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Abstract

A half-space problem of a linear kinetic equation for gas molecules physisorbed
close to a solid surface, relevant to a kinetic model of gas-surface interactions and
derived by Aoki et al. (K. Aoki et al., in: Phys. Rev. E 106:035306, 2022), is con-
sidered. The equation contains a confinement potential in the vicinity of the solid
surface and an interaction term between gas molecules and phonons. It is proved
that a unique solution exists when the incoming molecular flux is specified at infin-
ity. This validates the natural observation that the half-space problem serves as the
boundary condition for the Boltzmann equation. It is also proved that the sequence
of approximate solutions used for the existence proof converges exponentially fast.
In addition, numerical results showing the details of the solution to the half-space
problem are presented.

1 Introduction

The boundary condition for the Boltzmann equation results from complex gas-surface
interactions and specifies scattering kernels relating the incident and reflected molecular
fluxes at the surface. The most conventional boundary condition is the Maxwell-type
condition, which is a linear combination of specular and diffuse reflection [17, 28]. In
addition to it, more general boundary conditions have been proposed [19, 23, 18, 17, 25,
29]. However, most of these boundary conditions are of mathematical or empirical nature
and are not directly related to physical properties, such as the characteristics of the gas
and surface molecules and interaction potentials. A more physical approach would be to
use molecular dynamics simulations to understand the relation between the incident and
reflected molecular fluxes [31, 26, 33, 32, 16]. However, although useful for assessing the
existing boundary conditions, this approach is in general not helpful in the construction
of new models.

An alternative physical approach is the kinetic approach based on kinetic equations
describing the behavior of gas molecules interacting with the surface molecules [13, 12, 9,
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11, 20, 1, 14, 15, 5, 2, 3, 4, 30]. The typical kinetic equations include a potential generated
by fixed crystal molecules and a collision term with phonons describing the fluctuating
part of the potential of the crystal molecules.

In a recent paper [6], a kinetic model of gas-surface interactions, which follows the
line of [13, 12, 9, 11, 20, 1, 14, 15, 5, 2, 3, 4], was proposed and was used to construct
the boundary condition for the Boltzmann equation. The model contains a confinement
potential in the vicinity of the solid surface, which produces a thin layer of physisorbed
molecules (physisorbate layer), as well as the interaction term between gas molecules (the
Boltzmann collision term) and that between gas molecules and phonons, where the term
“gas molecules” is also used for physisorbed gas molecules. Under the assumptions that
(i) the gas-phonon interaction is much more frequent than the gas-gas interaction inside
the physisorbate layer; (ii) the thickness of the physisorbate layer is much smaller than
the mean free path of the gas molecules; and (iii) the gas-phonon interaction is described
by a simple collision model of relaxation type, an asymptotic analysis was performed, and
a linear kinetic equation for the physisorbate layer was derived together with its boundary
condition at infinity. The resulting kinetic equation and the boundary condition at infinity
form a half-space problem, in which no boundary condition is imposed on the solid surface
because the confinement potential prevents the gas molecules from reaching the surface.

Suppose that the half-space problem has a unique solution when the velocity distri-
bution function of the gas molecule toward the surface is assigned at infinity. It is a
natural assumption based on numerical computation as well as physical considerations
[6]. This means that the outgoing velocity distribution of the gas molecules at infinity is
determined by the incident distribution towards the surface there. Since the thickness of
the physisorbate layer is much smaller than the mean free path, the infinity in the scale
of the layer can be regarded as the surface of the solid wall in the scale of the mean free
path. Therefore, the half-space problem plays the role of the boundary condition on the
surface for the Boltzmann equation that is valid outside the physisorbate layer.

In our previous paper [6], the half-space problem for the physisorbate layer mentioned
above was also solved numerically, and the results provided the numerical evidence of the
existence and uniqueness of the solution. In addition, based on an iteration scheme and its
first iteration, an analytic model of the boundary condition for the Boltzmann equation
was constructed, and the numerical assessment of the model showed its effectiveness.

