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ABSTRACT

This paper presents several digital signal processing (DSP) tools
for the real-time synthesis of a 3D sound pressure field using Am-
bisonics technologies. The spatialization of monophonic signal or
the reconstruction of natural 3D recorded sound pressure fields is
considered. The DSP required to generate the loudspeaker signals
is implemented using the FAUST programming language. FAUST
enables and simplifies the compilation of the developed tools on
several architectures and on different DSP tool format. In this pa-
per, a focus is made on the near-field filters implementation which
allows for the encoding of spherical waves with distance informa-
tion. The gain variation with distance is also taken into account.
The control of the synthesis can be made by software controllers or
hardware controllers, such as joystick, by the mean of PURE DATA
and OPEN SOUND CONTROL (OSC) messages. A visual feedback
tool using the PROCESSING programming language is also pre-
sented in the most recent implementation. The aim of this research
derives from a larger research project on physically-accurate sound
field reproduction for simulators in engineering and industrial ap-
plications.

1. INTRODUCTION

Ambisonics technologies allow describing 3D sound pressure fields
using a projection on a truncated spherical harmonics basis [1].
The resulting 3D encoded sound pressure field can later be ma-
nipulated, decoded and reconstructed over several loudspeaker-
layouts or even headphones [2]. Ambisonics has two main ob-
jectives: the spatialization of virtual sound sources or the recon-
struction of recorded sound pressure fields [3]. Several software
solutions exist to create, transmit, manipulate, and render sound
pressure fields using Ambisonics technologies. See references [4,
5, 6, 7, 8] as examples. Albeit being popular for practical appli-
cations in music, sound design and audio context, classical and
common Ambisonics implementations suffer from few drawbacks
that limit their use for physically-accurate sound field reproduction
with applications to environment simulators (vehicles, working en-
vironments, etc.) in industrial or engineering context. Indeed, the
near-field encoding [2] is rarely provided and the encoding/decod-
ing in 3D context is limited to the first orders, hence limiting the
spatial resolution and area size of physically-accurate reproduc-
tion. Indeed, if the sound field is controlled up to an order M ,
the reconstruction area size is frequency-dependent and given by
r = Mc/2π [9] (where r is the are size radius, c the speed of
sound in air, and f the frequency). The near-field support is also

detrimental for physically-accurate sound field reproduction as it
takes into account the loudspeaker distance from the origin in or-
der to compensate for the loudspeakers spherical waves. In this
trend, this work is motivated by the need to develop a practical
implementation of Ambisonics for industrial applications such as
laboratory reproduction of industrial sound environments, vehicles
cabin noise, virtual vibroacoustics models, architectural spaces,
etc. In these scenarios, the reproduced sound field must be as close
as possible than the target sound field. Some recent examples of
such applications potentials are found in Refs. [10, 11, 12, 13].
Typical outcomes are related to listening tests, sound quality test-
ing, perceptual studies and other. On this matter, as mentioned by
Vorländer [12] with respect to Ambisonics implementations that
often include modifications inspired by auditory perception to in-
crease the listener experience with respect to some expectations, a
"generally applicable reproduction system [for sound field simu-
lation] must not introduce any artificial auditory cue which is not
part of the simulated sound." [12].

In this context, this paper presents an implementation of Am-
bisonics technologies for real-time synthesis of 3D sound field up
to 5th order. The signal processing is implemented in FAUST1

(Functional AUdio STream) programming language. This lan-
guage proposes a functional approach to implement the signal pro-
cessing and it compiles in efficient C++ code [14]. From this
code, DSP tools are provided in several formats such as: VST,
LV2, Pure Data, Max/MSP, JACK QT, and others. Thus, from the
same FAUST code, one can generate tools working on various
operating systems and configurations.

