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1. Abstract 

 

In this work we report a study and a co-design methodology of an analog SNN crossbar output circuit 

designed in a 28nm FD-SOI technology node that comprises a tunable current attenuator and a leak-integrate 

and fire neurons that would enable the integration of emerging non-volatile memories (eNVMs) for synaptic 

arrays based on various technologies including phase change (PCRAM), oxide-based (OxRAM), spin transfer 

and spin orbit torque magnetic memories (STT, SOT-MRAM). Circuit SPICE simulation results and eNVM 

experimental data are used to showcase and estimate the neurons fan-in for each type of eNVM considering 

the technology constraints and design trade-offs that set its limits such as membrane capacitance and supply 

voltage, etc.  

Keywords; UTBB 28nm FD-SOI, Analog SNN, Analog eNVM, eNVM integration. 

 

2. Introduction 

 

Spiking neural networks (SNN) based on emerging non-volatile memory (eNVM) crossbars are promising in-

memory computing components that exhibit outstanding capabilities for low power artificial intelligence at the 

edge. However, the co-integration of eNVMs synaptic arrays with 28nm ultra-thin body and buried oxide fully- 

depleted silicon-on-insulator (UTBB-FDSOI) technology node remains a challenge. In analog spiking neural 

network (SNN), input neurons are interconnected with output neurons through one-resistor-one-transistor 

(1T1R) synapses and the computation is done through voltage spikes converted into current by synaptic weights 

[1]. The neurons accumulate the spikes up to a predefined threshold then an output spike is generated. The 

neuron capability to distinguish and to accommodate a massive number of synapses and input spikes is directly 

related to the voltage swing up to the firing threshold of the neuron. This is mostly determined by the membrane 

capacitance, the net number of synaptic charges and the threshold of the low power neuron [2]. The number of 
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synapses the neuron can accommodate is called the crossbar fan-in of a SNN implemented in hardware using 

eNVMs synapses. Therefore, to increase fan-in, it is mandatory either to increase the membrane capacitance or 

to reduce the synaptic excitation current. Another alternative is to increase the firing threshold of the neuron, 

which is normally limited by the circuit power supply voltage and CMOS technology node. In addition, it 

should be noted that the size of the neuron is mostly determined by the membrane capacitor (Cmem), and so the 

capacitance choice is restricted to the silicon area available. In turn, a promising approach to solve these issues 

hindering the scale up of SNN hardwares consists in using current attenuators to reduce the synaptic current 

[2,3]. In this work we present a comparison analysis of an eNVM-synapse oriented crossbar output circuit 

designed on 28nm FD-SOI technology, and a co-design methodology to keep track of the fan-in of the analog 

neuron for different eNVM technologies and circuit design constraints. The circuit comprises current 

attenuators and analog spiking neurons. The eNVMs technologies considered in the analyses are PCRAM, 

OxRAM and STT, SOT-MRAM).  

 

3. Hardware Design 

 

The 28nm FD-SOI low power analog Leaky integrate-and-fire (LIF) neurons were designed based on previous 

team research [4] and simulated using thick oxide high k metal gate, regular Vt grade transistors and four 

different poly n-well membrane capacitances: 864.5fF, 86.4fF, 8.6fF and 1.4fF, in which the latter is rather the 

native lumped parasitic capacitance at the neuron's input node (P2+N2), see Fig. 1a. The neuron area overhead 

is shown in Fig.1b-c.  

The transfer characteristics and the neuron time constant are presented in Fig.2a-b. The neuron firing frequency 

corresponds to constant input synaptic current excitations (Iinput) and the time constant was acquired for 

different Vleak from 0.1 to 0.4V.   

 
Figure 1: a) 28nm FD-SOI post-synaptic analog neuron circuit b) layout and c) 

membrane capacitor area overhead. 



 

To operate the neurons within this input current range starting from 20pA a 28nm FD-SOI current attenuator 

was designed using the same transistor grade (see Fig.3). The current attenuator topology is based on reference 

[3] and adapted to 28nm FD-SOI technology. The current attenuator reduces the input current of the circuit by 

transferring the voltage drop in the transistor N9 in series with the eNVM synapses, to the input of a differential 

transconductance amplifier. 

The output current Iout is limited by a very small biasing current Ib and is proportional to the voltage drop of 

transistor N9 and then to Iin and the eNVM synaptic current (IeNVM). Thus, the reduced version of the synaptic 

current is [5]: 

Iout=IdsN16-IdsN12=IbTanh(
Kn

2Ut

(RN9.
Iin

2
)) (1) 

 
Figure 2: (a) 28 nm FD-SOI analog neuron circuit SPICE simulation results at 

room temperature with typical process corner for different Cmem: Firing frequency 

vs. synaptic excitation current and b) time constant vs voltage-controlled leakage 

current at room temperature. 

 
Figure 3: 28nm FD-SOI current attenuator circuit. 



