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A groupoid approach to the Wodzicki residue

1 Introduction.

One of the remarkable features of the theory of pseudodierential operators is the noncommutative residue of Wodzicki, which he dened in 1984 in his thesis [START_REF] Wodzicki | Spectral asymmetry and noncommutative residue[END_REF]. The noncommutative residue was also dened in 1985 in a article of Guillemin, [START_REF] Victor Guillemin | A new proof of weyl's formula on the asymptotic distribution of eigenvalues[END_REF]Denition 6 p 151], in which he proposes to associate to an operator P a zeta function:

ζ(P, s) = k λ s k , (1.1) 
where λ k are the eigenvalues of P , and then shows that it admits a meromorphic continuation. The residues of this zeta function are linked to the number of eigenvalues of P denoted by N (λ) = card{λ k , λ k ≤ λ}, leading Guillemin to a Weyl-type formula, as in [START_REF] Weyl | Über die asymptotische verteilung der eigenwerte[END_REF].

Let P be a classical pseudodierential operator of ordrer m ∈ Z on a manifold M of dimension d. This means that in any chart the symbol of P admits an asymptotic expansion:

a(x, ξ) ∼ k a m-k (x, ξ). (1.2)
In the following discussion, we x a chart (U, φ) and we identify U with its image in R d .

Denition 1.1. [29, p 58] , [21, 1.8 Formule locale], [START_REF] Wodzicki | Local invariants of spectral asymmetry[END_REF][START_REF] Connes | Noncommutative Geometry[END_REF] We dene the residue at x of a classical pseudodierential operator P on M of order m to be:

Res W x (P ) = 1 (2π) d ¢ S d-1 a -d (x, ξ)dσ(ξ) dx, (1.3) 
where a -d (x, ξ) is the homogeneous part of order -d in the variable ξ coming from the asymptotic expansion of P in any chart. Moreover, if M is a compact riemannian manifold, we dene also the (global) residue of P :

Res W (P ) = ¢ M Res W x (P )dx, (1.4) 
where dx is the smooth measure coming from the riemannian structure.

It is a profound theorem that these quantitites are independent of the choice of chart.

In this paper, we propose to give another denition of this residue for operators of order -dim(M ), which extends naturally to ltered manifolds, using the groupoidal calculus from [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF] that is using tangent groupoids TM, T H M . We therefore manage to circumvent the chart machinery. Moreover our denition extends essentially without change to dene non commutative residue on pseudodierential operator on any ltered manifold, including that of Ponge on a Heisenberg manifold [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF], using the ltered tangent groupoid of [START_REF] Choi | Tangent maps and tangent groupoid for carnot manifolds[END_REF], [START_REF] Van Erp | On the tangent groupoid of a ltered manifold[END_REF]. Note that the compact hypothesis is to make (1.4) valid, we can dene Res W x for M non-compact.

The noncommutative residue has proved to be connected with other geometrical objets. For instance :

1. There is link between this residue for a dierential operator on a compact manifold and the asymptotic expansion of the trace of the heat operator e -tP , see [START_REF] Ackermann | A note on the wodzicki residue[END_REF].

2. Connes showed in 1988 -see [START_REF] Connes | Noncommutative Geometry[END_REF]Proposition 5 p313], [4, section 2.6 p17], [20, section 7.6], [START_REF] Ponge | Connes' integration and weyl's laws[END_REF]Proposition 4.11 p 16] -that when P is a pseudodierential operator of order -dim(M ) and M is compact, then the Dixmier trace of P coincides to this residue up to a constant.

3. Ponge showed in [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF]Proposition 6.3 p 454] the link between the residue of the Kohn-Laplacian b on a CR compact manifold, see [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF]Equation (6.9)], and the volume of M , dened at [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF]Equation (6.4)].

Let us very briey recall the groupoid approach to pseudodierential operators, rst observed by Debord-Skandalis [START_REF] Debord | Adiabatic groupoid, crossed product by R * + and pseudodierential calculus[END_REF] in 2014 and developped by van Erp and the second author some years later [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF]. The tangent groupoid of Connes is:

TM = M × M × R * T M × {0}, (1.5) 
which is seen as a smooth glueing of the tangent bundle T M with a family of pair groupoids M × M over R * . In the ltered case the appropriate substitute of the tangent bundle T M is a bundle of nilpotent osculating groups T H M whose bers are denoted by T H M x and we dene the ltered tangent groupoid by:

T H M = M × M × R * T H M × {0}. (1.6)
The bundle of osculating groups admits a family of automorphism (δ s ) s>0 called dilations which generalises the homotheties on TM in the trivially-ltered case.

Using these dilations we obtain a smooth R * + -action on T H M , namely the Debord-Skandalis action [START_REF] Debord | Adiabatic groupoid, crossed product by R * + and pseudodierential calculus[END_REF], see also [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF] where it is called the zoom action and [9]: Denition 1.2. Let M be a ltered manifold. We dene the Debord-Skandalis action of

R * + on T H M , s ∈ R * + → α s ∈ Aut(T H M ) by: α s (y, x, t) = (y, x, s -1 t) (x, y) ∈ M, α s (x, ξ, 0) = (x, δ s (ξ), 0) x ∈ M, ξ ∈ T H M x . (1.7)
The key point in the groupoidal approach to pseudodierential operators [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF] is to consider the set of distributions on the tangent groupoid T H M which are essentially homogeneous for the Debord-Skandalis action in the following sense. A r-bered distribution on

T H M is a continuous C ∞ (M ×R)-linear map k : C ∞ (T H M ) → C ∞ (M ×R)
. This denition implies that the support of such a distribution is r-proper and we denote them by E r (T H M ). They were rst studied by Androulidakis-Skandalis [START_REF] Androulidakis | Pseudodierential calculus on a singular foliation[END_REF] and Lescure-Manchon-Vassout [START_REF] Lescure | About the convolution of distributions on groupoids[END_REF] in the general case of submersions. Thanks to a result from [START_REF] Lescure | About the convolution of distributions on groupoids[END_REF], r-bered distributions can be seen as smooth maps k from M × R to compactly supported distributions in the r-bers, k(x, t) ∈ E (r -1 (x, t)), and whose support is r-proper. We say that a r-bered distribution is properly supported if its support is also s-proper.

