper-510

ators LA and LB defined in the previous experiment, or from the Florida suite sparse511

matrix collection [14]. The invoked matrices for our tests from this collection are:512

pde900, pde2961, cdde1, Chem97ZtZ, thermal, rdb5000, sstmodel, add32513

and rw5151.514

Experiment 3.1 (a). In this example, the numerical results are those obtained515

from solving differential Sylvester equations. The time interval is fixed to [0, 1], (T =516

1). The number of nodes is N = 10 which gives a step time δT = 0.1. The matrices517

A ∈ Rn×n and B ∈ Rs×s come from the discretization of the operators LA and LB . As518

indicated previously, the coefficients of the right-hand side E,F ∈ Rn×r are randomly519

generated. The obtained results for different sizes n, s and ranks r are summarized520

in Table 4.521

Experiment 3.1 (b). Here, we consider two different time intervals [0, T ] for522

T = 1 and T = 10 in which the number of sub-intervals is always N = 10. The523

matrix A is from the Florida sparse matrix collection. We consider the particular524

case B = AT and F = E and report the results obtained when solving low-rank525

differential Lyapunov equations. The obtained results for r = 2, r = 5 or r = 10 are526

displayed in Table 5.527

Experiment 3.2 (a). Here, we consider A0=pde2961 and B0=pde900 and528

transform them into A et B of sizes n = 8883 and s = 2700 respectively by using (4.1).529

In order to confirm the influence of the rank r and/or length T of the time interval, on530
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Table 4
The obtained times ratio TR and relative difference norms RDN in Experiment 3.1 (a).

Test Problems

n0 = 40, s0 = 20 n0 = 30, s0 = 30 n0 = 50, s0 = 50

n = 1600, s = 400 n = 900, s = 900 n = 2500, s = 2500

r TR RDN TR RDN TR RDN

2 82 2.528e-14 78 5.819e-14 78 1.354e-13

5 145 1.906e-14 136 1.201e-13 159 1.931e-13

10 170 7.256e-14 219 2.067e-14 156 1.383e-13

20 193 2.647e-14 138 6.153e-14 252 2.205e-13

Table 5
The obtained times ratio TR and relative difference norms RDN in Experiment 3.1 (b).

Test Problems

A = -cdde1 A = -Chem97ZtZ A = -pde2961 A = thermal A = rdb5000

n = 961 n = 2541 n = 2961 n = 3456 n = 5000

T r TR RDN TR RDN TR RDN TR RDN TR RDN

1

2 6.8 3.988e-15 12 5.465e-15 1.6 2.784e-15 1.4 4.295e-15 14 7.863e-13

5 17 1.032e-14 18 8.376e-15 6.5 8.639e-15 2.3 7.386e-15 42 2.892e-13

10 44 1.430e-14 50 1.268e-14 13 1.386e-14 6.1 9.442e-15 83 4.434e-13

10

2 47 2.815e-14 15 8.190e-15 12 1.002e-14 2.5 3.592e-15 57 3.482e-13

5 68 1.483e-14 30 1.002e-14 38 2.911e-14 10 4.631e-15 135 1.374e-12

10 73 2.910e-14 110 1.253e-14 57 2.713e-14 25 7.497e-15 255 1.617e-12

the performances of the CS and IF methods, we report in Table 6 the results obtained531

for two cases : case 1: (α, β) = (−3,−1) and case 2: (α, β) = (−0.7,−0.4). For532

each case, we choose T from the set {2, 5, 10} and took N = 10 for T = 2, N = 20 for533

T = 5 and N = 40 for T = 10. The rank r of the factors E and F is equal to r = 5,534

r = 10 or r = 20.535

Table 6
The obtained times ratio TR and relative error norms norms RENCS-BA and RENIF-BA in Ex-

periment 3.2 (b).

