
HAL Id: hal-04221759
https://hal.science/hal-04221759

Preprint submitted on 28 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A groupoid approach to the Wodzicki residue
Robert Yuncken, Nathan Couchet

To cite this version:

Robert Yuncken, Nathan Couchet. A groupoid approach to the Wodzicki residue. 2023. �hal-04221759�

https://hal.science/hal-04221759
https://hal.archives-ouvertes.fr


A groupoid approach to the Wodzicki residue

Nathan Couchet1 and Robert Yuncken * 2

1Université Clermont Auvergne, CNRS, LMBP, F-63000 Clermont-Ferrand,
France, nathan.couchet@uca.fr

2Institut Élie Cartan de Lorraine, Université de Lorraine, CNRS, IECL, F-57000
Metz, France , robert.yuncken@univ-lorraine.fr

Keywords: Wodzicki residue, pseudodi�erential calculus, classical symbol, tangent
groupoid, �ltered manifold, non-commutative geometry.

MSC: Primary: 47G30; secondary: 22A22, 35S05, 58H05, 58J40.

Abstract

Originally, the noncommutative residue was studied in the 80's by Wodzicki in
his thesis [31] and Guillemin [16]. In this article we give a de�nition of the Wodzicki
residue, using the langage of r-�bered distributions from [22], [28], in the context of
�ltered manifolds and for pseudodi�erential operators whose order is at most minus
the homogeneous dimension of the manifold. We show that this groupoidal residue
behaves like a trace on the algebra of pseudodi�erential operators on �ltered manifolds
and coincides with the usual Wodzicki residue in the case where the manifold is trivially
�ltered. Moreover, in the context of Heisenberg calculus, we show that the groupoidal
residue coincides with Ponge's de�nition [23] for contact and codimension 1 foliation
Heisenberg manifolds.

1 Introduction.

One of the remarkable features of the theory of pseudodi�erential operators is the noncom-
mutative residue of Wodzicki, which he de�ned in 1984 in his thesis [32]. The noncommu-
tative residue was also de�ned in 1985 in a article of Guillemin, [16, De�nition 6 p 151],
in which he proposes to associate to an operator P a zeta function:

ζ(P, s) =
∑
k

λsk, (1.1)

where λk are the eigenvalues of P , and then shows that it admits a meromorphic contin-
uation. The residues of this zeta function are linked to the number of eigenvalues of P
denoted by N(λ) = card{λk, λk ≤ λ}, leading Guillemin to a Weyl-type formula, as in
[30].

Let P be a classical pseudodi�erential operator of ordrer m ∈ Z on a manifold M of di-
mension d. This means that in any chart the symbol of P admits an asymptotic expansion:

a(x, ξ) ∼
∑
k

am−k(x, ξ). (1.2)

In the following discussion, we �x a chart (U, φ) and we identify U with its image in Rd.
*This article/publication is based upon work from COST Action CaLISTA CA21109 supported by
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De�nition 1.1. [29, p 58] , [21, 1.8 Formule locale], [31, � 7]

We de�ne the residue at x of a classical pseudodi�erential operator P on M of order m to
be:

ResWx (P ) =
1

(2π)d

(�
Sd−1

a−d(x, ξ)dσ(ξ)
)
dx, (1.3)

where a−d(x, ξ) is the homogeneous part of order −d in the variable ξ coming from the
asymptotic expansion of P in any chart. Moreover, ifM is a compact riemannian manifold,
we de�ne also the (global) residue of P :

ResW (P ) =

�
M
ResWx (P )dx, (1.4)

where dx is the smooth measure coming from the riemannian structure.

It is a profound theorem that these quantitites are independent of the choice of chart.
In this paper, we propose to give another de�nition of this residue for operators of order
−dim(M), which extends naturally to �ltered manifolds, using the groupoidal calculus from
[28] � that is using tangent groupoids TM,THM . We therefore manage to circumvent
the chart machinery. Moreover our de�nition extends essentially without change to de�ne
non commutative residue on pseudodi�erential operator on any �ltered manifold, including
that of Ponge on a Heisenberg manifold [23], using the �ltered tangent groupoid of [5],[27].
Note that the compact hypothesis is to make (1.4) valid, we can de�ne ResWx for M
non-compact.

The noncommutative residue has proved to be connected with other geometrical objets.
For instance :

1. There is link between this residue for a di�erential operator on a compact manifold
and the asymptotic expansion of the trace of the heat operator e−tP , see [1].

2. Connes showed in 1988 - see [7, Proposition 5 p313], [4, section 2.6 p17], [20, section
7.6], [25, Proposition 4.11 p 16] - that when P is a pseudodi�erential operator of
order −dim(M) and M is compact, then the Dixmier trace of P coincides to this
residue up to a constant.

3. Ponge showed in [23, Proposition 6.3 p 454] the link between the residue of the Kohn-
Laplacian �b on a CR compact manifold, see [23, Equation (6.9)], and the volume
of M , de�ned at [23, Equation (6.4)].

Let us very brie�y recall the groupoid approach to pseudodi�erential operators, �rst ob-
served by Debord-Skandalis [11] in 2014 and developped by van Erp and the second author
some years later [28]. The tangent groupoid of Connes is:

TM = M ×M × R∗
⋃
TM × {0}, (1.5)

which is seen as a smooth glueing of the tangent bundle TM with a family of pair groupoids
M ×M over R∗. In the �ltered case the appropriate substitute of the tangent bundle TM
is a bundle of nilpotent osculating groups THM whose �bers are denoted by THMx and
we de�ne the �ltered tangent groupoid by:

THM = M ×M × R∗
⋃
THM × {0}. (1.6)

The bundle of osculating groups admits a family of automorphism (δs)s>0 called dilations
which generalises the homotheties on TM in the trivially-�ltered case.

