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ABSTRACT

Recent advances in data-driven expressive performance rendering
have enabled automatic models to reproduce the characteristics
and the variability of human performances of musical composi-
tions. However, these models need to be trained with aligned pairs
of scores and performances and they rely notably on score-specific
markings, which limits their scope of application. This work tack-
les the piano performance rendering task in a low-informed setting
by only considering the score note information and without aligned
data. The proposed model relies on an adversarial training where
the basic score notes properties are modified in order to reproduce
the expressive qualities contained in a dataset of real performances.
First results for unaligned score-to-performance rendering are pre-
sented through a conducted listening test. While the interpretation
quality is not on par with highly-supervised methods and human
renditions, our method shows promising results for transferring re-
alistic expressivity into scores.

1. INTRODUCTION

Performance rendering is the task of imbuing a music score with
expressive features as if a musician performed the score in a way
to bring out emotional qualities. To get an expressive rendition of
the music, performers have the liberty to shape sound parameters
that are not explicitly described by the written score [1]: for piano
pieces, musicians make an interpretation of the score by mainly
reshaping the timing, articulation and nuance of the notes. An
automated system that can reproduce such a complex and artistic
behavior can find its usage in assisting composers for obtaining
musical renditions of their pieces.

Previous works for the task used data-driven methods to pre-
dict performance features that enhance the score note indications
[2, 3, 1, 4]. More recently, Variational Auto-Encoders (VAE) con-
ditioned on score features have proven to be successful at model-
ing the diversity in performance expressivity, as several renditions
of the same piece are conceivable [5, 6, 7, 8]. The performance
features are defined as the difference in timing, articulation, and
velocity of the played notes compared to the exact rendition of the
score [9]. However, obtaining such features requires the collec-
tion of Musical Instrument Digital Interface (MIDI) performances
with their associated digital scores and to align them at note-level
[10, 11]. These required matching and alignment steps limit the
amount of data available for training [12] and the application of
the models to piano music, where performance MIDI data can be
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collected more easily [13]. Also, most of these works are highly-
informed as they take different markings in the digital scores into
account for guiding the expressive rendering, such as rests, beat
information, hand part, position in the measure, key and time sig-
natures, articulation and ornament markings, slurs or beams. This
reliance on markings specific to the sheet music format hinders
the usage of these models in modern music production frame-
works (DAW, sequencers) where MIDI data are directly manip-
ulated without using such markings.

Concurrently, Generative Adversarial Networks (GAN) have
been successfully applied for various tasks transferring data from
one domain to another without aligned pairs, such as image-to-
image translation [14], audio timbre matching [15] or music genre
transfer [16]. In the light of such results, this work attempts to ad-
dress expressive performance rendering as a domain transfer task,
by transforming MIDI scores into human-like performances with-
out supervision on the performance features and reliance on score
markings. To this end, an adversarial approach is employed to map
the outputs of a low-informed performance rendering model to the
distribution of human performances, without providing matching
pairs of scores and performances. Trained on publicly available
datasets, the proposed method and its experiments are presented
here, including an early subjective evaluation.

The experiments show promising results for the method as it
can infer expressive qualities into scores, although not with the
same amount of naturalness as in performances rendered by real
pianists and by a highly-informed supervised baseline. Accompa-
nying this paper, audio samples are provided online 1.

2. PROPOSED APPROACH

The proposed approach, illustrated in Figure 1, is composed of
a performance rendering model G that takes a score X as input
and produces an expressive interpretation X̃ . The rendered per-
formances are fed into a discriminator D, among performances Y
from a dataset of recorded human performances. The performance
rendering model and the discriminator have opposed objectives,
as the discriminator D aims to differentiate the real performances
from the ones rendered by the model G, while the latter tries to
produce performances indistinguishable from the real ones.

2.1. Data formatting

Both the scores X and real performances Y are encoded as se-
quences of N notes with the minimal amount of features needed
for describing them:

X = {xn}n≤N = {pn, on, dn, vn}n≤N . (1)

1http://renault.gitlab-pages.ircam.fr/dafx23
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Figure 1: Training pipeline for the proposed model: the mix func-
tion modifies the score X with features output by the performance
rendering model G (in green), in order to deceive the discrimina-
tors Dk (in orange). During training, the unaligned score X and
performance Y are drawn at random from their respective sets.