Recall that C ∞ p (T H M, Ω r ) denotes the proper smooth sections of the 1-density bundle tangent to the r-bers, see [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]Denition 5.9]. We say that a properly supported r-bered distribution k is essentially homogeneous of order m for the Debord-Skandalis if:

s ∈ R * + → s -m α s * k -k ∈ C ∞ p (T H M, Ω r ).
(1.8)

We refer to the function appearing in (1.8) as the co-cycles of k. The set of essentially homogeneous distributions of this kind is denoted Ψ m vEY (T H M ). We will refer to notations and concepts from [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF] and [9, section 5.3]. Thanks to this, van Erp and the second author dene a pseudodierential operator as the restriction at t = 1 of an element k ∈ Ψ m vEY (T H M ), see [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF]Theorem 2 p3]. These elements are the H-pseudodierential operators on the ltered manifold M and are denoted by Ψ m H (M ).

One of the main theorems of the article [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF] is that the groupoidal calculus coincides, in the case of a trivially ltered manifold, with the classical calculus of Kohn-Nirenberg and Hörmander, namely:

Ψ m Hör (M ) = Ψ m H (M ). (1.9) 
A simple but important rst observation of the present paper is the following. We will consider m ∈ Z in the whole paper. If M is a ltered manifold, we denote d H the homogeneous dimension of M . Note that, if we x a smooth measure dx on M , we obtain a canonical smooth family of 1-densities dλ x on the tangent bers T x M and hence on the osculating groups T H M x .

Lemma 1.3. Let M be a ltered manifold and k ∈ Ψ -d H vEY (T H M ). For every x ∈ M , the function dened by:

s → s d H α s * k -k | (x,0,0) , (1.10) 
is a group homomorphism from (R * + , ×) to (C, +). More precisely, there exists a constant r x ∈ C such that for all s > 0:

s d H α s * k -k | (x,0,0) = r x log(s)dλ x .
(1.11)

We shall give the proof in the next section.

We may dene the quantity r x dx to be the groupoidal residue of the pseudodierential operator with kernel k| t=1 , which is indeed a polyhomogeneous pseudodierential operator by (1.9). As we shall see in Lemma 2.1, r x dx does not depend on the r-bered distribution k representing the pseudo-dierential operator P at t = 1. Therefore we can dene: Denition 1.4. Let M be a ltered manifold of homogeneous dimension d H and P ∈

Ψ m H (M ) with m ≤ -d H . Let k ∈ Ψ -d H
vEY (T H M ) be an element in vEY groupoidal calculus such that k| t=1 is the Schwartz kernel of P . We dene the groupoidal residue of P at x ∈ M , denoted Res x (P ), for any s ∈ R * + \ {1} to be:

Res x (P ) := 1 log(s) s d H α s * k -k | (x,0,0) .
(1.12)

The above denition is for scalar-valued operators. For operators between vector bundles, we should take, for any s ∈ R * + \ {1}:

Res x (P ) := 1 log(s) Tr s d H α s * k -k | (x,0,0) .
(1. [START_REF] Gerald B Folland | A course in abstract harmonic analysis[END_REF] For details on the groupoidal calculus with vector-bundle coecients, see [START_REF] Dave | Graded hypoellipticity of bgg sequences[END_REF]. We will restrict our attention to scalar-valued operators for simplicity. Now come the main results of this paper:

1. We shall show, see Theorem 2.3, that similarly to the Wodzicki residue Res W

x , the groupoidal residue Res x from Denition 1.4 denes a trace on operators of appropriate order. More precisely if P ∈ Ψ m H (M ) where M is a ltered manifold and m ≤ -d H , Q ∈ Ψ 0 H (M ) then :

Res x ([P, Q]) = 0, (1.14) 
where [ , ] denotes the commutator of operators.

2. We shall show, see Theorem 4.3, that the groupoidal residue from Denition 1.4 coincides with the Wodzicki residue in the case of a trivially ltered manifold.

3. We shall show, see Theorem 5.1 and Corollary 5.2, that the denition of the noncommutative residue made by Raphaël Ponge [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF] in 2007 coincides with groupoidal residue from Denition 1.4 for V-pseudo-dierential operators in the calculus of BG, [3, section 10] where M is a contact manifold or a foliation of codimension 1.

Denition 1.4 only applies to pseudo-dierential operators of order ≤ -d H . It should be possible to extend this denition to operators of arbitrary order. In the case of the classical unltered calculus, this will be treated in a forthcoming article by Higson, Sukochev and Zanin [17]. We learnt of their work while writing this article. We refer to that article for details.