Using these dilations we obtain a smooth R∗+-action on THM , namely the Debord-Skandalis
action [11], see also [28] where it is called the �zoom action� and [9]:
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De�nition 1.2. Let M be a �ltered manifold. We de�ne the Debord-Skandalis action of
R∗+ on THM , s ∈ R∗+ 7→ αs ∈ Aut(THM) by:{

αs(y, x, t) = (y, x, s−1t) (x, y) ∈M,
αs(x, ξ, 0) = (x, δs(ξ), 0) x ∈M, ξ ∈ THMx.

(1.7)

The key point in the groupoidal approach to pseudodi�erential operators [28] is to consider
the set of distributions on the tangent groupoid THM which are essentially homogeneous
for the Debord-Skandalis action in the following sense. A r-�bered distribution on THM is
a continuous C∞(M×R)-linear map k : C∞(THM)→ C∞(M×R). This de�nition implies
that the support of such a distribution is r-proper and we denote them by E ′r(THM). They
were �rst studied by Androulidakis-Skandalis [2] and Lescure-Manchon-Vassout [22] in the
general case of submersions. Thanks to a result from [22], r-�bered distributions can be
seen as smooth maps k from M × R to compactly supported distributions in the r-�bers,
k(x, t) ∈ E ′(r−1(x, t)), and whose support is r-proper. We say that a r-�bered distribution
is properly supported if its support is also s-proper.

Recall that C∞p (THM,Ωr) denotes the proper smooth sections of the 1-density bundle
tangent to the r-�bers, see [9, De�nition 5.9]. We say that a properly supported r-�bered
distribution k is essentially homogeneous of order m for the Debord-Skandalis if:

s ∈ R∗+ 7→ s−mαs∗k− k ∈ C∞p (THM,Ωr). (1.8)

We refer to the function appearing in (1.8) as the co-cycles of k. The set of essentially
homogeneous distributions of this kind is denoted Ψm

vEY(THM). We will refer to no-
tations and concepts from [28] and [9, section 5.3]. Thanks to this, van Erp and the
second author de�ne a pseudodi�erential operator as the restriction at t = 1 of an element
k ∈ Ψm

vEY(THM), see [28, Theorem 2 p3]. These elements are the H-pseudodi�erential
operators on the �ltered manifold M and are denoted by Ψm

H(M).

One of the main theorems of the article [28] is that the groupoidal calculus coincides, in
the case of a trivially �ltered manifold, with the classical calculus of Kohn-Nirenberg and
Hörmander, namely:

Ψm
Hör(M) = Ψm

H(M). (1.9)

A simple but important �rst observation of the present paper is the following. We will
consider m ∈ Z in the whole paper. If M is a �ltered manifold, we denote dH the homo-
geneous dimension of M . Note that, if we �x a smooth measure dx on M , we obtain a
canonical smooth family of 1-densities dλx on the tangent �bers TxM and hence on the
osculating groups THMx.

Lemma 1.3. Let M be a �ltered manifold and k ∈ Ψ−dH
vEY

(THM). For every x ∈ M , the
function de�ned by:

s 7→
(
sdHαs∗k− k

)
|(x,0,0), (1.10)

is a group homomorphism from (R∗+,×) to (C,+). More precisely, there exists a constant
rx ∈ C such that for all s > 0:(

sdHαs∗k− k

)
|(x,0,0) = rx log(s)dλx. (1.11)

We shall give the proof in the next section.
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We may de�ne the quantity rxdx to be the groupoidal residue of the pseudodi�erential
operator with kernel k|t=1, which is indeed a polyhomogeneous pseudodi�erential operator
by (1.9). As we shall see in Lemma 2.1, rxdx does not depend on the r-�bered distribution
k representing the pseudo-di�erential operator P at t = 1. Therefore we can de�ne:

De�nition 1.4. Let M be a �ltered manifold of homogeneous dimension dH and P ∈
Ψm
H(M) with m ≤ −dH . Let k ∈ Ψ−dHvEY (THM) be an element in vEY groupoidal calculus

such that k|t=1 is the Schwartz kernel of P . We de�ne the groupoidal residue of P at
x ∈M , denoted Resx(P ), for any s ∈ R∗+ \ {1} to be:

Resx(P ) :=
1

log(s)

(
sdHαs∗k− k

)
|(x,0,0). (1.12)

The above de�nition is for scalar-valued operators. For operators between vector bundles,
we should take, for any s ∈ R∗+ \ {1}:

Resx(P ) :=
1

log(s)
Tr
(
sdHαs∗k− k

)
|(x,0,0). (1.13)

For details on the groupoidal calculus with vector-bundle coe�cients, see [10]. We will
restrict our attention to scalar-valued operators for simplicity.

Now come the main results of this paper:

1. We shall show, see Theorem 2.3, that similarly to the Wodzicki residue ResWx , the
groupoidal residue Resx from De�nition 1.4 de�nes a trace on operators of appro-
priate order. More precisely if P ∈ Ψm

H(M) where M is a �ltered manifold and
m ≤ −dH , Q ∈ Ψ0

H(M) then :

Resx([P,Q]) = 0, (1.14)

where [ , ] denotes the commutator of operators.

2. We shall show, see Theorem 4.3, that the groupoidal residue from De�nition 1.4
coincides with the Wodzicki residue in the case of a trivially �ltered manifold.

3. We shall show, see Theorem 5.1 and Corollary 5.2, that the de�nition of the non-
commutative residue made by Raphaël Ponge [23] in 2007 coincides with groupoidal
residue from De�nition 1.4 for V-pseudo-di�erential operators in the calculus of BG,
[3, section � 10] where M is a contact manifold or a foliation of codimension 1.

De�nition 1.4 only applies to pseudo-di�erential operators of order ≤ −dH . It should be
possible to extend this de�nition to operators of arbitrary order. In the case of the classical
un�ltered calculus, this will be treated in a forthcoming article by Higson, Sukochev and
Zanin [17]. We learnt of their work while writing this article. We refer to that article for
details.

2 Basic properties of the Wodzicki residue on a �ltered man-

ifold.