The first aim of the present study is to rigorously prove the existence and uniqueness
of the solution to the half-space problem for the physisorbate layer studied numerically
and approximately in [6]. In addition, the sequence of iterative approximate solutions,
which is used for the existence proof, is shown to converge exponentially fast with respect
to the number of iterations. The second aim is to investigate the behavior of the solution
to the half-space problem numerically. Since special interest was put on the Boltzmann
boundary condition in [6], attention was focused not on the behavior of the solution itself
but on the relation between the incoming and outgoing molecular fluxes at infinity. In
this paper, we put more attention to the details of the solution in the physisorbate layer
and show some related numerical results.

The paper is organized as follows. The kinetic model for gas-surface interactions
proposed in [6] and the resulting half-space problem for the physisorbate layer are sum-
marized in Sec. 2. Section 3 is devoted to rigorous proof of mathematical properties, such
as the existence and uniqueness of the solution, for the half-space problem. In Sec. 4,
some numerical results showing the behavior of the solution to the half-space problem
are presented. Concluding remarks are given in Sec. 5.
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2 Kinetic equations and physisorbate layer

In this section, we summarize the kinetic model of gas-surface interactions proposed in
[6] and the resulting half-space problem for the physisorbate layer.

2.1 Kinetic model

We consider a single monatomic gas in a half space (z > 0) interacting with a plane
crystal surface located at z = 0, where x = (x, y, z) indicates the space coordinates. We
assume that the gas molecules are subject to an interaction potential W generated by
the fixed crystal molecules. The interaction potential W is assumed to depend only on
the normal coordinate z for simplicity and is written in the form

W (z) = Ws(z/δ) = Ws(ζ), (1)

where δ is a characteristic range of the surface potential and ζ = z/δ denotes the rescaled
normal coordinate, which is dimensionless. The rescaled potential Ws is such that

lim
ζ→0

Ws(ζ) = +∞, lim
ζ→+∞

Ws(ζ) = 0, (2)

and usually involves an attractive zone and a repulsing zone as Lennard-Jones potentials
integrated over all crystal molecules, as illustrated in Fig. 1. To be more specific, we
assume the following:

(i) the potential Ws(ζ) is a smooth function of ζ and has a single minimum Wmin(< 0)
at ζ = ζmin(> 0), i.e. Wmin = Ws(ζmin);

(ii) in the interval (0, ζmin), Ws(ζ) decreases from +∞ to Wmin monotonically, so that
(0, ζmin) is the repulsive zone;

(iii) in the interval (ζmin,∞), Ws(ζ) increases from Wmin to 0 monotonically, so that
(ζmin,∞) is the attractive zone;

(iv) in the repulsive zone (0, ζmin), Ws(ζ) is convex downward.

The gas molecules that are trapped by the potential well are called the physisorbed
molecules and the set of such molecules forms the physisorbate.
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Figure 1: Typical surface interaction potential Ws as function of ζ.
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The behavior of the gas is assumed to be governed by the following kinetic equation
of Boltzmann type [13, 12, 11, 1, 2, 3, 4, 5, 6]:

∂f

∂t
+ c ·

∂f

∂x
− 1

m

dW

dz

∂f

∂cz
= J(f, f) + Jph(f), (3)

wherem is the mass of a gas molecule, f(t,x, c) is the velocity distribution function for the
gas molecules (including the physisorbed molecules), t is the time variable, c = (cx, cy, cz)
is the velocity of the gas molecules with cx, cy, and cz being its x, y, and z components,
J(f, f) is the Boltzmann collision operator describing the gas-gas collision, and Jph(f) is
the gas-phonon collision operator.