2 Basic properties of the Wodzicki residue on a ltered manifold.

Maintaining the notation of the introduction, let us start by proving Lemmas 1.3 and 2.1, which show the well-denedness of our residue. Our conventions for the ltered tangent groupoid are such that the range and source maps are given by :

r(y, x, t) = y, s(y, x, t) = x, t = 0 r(x, v, 0) = x, s(x, v, 0) = x. (2.1) 
Proof of Lemma (1.3). Set:

F : s ∈ R * + → F s := s d H α s * k -k ∈ C ∞ p (T H M, Ω r ). (2.2)
We will show that it is a group morphism when restricted at (x, 0, 0). First, the reader can easily check that:

F st = s d H α s * F t + F s , s, t > 0. (2.3)
Thus we need to show:

s d H α s * F t | (x,0,0) = F t | (x,0,0) . (2.4) 
We are therefore going to prove (2.4). In the ber (x, ., 0), we can write:

F s | (x,.,0) = f x dλ x , (2.5) 
for some

f x ∈ C ∞ c (T H M x )
and where dλ x is a Haar measure on the nilpotent (graded) osculating group T H M x such that δ s * (dλ x ) = s -d H dλ x . The Debord-Skandalis action at t = 0 acts by the dilations δ s . So for the ber (x, ., 0) we have:

α s * (F s )| (x,.,0) = δ s * (F s | (x,.,0) ) (2.6) = (2.5) (δ -1 s ) * f x δ s * (dλ x ) (2.7) = s -d H (δ -1 s ) * f x dλ x . (2.8)
Since the Debord-Skandalis action α s xes the points (x, 0, 0), this gives (2.9) Let x ∈ M be xed. We need to show that the two co-cycles (1.12) related to these rbered distributions give the same groupoidal residue at x. Thanks to [28, Corollary 33], we have:

s d H α s * F t | (x,0,0) = F t | (x,0,0) as desired. Therefore, s → F s | (x,0,0) is a morphism from (R * + , ×) to (C, +). Moreover, note that the map from (2.2) is smooth, see [28, Lemma 21].
k| t=0 -k | t=0 ∈ C ∞ p (T H M, Ω r ).
(2.10)

Using (2.10), there exists f x ∈ C ∞ c (T H M x ) such that: (k -k )| (x,.,0) = f x dλ x , (2.11) 
where dλ x is a left Haar measure on the nilpotent (graded) Lie group T H M x . To conclude, remember that the Debord-Skandalis action xes (x, 0, 0). Indeed, we compute:

s d H α s * (k -k ) -(k -k ) | (x,0,0) = s d H α s * (k -k )| (x,0,0) -(k -k )| (x,0,0) (2.12) = s d H δ s * (f x dλ x ) -f x dλ x (2.13) = 0, (2.14) 
as in the previous proof.

Now we can conclude that the groupoidal residue is well-dened.

Let us now recall a basic fact about convolution Lie groups. In the following Lemma the commutators are in the sense of convolution product. Also recall that every connected nilpotent Lie group is unidomular, see [ 

G. Given f ∈ C ∞ c (G) and g ∈ E (G) then [f, g](e) = 0.
Proof. Recall that convolution on Lie group is dened by:

u v ∈ E (G) = (u ⊗ v) ∈ E (G×G) • m * , (2.15) 
where

u ∈ E (G), v ∈ E (G), (m * f )(x, y) = f (xy).
We may also take v ∈ D (G) and in this case

u v ∈ D (G), see [14, Theorem 5.1.1 p51 on R d ]. The commutator is well-dened because C ∞ c (G) is a two-sided ideal in E (G). Still inspired by the [14, Theorem 5.2.1 p53 on R d ], one can prove that for f ∈ C ∞ c (G) and g ∈ E (G): f g(x) = g(y), f (xy -1 ) , (2.16) 
and:

g f (x) = g(y), f (y -1 x) .
(2.17)

See that it is in the two previous equations that we use the unimodularness of G. Then we have proved f g(e) = g f (e), that is [f, g](e) = 0. (2.18)

Proof. We denote by k P and k Q the two associated essentially homogeneous r-bered distributions of order -d H and 0 respectively. By denition, there exists f, g ∈ C ∞ p (T H M, Ω r ) such that:

Res x ([P, Q]) = Res x (P Q) -Res x (QP ) (2.19) = 1 log(s) (s d H α s * (k P k Q ) -k P k Q )| (x,0,0) -(s d H α s * (k Q k P ) -k Q k P )| (x,0,0) (2.20) = 1 log(s) s d H ((s -d H k P + f ) (k Q + g) -k P k Q )| (x,0,0) -s d H ((k Q + g) (s -d H k P + f ) + k Q k P )| (x,0,0) (2.21) = 1 log(s) k P g + f k Q -k Q f -g k P | (x,0,0) (2.22) = 1 log(s) [k P , g] + [k Q , f ] | (x,0,0) (2.23) = 0. (2.24)
The equality in equation (2.21) is true since k P and k Q are essentially homogeneous rbered distributions respectively of order -d H and 0 respectively and α s is a groupoid automorphism for all s > 0. The last equality is true by virtue of Lemma 2.2 applied berwise to the osculating groups which are by denition connected (graded) nilpotent Lie groups. Indeed the convolution in the brackets [k P , g] and [k Q , f ] are done berwise. In the ber (x, 0, 0) the convolution is done between a distribution with compact support and a function on T H M x with compact support.

Remark 1. Theorem 2.3 is in particular satised for Q ∈ Ψ m H (M ) with m ≤ -1. In this case, we would have P Q and QP in the space Ψ -d H -1 H (M ). Therefore, the two r-bered distributions k P k Q , k Q k P would be two continuous functions, thanks to [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF]Theorem 52]. Therefore the two co-cycles in (2.20) would be 0, as again the Debord-Skandalis action xes (x, 0, 0). So it is only the critical case m = 0 which remained to be proven.

Pseudo-homogeneous functions and kernels

It is well-known, see for instance [START_REF] George | Boundary integral equations[END_REF], [3, p4], that classical pseudodierential operators admit also a kernel expansion in terms of (pseudo)-homogeneous functions which is precisely linked to the asymptotic expansion of the symbol. Let us recall the details.