Maintaining the notation of the introduction, let us start by proving Lemmas 1.3 and 2.1,
which show the well-de�nedness of our residue. Our conventions for the �ltered tangent
groupoid are such that the range and source maps are given by :

{
r(y, x, t) = y, s(y, x, t) = x, t 6= 0
r(x, v, 0) = x, s(x, v, 0) = x.

(2.1)
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Proof of Lemma (1.3). Set:

F : s ∈ R∗+ 7→ Fs :=
(
sdHαs∗k− k

)
∈ C∞p (THM,Ωr). (2.2)

We will show that it is a group morphism when restricted at (x, 0, 0). First, the reader can
easily check that:

Fst = sdHαs∗Ft + Fs, s, t > 0. (2.3)

Thus we need to show:
sdHαs∗Ft|(x,0,0) = Ft|(x,0,0). (2.4)

We are therefore going to prove (2.4). In the �ber (x, ., 0), we can write:

Fs|(x,.,0) = fxdλx, (2.5)

for some fx ∈ C∞c (THMx) and where dλx is a Haar measure on the nilpotent (graded)
osculating group THMx such that δs∗(dλx) = s−dHdλx. The Debord-Skandalis action at
t = 0 acts by the dilations δs. So for the �ber (x, ., 0) we have:

αs∗(Fs)|(x,.,0) = δs∗(Fs|(x,.,0)) (2.6)

=︸︷︷︸
(2.5)

(
(δ−1
s )∗fx

)
δs∗(dλx) (2.7)

= s−dH
(

(δ−1
s )∗fx

)
dλx. (2.8)

Since the Debord-Skandalis action αs �xes the points (x, 0, 0), this gives sdHαs∗Ft|(x,0,0) =
Ft|(x,0,0) as desired. Therefore, s 7→ Fs|(x,0,0) is a morphism from (R∗+,×) to (C,+).
Moreover, note that the map from (2.2) is smooth, see [28, Lemma 21].

Lemma 2.1. Let M be a �ltered manifold and P ∈ Ψm
H(M), with m ≤ −dH . The

De�nition 1.4 of the groupoidal residue does not depend on the r-�bered distribution k that
represents P .

Proof. Let k,k′ ∈ Ψ−dHvEY (THM) such that:

k|t=1 = P, k′|t=1 = P. (2.9)

Let x ∈ M be �xed. We need to show that the two co-cycles (1.12) related to these r-
�bered distributions give the same groupoidal residue at x. Thanks to [28, Corollary 33],
we have:

k|t=0 − k
′|t=0 ∈ C∞p (THM,Ωr). (2.10)

Using (2.10), there exists fx ∈ C∞c (THMx) such that:

(k− k
′)|(x,.,0) = fxdλx, (2.11)

where dλx is a left Haar measure on the nilpotent (graded) Lie group THMx. To conclude,
remember that the Debord-Skandalis action �xes (x, 0, 0). Indeed, we compute:(

sdHαs∗(k− k
′)− (k− k

′)
)
|(x,0,0) = sdHαs∗(k− k

′)|(x,0,0) − (k− k
′)|(x,0,0) (2.12)

= sdHδs∗(fxdλx)− fxdλx (2.13)

= 0, (2.14)

as in the previous proof.

Now we can conclude that the groupoidal residue is well-de�ned.
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Let us now recall a basic fact about convolution Lie groups. In the following Lemma the
commutators are in the sense of convolution product. Also recall that every connected
nilpotent Lie group is unidomular, see [13, Proposition 2.30] or [12, Proposition 5.5.4 et
Corollary 5.5.5].

Lemma 2.2. Let G be a connected nilpotent Lie group G. Given f ∈ C∞c (G) and g ∈ E ′(G)
then [f, g](e) = 0.

Proof. Recall that convolution on Lie group is de�ned by:

u ? v︸︷︷︸
∈ E ′(G)

= (u⊗ v)︸ ︷︷ ︸
∈ E ′(G×G)

◦ m∗, (2.15)

where u ∈ E ′(G), v ∈ E ′(G), (m∗f)(x, y) = f(xy). We may also take v ∈ D′(G) and in
this case u?v ∈ D′(G), see [14, Theorem 5.1.1 p51 on Rd]. The commutator is well-de�ned
because C∞c (G) is a two-sided ideal in E ′(G). Still inspired by the [14, Theorem 5.2.1 p53
on Rd], one can prove that for f ∈ C∞c (G) and g ∈ E ′(G):

f ? g(x) = 〈g(y), f(xy−1)〉, (2.16)

and:
g ? f(x) = 〈g(y), f(y−1x)〉. (2.17)

See that it is in the two previous equations that we use the unimodularness of G. Then
we have proved f ? g(e) = g ? f(e), that is [f, g](e) = 0.

Theorem 2.3. Let M be a �ltered manifold of homogeneous dimension dH . Let P ∈
Ψm
H(M) be a pseudodi�erential operator M with m ≤ −dH and Q ∈ Ψ0

H(M). Then the
groupoidal residue of De�nition 1.4 satis�es the trace property, that is for all x ∈M :

Resx([P,Q]) = 0. (2.18)

Proof. We denote by kP and kQ the two associated essentially homogeneous r-�bered dis-
tributions of order −dH and 0 respectively. By de�nition, there exists f, g ∈ C∞p (THM,Ωr)
such that:

Resx([P,Q]) = Resx(PQ)−Resx(QP ) (2.19)

=
1

log(s)

(
(sdHαs∗(kP ? kQ)− kP ? kQ)|(x,0,0)

− (sdHαs∗(kQ ? kP )− kQ ? kP )|(x,0,0)

)
(2.20)

=
1

log(s)

(
sdH ((s−dHkP + f) ? (kQ + g)− kP ? kQ)|(x,0,0)

− sdH ((kQ + g) ? (s−dHkP + f) + kQ ? kP )|(x,0,0)

)
(2.21)

=
1

log(s)

(
kP ? g + f ? kQ − kQ ? f − g ? kP

)
|(x,0,0) (2.22)

=
1

log(s)

(
[kP , g] + [kQ, f ]

)
|(x,0,0) (2.23)

= 0. (2.24)

The equality in equation (2.21) is true since kP and kQ are essentially homogeneous r-
�bered distributions respectively of order −dH and 0 respectively and αs is a groupoid
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automorphism for all s > 0. The last equality is true by virtue of Lemma 2.2 applied
�berwise to the osculating groups which are by de�nition connected (graded) nilpotent Lie
groups. Indeed the convolution in the brackets [kP , g] and [kQ, f ] are done �berwise. In
the �ber (x, 0, 0) the convolution is done between a distribution with compact support and
a function on THMx with compact support.