Kn is the subthreshold slope and Ut=KT/q the thermal voltage and RN9 is the resistance of transistor N9. The 

resulting Iin/Iout ratio is the current scaling down factor (SDF). An important aspect is that the SDF should be 

continuous in the crossbar read out range so as not to distort the network response. The neurons receive input 

spikes from several pre-synaptic neurons. Note that a SNNs are accessed in a very sparse way, therefore the 

row activation frequency is very small [1]. Thus, one can consider this readout range of one average eNVM, 

disregarding variations far beyond the edge of the reading margin of the eNVMs, as shown in Fig.4. 

The resistance ranges of each eNVM considered in this analysis are based on experiments at room temperature 

with phase change memories (PCM) provided by STMicroelectronics, and reference values for oxide-based 

memories (OxRAM) provided by 3IT[6], and spin transfer and spin orbit torque magnetic memories (STT, 

SOT) from reference[7]. Another setting condition is that the resulting current after attenuation must be higher 

than the leakage of the neuron, so there is a maximum SDF for each eNVM represented by the dashed line in 

Fig.4. Another setup constraint that must be obeyed for equation (1) to be valid and to obtain an approximately 

 
Figure 4: 28nm FD-SOI current attenuator circuit spice simulation 

results of SDF for different VsN10,11 bias at room temperature with 

typical corner. The regions of readings from each eNVM marked in 

the shaded portions, together with the line marking the maximum SDF 

due to the leakage current of the neuron, delimit the appropriate 

continuous attenuation bands. 

 
Figure 5: (a) 28 nm FD-SOI crossbar output 

circuit, 1mm2 test chip. 



linear current conversion with respect to IeNVM is the saturation of N20. This is satisfied for VdN20>4Ut or 

4Ut<(Kn(VdN10+VdN11)-KnN20VgN20)/2. To reach this condition VsN10,11 must be adjusted and so VdN10,11 of diode 

connected N10,11 at the cost of decreasing SDF due to the reduction in Iin for the same IeNVM. Thus, for each 

eNVM the current attenuator must be set to a different SDF. Based on this framework, a silicon test chip (see 

Fig.5) with the crossbar output circuit that comprises the current attenuator and the analog neuron is under 

development. 

 

 

4. Scalability Abacus 

According to reference [2], a large-scale network would accommodate between 102 and 103 spikes while a 

small-scale network between 10 and 102 input spikes. Thus, using the experimental data from the eNVMs and 

simulation results from the neuron and current attenuator, the approach used to determine the minimum fan-in 

was (i) to estimate the increase in the membrane potential ∆Vmem after receiving a spike from a synapse in low 

resistance state (LRS) - the most demanding scenario-, (ii) to divide the threshold voltage of the neuron by the 

average increase in membrane potential per synapse, and (iii) to estimate the amount of average synapses that 

the neuron is able to accommodate before firing, which corresponds to the minimum fan-in. The voltage 

increment in the membrane capacitor per average synaptic stimulus is: 
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Therefore, according to our framework, to increase the fan-in of the post-synaptic neuron, one needs to 

increase the SDF, which has a limit based on each eNVM and Vleak. It is also necessary to increase Vth, that 

depends on voltage supply, or decrease the pulse width and amplitude. The fan-in for each eNVM and neuron 

capacitance are shown in Fig. 6a,b.  

The crossbar column could accommodate at least approximately 3560 PCMs, 88200 SOTs and 350 OxRAM 

synapses in LRS for a membrane capacitance of 864.5fF, pulse width of 1µs, Vleak of 0.1V, Vth of 0.9V and 

SDF of 6.103, 103 and 9.103, respectively. STT fits at least a small-scale demonstrator using regular Vt thick 

oxide transistors, capacitances up to 864.5fF and current reduction of 9.103. One can conclude through this 

careful analysis that high resistance eNVMs are most likely to be implemented in large-scale crossbars. In 

addition, besides the fan-in, multilevel programming is paramount in analog SNNs, and this is another 

challenge aspect that impacts cell size, the crossbar programming, and the implementation strategy. Multilevel 

programming, memory non-idealities, drift and dispersion will be addressed in a future work.  

 

5. Conclusion  

 

We demonstrated a co-design methodology to estimate the minimum fan-in of a 28nm FD-SOI analog SNN 

crossbar output circuit for different eNVM synapses (PCM, OxRAM, STT and SOT MRAM). It was shown 

that many factors may influence the fan-in of the network such as the power supply voltage, the resistance 

range of the eNVMs, the reading pulse, the leakage and membrane capacitance of the neuron, and the operating 

conditions of the current attenuator. Despite all these factors, the most important determinants of scalability are 

the resistance range of the eNVM, the membrane capacitance and the current scaling down factor of the current 

attenuator. To our knowledge there is no fair comparison analysis of different eNVM technologies that jointly 

address the limits of application of analog SNNs with FD-SOI 28nm output circuits. Therefore, our results and 

agnostic co-design methodology pave the way for a deeper analysis of integration of eNVMs into analog SNN 

on FD-SOI 28nm technology and more advanced nodes. 

 

figure 6: a) Output neuron ∆Vmem and b) fan-in for each eNVM synapses and Cmem assuming pulse 

width of 1µs, 0.1V, Vleak of 0.1V and SDFs of 9000, 9000, 6000 and 1000 for STT, OxRAM, PCM and 

SOT, respectively. The resistance range corresponding to each eNVM is indicated by the dashed line. 
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