Consider R d equipped with a one-parameter family of dilations (δ s ) s>0 . Typically, these will come from a grading on R d where δ s acts on the subspace of graded degree k by multiplication by s k . We will be particularly interested in the trivial dilation structure:

δ s (ξ 1 , ..., ξ d ) = (sξ 1 , ..., sξ d ), (3.1) 
and shall also encounter the Heisenberg dilation structure:

δ s (ξ 0 , ξ 1 , ..., ξ d ) = (s 2 ξ 0 , sξ 1 , ..., sξ d ). (3.2) 
Now we can dene: 

f (x, δ s (ξ)) = s m f (x, δ s (ξ)), s > 0, (3.3) 
where δ s is as in (3.1) or (3.2). We dene the set Ψhf m G (U × R d ) of smooth pseudohomogeneous functions of degree m in the second variable as follows. If m / ∈ N then :

Ψhf m G (U × R d ) = H m G (U × R d ). (3.4) If m ∈ N then Ψhf m G (U × R d ) is the set of k ∈ C ∞ (U × R d \ {0}) of the form: k(x, ξ) = f (x, ξ) + log(|ξ|)p(x, ξ), (3.5) 
where p is a homogeneous polynomial in ξ of degree m having C ∞ -coecients in x, where the function 

f ∈ H m G (U × R d ) and | | is a homogeneous quasi-norm on R d ,
A distribution kernel k ∈ D (U × U ) is said to have a pseudo-homogeneous expansion of degree m ∈ R if: k ∼ j k m+j , (3.7) 
where k m+j ∈ Ψhf m+j G (U × R d ) and where the symbol ∼ means that for all N ∈ N, there exists

J N ∈ N: k - j∈J N k m+j ∈ C N (U × U ), (3.8) 
where C N (U × U ) denotes the space of class C N functions. The space of kernels having a pseudo-homogeneous expansion of degree m is denoted Ψhk m G (U ).

Remark 2. Our use of D (U × U ) in the above denition follows the standard practice of most works on pseudodierential operators. Stricly speaking, when we realize these as kernels in the groupoid calculus, we will need to replace these by r-bred distributions :

k(x, y)dy ∈ D r (U × U ), (3.9) 
see [START_REF] Lescure | About the convolution of distributions on groupoids[END_REF], [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF]. The Lebesgue measure dy is homogeneous of degree -d with respect to the trivial dilation δ s so this introduces a degree-shift in orders of kernels, see the next theorem. Thus, the kernel of a pseudodierential operator on U of order m < 0 will be given by an element of Ψhk -m-d G (U ). This is a well-known technical detail, and we will not remark on it further.

We now state an important theorem, also see [19, 

P u(x) = ¢ U k(x, x -y)u(y)dy, u ∈ C ∞ c (U ), (3.10) 
with Schwartz kernel satisfying k ∈ Ψhk -m-d G (U ).

Moreover, in the case of the trivial dilations structure, the asymptotic expansion of the symbol:

a ∼ ∞ j=0 a m-j , a m-j ∈ H m-j G (U × R d ), (3.11) 
and the kernel: 

k ∼ ∞ j=0 k m+j , k m+j ∈ Ψhf m+j G (U × R d ), (3.12 
ψ(z) := 1 if |z| ≤ 1 2 , 0 if |z| > 1.
(3.13)

Set κ = -m -d. Then for m -j < 0:

a m-j (x, ξ) = lim t→+∞ ¢ R d k κ+j (x, z)ψ( z t )e -iξ.z dz, x ∈ U. (3.14)
4

The Wodziciki residue coincides with the groupoidal residue

We shall prove in this section that the groupoidal residue Res x (P ) and the Wodzicki residue Res W x (P ) coincide when P is a classical pseudodierential operator of order ≤ -d on a trivially ltered manifold, see Theorem 4.3. We begin by recalling exponential coordinates Exp X on TM , see also [START_REF] Van | A groupoid approach to pseudodierential calculi[END_REF].

Given a vector eld X on M and a point x ∈ M , we write exp(X).x for the time one ow of x along X if dened. If X = (X 1 , ..., X n ) is a local frame of vector elds and v ∈ R n then we set v.X = n k=1 v k X k . Also, note that the dilations δ s on R d in this case are given by δ s (v) = sv. The following Lemma lists the properties of the exponential charts of T H M which we will need in the sequel. Lemma 4.1. [28, Lemma 27 p 14], [9, Proposition 5.13], [START_REF] Couchet | Une approche groupoïdale au calcul pseudo-diérentiel sur les variétés d'Heisenberg et au résidu de Wodzicki[END_REF] Let M be a smooth manifold of dimension d and k ∈ Ψ m vEY (TM ). Given x 0 ∈ M , (U 0 , φ) a chart on x 0 and X = (X 1 , ..., X d ) a local frame on x 0 , we have:

1. There exists an open neighbourhood U of U 0 × {0} with U ⊂ U 0 × R d such that: Exp X : U → M × M, (x, v) → (x, exp(v.X).x), (4.1) 
is a dieomorphism onto its image.

2. The derivative of Exp X at (x 0 , 0) is :

d (x,0) Exp X : (w, v) ∈ T x U 0 × R d → (w, v.X| x ). (4.2) 3. Put Ũ := {(x, v, t) ∈ U 0 × R d × R, (x, δ t (v)) ∈ U }.
Then the map:

Exp X : Ũ → TM, (x, v, t) → Exp X (x, v, t) = (Exp X (x, δ t (-v)), t), t = 0 Exp X (x, v, 0) = (x, v.X| x , 0) t = 0, (4.3) 
denes the inverse of a smooth chart for the tangent groupoid TM .