Remark 1. Theorem 2.3 is in particular satis�ed for Q ∈ Ψm′
H (M) with m′ ≤ −1. In this

case, we would have PQ and QP in the space Ψ−dH−1
H (M). Therefore, the two r-�bered

distributions kP ?kQ, kQ ?kP would be two continuous functions, thanks to [28, Theorem
52]. Therefore the two co-cycles in (2.20) would be 0, as again the Debord-Skandalis action
�xes (x, 0, 0). So it is only the critical case m′ = 0 which remained to be proven.

3 Pseudo-homogeneous functions and kernels

It is well-known, see for instance [19],[3, p4], that classical pseudodi�erential operators ad-
mit also a kernel expansion in terms of (pseudo)-homogeneous functions which is precisely
linked to the asymptotic expansion of the symbol. Let us recall the details.

Consider Rd equipped with a one-parameter family of dilations (δs)s>0. Typically, these
will come from a grading on Rd where δs acts on the subspace of graded degree k by
multiplication by sk. We will be particularly interested in the trivial dilation structure:

δs(ξ1, ..., ξd) = (sξ1, ..., sξd), (3.1)

and shall also encounter the Heisenberg dilation structure:

δs(ξ0, ξ1, ..., ξd) = (s2ξ0, sξ1, ..., sξd). (3.2)

Now we can de�ne:

De�nition 3.1. [19, De�nition 7.1.1 p353 ],[3, De�nition (15.19)]

Let U ⊂ Rd be an open subset. We denote by HmG (U × Rd) the space of functions f ∈
C∞(U × Rd \ {0}) homogeneous of order m satisfying:

f(x, δs(ξ)) = smf(x, δs(ξ)), s > 0, (3.3)

where δs is as in (3.1) or (3.2). We de�ne the set ΨhfmG (U × Rd) of smooth pseudo-
homogeneous functions of degree m in the second variable as follows. If m /∈ N then
:

ΨhfmG (U × Rd) = HmG (U × Rd). (3.4)

If m ∈ N then ΨhfmG (U × Rd) is the set of k ∈ C∞(U × Rd \ {0}) of the form:

k(x, ξ) = f(x, ξ) + log(|ξ|)p(x, ξ), (3.5)

where p is a homogeneous polynomial in ξ of degree m having C∞-coe�cients in x, where
the function f ∈ HmG (U × Rd) and | | is a homogeneous quasi-norm on Rd, in the sense of
dilations (3.1) or (3.2).

We also recall, see [9]:

De�nition 3.2. Let U ⊂ Rd be an open subset. We denote by HSmG (U × Rd) the space
of functions f ∈ C∞(U × Rd) which are homogeneous of order m modulo Schwartz-class
meaning:

f(x, δs(ξ))− smf(x, ξ), (3.6)

is a Schwartz-class function of ξ, with smooth dependance on x.

De�nition 3.3. [19, Equation (7.1.2) p354 ] [23, De�nition 3.5 p414], [3, Equations
(15.40)-(15.41)]
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A distribution kernel k ∈ D′(U × U) is said to have a pseudo-homogeneous expansion of
degree m ∈ R if:

k ∼
∑
j

km+j , (3.7)

where km+j ∈ Ψhfm+j
G (U × Rd) and where the symbol ∼ means that for all N ∈ N, there

exists JN ∈ N:
k −

∑
j∈JN

km+j ∈ CN (U × U), (3.8)

where CN (U ×U) denotes the space of class CN functions. The space of kernels having a
pseudo-homogeneous expansion of degree m is denoted ΨhkmG (U).

Remark 2. Our use of D′(U × U) in the above de�nition follows the standard practice
of most works on pseudodi�erential operators. Stricly speaking, when we realize these as
kernels in the groupoid calculus, we will need to replace these by r-�bred distributions :

k(x, y)dy ∈ D′r(U × U), (3.9)

see [22], [28]. The Lebesgue measure dy is homogeneous of degree −d with respect to the
trivial dilation δs so this introduces a degree-shift in orders of kernels, see the next theorem.
Thus, the kernel of a pseudodi�erential operator on U of order m < 0 will be given by an
element of Ψhk−m−dG (U). This is a well-known technical detail, and we will not remark on
it further.

We now state an important theorem, also see [19, thm 7.1.1, 7.1.6, 7.1.7, 7.1.8].

Theorem 3.4. Seeley 1969 [26, theorem 1 p 209]

Let U ⊂ Rd be an open subset and m < 0. Then P ∈ Ψm
Hör

(U) if and only if:

Pu(x) =

�
U
k(x, x− y)u(y)dy, u ∈ C∞c (U), (3.10)

with Schwartz kernel satisfying k ∈ Ψhk−m−dG (U).

Moreover, in the case of the trivial dilations structure, the asymptotic expansion of the
symbol:

a ∼
∞∑
j=0

am−j , am−j ∈ Hm−jG (U × Rd), (3.11)

and the kernel:

k ∼
∞∑
j=0

km+j , km+j ∈ Ψhfm+j
G (U × Rd), (3.12)

are related by an adapted Fourier transform as follows see [19, Equation (7.1.81) p393].
Take ψ ∈ C∞c (Rd) is any cut-o� function satisfying:

ψ(z) :=

{
1 if |z| ≤ 1

2 ,
0 if |z| > 1.