The focus of this paper is on physical encoding and decoding
of 3D sound pressure fields with a special attention dedicated to
the near field filters development, definition and implementation.
After defining the notations in use in Sec. 2, the main equations of
Ambisonics are recalled in Sec. 3. In Sec. 4 the implementation in
FAUST programming language is addressed with a special atten-
tion on near-field filters. Section 5 presents a visual feedback tool
using PROCESSING language. This tool helps visualizing in 3D
the virtual sources and the loudspeaker levels. Finally, in Sec. 6,
the user control interface is addressed, presenting the possibility of
interfacing all elements with OSC protocol.

1http://faust.grame.fr/
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2. COORDINATE SYSTEM AND NOTATIONS

In this section, the different notations used throughout the paper
are presented and illustrated.

Spherical coordinate system

The following spherical coordinate system is used throughout this
paper and shown in Fig. 1:

u1 = r cos(θ) cos(δ), u2 = r sin(θ) cos(δ), u3 = r sin(δ)
(1)

u1

u2

u3

θ

δ
r

P

Figure 1: Spherical coordinate system. A point P (u1, u2, u3) is
described by its radius r, azimuth θ and elevation δ.

A virtual source position is denoted with its spherical coor-
dinates r1, θ1, δ1. The rendering loudspeakers are arranged on a
sphere of radius r0, as shown in Fig. 2.

Figure 2: Ambisonics playback layout. Blue: the rendering loud-
speakers disposed on a spherical layout of radius r0. Red: the
virtual source at radius position r1.

Spherical harmonics

The spherical harmonics used in this paper are defined as follow
in [1]:

Y σmn(θ, δ) =

√
(2m+ 1)εn

(m− n)!
(m+ n)!

Pmn(sin(δ))

×
{
cos(nθ) if σ = 1

sin(nθ) if σ = −1
(2)

where Pmn are the associated Legendre functions of order m and
degree n, m and n ∈ N with n ≤ m, σ = ±1 and εn = 1 if
n = 0, εn = 2 if n > 0. The spherical harmonics order are
denoted by m and its degree, by n. For each order m there are
(2m+ 1) spherical harmonics. Thus a basis truncated at order M
contains L = (M + 1)2 functions.

Notations

The Laplace variable is denoted s and the discrete time variable z
(discrete domain). A vector is denoted by lowercase bold font v
and a matrix by uppercase bold font M. Superscript T designates
the transposition operation. j is imaginary unit with j2 = −1.

3. AMBISONICS

In this section, the principal Ambisonics equations are recalled.
They will later be used for the real-time DSP implementation.

3.1. Encoding

In Ambisonics, the encoding step consists in deriving B-Format
signals 2 from either monophonic signal (with a spatialization con-
text) or microphone array signals (natural sound field encoding).

3.1.1. Monophonic signal

From a monophonic signal, the encoding can be done for a plane
wave with amplitude a(z), azimuth θ1 and elevation δ1 direction
or a spherical wave, adding a distance information r1

Bσmn(z) = a(z)Y σmn(θ1, δ1) Plane wave
Bσmn(z) = a(z)Fm,r1(z)Y

σ
mn(θ1, δ1) Spherical wave

(3)

In Eq. 3, filters Fm,r1(z) are the forward near-field filters which
take into account the finite distance of the virtual source r1 [2].

3.1.2. Rigid spherical microphone array encoding

For a natural 3D sound pressure field recording made with a rigid
spherical microphone array of radius ra, the Bσmn are given by:

Bσmn(z) = Em,ra(z)

N∑
i=1

Y σmn(θi, δi)wipi(z) (4)

Em,ra(z) are the equalization filters which take into account the
diffraction of the rigid sphere [3]. The sound pressure signal at the
ith capsule position (ra, θi, δi) is denoted pi(z) on the array of N
microphones. The Bσmn components are guaranteed to be exact
up to order M if the spatial sampling of the spherical microphone
array respects the orthonormality criterion of spherical harmonics
up to M [15, 16]. Thus, there is possibly a weighting factor wi for
each capsule in Eq. (4) to ensure this condition. The working band-
width of the array without aliasing is given by: f ≤ Mc/(ra2π)
[17], where f is the frequency, c the sound speed, andM the max-
imum working order for the array.