Since the explicit form of the Boltzmann collision operator J(f, f) is not relevant to
the present paper, it is omitted here. In [6], under the assumption that the phonons are
in equilibrium, the following simple model of relaxation type is used for the gas-phonon
collision operator Jph(f):

Jph(f) =
1

τph

(

nM − f
)

. (4)

Here, τph is the relaxation time of gas-phonon interactions and n and M are, respectively,
the molecular number density and the wall Maxwellian given by

n =

∫

R3

f dc, (5a)

M =

(

m

2πkBTw

)3/2

exp

(

− m|c|2
2kBTw

)

, (5b)

where kB is the Boltzmann constant, Tw is the temperature of the solid wall, and the
domain of integration in (5a) is the whole space of c. The model (4) was inspired by
[13, 12] and was used in [1, 2, 3, 4, 5, 6]. We further assume that τph has the same length
scale of variation as the potential W and is a function of the scaled normal coordinate ζ,
i.e.,

τph(z) = τph,s(z/δ) = τph,s(ζ). (6)

Since there is no interaction between molecules and phonons far from the surface, we
naturally assume that [6]

lim
z→∞

τph(z) = lim
ζ→∞

τph,s(ζ) = ∞. (7)

It is also natural to assume that

(v) τph,s(ζ) is an increasing function of ζ in [0,+∞) with a finite positive τph,s(0);

(vi) 1/τph,s(ζ) is integrable over [0,+∞).

Since Jph as well as the potential W vanishes far from the surface, we may let z → ∞
(or ζ → ∞) in (3) to obtain the kinetic equation in the gas phase

∂fg
∂t

+ c ·

∂fg
∂x

= J(fg, fg), (8)

where fg(t,x, c) denotes the velocity distribution function of gas molecules. Equation (8)
is the standard Boltzmann equation for a monatomic gas, and the distribution f must
converge to fg far from the surface.
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2.2 Normalization and parameter setting

In order to nondimensionalize the kinetic equation (3), we introduce characteristic quan-
tities that are marked with the ⋆ superscript. We denote by n⋆ the characteristic number
density, c⋆ = (kBTw/m)1/2 the characteristic thermal speed, f⋆ = n⋆/c⋆3 the charac-
teristic molecular velocity distribution, τ⋆fr the characteristic mean free time, λ⋆ = τ⋆frc

⋆

the characteristic mean free path, W ⋆ = mc⋆2 = kBTw the characteristic potential, and
τ⋆ph the characteristic time for gas-phonon interaction. We recall that δ is the distance
normal to the surface where the potential W is significant, so that τ⋆la = δ/c⋆ indicates
the corresponding characteristic time of transit through the potential.

With these characteristic quantities, we introduce the dimensionless quantities t̂, x̂,
ĉ, n̂, f̂ , f̂g, M̂ , Ŵ , τ̂ph, and Ŵmin, which correspond to t, x, c, n, f , fg, M , W , τph, and
Wmin, respectively, by the following relations:

t̂ = t/τ⋆fr, x̂ = x/λ⋆, ĉ = c/c⋆, n̂ = n/n⋆,

f̂ = f c⋆3/n⋆, f̂g = fg c
⋆3/n⋆, M̂ = Mc⋆3,

Ŵ (ζ) = W (z)/W ⋆ = Ws(ζ)/kBTw, τ̂ph(ζ) = τph(z)/τ
⋆
ph = τph,s(ζ)/τ

⋆
ph,

Ŵmin = Wmin/kBTw.

(9)

Correspondingly, the collision operators J(f, f) and Jph(f) are nondimensionalized as

J(f, f) =
n⋆

τ⋆frc
⋆3
Ĵ(f̂ , f̂), (10)

and

Jph(f) =
n⋆

τ⋆phc
⋆3
Ĵph(f̂), Ĵph(f̂) =

1

τ̂ph
(n̂M̂ − f̂), (11)

where

n̂ =

∫

R3

f̂dĉ, (12a)

M̂ = (2π)−3/2 exp
(

−|ĉ|2/2
)

, (12b)

and the domain of integration is the whole space of ĉ. The explicit form of Ĵ(f̂ , f̂), which
is not relevant in this paper, is omitted.