(3.13)

Set κ = −m− d. Then for m− j < 0:

am−j(x, ξ) = lim
t→+∞

�
Rd

kκ+j(x, z)ψ(
z

t
)e−iξ.zdz, x ∈ U. (3.14)
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4 TheWodziciki residue coincides with the groupoidal residue

We shall prove in this section that the groupoidal residue Resx(P ) and the Wodzicki residue
ResWx (P ) coincide when P is a classical pseudodi�erential operator of order ≤ −d on a
trivially �ltered manifold, see Theorem 4.3. We begin by recalling exponential coordinates
ExpX on TM , see also [28].

Given a vector �eld X on M and a point x ∈M , we write exp(X).x for the time one �ow
of x along X if de�ned. If X = (X1, ..., Xn) is a local frame of vector �elds and v ∈ Rn
then we set v.X =

∑n
k=1 vkXk. Also, note that the dilations δs on Rd in this case are

given by δs(v) = sv. The following Lemma lists the properties of the exponential charts of
THM which we will need in the sequel.

Lemma 4.1. [28, Lemma 27 p 14], [9, Proposition 5.13], [8]

Let M be a smooth manifold of dimension d and k ∈ Ψm
vEY (TM). Given x0 ∈M , (U0, φ)

a chart on x0 and X = (X1, ..., Xd) a local frame on x0, we have:

1. There exists an open neighbourhood U of U0 × {0} with U ⊂ U0 × Rd such that:

ExpX : U →M ×M, (x, v) 7→ (x, exp(v.X).x), (4.1)

is a di�eomorphism onto its image.

2. The derivative of ExpX at (x0, 0) is :

d(x,0)Exp
X : (w, v) ∈ TxU0 × Rd 7→ (w, v.X|x). (4.2)

3. Put Ũ := {(x, v, t) ∈ U0 × Rd × R, (x, δt(v)) ∈ U}. Then the map:

ExpX : Ũ→ TM, (x, v, t) 7→

{
ExpX(x, v, t) = (ExpX(x, δt(−v)), t), t 6= 0

ExpX(x, v, 0) = (x, v.X|x, 0) t = 0,
(4.3)

de�nes the inverse of a smooth chart for the tangent groupoid TM .

4. Let U = ExpX(Ũ) ∈ TM be the domain of this chart. Then:

U =
(
TM × {0}

)⋃(
ExpX(U)× R∗

)
, (4.4)

is an open neighbourhood of
(
TM×{0}

)⋃(
diag(U0)×R∗

)
in TM , where diag(U0) =

{(x, x), x ∈ U0}. Moreover U is invariant for the Debord-Skandalis action 1.2, and

the pullback of this action under ExpX :

α̃s := (ExpX)−1 ◦ αs ◦ ExpX : Ũ→ Ũ, (4.5)

is given by:
α̃s(x, v, t) = (x, δs(v), s−1t). (4.6)

5. There exists χU ∈ C∞c (TM) invariant under the Debord-Skandalis action αs such
that:

χU =

{
1 in a neighbourhood of {(x0, x0)} × R,
0 outside U. (4.7)

6. kχU ∈ Ψm
vEY (TM) has support in U. Moreover k̃ = (ExpX)−1

∗ (kχU) has support in
Ũ and is essentially homogeneous for the action α̃s.
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Lemma 4.2. Let U ⊂ Rd be an open subset. If k0 ∈ Ψhf0
G(U × Rd) then Resx(P ) =

ResWx (P ) is veri�ed for the operator P ∈ Ψ−d
Hör

(U) with Schwartz kernel χ(x−y)k0(x, x−y)
where χ ∈ C∞c (Rd) is 1 in a neighbourhood of 0 and 0 at in�nity.

Proof. By de�nition of Ψhf0
G(U × Rd), we can write k0(x, z) = f0(x, z) + log(|z|)p0(x),

where p0 is a smooth function on U and f0 is a smooth function homogeneous of order 0
with respect to z. Let χ be as in the statement. Then we set:

1. l(x, y) = χ(x−y) ln(|x−y|)p0(x)dy to be the kernel of the operator P = Op(l) whose
kernel's asymptotic expansion is given by l0(x, z) = ln(|z|)p0(x)dz and lj(x, z) = 0 if
j > 0.

2. r(x, y) = χ(x − y)f0(x, x − y)dy to be the kernel of the operator P = Op(r) whose
kernel's asymptotic expansion is given by r0(x, z) = f0(x, z)dz and rj(x, z) = 0 if
j > 0.

We compute the Wodzicki residue at x ∈ U respectively for each of these operators, using
De�nition 1.3. In both cases, recall that equation (3.14) gives us the link between the
asymptotic symbol expansion and the asymptotic kernel expansion.

1. We get, by denoting F2 the Fourier transform with respect to the second variable:

a−d(x, ξ) =︸︷︷︸
(3.14)

F2

(
p0(x) log(|.|)

)
(ξ) (4.8)

= p0(x)F2(log(|.|))(ξ), (4.9)

where F2(log(|.|)) is interpreted as the Fourier transform of the tempered distribution
z 7→ log(|z|). Now, the Fourier transform of the logarithm in Rd is well known and
given, for ξ 6= 0 by:

F2(log(|.|))(ξ) = − 1

|ξ|d
(2π)d

ωd
, (4.10)

where ωd = (2π)d
√
π
d
Γ( d

2
)2d−1

denotes the surface area of the unit (d − 1)-sphere Sd−1 :=

{ξ ∈ Rd, |ξ| = 1} ⊂ Rd. Then in (4.9) we may now write:

a−d(x, ξ) =︸︷︷︸
(4.10)

−p0(x)

|ξ|d
(2π)d

ωd
. (4.11)

Therefore from (1.3) we get:

ResWx (Op(l)) =
1

(2π)d

�
Sd−1

−p0(x)

|ξ|d
(2π)d

ωd
dσ(ξ)dx = −p0(x)dx, (4.12)

where dσ denotes the usual surface measure on Sd−1.

