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Introduction

Spiking neural networks (SNN) based on emerging non-volatile memory (eNVM) crossbars are promising inmemory computing components that exhibit outstanding capabilities for low power artificial intelligence at the edge. However, the co-integration of eNVMs synaptic arrays with 28nm ultra-thin body and buried oxide fullydepleted silicon-on-insulator (UTBB-FDSOI) technology node remains a challenge. In analog spiking neural network (SNN), input neurons are interconnected with output neurons through one-resistor-one-transistor (1T1R) synapses and the computation is done through voltage spikes converted into current by synaptic weights [START_REF] Moro | Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural Networks[END_REF]. The neurons accumulate the spikes up to a predefined threshold then an output spike is generated. The neuron capability to distinguish and to accommodate a massive number of synapses and input spikes is directly related to the voltage swing up to the firing threshold of the neuron. This is mostly determined by the membrane capacitance, the net number of synaptic charges and the threshold of the low power neuron [START_REF] Ahmadi-Farsani | A CMOS-memristor hybrid system for implementing stochastic binary spike timingdependent plasticity[END_REF]. The number of synapses the neuron can accommodate is called the crossbar fan-in of a SNN implemented in hardware using eNVMs synapses. Therefore, to increase fan-in, it is mandatory either to increase the membrane capacitance or to reduce the synaptic excitation current. Another alternative is to increase the firing threshold of the neuron, which is normally limited by the circuit power supply voltage and CMOS technology node. In addition, it should be noted that the size of the neuron is mostly determined by the membrane capacitor (Cmem), and so the capacitance choice is restricted to the silicon area available. In turn, a promising approach to solve these issues hindering the scale up of SNN hardwares consists in using current attenuators to reduce the synaptic current [START_REF] Ahmadi-Farsani | A CMOS-memristor hybrid system for implementing stochastic binary spike timingdependent plasticity[END_REF][START_REF] Mohan | A Current Attenuator for Efficient Memristive Crossbars Read-Out[END_REF]. In this work we present a comparison analysis of an eNVM-synapse oriented crossbar output circuit designed on 28nm FD-SOI technology, and a co-design methodology to keep track of the fan-in of the analog neuron for different eNVM technologies and circuit design constraints. The circuit comprises current attenuators and analog spiking neurons. The eNVMs technologies considered in the analyses are PCRAM, OxRAM and STT, SOT-MRAM).

Hardware Design

The 28nm FD-SOI low power analog Leaky integrate-and-fire (LIF) neurons were designed based on previous team research [START_REF] Cincon | From 1.8V to 0.19V voltage bias on analog spiking neuron in 28nm UTBB FD-SOI technology[END_REF] and simulated using thick oxide high k metal gate, regular Vt grade transistors and four different poly n-well membrane capacitances: 864.5fF, 86.4fF, 8.6fF and 1.4fF, in which the latter is rather the native lumped parasitic capacitance at the neuron's input node (P2+N2), see Fig. 1a. The neuron area overhead is shown in Fig. 1b-c.

The transfer characteristics and the neuron time constant are presented in Fig. 2a-b. The neuron firing frequency corresponds to constant input synaptic current excitations (Iinput) and the time constant was acquired for different Vleak from 0.1 to 0.4V. To operate the neurons within this input current range starting from 20pA a 28nm FD-SOI current attenuator was designed using the same transistor grade (see Fig. 3). The current attenuator topology is based on reference [START_REF] Mohan | A Current Attenuator for Efficient Memristive Crossbars Read-Out[END_REF] and adapted to 28nm FD-SOI technology. The current attenuator reduces the input current of the circuit by transferring the voltage drop in the transistor N9 in series with the eNVM synapses, to the input of a differential transconductance amplifier.

The output current Iout is limited by a very small biasing current Ib and is proportional to the voltage drop of transistor N9 and then to Iin and the eNVM synaptic current (IeNVM). Thus, the reduced version of the synaptic current is [START_REF] Liu | Analog VLSI: circuits and principles[END_REF]: Kn is the subthreshold slope and Ut=KT/q the thermal voltage and RN9 is the resistance of transistor N9. The resulting Iin/Iout ratio is the current scaling down factor (SDF). An important aspect is that the SDF should be continuous in the crossbar read out range so as not to distort the network response. The neurons receive input spikes from several pre-synaptic neurons. Note that a SNNs are accessed in a very sparse way, therefore the row activation frequency is very small [START_REF] Moro | Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural Networks[END_REF]. Thus, one can consider this readout range of one average eNVM, disregarding variations far beyond the edge of the reading margin of the eNVMs, as shown in Fig. 4.