4. Let U = Exp X ( Ũ) ∈ TM be the domain of this chart. Then:

U = T M × {0} Exp X (U ) × R * , (4.4) 
is an open neighbourhood of T M ×{0} diag(U 0 )×R * in TM , where diag(U 0 ) = {(x, x), x ∈ U 0 }. Moreover U is invariant for the Debord-Skandalis action 1.2, and the pullback of this action under Exp X :

α s := (Exp X ) -1 • α s • Exp X : Ũ → Ũ, (4.5) 
is given by:

α s (x, v, t) = (x, δ s (v), s -1 t). ( 4 

.6)

5. There exists χ U ∈ C ∞ c (TM ) invariant under the Debord-Skandalis action α s such that: 

χ U = 1 in a neighbourhood of {(x 0 , x 0 )} × R, 0 outside U. ( 4 
4.2. Let U ⊂ R d be an open subset. If k 0 ∈ Ψhf 0 G (U × R d ) then Res x (P ) = Res W
x (P ) is veried for the operator P ∈ Ψ -d Hör (U ) with Schwartz kernel χ(x-y)k 0 (x, x-y)

where χ ∈ C ∞ c (R d ) is 1 in a neighbourhood of 0 and 0 at innity.

Proof. By denition of Ψhf 0 G (U × R d ), we can write k 0 (x, z) = f 0 (x, z) + log(|z|)p 0 (x), where p 0 is a smooth function on U and f 0 is a smooth function homogeneous of order 0 with respect to z. Let χ be as in the statement. Then we set:

1. l(x, y) = χ(x -y) ln(|x -y|)p 0 (x)dy to be the kernel of the operator P = Op(l) whose kernel's asymptotic expansion is given by l 0 (x, z) = ln(|z|)p 0 (x)dz and l j (x, z) = 0 if j > 0.

2. r(x, y) = χ(x -y)f 0 (x, x -y)dy to be the kernel of the operator P = Op(r) whose kernel's asymptotic expansion is given by r 0 (x, z) = f 0 (x, z)dz and r j (x, z) = 0 if j > 0.

We compute the Wodzicki residue at x ∈ U respectively for each of these operators, using Denition 1.3. In both cases, recall that equation (3.14) gives us the link between the asymptotic symbol expansion and the asymptotic kernel expansion.

1. We get, by denoting F 2 the Fourier transform with respect to the second variable:

a -d (x, ξ) = (3.14) F 2 p 0 (x) log(|.|) (ξ) (4.8) = p 0 (x)F 2 (log(|.|))(ξ), (4.9) 
where F 2 (log(|.|)) is interpreted as the Fourier transform of the tempered distribution z → log(|z|). Now, the Fourier transform of the logarithm in R d is well known and given, for ξ = 0 by:

F 2 (log(|.|))(ξ) = - 1 |ξ| d (2π) d ω d , (4.10) 
where

ω d = (2π) d √ π d Γ( d 2 )2 d-1
denotes the surface area of the unit (d -1)-sphere S d-1 := {ξ ∈ R d , |ξ| = 1} ⊂ R d . Then in (4.9) we may now write:

a -d (x, ξ) = (4.10) - p 0 (x) |ξ| d (2π) d ω d . (4.11)
Therefore from (1.3) we get:

Res W x (Op(l)) = 1 (2π) d ¢ S d-1 - p 0 (x) |ξ| d (2π) d ω d dσ(ξ)dx = -p 0 (x)dx, (4.12) 
where dσ denotes the usual surface measure on S d-1 .

As f

0 ∈ H 0 (U × R d ), we may extend it to f 0 ∈ C ∞ (U ) ⊗ L ∞ (R d
) by attributing any value at ξ = 0 for all x ∈ U . The result is a tempered distribution (generalized function) which is homogeneous of degree 0.

We now proceed with x ∈ U xed. Thanks to [15, Proposition 2.4.7 p 140], or [6, p86], there exists b x ∈ C and Ω x a smooth function on the sphere S d-1 with integral 0 on S d-1 such that:

F 2 (f 0 (x, .))(ξ) = b x δ 0 + W Ωx (ξ), (4.13) 
where W Ωx is the principal value distribution whose restriction to R d \ {0} is:

Ω x ξ |ξ| 1 |ξ| d , (4.14) 
see [START_REF] Grafakos | Classical fourier analysis[END_REF]Equation (2.4.12) ]. When ξ = 0 we have that:

a -d (x, ξ) = (3.14) F 2 (f 0 (x, .))(ξ) (4.15) = (4.13) W Ωx (ξ), (4.16) 
is smooth in R d \ {0}. It follows that:

¢ S d-1 a -d (x, ξ)dσ(ξ) = (4.16) ¢ S d-1 W Ωx (ξ)dσ(ξ) (4.17) 
= (4.14) ¢ S d-1 Ω x (ξ)dσ(ξ) (4.18) = 0, (4.19) 
where the last equality is true by the assumption on Ω x . We therefore have:

Res W x (Op(r)) = 0. (4.20) 
Now we look at the co-cycles at x of the r-bred distributions essentially homogeneous associated to the operators Op(l), Op(r) and prove that at (x, 0, 0) we recover the residue values (4.12) and (4.20). First, we can respectively dene two elements in Ψ m vEY (TM ) such that their restrictions in t = 1 give the kernels l and r.