Equation (4) is for a triplet of indices (m,n, σ). Thus, up
to order M , the B-Format signals vector is obtained with matrix
notation:

b(z) = E(z) ·YT
mic ·Wmic · p(z) (5)

b(z)(L×1) = [B1
00(z) · · ·Bσmn(z) · · ·B1

M0(z)]. E(z)(L×L) is
the diagonal matrix of equalization filters with diagonal terms
[E0,ra(z) · · ·Em,ra(z) · · ·EM,ra(z)], eachEm,ra(z) term being
replicated (2m + 1) times on the main diagonal. Y

(N×L)
mic is the

matrix of spherical harmonics up to order M evaluated at each di-
rection (θi, δi). W

(N×N)
mic is the diagonal matrix of weightings.

2We call here the B-Format the signals vector b(z)
[B1

00(z) · · ·Bσmn(z) · · ·B1
M0(z)]
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pN×1 = [p1(z) · · · pi(z) · · · pN (z)] is the vector of capsule sig-
nals.

3.2. Decoding

In this paper, only the basic decoder (mode-matching [18]) is re-
called for a full-sphere configuration of radius r0 respecting the
spherical harmonics orthonormality via weighting coefficients [16].
For decoders adapted to irregular loudspeaker layout or other de-
coding concerns, see for example [6].

If one considers a set of N2 loudspeakers, the input signal of
the lth loudspeaker at position (r0, θl, δl) is obtained from theBσmn
signals by:

sl(z) = wl

M∑
m=0

(Fm,r0)
−1(z)

m∑
n=0

∑
σ=±1

Y σmn(θl, δl)B
σ
mn(z)

(6)
where (Fm,r0)

−1(z) are the inverse near field filters or near field
compensation filters, which take into account the finite distance r0
of the rendering loudspeakers [2]. Since the reconstructed sound
pressure field is the summation of each sound field generated by
each loudspeakers, the vector of input signals s is given by:

s = Wspk ·Yspk · F−1
r0 (z) · b(z) (7)

where s(z)(N2×1) = [s1(z) · · · sl(z) · · · sN2(z)]. F
−1
m,r0

(L×L)
(z)

is the diagonal matrix of near field compensation filters with diag-
onal terms [1/F0,r0(z) · · · 1/Fm,r0(z) · · · 1/FM,r0(z)], each
1/Fm,r0(z) term being replicated (2m + 1) times on the main
diagonal. Y

(N2×L)
spk is the matrix of L spherical harmonics up to

order M evaluated at each direction (θl, δl). W
(N2×N2)
spk is the

diagonal matrix of weightings wl. Note that the resulting matrix
Mspk = Wspk ·Yspk is the Ambisonics decoding matrix as defined
in Ref.[6].

3.3. Equivalent panning-law

In a spatialization context, recalling Eq. (3) and Eq. (6) along with
the additivity theorem of spherical harmonics [19], one can di-
rectly compute the loudspeaker input signals:

sl(z) = a(z)wl

M∑
m=0

(2m+ 1)

Fm,r0(z)
Pm(γl) Plane wave

sl(z) = a(z)wl

M∑
m=0

(2m+ 1)
Fm,r1
Fm,r0

(z)Pm(γl) Spherical wave

(8)
where γl = cos(δ1) cos(δl) cos(θ1 − θl) + sin(δ1) sin(δl) is rel-
ative to the angle between the virtual source in θ1, δ1 and the lth

loudspeaker.