2. As f0 ∈ H0(U × Rd), we may extend it to f0 ∈ C∞(U) ⊗ L∞(Rd) by attributing
any value at ξ = 0 for all x ∈ U . The result is a tempered distribution (generalized
function) which is homogeneous of degree 0.

We now proceed with x ∈ U �xed. Thanks to [15, Proposition 2.4.7 p 140], or [6,
p86], there exists bx ∈ C and Ωx a smooth function on the sphere Sd−1 with integral
0 on Sd−1 such that:

F2(f0(x, .))(ξ) = bxδ0 +WΩx(ξ), (4.13)

where WΩx is the principal value distribution whose restriction to Rd \ {0} is:

Ωx

( ξ
|ξ|

) 1

|ξ|d
, (4.14)
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see [15, Equation (2.4.12) ]. When ξ 6= 0 we have that:

a−d(x, ξ) =︸︷︷︸
(3.14)

F2(f0(x, .))(ξ) (4.15)

=︸︷︷︸
(4.13)

WΩx(ξ), (4.16)

is smooth in Rd \ {0}. It follows that:
�
Sd−1

a−d(x, ξ)dσ(ξ) =︸︷︷︸
(4.16)

�
Sd−1

WΩx(ξ)dσ(ξ) (4.17)

=︸︷︷︸
(4.14)

�
Sd−1

Ωx(ξ)dσ(ξ) (4.18)

= 0, (4.19)

where the last equality is true by the assumption on Ωx. We therefore have:

ResWx (Op(r)) = 0. (4.20)

Now we look at the co-cycles at x of the r-�bred distributions essentially homogeneous
associated to the operators Op(l), Op(r) and prove that at (x, 0, 0) we recover the residue
values (4.12) and (4.20). First, we can respectively de�ne two elements in Ψm

vEY(TM) such
that their restrictions in t = 1 give the kernels l and r.

1. Set: {
l(x, y, t) = 1

td
χ(x−yt ) log( |x−y|t )p0(x)dy if t 6= 0

l(x, v, 0) = χ(v) log(|v|)p0(x)dλx(v) if t = 0,
(4.21)

where dλx denotes the Haar measure on the tangent space TxM at x. Writing this
in exponential coordinates according to Lemma 4.1 with respect to the standard
coordinate frame X for Rd, we get:

l̃(x, v, t) =
(
ExpX

)−1

∗
l(x, v, t) = χ(v) log(|v|)p0(x)dλx(v). (4.22)

Recalling α̃s from Lemma 4.1 and using the fact that δs∗(dλx) = s−ddλx, we get:

sdα̃s∗l̃(x, v, t)− l̃(x, v, t) = sdl̃
(
x, δs−1(v), st

)
δs∗(dλx(v))− l̃(x, v, t) (4.23)

= − log(s)χ(s−1v)p0(x)dλx(v)

+
(
χ(s−1v)− χ(v)

)
log(|v|)p0(x)dλx(v). (4.24)

We deduce that :
sdα̃s∗l̃− l̃ ∈ C∞p (Ũ,Ωr). (4.25)

2. Set: {
r(x, y, t) = χ(x−yt )f0(x, x−yt )dy if t 6= 0
r(x, v, 0) = χ(v)f0(x, v)dλx(v) if t = 0,

(4.26)

In the same exponential coordinates we get:

r̃(x, v, t) =
(
ExpX

)−1

∗
r(x, v, t) = χ(v)f0(x, v)dλx(v), (4.27)

and the homogeneity of f0 gives:

sdα̃s∗r̃− r̃ ∈ C∞p (Ũ,Ωr). (4.28)
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We move now to the computations of the co-cycles restricted in (x, 0, 0).

1. Using (4.24) we get, for all s ∈ R∗+ \ {1}:(
α̃s∗l̃− s−dl̃

)
|(x,0,0) = − 1

sd
log(s)p0(x)dλx (4.29)

=
1

sd
log(s)ResWx (Op(l)), (4.30)

where we use the canonical identi�cation of the smooth family of 1-densities dλx with
the smooth measure dx on M . Then:

1

log(s)

(
sdα̃s∗l̃− l̃

)
|(x,0,0) = ResWx (Op(l)). (4.31)

2. Using (4.27) we get, for all s ∈ R∗+ \ {1}:(
α̃s∗r̃− s−dr̃

)
|(x,0,0) =

(
f0(x, v)[χ(

v

s
)− χ(v)]dλx(v)

)
|(x,0,0) (4.32)

= 0 (4.33)

=
1

sd
log(s)ResWx (Op(r)). (4.34)

Then:

1

log(s)

(
sdα̃s∗r̃− r̃

)
|(x,0,0) = ResWx (Op(r)). (4.35)

This completes the proof.

Theorem 4.3. Let M be a (trivially) �ltered manifold of dimension d and P ∈ Ψm
H(M) a

classical pseudodi�erential operator of order m on M , with m ≤ −d, m ∈ Z. Let k be any
essentially homogeneous r-�bered distribution of order −d that extends P at t = 1. Then:

ResWx (P ) =
1

log(s)

(
sdαs∗k− k

)
|(x,0,0), ∀ s ∈ R∗+ \ {1}, ∀ x ∈M. (4.36)

Proof. Consider �rst the case m ≤ −d− 1. Thanks to [28, Theorem 52] we already know
that:

k ∈ C0(TM,Ωr), (4.37)

as we have supposed here m ≤ −d− 1. That means:

k(x, v, 0) = l0(x, v)dλx, (4.38)

for some l0 ∈ C0(TM) and where dλx is the Haar measure on TxM .