1. Set: l(x, y, t) = 1 t d χ( x-y t ) log( |x-y| t )p 0 (x)dy if t = 0 l(x, v, 0) = χ(v) log(|v|)p 0 (x)dλ x (v) if t = 0, (4.21) 
where dλ x denotes the Haar measure on the tangent space T x M at x. Writing this in exponential coordinates according to Lemma 4.1 with respect to the standard coordinate frame X for R d , we get:

l(x, v, t) = Exp X -1 * l(x, v, t) = χ(v) log(|v|)p 0 (x)dλ x (v). (4.22) 
Recalling αs from Lemma 4.1 and using the fact that δ s * (dλ x ) = s -d dλ x , we get:

s d αs * l(x, v, t) -l(x, v, t) = s d l x, δ s -1 (v), st δ s * (dλ x (v)) -l(x, v, t) (4.23) 
= -log(s)χ(s -1 v)p 0 (x)dλ x (v) + χ(s -1 v) -χ(v) log(|v|)p 0 (x)dλ x (v). (4.24) 
We deduce that :

s d αs * l -l ∈ C ∞ p ( Ũ, Ω r ). (4.25) 2. Set: r(x, y, t) = χ( x-y t )f 0 (x, x-y t )dy if t = 0 r(x, v, 0) = χ(v)f 0 (x, v)dλ x (v) if t = 0, (4.26) 
In the same exponential coordinates we get:

r(x, v, t) = Exp X -1 * r(x, v, t) = χ(v)f 0 (x, v)dλ x (v), (4.27) 
and the homogeneity of f 0 gives:

s d αs * r -r ∈ C ∞ p ( Ũ, Ω r ). (4.28) 
We move now to the computations of the co-cycles restricted in (x, 0, 0).

1. Using (4.24) we get, for all s ∈ R * + \ {1}:

αs * l -s -d l | (x,0,0) = - 1 s d log(s)p 0 (x)dλ x (4.29) = 1 s d log(s)Res W x (Op(l)), (4.30) 
where we use the canonical identication of the smooth family of 1-densities dλ x with the smooth measure dx on M . Then:

1 log(s) s d αs * l -l | (x,0,0) = Res W x (Op(l)). (4.31) 
2. Using (4.27) we get, for all s ∈ R * + \ {1}:

αs * r -s -d r | (x,0,0) = f 0 (x, v)[χ( v s ) -χ(v)]dλ x (v) | (x,0,0) (4.32) 
= 0 (4.33)

= 1 s d log(s)Res W x (Op(r)). (4.34) 
Then:

1 log(s) s d αs * r -r | (x,0,0) = Res W x (Op(r)). (4.35) 
This completes the proof. Res W x (P ) = 1 log(s) 

s d α s * k -k | (x,0,0) , ∀ s ∈ R * + \ {1}, ∀ x ∈ M. ( 4 
k ∈ C 0 (TM, Ω r ), (4.37) 
as we have supposed here m ≤ -d -1. That means:

k(x, v, 0) = l 0 (x, v)dλ x , (4.38) 
for some l 0 ∈ C 0 (T M ) and where dλ x is the Haar measure on T x M .

We can now evaluate the co-cycle term to term. Moreover the points (x, 0, 0) are xed by the Debord-Skandalis action. Thus, using the facts that δ s * dλ x = s -d dλ x , we get:

1 log(s) s d αs * k -k | (x,0,0) = 1 log(s)
l 0 (x, 0)dλ x -l 0 (x, 0)dλ x = 0. This agrees with the Wodzicki residue in this case. Indeed, for an operator of this order the term a -d appearing in the asymptotic expansion of its symbol is always zero.

If m = -d and (U 0 , φ) is a chart on x ∈ M , then the kernel admits an asymptotic expansion k ∼ +∞ j=0 k j in U 0 , thanks to Seeley's Theorem 3.4. Thus we may write:

k(x, x -y) -χ(x -y)k 0 (x, x -y) ∼ j≥1 k j (x, x -y), (4.40) with χ ∈ C ∞ c (R d )
is such that χ is equal to 1 in a neighbourhood of 0 and 0 at innity. Let us denote the left hand side of (4.40) by k(x, x -y). Then P = Op(k) ∈ Ψ m-1

Hör (M ) and using what we did just before, Res W x (P ) = Res x (P ) for all x ∈ M . It suces to apply Lemma 4.2 to the function k 0 ∈ Ψhf 0 G to conclude, as we have k(x, z) = k(x, z) + χ(z)k 0 (x, z). [START_REF] Choi | Tangent maps and tangent groupoid for carnot manifolds[END_REF] Ponge's non commutative residue for an Heisenberg manifold.

In his article [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF], Ponge dened a noncommutative residue that ts the context of a Heisenberg manifold. In this section, we will show that Ponge's residue coincides with the groupoidal residue of Denition 1.4 for pseudodierential operators of order ≤ -d H on a contact manifold or a codimensional one foliation. Again, we will restrict our attention to scalar-valued operators to simplify notation, although one can easily generalise to vector bundles using (1.13).

Let M be a Heisenberg manifold of dimension d + 1 with hyperplane bundle V ≤ T M . The algebra of Heisenberg pseudodierential operators of BG [START_REF] Beals | Calculus on Heisenberg Manifolds[END_REF] is denoted Ψ • V (M ). It is shown in [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF] that this coincides with the groupoidal calculus when M = H n ×R m , H n being the 2n + 1 dimensional Heisenberg group, or M is a contact manifold or a codimensional one foliation. That is:

Ψ m V (M ) = Ψ m H (M ), (5.1) 
for M in these cases, though we expect it to be true also for a general Heisenberg manifold. 

(x) = |dΨ x | (2π) d+1 ¢ S d p -(d+2) (x, ξ)dξ, (5.2) 
where |dΨ x | is the jacobian of Ψ x , see [START_REF] Ponge | Noncommutative residue for heisenberg manifolds. applications in cr and contact geometry[END_REF]Lemma 3.9].