Substituting (9)–(12) into (3), we obtain the dimensionless version of (3), which is
characterized by the following two dimensionless parameters:

ǫph =
τ⋆ph
τ⋆fr

, ǫ =
δ

λ⋆
=

τ⋆la
τ⋆fr

. (13)

The kinetic scaling introduced in [6] reads

ǫph = ǫ ≪ 1. (14)

This means that the effective range δ of the potential, which is also the effective range of
the gas-phonon interactions, is much shorter than the characteristic mean free path λ⋆.
Therefore, the molecules trapped by the potential and interacting with the phonons form
a thin layer, which may be called the physisorbate layer, in the scale of the mean free path.
Equation (14) also indicates that the characteristic time for gas-phonon interactions τ⋆ph
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is the same as the transit time across the layer τ⋆la and is much smaller than the mean free
time τ⋆fr. The parameter setting (14) may be the simplest kinetic scaling for the present
model of the physisorbate layer. This differs from the fluid scaling used in the derivation
of fluid-type boundary conditions [5, 2, 3, 4].

In summary, we obtain the dimensionless version of (3) in the following form:

∂f̂

∂t̂
+ ĉ‖ ·

∂f̂

∂x̂‖
+ ĉz

∂f̂

∂ẑ
− 1

ǫ

dŴ

dζ

∂f̂

∂ĉz
=

1

ǫ
Ĵph(f̂) + Ĵ(f̂ , f̂), (15)

where ĉ‖ = (ĉx, ĉy) and x̂‖ = (x̂, ŷ). By taking the limit ζ → ∞ of (15), we recover the
dimensionless version of the Boltzmann equation (8) in the gas phase, i.e.

∂f̂g

∂t̂
+ ĉ ·

∂f̂g
∂x̂

= Ĵ(f̂g, f̂g). (16)

2.3 Physisorbate layer and boundary condition for Boltzmann equation

In order to investigate the physisorbate layer, we assume

f̂ = f̂(t̂, x̂‖, ζ, ĉ‖, ĉz), (17)

because ζ = z/δ = ẑ/ǫ is the appropriate normal coordinate for the layer. Then, (15) is
recast as

ǫ

(

∂f̂

∂t̂
+ ĉ‖ ·

∂f̂

∂x̂‖

)

+ ĉz
∂f̂

∂ζ
− dŴ

dζ

∂f̂

∂ĉz
= Ĵph(f̂) + ǫĴ(f̂ , f̂). (18)

This form suggests that f̂ and thus f̂g be expanded as f̂ = f̂ 〈0〉 + O(ǫ) and f̂g =

f̂
〈0〉
g + O(ǫ), respectively. It is obvious that f̂

〈0〉
g is also governed by the Boltzmann

equation (16). In the following, we consider only the zeroth order terms in ǫ and identify

f̂ 〈0〉 and f̂
〈0〉
g with f̂ and f̂g, respectively (or equivalently, we omit the superscript 〈0〉).

From (18), (11), and (12), the equation for the zeroth order is obtained as

ĉz
∂ f̂

∂ζ
− dŴ (ζ)

dζ

∂ f̂

∂ĉz
=

1

τ̂ph(ζ)
(n̂M̂ − f̂), (19)

where n̂ and M̂ are given by (12a) and (12b), respectively. Note that n̂ here is the zeroth-
order number density in the physisorbate layer. Equation (19) is the kinetic equation
governing the physisorbate layer that will be investigated in the following.

Integrating both sides of (19) with respect to ĉ over the whole space, we have
(∂/∂ζ)

∫

R3 ĉz f̂dĉ = 0, which leads to

∫

R3

ĉz f̂dĉ = 0, (20)

because f̂ → 0 as ζ → 0. This indicates the particle conservation.
As discussed in [6], the connection condition between the inner physisorbate layer and

the outer gas domain at the zeroth order is given by

f̂(t̂, x̂‖, ζ → ∞, ĉ‖, ĉz) = f̂g(t̂, x̂‖, ẑ = 0, ĉ‖, ĉz). (21)
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Note that f̂g and thus (16) have been extended to the crystal surface ẑ = 0. Condition
(21) means physically that the outer edge of the inner physisorbate layer may be identified
with the solid surface for the outer gas domain (see [6] for a more quantitative argument).