We can now evaluate the co-cycle term to term. Moreover the points (x, 0, 0) are �xed by
the Debord-Skandalis action. Thus, using the facts that δs∗dλx = s−ddλx, we get:

1

log(s)

(
sdα̃s∗k− k

)
|(x,0,0) =

1

log(s)

(
l0(x, 0)dλx − l0(x, 0)dλx

)
= 0. (4.39)

This agrees with the Wodzicki residue in this case. Indeed, for an operator of this order
the term a−d appearing in the asymptotic expansion of its symbol is always zero.
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Ifm = −d and (U0, φ) is a chart on x ∈M , then the kernel admits an asymptotic expansion
k ∼

∑+∞
j=0 kj in U0, thanks to Seeley's Theorem 3.4. Thus we may write:

k(x, x− y)− χ(x− y)k0(x, x− y) ∼
∑
j≥1

kj(x, x− y), (4.40)

with χ ∈ C∞c (Rd) is such that χ is equal to 1 in a neighbourhood of 0 and 0 at in�nity.
Let us denote the left hand side of (4.40) by k(x, x − y). Then P = Op(k) ∈ Ψm−1

Hör (M)
and using what we did just before, ResWx (P ) = Resx(P ) for all x ∈ M . It su�ces to
apply Lemma 4.2 to the function k0 ∈ Ψhf0

G to conclude, as we have k(x, z) = k(x, z) +
χ(z)k0(x, z).

5 Ponge's non commutative residue for an Heisenberg man-

ifold.

In his article [23], Ponge de�ned a noncommutative residue that �ts the context of a
Heisenberg manifold. In this section, we will show that Ponge's residue coincides with the
groupoidal residue of De�nition 1.4 for pseudodi�erential operators of order ≤ −dH on a
contact manifold or a codimensional one foliation. Again, we will restrict our attention to
scalar-valued operators to simplify notation, although one can easily generalise to vector
bundles using (1.13).

Let M be a Heisenberg manifold of dimension d + 1 with hyperplane bundle V ≤ TM .
The algebra of Heisenberg pseudodi�erential operators of BG [3] is denoted Ψ•V(M). It is
shown in [9] that this coincides with the groupoidal calculus whenM = Hn×Rm, Hn being
the 2n + 1 dimensional Heisenberg group, or M is a contact manifold or a codimensional
one foliation. That is:

Ψm
V (M) = Ψm

H(M), (5.1)

forM in these cases, though we expect it to be true also for a general Heisenberg manifold.

Ponge's noncommutative residue is de�ned as follows. Let
(
Xj

)
j∈{0,...,d}

be a local H-

frame of vector �elds on an open subset U ⊂ M and Ψx : U → Rd+1 be a privileged
change of coordinates centered at x, see [23, p 415 and De�nitions 2.3 ,2.4]. The latter

assertion means that if
(
Xj

)
j∈{0,...,d}

is a local H-frame of vector �elds, then we have

Ψx(x) = 0 and (Ψx)∗Xj(x) = ∂j |x. In this context, the noncommutative residue of Ponge
of a Heisenberg pseudodi�erential operator P ∈ Ψ−dHV (U) of degree −dH on U , is de�ned
as follows.

Let p−d−2 be the term of degree −dH = −(d + 2) from the asymptotic expansion of the
symbol of P ∈ Ψ−dHV (U), see [23, 2.7 p409]. Then set the noncommutative residue of P at
x:

cP (x) =
|dΨx|

(2π)d+1

�
Sd
p−(d+2)(x, ξ)dξ, (5.2)

where |dΨx| is the jacobian of Ψx, see [23, Lemma 3.9].

The reader can compare this de�nition in contrast with the "non-graded" non commutative
residue (1.3). We begin with the case of the model groups M = Hn × Rm = Rd+1, where
d = 2n+m. If n = 0 then H0 = R by convention. We equipM with the model vector �elds
X = (X0, X1, ..., Xd) of [3, chapter 1 p12-13], also see [9, section 5.1], so that (X0, ..., X2n)
generate Hn, X0 is central and (X2n+1, ..., Xd) are the usual vectors �elds on Rd+1. Recall
that E ′r(M ×M) denotes the set of r-�bered distributions on the pair groupoid M ×M .
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Theorem 5.1. Given a model manifold M = Hn × Rm of homogeneous dimension dH =
d + 2, 2n + m = d, with the standard model structure as in [9] and P ∈ Ψm

V (M), with
m ≤ −dH , then the residue of Ponge at x and our residue from De�nition 1.4 coincide:

Resx(P ) = cP (x). (5.3)

Proof. We will rely heavily on [3] and [9]. We denote k ∈ E ′r(M ×M) the kernel of P .
Since the Heisenberg and groupoidal calculi coincide, see [9, Theorem 5.16], there exists
k ∈ Ψ−dHvEY (THM) such that k|t=1 = k. Moreover we may suppose, see [28, proposition 42]
that k is homogeneous on the nose of order −dH outside t ∈ [−1, 1]. We pull this back via
exponential coordinates, again as in [9, section 5], yielding k̃ ∈ E ′r(M × Rd+1 × R) with

the equality k = ExpX∗

(
k̃

)
. Note that in the case of model manifold, the exponential

coordinate chart is globally de�ne.

Next we must consider the symbol of P . By the de�nition of the Heisenberg calcu-
lus, [3, Chapter 3, � 10], P is de�ned starting from a graded-polyhomogeneous function
f ∈ S−dHphg,G(M ×Rd+1). Letting σ(x, ξ) = (x, σ0(x, ξ), ..., σd(x, ξ)) be the coordinate trans-
form [3, Equations (10.14),(10.15)] obtained from the symbols of the model vector �elds
(X0, ..., Xd), Beals and Greiner de�ne the V-symbol associated to f by:

q(x, ξ) = σ∗f(x, ξ). (5.4)

See also [9, De�nition 5.5]. The symbol and kernel are related by �berwise Fourier trans-
form, after the abovementioned coordinate changes. Explicitly, we have:

f = F2(k̃)|t=1, (5.5)

where F2 is the �berwise Fourier transform in the second variable. Extending this �berwise
Fourier transform to all t ∈ R, let us put:

u = F2(k̃) ∈ C∞(M × Rd+1 × R). (5.6)

Note that the Debord-Skandalis action transforms under the Fourier transform as:

F2 ◦ α̃s∗ ◦ F−1
2 = β∗s , (5.7)

where βs : M × Rd+1 × R→M × Rd+1 × R are the dilations:

βs(x, v, t) = (x, δs(v), st), (5.8)

see [9, Proposition .13]. The essential homogeneity of k and consequently of k̃ = (ExpX∗ )−1(k),
therefore implies that u ∈ HSmG (M×Rd+1×R) where the homogeneity modulo Schwartz is
with respect to the dilations βs (thanks to the hypothesis on the homogeneity of k outside
t ∈ [−1, 1]), see the proof of [9, Theorem 5.16].