The notes are ordered by their absolute onset time: for the n-th
note, pn is its normalized MIDI pitch, on its delta-time with the
previous note onset, or relative inter-onset-interval (IOI), capped
at 4s, dn its duration in absolute time and vn its normalized MIDI
velocity.

2.2. Performance rendering model

The performance rendering model G predicts modifying features
∆X = G(X) from the score note features in order to modify them
into performance-like note features X̃ through the mix function:

X̃ = mix(X,G(X))

= {pn, on + δon, dn × δdn, vn × δvn}n≤N ,
(2)

with δon the micro-onset timing, δdn the articulation and δvn the
expressive velocity of the n-th score note.

These modifying features are obtained by first processing the
note-wise score features with a convolutional Score Encoder. Then,
the same hierarchical modeling from [5] is applied: the note-wise
features are merged into chord-wise features, which enables a more
coherent modeling of the full sequence. This note-to-chord oper-
ation, or N2C, is performed by average pooling the features of
simultaneous notes into a common chord-wise feature. The in-
verse operation C2N can later convert chord-wise features into
note-wise features by duplicating the chord feature for each of its
notes. On the contrary of hierarchical strategies employed in other
works [7, 8], the note-to-chord alignment matrix required for N2C
and C2N can be directly extracted from our low-informed MIDI

data representation, using the sequence of relative IOI {on}n≤N .
Further implementation details on the N2C and C2N operations
can be found in [5].

Before returning to the note-granularity, the chord-wise fea-
tures are further processed by a Chord Decoder, which is a Convo-
lutional Recurrent Neural Network (CRNN) with a bidirectional
Gated Recurrent Unit (GRU) layer. Finally, fine-grained adjust-
ments at note-level are made with the Note Decoder and a skip
connection from the note-wise score encoding. The final micro-
onset timing δon is obtained through a linear activation function,
while the articulation δdn and the expressive velocity δvn are mapped
to [0.25, 4] with a scaled sigmoid function.

2.3. Discriminator

Taking inspiration from speech processing using discriminators
with a multi-scale architecture [17], we use k = 3 discriminators
Dk with identical architectures, mirrored from the performance
rendering model, with the exceptions of the N2C and C2N oper-
ations, as chords in real performances are not as easily defined as in
scores. Each discriminator is fed with a downsampled sequence of
(real or rendered) performance notes by average pooling with sizes
{1, 3, 9}. Discriminators with longer pool sizes look at features at
higher levels in the performances and thus, can help transferring
such knowledge and long-term coherence to the performance ren-
dering model G. To stabilize the GAN training, gaussian noise is
added to the inputs of the discriminators, as in [16].

2.4. Loss functions

The least-square variant of the GAN objective (LSGAN) is used
to train the discriminators and the performance rendering model.
Their respective loss functions LDk and LG,gan are defined as:

LDk = E
Y ∼pperf

[∥Dk(Y )− 1∥2] + E
X∼pscore

[∥Dk(G(X))∥2] ,

LG,gan = E
X∼pscore

 ∑
k=1,2,3

∥Dk(G(X))− 1∥2

 .

(3)

We have observed that the instability of the vanilla adversar-
ial training may lead the performance rendering model to displace
the notes in extreme values, causing the original piece to be unrec-
ognizable. To ensure that the performances remain fairly close to
their scores, an additional regularization term Lscore is added:

Lscore(X) = λscore

∥∥∥G(X)−X

X

∥∥∥
2
, (4)

with λscore a fixed vector weighting how much each performance
component (timing, articulation, velocity) can deviate from the
score indication. Here, λscore = {1, 1, 0.1}.

The total loss for the performance rendering model G is:

LG(X) = λganLG,gan(X) + Lscore(X), (5)

with λgan the balance between the GAN objective and the score
regularization loss. This balance is decisive for the final behavior
of G since the two loss components have opposite influences on
its training: Lscore refrains G from modifying the scores while
LG,gan encourages exploring different interpretations in order to
deceive the discriminator. In our experiments, λgan = 2.

DAFx.2
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Figure 2: Box-plot of the Mean Opinion Score (MOS) of the dif-
ferent performance rendering methods (overall and piece-wise).
The thickened bars indicate the median values while the white tri-
angles indicates the mean values. The composers are Bach (Ba),
Beethoven (Be), Chopin (Ch), Liszt (Li) and Schubert (Sc).