The reader can compare this denition in contrast with the "non-graded" non commutative residue (1.3). We begin with the case of the model groups M = H n × R m = R d+1 , where d = 2n+m. If n = 0 then H 0 = R by convention. We equip M with the model vector elds X = (X 0 , X 1 , ..., X d ) of [3, chapter 1 p12-13], also see [9, section 5.1], so that (X 0 , ..., X 2n ) generate H n , X 0 is central and (X 2n+1 , ..., X d ) are the usual vectors elds on R d+1 . Recall that E r (M × M ) denotes the set of r-bered distributions on the pair groupoid M × M . (5.3)

Proof. We will rely heavily on [START_REF] Beals | Calculus on Heisenberg Manifolds[END_REF] and [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]. We denote k ∈ E r (M × M ) the kernel of P . Since the Heisenberg and groupoidal calculi coincide, see [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]Theorem 5.16], there exists k ∈ Ψ -d H vEY (T H M ) such that k| t=1 = k. Moreover we may suppose, see [28, proposition 42] that k is homogeneous on the nose of order -d H outside t ∈ [-1, 1]. We pull this back via exponential coordinates, again as in [9, section 5], yielding k ∈ E r (M × R d+1 × R) with the equality k = Exp X * k . Note that in the case of model manifold, the exponential coordinate chart is globally dene.

Next we must consider the symbol of P . By the denition of the Heisenberg calculus, [3, Chapter 3, 10], P is dened starting from a graded-polyhomogeneous function f ∈ S -d H phg,G (M × R d+1 ). Letting σ(x, ξ) = (x, σ 0 (x, ξ), ..., σ d (x, ξ)) be the coordinate transform [START_REF] Beals | Calculus on Heisenberg Manifolds[END_REF]Equations (10.14), (10.15)] obtained from the symbols of the model vector elds (X 0 , ..., X d ), Beals and Greiner dene the V-symbol associated to f by: q(x, ξ) = σ * f (x, ξ).

(5.4)

See also [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]Denition 5.5]. The symbol and kernel are related by berwise Fourier transform, after the abovementioned coordinate changes. Explicitly, we have:

f = F 2 ( k)| t=1 , (5.5) 
where F 2 is the berwise Fourier transform in the second variable. Extending this berwise Fourier transform to all t ∈ R, let us put:

u = F 2 ( k) ∈ C ∞ (M × R d+1 × R). (5.6) 
Note that the Debord-Skandalis action transforms under the Fourier transform as:

F 2 • αs * • F -1 2 = β * s , (5.7) 
where β s : M × R d+1 × R → M × R d+1 × R are the dilations: ). Therefore by a well-known Lemma, eg [9, Theorem 2.1], outside a compact neighbourhood containing 0 of ξ we may write:

β s (x, v, t) = (x, δ s (v), st), (5.8 
u 0 = u 0 + u 0 , (5.9) 
where u 0 ∈ H -d H G (M × R d+1 ) and u 0 ∈ S G (M × R d+1 ).

We may extend the homogeneous function u 0 as a tempered distribution (not necessarily homogeneous), still denoted u 0 . Indeed, we may rst extend u 0 to a distribution such as in [3, section 15], [24, Lemma 3.1], or in [START_REF] Hörmander | The analysis of partial dierential operators[END_REF]Theorem 3.2.4], and it is tempered because it has polynomial growth at innity. Therefore we can nd u 0 ∈ C ∞ (M, E (R d+1 )) = C ∞ (M ) ⊗ E (R d+1 ) such that the following holds everywhere: u 0 = u 0 + u 0 + u 0 .

(5.10)

We can compute for all s ∈ R * + \ {1}: where we used in (5.12) the equality αs = Exp X -1

• α s • Exp X , see (4.5). Also recall that Exp X | M ×{0}×{0} = id M ×{0}×{0} . We next continue to compute in (5.13):

Res (5.17)

Since u 0 is Schwartz class in ξ and u 0 is compactly supported in ξ, their berwise Fourier transforms are smooth.

Therefore F -1 2 (u 0 ) and F -1 2 (u 0 ), can be evaluated at (x, 0, 0) and as in the proof of Theorem 4. 
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 21 Let M be a ltered manifold and P ∈ Ψ m H (M ), with m ≤ -d H . The Denition 1.4 of the groupoidal residue does not depend on the r-bered distribution k that represents P . Proof. Let k, k ∈ Ψ -d H vEY (T H M ) such that: k| t=1 = P, k | t=1 = P.

Theorem 2 . 3 .

 23 Let M be a ltered manifold of homogeneous dimension d H . Let P ∈ Ψ m H (M ) be a pseudodierential operator M with m ≤ -d H and Q ∈ Ψ 0 H (M ). Then the groupoidal residue of Denition 1.4 satises the trace property, that is for all x ∈ M : Res x ([P, Q]) = 0.

Denition 3 . 1 . [ 19 ,

 3119 Denition 7.1.1 p353 ],[3, Denition (15.19)] Let U ⊂ R d be an open subset. We denote by H m G (U × R d ) the space of functions f ∈ C ∞ (U × R d \ {0}) homogeneous of order m satisfying:

  in the sense of dilations(3.1) or(3.2).We also recall, see[START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]:Denition 3.2. Let U ⊂ R d be an open subset. We denote by HS m G (U × R d ) the space of functions f ∈ C ∞ (U × R d )which are homogeneous of order m modulo Schwartz-class meaning: f (x, δ s (ξ)) -s m f (x, ξ), (3.6) is a Schwartz-class function of ξ, with smooth dependance on x. Denition 3.3. [19, Equation (7.1.2) p354 ] [23, Denition 3.5 p414], [3, Equations (15.40)-(15.41)]

  ) are related by an adapted Fourier transform as follows see [19, Equation (7.1.81) p393]. Take ψ ∈ C ∞ c (R d ) is any cut-o function satisfying:

. 7 ) 6 .