I out =I dsN16 -I dsN12 =I b Tanh ( K n 2U t (R N9 . Iin 2 )) (1)
The resistance ranges of each eNVM considered in this analysis are based on experiments at room temperature with phase change memories (PCM) provided by STMicroelectronics, and reference values for oxide-based memories (OxRAM) provided by 3IT [START_REF] Mesoudy | Fully CMOS-compatible passive TiO2-based memristor crossbars for in-memory computing[END_REF], and spin transfer and spin orbit torque magnetic memories (STT, SOT) from reference [START_REF] Doevenspeck | SOT-MRAM Based Analog in-Memory Computing for DNN Inference[END_REF]. Another setting condition is that the resulting current after attenuation must be higher than the leakage of the neuron, so there is a maximum SDF for each eNVM represented by the dashed line in Fig. 4. Another setup constraint that must be obeyed for equation [START_REF] Moro | Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural Networks[END_REF] to be valid and to obtain an approximately linear current conversion with respect to IeNVM is the saturation of N20. This is satisfied for VdN20>4Ut or 4Ut<(Kn(VdN10+VdN11)-KnN20VgN20)/2. To reach this condition VsN10,11 must be adjusted and so VdN10,11 of diode connected N10,11 at the cost of decreasing SDF due to the reduction in Iin for the same IeNVM. Thus, for each eNVM the current attenuator must be set to a different SDF. Based on this framework, a silicon test chip (see Fig. 5) with the crossbar output circuit that comprises the current attenuator and the analog neuron is under development.

Scalability Abacus

According to reference [START_REF] Ahmadi-Farsani | A CMOS-memristor hybrid system for implementing stochastic binary spike timingdependent plasticity[END_REF], a large-scale network would accommodate between 10 2 and 10 3 spikes while a small-scale network between 10 and 10 2 input spikes. Thus, using the experimental data from the eNVMs and simulation results from the neuron and current attenuator, the approach used to determine the minimum fan-in was (i) to estimate the increase in the membrane potential ∆Vmem after receiving a spike from a synapse in low resistance state (LRS) -the most demanding scenario-, (ii) to divide the threshold voltage of the neuron by the average increase in membrane potential per synapse, and (iii) to estimate the amount of average synapses that the neuron is able to accommodate before firing, which corresponds to the minimum fan-in. The voltage increment in the membrane capacitor per average synaptic stimulus is:

dv = ( V read R LRS . 1 SDF -I leak ).t pulse_width C mem dv = ( V read R LRS -I leak ).t pulse_width C mem dv = (I input -I leak ).t pulse_width C mem ∆V mem = ( V read R LRS . 1 SDF -I leak ).t pulse_width C mem (2) Fan-in= V th dv = V dd 2 dv (3) 
Therefore, according to our framework, to increase the fan-in of the post-synaptic neuron, one needs to increase the SDF, which has a limit based on each eNVM and Vleak. It is also necessary to increase Vth, that depends on voltage supply, or decrease the pulse width and amplitude. The fan-in for each eNVM and neuron capacitance are shown in Fig. 6a,b.

The crossbar column could accommodate at least approximately 3560 PCMs, 88200 SOTs and 350 OxRAM synapses in LRS for a membrane capacitance of 864.5fF, pulse width of 1µs, Vleak of 0.1V, Vth of 0.9V and SDF of 6.10 3 , 10 3 and 9.10 3 , respectively. STT fits at least a small-scale demonstrator using regular Vt thick oxide transistors, capacitances up to 864.5fF and current reduction of 9.10 3 . One can conclude through this careful analysis that high resistance eNVMs are most likely to be implemented in large-scale crossbars. In addition, besides the fan-in, multilevel programming is paramount in analog SNNs, and this is another challenge aspect that impacts cell size, the crossbar programming, and the implementation strategy. Multilevel programming, memory non-idealities, drift and dispersion will be addressed in a future work.

Conclusion

We demonstrated a co-design methodology to estimate the minimum fan-in of a 28nm FD-SOI analog SNN crossbar output circuit for different eNVM synapses (PCM, OxRAM, STT and SOT MRAM). It was shown that many factors may influence the fan-in of the network such as the power supply voltage, the resistance range of the eNVMs, the reading pulse, the leakage and membrane capacitance of the neuron, and the operating conditions of the current attenuator. Despite all these factors, the most important determinants of scalability are the resistance range of the eNVM, the membrane capacitance and the current scaling down factor of the current attenuator. To our knowledge there is no fair comparison analysis of different eNVM technologies that jointly address the limits of application of analog SNNs with FD-SOI 28nm output circuits. Therefore, our results and agnostic co-design methodology pave the way for a deeper analysis of integration of eNVMs into analog SNN on FD-SOI 28nm technology and more advanced nodes. 
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 1 Figure 1: a) 28nm FD-SOI post-synaptic analog neuron circuit b) layout and c) membrane capacitor area overhead.

Figure 2 :

 2 Figure 2: (a) 28 nm FD-SOI analog neuron circuit SPICE simulation results at room temperature with typical process corner for different Cmem: Firing frequency vs. synaptic excitation current and b) time constant vs voltage-controlled leakage current at room temperature.

Figure 3 :

 3 Figure 3: 28nm FD-SOI current attenuator circuit.

Figure 4 :

 4 Figure 4: 28nm FD-SOI current attenuator circuit spice simulation results of SDF for different VsN10,11 bias at room temperature with typical corner. The regions of readings from each eNVM marked in the shaded portions, together with the line marking the maximum SDF due to the leakage current of the neuron, delimit the appropriate continuous attenuation bands.

Figure 5 :

 5 Figure 5: (a) 28 nm FD-SOI crossbar output circuit, 1mm 2 test chip.

figure 6 :

 6 figure 6: a) Output neuron ∆Vmem and b) fan-in for each eNVM synapses and Cmem assuming pulse width of 1µs, 0.1V, Vleak of 0.1V and SDFs of 9000, 9000, 6000 and 1000 for STT, OxRAM, PCM and SOT, respectively. The resistance range corresponding to each eNVM is indicated by the dashed line.
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