4. FAUST IMPLEMENTATION

The implementation of Ambisonics tools such as an encoder, basic
decoder, near-field filters, and spatialization tools using equivalent
panning-law is made using the FAUST language. An overview of
the current developped tools is shown in Fig.3. From left to right,
the vertical branches correspond to: 1) microphone signal process-
ing, 2) panning of a monophonic signal as virtual point source with
encoding and decoding and 3) panning of a monophonic signal as

virtual point source with equivalent panning law. The rightmost
branch is the control via OSC and visual feedback. Each box cor-
responds to a module described in the next sections. The com-
mon functions of each modules are implemented in library files,
which enable the quick design of new modules by re-using ex-
isting FAUST code. In the following section, the near-field filters
implementation is detailed.

4.1. Near-field filters

4.1.1. Forward filters

The forward filters are given in the Laplace domain [2]:

Fm,r1(s) =

m∑
i=0

(m+ i)!

(m− i)!i!2i

(
c

sr1

)i
(9)

with s = j2πf . To convert this analog filter in the digital z do-
main, the use of a bilinear transform requires precision arithmetic
to be efficient, as pointed out by Adriaensen in [20]. In this latter
reference, he proposes another s-to-z mapping scheme to obtain a
digital realization of the filter which is robust with single precision
floating point format:

ζ−1 =
z−1

1− z−1
=

∞∑
k=1

(z−1)k for|z| > 1

s =
2Fs

1 + 2ζ−1

(10)

whereFs is the sampling frequency. The implementation of anmth

order forward filter is made by product of sections of the form:

H1,r1(z) = g1(r1)(1 + d1,1(r1)ζ
−1)

H2,r1(z) = g2(r1)(1 + d2,1(r1)ζ
−1 + d2,2(r)ζ

−2)
(11)

For example a 3rd order filter F3,r1 is realized with the product of
a 1st order section and a 2nd order section: F3,r1(z) = H1,r1(z) ·
H2,r1(z). The computation of each coefficient g1, g2, d1,1, d2,1,
d2,2 in Eq. (11) is detailed in [20].

4.1.2. Stabilization with inverse filters

The forward filters Fm,r1(z) present an infinite gain at 0 Hz. Thus,
they must be stabilized by multiplying with an inverse filter (or
near field compensation filters) 1/Fm,r0(z). This can be done at
the encoding stage as suggested by Daniel [2]:

Bσmn(z) = a(z)
Fm,r1
Fm,r0

(z)Y σmn(θ1, δ1) Spherical wave (12)

It means that to encode a spherical wave, according to Eq. (12),
one should know the rendering array radius r0 a priori. However
this is not a major concern. Indeed, if the encoded spherical wave
is reconstituted on another layout of radius r2, one can correct by
multiplying the Bσmn(z) components by Fm,r0(z)/Fm,r2(z).

4.1.3. Gain correction for spherical source

In [2], the near field filters are defined with the assumption that
the amplitude a(z) of the spherical wave in Eq. (12) is taken at
the origin O in Fig. 2. Thus, the propagation term esr1/c/(4πr1)
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Spherical microphone signals: p

Encoding: Ymic
TWmic

Equalization: em,ra

Decoding : Mspk

Encoding: ymn
σ(θ1,δ1)

NF filtering: fm(r1)/fm(r0)

Monophonic signal: a1

Loudspeakers signals: s

NFC filtering: 1/fm(r0)

Panning-law (r0,r2,θ2,δ2) 

Monophonic signal: a2

Pure Data control patch 

Processing visual feedback
p1

bM0
1

pN

1 L

1 L

b00
1

s1 sN2

1 L

Signal

OSC Message

θ1,δ1

r1

r2,θ2,δ2

r1,θ1,δ1 signals level (dBFS)

Figure 3: Main features of the current implementation: real-time synthesis of 3D recordings (leftmost vertical branch), spatialization
(two centered vertical branches), and control via OSC with visual feedback (rightmost vertical branch). The digital temporal signals are
represented by black arrows and the OSC instructions message in green dashed arrows.