 76 kχ U ∈ Ψ m vEY (TM ) has support in U. Moreover k = (Exp X ) -1* (kχ U ) has support in Ũ and is essentially homogeneous for the action αs .
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 43 Let M be a (trivially) ltered manifold of dimension d and P ∈ Ψ m H (M ) a classical pseudodierential operator of order m on M , with m ≤ -d, m ∈ Z. Let k be any essentially homogeneous r-bered distribution of order -d that extends P at t = 1. Then:

Theorem 5 . 1 .

 51 Given a model manifold M = H n × R m of homogeneous dimension d H = d + 2, 2n + m = d,with the standard model structure as in[START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF] and P ∈ Ψ m V (M ), with m ≤ -d H , then the residue of Ponge at x and our residue from Denition 1.4 coincide:Res x (P ) = c P (x).

) see [ 9 ,

 9 Proposition .13]. The essential homogeneity of k and consequently of k = (Exp X * ) -1 (k), therefore implies that u ∈ HS m G (M ×R d+1 ×R) where the homogeneity modulo Schwartz is with respect to the dilations β s (thanks to the hypothesis on the homogeneity of k outside t ∈ [-1, 1]), see the proof of [9, Theorem 5.16]. Set u 0 = u| t=0 . By [9, Proposition 3.2] we have u 0 ∈ HS -d H G (M × R d+1

  s d H α s * kk | (x,0,0) s d H α s * Exp X * k -Exp X * k | (x,0,0) s d H αs * kk • Exp X -1 | (x,0,0) ,(5.13)

2 s 2 s 2 s

 222 x (P ) = 1 log(s)s d H αs * F -1 2 (u) -F -1 2 (u) | (x,0,0) d H β * s u -u | (x,0,0) ,(5.15)where we use the equalityF 2 • αs * F -1 2 = β * s recalled earlier. Now we use (5.10): d H β * s (u 0 + u 0 + u 0 ) -(u 0 + u 0 + u 0 ) | (x,0,0) d H β * s u 0 -u 0 + s d H β * s (u 0 + u 0 ) -(u 0 + u 0 ) | (x,0,0) .

1 2s 2 s 1 2

 121 3, for all s ∈ R * + \ {1}, we get:1 log(s) F -d H β * s (u 0 + u 0 ) -(u 0 + u 0 ) | (x,0,0) = 0. d H β * s u 0 -u 0 | (x,0,0) . (5.19)Finally, we use [23, Lemma 3.1 p 414 and Equation (3.2)] which assert that we have for all s ∈ R * + \ {1}:β * s u 0 = s -d H u 0 + s -d H log(s)c 0 (u 0 )δ 0 , x, ξ)dσ(ξ).(5.21)Then, using (5.20), Equation (5.19) becomes:Res x (P ) = 1 log(s)F -log(s)c 0 (u 0 )δ 0 | (x,0,0)(5.22) 

¢ |ξ|=1 u 0

 0 (x, ξ)dσ(ξ),(5.23) 

  13, Proposition 2.30] or [12, Proposition 5.5.4 et Corollary 5.5.5]. Lemma 2.2. Let G be a connected nilpotent Lie group

  H on U , is dened as follows.Let p -d-2 be the term of degree -d H = -(d + 2) from the asymptotic expansion of the symbol of P ∈ Ψ -d H

	Ponge's noncommutative residue is dened as follows. Let X j	j∈{0,...,d}	be a local H-
	frame of vector elds on an open subset U ⊂ M and Ψ x : U → R d+1 be a privileged
	change of coordinates centered at x, see [23, p 415 and Denitions 2.3 ,2.4]. The latter
	assertion means that if X j	j∈{0,...,d}	is a local H-frame of vector elds, then we have
	Ψ V	(U ), see [23, 2.7 p409]. Then set the noncommutative residue of P at
	x:		
		c P	

x (x) = 0 and (Ψ x ) * X j (x) = ∂ j | x . In this context, the noncommutative residue of Ponge of a Heisenberg pseudodierential operator

P ∈ Ψ -d H V (U ) of degree -d

* This article/publication is based upon work from COST Action CaLISTA CA21109 supported by

where the constant 1 (2π) d+1 appears in the inverse Fourier transform formula. Now, thanks to [START_REF] Beals | Calculus on Heisenberg Manifolds[END_REF]Equation (3.25) p 27] we see that:

where σ is dened in [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]Equation (5.12)]. The reader can compute the Jacobian of Ψ x and see that it is triangular and unipotent and so has determinant equal to one, see also [START_REF] Couchet | Une approche groupoïdale au calcul pseudo-diérentiel sur les variétés d'Heisenberg et au résidu de Wodzicki[END_REF].

According to [9, the proof p8 of Theorem 1.12], the purely homogeneous component u 0 of u 0 is the rst term in the asymptotic expansion of the polyhomogeneous function f = u| t=1 , see [START_REF] Couchet | On polyhomogeneous symbols and the heisenberg pseudodierential calculus[END_REF]Equation (3.16)] and the remarks which follow. Therefore:

where p -(d+2) is the term of degree -(d + 2) in the asymptotic expansion of f = u| t=1 .

We have shown that :

(5.26)

Corollary 5.2. If M is a contact manifold or a codimensional one foliation, then the groupoidal residue of Denition 1.4 agree with's Ponge noncommutative residue for opera-

Proof. Darboux' Theorem for a contact manifold or Frobenius' Theorem for a codimensional one foliation, implies that around any x ∈ M , there is a local coordinate system which identies M with the model space H n , d = 2n, or H 0 × R d . Since both Ponge's residue and the groupoidal residue are independent of (priveleged) coordinates, the result follows.