α = −3, β = −1 α = −0.7, β = −0.4

T r TR RENCS-BA RENIF-BA TR RENCS-BA REN IF-BA

2

5 1.277 4.777e-14 4.720e-14 1.234 2.641e-11 2.641e-11

10 1.118 5.147e-14 5.049e-14 1.139 3.022e-11 3.022e-11

20 3.858 5.473e-14 5.311e-14 2.331 3.401e-11 3.400e-11

5

5 1.292 4.358e-14 4.251e-14 1.160 2.343e-11 2.343e-11

10 1.371 4.639e-14 4.507e-14 1.124 2.728e-11 2.728e-11

20 4.230 4.984e-14 4.855e-14 −−− 3.148e-11 −−−

10

5 1.237 4.358e-14 4.251e-14 1.093 2.343e-11 2.343e-11

10 1.399 4.639e-14 4.507e-14 83.424 2.728e-11 2.728e-11

20 3.974 4.984e-14 4.855e-14 −−− 3.148e-11 −−−

536

We notice that in most of tests, both methods manage to provide a good approx-537

imate solution and that the CPU time is in favor of the BA-CS method. However, we538
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observed that for small values of α and β and when the values of r and T are large,539

the BA-IF method failed to converge within a reasonable time. The non-convergence540

is indicated by ”−−−”.541

Experiment 3.2 (b). In this last set of experiments, we compare the perfor-542

mances of the CS and IF methods when they are applied to the solution of low-rank543

differential Lyapunov equations. Unlike the previous series of tests, we did not gener-544

ate a discretization for the interval [0, T ] and only calculated the approximation X(T )545

at the final time, where T = 10. Similarly, the rank of C = E ET does not vary and546

is r = 20. For each experiment with a matrix A0 -which is taken from the Florida547

sparse matrix collection [14]-, we considered four values for the scalar α that was used548

in the generation of the benchmark example. The size n0 of each matrix A0, the size549

n of the benchmark matrix A as well as the obtained results are reported in Table 7.550

Table 7
Numerical results for Experiment 3.2 (b) with T = 10, N = 1 and r = 20.

Test Problems

A0 = cdde1 A0 = pde2961 A0 = sstmodel

n0 = 961, n = 2883 n0 = 2961, n = 8883 n0 = 3345, n = 10035

α TR RENCS-BA RENIF-BA TR RENCS-BA RENIF-BA TR RENCS-BA RENIF-BA

-5 5.12 4.33e-14 3.76e-14 2.27 2.14e-14 1.18e-14 1.82 3.43e-12 9.82e-13

-1 −−− 5.81e-12 −−− 1087.5 5.37e-12 1.26e-12 200.43 6.45e-14 6.23e-14

-0.5 −−− 4.58e-10 −−− 544.31 4.60e-10 1.01e-11 637.17 5.23e-12 2.69e-13

-0.1 −−− 8.23e-07 −−− −−− 1.19e-07 −−− −−− 3.38e-08 −−−
Test Problems

A0 = thermal A0 = add32 A0 = rw5151

n0 = 3456, n = 10368 n0 = 4960, n = 14880 n0 = 5151, n = 15453

α TR RENCS-BA RENIF-BA TR RENCS-BA RENIF-BA TR RENCS-BA RENIF-BA

-5 1.53 2.03e-12 1.03e-12 1.48 5.17e-15 3.90e-15 1.37 5.44e-15 4.85e-15

-1 1.69 2.78e-14 2.56e-14 1.45 8.00e-15 1.29e-15 1.22 2.91e-14 2.50e-14

-0.5 1.58 1.20e-13 1.05e-13 1.55 5.77e-15 1.74e-15 391.43 1.44e-13 1.29e-13

-0.1 277.88 1.12e-10 6.94e-11 1.71 1.26e-14 2.46e-15 −−− 7.47e-11 −−−

5. Conclusion. In this work, we have proposed new techniques for solving551

Sylvester and Lyapunov matrix differential equation. Unlike the recent method pro-552

posed in [20], our method avoid the integral formula which is very benefit and reduced553

the computational cost. The proposed method is very efficient for large scale problem554

by exploiting a projection on Krylov subspaces. Numerous numerical tests are used555

to show the effectiveness of such proposed method, we have reported some of them556

in a specific section. The convergence of such method is proved and a constructive557

benchmark example is given.558
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