(Laplace’s domain) is not taken into account. This leads to the def-
inition of Eq. (9) for the forward filters. In the same way, the near-
field compensation filters do not take into account the propaga-
tion from rendering source to origin O: esr0/c/(4πr0). The main
consequence is that there is no gain variation with the distance of
the virtual source. To correct this, one multiplies the amplitude
a(z) for spherical wave in Eq. (12) by: r0

r1
z−(r1−r0)/c. The cor-

responding delay can be fractional depending on r1 and r0. In the
case of a focused source (i.e. inside the rendering loudspeakers en-
closure), the delay is negative and an implementation could require
time-reversal method, as in Wave Field Synthesis [21]. However,
since this delay is the same for all rendering loudspeakers, accord-
ing to Eqs. (6) and (8), it is omitted for simplicity. As a result, the
pressure sound field of a virtual point source will be reproduced
physically in the reproduction zone with correct gain and with a
phase shift of z−(r1−r0)/c when this latter is omitted. Finally, the
encoding and the panning-law of a spherical wave becomes:

Bσmn(z) = a(z)
r0
r1

Fm,r1
Fm,r0

(z)Y σmn(θ1, δ1)

sl = a(z)
r0
r1
wl

M∑
m=0

(2m+ 1)
Fm,r1
Fm,r0

(z)Pm(γl)

(13)

4.1.4. FAUST implementation

The near field filters Fm,r1(z)/Fm,r0(z) (as well as the near field
compensation filters 1/Fm,r0(z)) are implemented in a FAUST li-
brary nfc.lib following Eq. (11) and up to 5th order. The im-
plementation is based on a Direct-Form II [22]. As an example,
the FAUST code for the second order section is given as:

TFNF2 ( b0 , b1 , b2 , a1 , a2 ) =
sub ~sum1 ( a1 , a2 ) : sum2 ( b0 , b1 , b2 )

wi th {
sum1 ( k1 , k2 , x )=

x : ( + ~ _ < : ( ( _ ’ : + ~ _ ) , ∗ ( k1 ) ) : ∗ ( k2 ) , _ : + ) ;
sum2 ( k0 , k1 , k2 , x )=

x < :∗ ( k0 ) ,+~ _ , _ : _ , (− <:∗ ( k1 ) , ( _ ’ : + ~ _ )
∗ ( k2 ) : + ) : + ;

sub ( x , y )= y−x ;
} ;

The block diagram for this code is shown in Fig. 4. The coeffi-
cients g2(r1), d2,1(r1), d2,2(r1), g2(r0), d2,1(r0), d2,2(r0) were
precomputed in this figure for simplicity to obtain the correspond-
ing b0(r1), b1(r1), b2(r1), a1(r0), a2(r0) coefficients, poles an ze-
roes of the filter. However, nfc.lib provides the real-time com-
putation of these coefficients knowing r1 and r0, according to [20].
In the current implentation, the near-field filters are provided as
independent modules (see Fig. 3), or included in the equivalent
panning-law module (see Sec. 4.4)

As an example, the gain frequency response of the filters
r0/r1 × Fm,r1/Fm,r0 up to order five are shown in Fig. 5 for
r1 = 1 m, r0 = 3 m (solid lines) and r1 = 3 m, r0 = 1
m (dashed lines). c = 340 m/s and Fs = 48000 Hz. For fo-
cused sources (i.e r1 ≤ r0, solid lines in Fig. 5), as r1 decreases,
or as r0 increases and as m increases, the gain of the filters in-
creases at low frequencies. Thus, when encoding a focused spher-
ical source (i.e. r1 ≤ r0), one should be aware of these extreme
gains. These "bass-boost" effects create strong artifacts outside the
control zone and can easily damage the rendering loudspeakers. A
solution could be to impose a minimum r1 regarding to maximum
a r0/r1 × Fm,r1/Fm,r0 gain. This maximum gain is then related
to the maximum linear excursion of the loudspeakers. Note that
another approach for focused sources in Ambisonics can as well
be a solution [23].