3. EXPERIMENTS

3.1. Score and performance datasets

The proposed approach was trained and evaluated using the scores
from the ASAP dataset [12] and all performances from the MAE-
STRO dataset (v3.0.0) [13], which are both publicly available. The
human performances from MAESTRO were recorded in MIDI for-
mat using Yamaha Disklaviers. The ASAP dataset has notably
matched a set of these performances with their original scores
at note-level, and has thus been used to some extent in previ-
ous performance rendering works [5]. However, since the pro-
posed method does not require aligned scores and performance,
the entirety of both datasets can be used, which amounts for 962
training performances, 137 validation performances, 107 training
scores, 15 validation scores and 35 test scores (following the train-
validation-test split of [18]).

The velocity indications were kept from the ASAP scores in
MIDI format, which can either be constant throughout the piece or
mapped from the score nuances and markings using simple rules.
The scores and performances are split into segments of 128 con-
secutive notes, with random pitch shifting during training by ±7
semi-tones, as in [6]. Validation data is used to monitor and avoid
potential over-fitting of the performance rendering model by repro-
ducing the training performances from their corresponding scores.

3.2. Early subjective evaluation

A listening test has been conducted to evaluate the interpretation
quality of the performances rendered by our model. 7 scores from
the ASAP test subset were selected, covering 5 different com-
posers. 4 performances were generated by different methods for
each score: a corresponding human performance from the MAE-

STRO dataset (Human), the direct export of the MIDI score (Dead-
pan), a rendition by our approach (Proposed) and a rendition from
the graph-based variant of VirtuosoNet [8], a highly-informed
model using score markings in MusicXML format and is trained
with an private dataset of 226 scores matched and aligned with
MAESTRO performances, which is larger than ASAP. The first
20s of each performance were synthesized using the Arturia Piano
V3 software 2, a physical-based piano synthesizer. 19 professional
audio and piano players were asked to rate the naturalness of the
presented performances, using a 5-point Likert scale (from 1 - Bad,
to 5 - Excellent). Each trial randomly presented 3 different perfor-
mances from each method. Results are reported in Figure 2.

The Holm-Bonferroni corrected two-sided Mann-Whitney U
tests indicate a statistical difference at α = 0.05 between the Hu-
man rendition and each other methods, and between VirtuosoNet
and Deadpan. The overall results show that the proposed approach
does enhance the scores with expressive features in comparison to
the raw rendition of the piece, but still not with the same amount
of naturalness as actual pianists and the highly-informed Virtu-
osoNet. This was to be expected as our proposed unsupervised
training task without score markings is harder than the training
objectives of VirtuosoNet, for about the same quantity of train-
ing data. By examining the ratings piece-wise, one can notice the
poorer renditions of the proposed method for slower tracks (Schu-
bert’s 13th Sonata and Beethoven’s 18th Sonata). This may sug-
gest that the model has a mode collapse on faster paced music and
that it applies similar modifying features on every tracks, which
renders inappropriate performances for slower musical pieces.

4. FUTURE WORK

As suggested by the subjective evaluation, the model lacks in un-
derstanding the musical content of a score and can apply inappro-
priate performance features. Also, on the contrary of the most
recent supervised performance rendering methods [8, 5, 6], the
model does not allow for external controls (tempo, articulation,
nuance) on the rendering process. Both issues can be addressed by
organizing the performances into sub-domains with either domain
labels (such as composer or genre) or with extracted performance
features (note density, statistics on durations and velocities)[19].

Moreover, the present work only focuses on classical piano
music to be comparable with previous supervised approaches, but
without reliance on training pairs, the approach can be extended to
render symbolic performances for other genres and instruments.

Finally, GAN enable unsupervised cross-modal domain trans-
fer where the target domain can be in a different modality from the
source domain. By including a differentiable sound synthesizer
[20] after the performance rendering model and using a audio-
based performance discriminator, the model could potentially ren-
der scores with expressive features by learning from performances
in the audio domain instead of MIDI.

5. CONCLUSIONS

This work presents a performance rendering model for convert-
ing piano scores into expressive performances, without supervised
training on performance features nor relying on sheet music mark-
ings. Using a performance discriminator, the model reshapes the

2https://www.arturia.com/products/
software-instruments/piano-v/overview
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basic score note properties into a sequence of expressive notes.
Trained on publicly available datasets of scores and performances,
the approach shows expressive qualities in the performance rendi-
tions compared to the plain score, although not with the same qual-
ity as a fully supervised approach, according to a conducted listen-
ing test. Still, by removing the reliance on training with paired
data and on score markings, the approach can be further used in
broader settings with music in different modalities and genres.
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