Set u0 = u|t=0. By [9, Proposition 3.2] we have u0 ∈ HS−dHG (M × Rd+1). Therefore by a
well-known Lemma, eg [9, Theorem 2.1], outside a compact neighbourhood containing 0
of ξ we may write:

u0 = u′0 + u′′0, (5.9)

where u′0 ∈ H
−dH
G (M × Rd+1) and u′′0 ∈ SG(M × Rd+1).
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We may extend the homogeneous function u′0 as a tempered distribution (not necessarily
homogeneous), still denoted u′0. Indeed, we may �rst extend u′0 to a distribution such as
in [3, section � 15], [24, Lemma 3.1], or in [18, Theorem 3.2.4], and it is tempered because
it has polynomial growth at in�nity. Therefore we can �nd u′′′0 ∈ C∞(M, E ′(Rd+1)) =
C∞(M)⊗ E ′(Rd+1) such that the following holds everywhere:

u0 = u′0 + u′′0 + u′′′0 . (5.10)

We can compute for all s ∈ R∗+ \ {1}:

Resx(P ) =
1

log(s)

(
sdHαs∗k− k

)
|(x,0,0) (5.11)

=
1

log(s)

(
sdHαs∗ExpX∗

(
k̃

)
− ExpX∗

(
k̃

))
|(x,0,0) (5.12)

=
1

log(s)

(
sdH α̃s∗k̃− k̃

)
◦
(
ExpX

)−1
|(x,0,0), (5.13)

where we used in (5.12) the equality α̃s =
(
ExpX

)−1
◦ αs ◦ ExpX , see (4.5). Also recall

that ExpX |M×{0}×{0} = idM×{0}×{0}. We next continue to compute in (5.13):

Resx(P ) =
1

log(s)

(
sdH α̃s∗F−1

2 (u)−F−1
2 (u)

)
|(x,0,0) (5.14)

=
1

log(s)
F−1

2

(
sdHβ∗su− u

)
|(x,0,0), (5.15)

where we use the equality F2 ◦ α̃s∗F−1
2 = β∗s recalled earlier. Now we use (5.10):

Resx(P ) =
1

log(s)
F−1

2

(
sdHβ∗s (u′0 + u′′0 + u′′′0 )− (u′0 + u′′0 + u′′′0 )

)
|(x,0,0) (5.16)

=
1

log(s)
F−1

2

(
sdHβ∗su

′
0 − u′0 + sdHβ∗s (u′′0 + u′′′0 )− (u′′0 + u′′′0 )

)
|(x,0,0). (5.17)

Since u′′0 is Schwartz class in ξ and u′′′0 is compactly supported in ξ, their �berwise Fourier
transforms are smooth.

Therefore F−1
2 (u′′0) and F−1

2 (u′′′0 ), can be evaluated at (x, 0, 0) and as in the proof of
Theorem 4.3, for all s ∈ R∗+ \ {1}, we get:

1

log(s)
F−1

2

(
sdHβ∗s (u′′0 + u′′′0 )− (u′′0 + u′′′0 )

)
|(x,0,0) = 0. (5.18)

Hence:

Resx(P ) =
1

log(s)
F−1

2

(
sdHβ∗su

′
0 − u′0

)
|(x,0,0). (5.19)

Finally, we use [23, Lemma 3.1 p 414 and Equation (3.2)] which assert that we have for all
s ∈ R∗+ \ {1}:

β∗su
′
0 = s−dHu′0 + s−dH log(s)c0(u′0)δ0, (5.20)

where:

c0(u′0) =

�
|ξ|=1

u′0(x, ξ)dσ(ξ). (5.21)

Then, using (5.20), Equation (5.19) becomes:

Resx(P ) =
1

log(s)
F−1

2

(
log(s)c0(u′0)δ0

)
|(x,0,0) (5.22)

=
1

(2π)d+1

�
|ξ|=1

u′0(x, ξ)dσ(ξ), (5.23)
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where the constant 1
(2π)d+1 appears in the inverse Fourier transform formula. Now, thanks

to [3, Equation (3.25) p 27] we see that:

t
(
dΨx

)
ξ = σ(x, ξ), (5.24)

where σ is de�ned in [9, Equation (5.12)]. The reader can compute the Jacobian of Ψx

and see that it is triangular and unipotent and so has determinant equal to one, see also
[8].

According to [9, the proof p8 of Theorem 1.12], the purely homogeneous component u′0 of
u0 is the �rst term in the asymptotic expansion of the polyhomogeneous function f = u|t=1,
see [9, Equation (3.16)] and the remarks which follow. Therefore:

u′0(x, ξ) = p−(d+2)(x, ξ), (5.25)

where p−(d+2) is the term of degree −(d + 2) in the asymptotic expansion of f = u|t=1.
We have shown that :

Resx(P ) =
|dΨx|

(2π)d+1

�
|ξ|=1

p−(d+2)(x, ξ)dσ(ξ). (5.26)

Corollary 5.2. If M is a contact manifold or a codimensional one foliation, then the
groupoidal residue of De�nition 1.4 agree with's Ponge noncommutative residue for opera-
tors P ∈ Ψ−dHV (M), meaning that (5.3) still holds.

Proof. Darboux' Theorem for a contact manifold or Frobenius' Theorem for a codimen-
sional one foliation, implies that around any x ∈ M , there is a local coordinate system
which identi�es M with the model space Hn, d = 2n, or H0 × Rd. Since both Ponge's
residue and the groupoidal residue are independent of (priveleged) coordinates, the result
follows.
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