4.2. Encoding of captured sound field and decoding

This case corresponds to the leftmost vertical branch of Fig. 3. The
encoding of a 3D sound field captured by a spherical microphone
array as described in Eq. (5) requires a matrix operation as the
decoding operation of Eq. (7). This matrix operation is done in
FAUST as suggested by Heller [6]:

/ / bus wi th g a i n s
g a i n ( c ) = R( c ) wi th {

R ( ( c , c l ) ) = R( c ) ,R( c l ) ;
R ( 1 ) = _ ;
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g(r1,r2)
*

sub

sum1(a1)(a2)

sum2(b0)(b1)(b2)

TFNF2

x x
+

mem
+

a1(r0)
*

a2(r0)
*

+

sum1(a1)(a2)

x x

b0(r1)
*

+

-

b1(r1)
*

mem
+

b2(r1)

*

+
+

sum2(b0)(b1)(b2)

x

y

y

x

-

sub

Figure 4: Block diagram representation of the TFNF2 function. The input signal to be filtered is on the main top left diagram. The others
diagrams detail each block in this main diagram. x and y are input signals in a block. These diagrams where generated using faust2svg
tool.
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Figure 5: Gain of the frequency response function of filters
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m, r0 = 1 m (dashed lines), m ∈ {0, 1, 2, 3, 4, 5}, Fs = 48000
Hz.

R( 0 ) = ! ;
R( f l o a t ( 0 ) ) = R ( 0 ) ;
R( f l o a t ( 1 ) ) = R ( 1 ) ;
R( c ) = ∗ ( c ) ;

} ;

m a t r i x ( n ,m) = p a r ( i , n , _ )
<: p a r ( i ,m, g a i n ( a ( i ) ) : > _ ) ;
/ / n : number o f i n p u t s : column number
/ / m: number o f o u t p u t : row number
/ / a ( i ) : row v e c t o r s o f m a t r i x c o e f f i c i e n t s

In Eqs. (5) and (7) the matrix YT
mic ·Wmic and Wspk ·Yspk are pre-

computed and then implemented numerically in the FAUST code,
row by row, according to the code above. In the current version,

the encoding matrix for 2 types of microphone is coded:

• Spherical microphone using Lebedev’s grids working up to
1st, 3rd or 5th order as shown in Fig. 9.

• Spherical microphone using Pentakis-Dodecahedron grid
working up to 4th order as shown in [3].

In Fig. 3, the obtained modules are sketched under the names "En-
coding" and "Decoding".

4.3. Rigid spherical microphone filters

As mentioned in Sec. 3.1.2, theBσmn(z) components derived from
a rigid spherical microphone array signals should be filtered by
Em(z) filters to take into account the diffraction of the rigid sphere
supporting the capsules. Theses filters present a theoretical infi-
nite gain at 0 Hz and very large "bass-boost" for high orders [24].
They are stabilized by high-pass filters [25] or Tikhonov filters
[3], which cut the low frequencies at high orders. Resulting fil-
ters are implemented as FIR filters. However, in [26, 27, 24] IIR
implementations are proposed with lower orders amplification ac-
cording to higher orders limitation. These approaches should be
investigated in future works for a FAUST implementation since an
IIR parametric filters could be interesting to monitor in real-time
the performances of a spherical microphone array. For now, in the
reported implementation, the filters are implemented as FIR filters.
The cut-off frequencies of high-pass filters are chosen with a max-
imum amplification level. The real-time convolution is made with
BRUTEFIR3 for Linux environment. This module is sketched in
Fig. 3 under the name "Equalization".

4.4. Encoding of virtual source and panning law

In the FAUST implementation reported in this paper, the encoding
of a virtual source is based on Eq. (3) for a plane wave and Eq. (13)
for a spherical wave. In the current state of the implementation, the
spherical harmonics are explicitly coded in a ymn.lib library up
to order five (36 functions). However, they could be computed by
recurrence if higher orders would be required. The monophonic

3http://www.ludd.luth.se/~torger/brutefir.html
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signal a1 is multiplied by corresponding spherical harmonics eval-
uated at desired direction (θ1, δ1) and filtered by near-field filters
with desired radii (r1, r0) as shown in Fig. 3: Ambisonics signals
are then obtained.

The equivalent panning laws of Eq. (8) circumvent the need to
encode and decode with matrix operations. Indeed, the computa-
tion is reduced to a sum on the orders thanks to the additivity the-
orem of spherical harmonics. This is of great interest for real-time
synthesis. For the moment, the panning-laws are implemented for
several Lebedev spheres using N = 6, 26, or 50 loudspeakers, as
presented in [16]. The Legendre polynomials Pm are explicitely
coded in ymn.lib up to order five. The weights wl and angles
θl, δl of the spheres are implemented in a lebedev.lib file.
This spatialization module is sketched in Fig. 3 under the name
"Panning-law": the loudspeakers input signals are computed from
a monophonic signal a2 and spatial parameters (r2, θ2, δ2, r0).

5. VISUAL FEEDBACK WITH PROCESSING

FAUST provides a graphical user interface with VU-Meters. Un-
fortunately, those meters are organized as classical lines of VU-
Meters (see Fig. 7 as an example). Thus, they do not provide an
efficient visual cue of where the signal energy is distributed on the
loudspeaker spherical layout. Moreover, a 3D representation of
the virtual source helps to provide an objective spatial view of the
source position. Such type of 3D representation is also much more
useful to composers or engineers who are not familiar with under-
the-hood DSP. In this context, a visual tool for 3D visual feedback
was implemented using PROCESSING4 language. The code uses
an Atom class to create a ball representing a loudspeaker. The
loudspeakers coordinates are given in a .cvs file and are easily
adaptable to any configuration. The virtual sources are represented
as balls with fading trajectories. The RMS gain (in dBFS) of each
loudspeaker given by the Ambisonics solution drives in real-time
the size and the color of the loudspeaker’s-balls via OSC mes-
sages. The position of each source is also received by OSC mes-
sages. The Peasycam library5 allows to zoom, move and pan the
3D view. The described visual tool is shown in Fig. 6. The sphere
used here is a Lebedev sphere using N2 = 50 loudspeakers as
used in [16].

6. USER CONTROL INTERFACE

6.1. Controls by software

The user control interface is provided by FAUST compiled code.
Thus, depending on the application it could be a standalone ap-
plication, a MAX/MSP patch, VST or LV2 plugin, or others. It
consists in sliders and entry boxes, to control the parameters
(r1, θ1, δ1, r0). Check-boxes are used to mute an order m. VU-
Meters give the signals level in dBFS for the Bσmn(z) components
or sl.

As an example, a JACK6 standalone application interface for
real-time 3D spatialization using the panning law of Eq. (13) is
shown in Fig. 7.

4https://processing.org/
5http://mrfeinberg.com/peasycam/
6http://jackaudio.org

Figure 6: 3D visual feedback tool using PROCESSING language.
The virtual source is shown as a red ball with fading trajectory
(top left corner). Each loudspeaker is represented by a ball with
radius and color driven by loudspeaker signal level (RMS, dBFS).
0 dBFS correspond to the red color on the left color scale and−∞
dBFS to green. All informations are received by OSC messages
generated by a joystick and a PURE DATA patch.

6.2. Controls by hardware device and OSC messages

FAUST supports OSC to control the parameters of the DSP tools.
For example, with a hardware controller and a PURE DATA patch,
it is possible to generate OSC messages which control the plug-in
as well as the visual feedback tool of Sec. 5. This correspond to
the rightmost branch of Fig. 3. The use of hardware controllers and
FAUST generated plug-ins allow for the easy control and recording
of the synthesis parameters. As an example, the implemented Am-
bisonics encoder loaded in ARDOUR7 Digital Audio Workstation
(DAW) as a LV2 plug-in is shown in Fig. 8. With the visual feed-
back tool described in Sec. 5, this configuration enables to record
automation tracks describing "manually-created" trajectories.

7. EXPERIMENTAL SETUP

An experimental setup is presented briefly in this section as an
application of the tools presented above.

7.1. 3D sound pressure field capture

The recording of natural sound pressure fields is made with a rigid
spherical microphone "MemsBedev"8 shown in Fig. 9. This mi-
crophone was made by 3D printing and uses N = 50 micro-
phone capsules on a Lebedev grid [28]. Each capsule is made of 4
MEMS9 microphones to reduce the background noise. The micro-
phone works up to 5th order, as explained in Ref.[16]. The analog
signals are digitalized with a commercial front-end. The tools pre-
sented in this article can provide in real-time the Ambisonics com-
ponents Bσmn(z) up to 5th order according to Eq. (5) and Fig. 3.

7http://ardour.org/
8http://www.cinela.fr/
9MEMS: Micro Electro-Mechanical System
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Figure 7: Standalone application interface running under JACK.
The sliders allow controlling the gains and positions of two vir-
tual sources (bottom, grey and yellow). The check-boxes (bottom-
left) mute and unmute a specific order at the synthesis stage. The
entry box allows giving the r0 radius of the rendering spherical
loudspeakers layout (bottom right). The VU-meters give the sig-
nals levels in dBFS for each loudspeaker. In this case there are
N2 = 50 loudspeakers according to a Lebedev grid.

Figure 8: Ambisonics encoder loaded in ARDOUR as a LV2 plug-
in. The positions parameters are controlled with the mouse or by
an hardware joystick via OSC messages. Resulting automation
tracks are shown in green in this figure. The LV2 plug-in is gener-
ated from FAUST code using faust2lv2.

7.2. 3D sound pressure field synthesis

The decoding of the pressure sound field is made in real-time with
a decoder made with FAUST according to Eq. (7) and Fig. 3. The
Lebedev spherical loudspeaker layout used for the sound field ren-
dering is shown in Fig. 10. For recording rendering purposes, it is
possible to record in 3D in one place and render in real-time the
3D sound pressure field with the loudspeaker sphere located at an-
other location. For spatialization purposes, the user takes place in
the sphere and drives the position of the virtual sources using an
hardware controller. The hardware controller is linked to a PURE
DATA patch and generates OSC messages for the synthesis using
FAUST, as summarized in Fig. 3. This experimental setup can thus
help to mix 3D audio contents in situ.

Figure 9: MemsBedev microphone arrays with N = 50 MEMS
microphones

Figure 10: Lebedev spherical loudspeakers layout with N2 = 50
loudspeakers.

8. CONCLUSION

Several integrated tools for real-time 3D sound pressure field syn-
thesis using Ambisonics were developed and presented in this pa-
per. The signal processing was implemented using FAUST, the vi-
sual feedback with PROCESSING and the communication between
tools with OSC protocol. The near-field filters were implemented
in a FAUST library and allow synthesizing spherical waves. The
gain correction with distance is also implemented, which is of
great importance for engineering applications or simulators. In the
current version of the implementation, the synthesis is controlled
up to 5th order in 3D. Some future ameliorations could include
transformations in Ambisonics domain [29], recent advances in ra-
dial filters implementation [27] or inclusion of the Doppler effect
for moving sources [30]. The code of this project is freely avail-
able online under GPL license10. In a near future, the described
implementation and experimental setup will be used to reproduced
various recorded environments and achieve physical evaluation of
the reproduced sound fields.

10https://github.com/sekisushai/ambitools
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