As pointed out in [6], (19) is likely to have a unique solution when f̂ for the molecules
toward the surface (ĉz < 0) is imposed at infinity, that is,

f̂(t̂, x̂‖, ζ, ĉ‖, ĉz) → f̂∞(t̂, x̂‖, ĉ‖, ĉz), as ζ → ∞, for ĉz < 0, (22)

where f̂∞ is an arbitrary function of t̂, x̂‖, ĉ‖, and ĉz consistent with f̂g at ẑ = 0. This
property, which has been confirmed numerically in [6], will be established mathematically
in Sec. 3.

Thus, the kinetic equation (19) with the boundary condition (22) determines the
solution f̂ and thus f̂ for ĉz > 0 at infinity, and this constitutes the physisorbate-layer
problem. This means that the solution defines the operator Λ that maps f̂ for ĉz < 0 to
f̂ for ĉz > 0 at infinity, i.e.,

f̂(t̂, x̂‖, ζ → ∞, ĉ‖, ĉz > 0) = Λf̂(t̂, x̂‖, ζ → ∞, ĉ‖, ĉz < 0), (23)

or equivalently, because of (21),

f̂g(t̂, x̂‖, ẑ = 0, ĉ‖, ĉz > 0) = Λf̂g(t̂, x̂‖, ẑ = 0, ĉ‖, ĉz < 0). (24)

This relation indicates that the operator Λ provides the boundary condition for the Boltz-
mann equation on the surface ẑ = 0.

2.4 Half-space problem for the physisorbate layer

Equation (19) and boundary condition (22) form a boundary-value problem in the half
space ζ > 0. In this subsection, the problem will be transformed into some different forms
for later convenience. Since the variables t̂ and x̂‖ are just the parameters, we will omit
them hereafter.

Here, we simplify some notations for convenience in the mathematical arguments in
Sec. 3. To be more specific, we omit the hat ˆ for the dimensionless variables and the
subscript ph of τ̂ph, that is,

(f̂ , ĉ‖, ĉz, Ŵ , τ̂ph, n̂, M̂ , f̂∞, Ŵmin) ⇒ (f, c‖, cz, W, τ, n, M, f∞, Wmin). (25)

No confusion is expected with these changes. Then, the half-space problem (19) and (22)
reads as follows:

cz
∂ f

∂ζ
− dW (ζ)

dζ

∂ f

∂cz
=

1

τ(ζ)
(nM − f), (26a)

n =

∫

R3

fdc, (26b)

M = (2π)−3/2 exp
(

−|c|2/2
)

, (26c)

f → f∞(c‖, cz), for cz < 0, as ζ → ∞. (26d)

If we introduce the marginal

F (ζ, cz) =

∫ ∞

−∞

∫ ∞

−∞
f(ζ, c‖, cz)dcxdcy, (27)
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and integrate (26) with respect to cx and cy each from −∞ to ∞, we obtain the following
half-space problem for F (ζ, cz):

cz
∂ F (ζ, cz)

∂ζ
− dW (ζ)

dζ

∂ F (ζ, cz)

∂cz
=

1

τ(ζ)
[n(ζ)M(cz)− F (ζ, cz)], (28a)

n(ζ) =

∫ ∞

−∞
F (ζ, cz)dcz, (28b)

M(cz) = (2π)−1/2 exp
(

−c2z/2
)

, (28c)

F (ζ, cz) → F∞(cz), for cz < 0, as ζ → ∞, (28d)

where F∞(cz) =
∫∞
−∞

∫∞
−∞ f∞(c‖, cz)dcxdcy.

Now, let us put

ε =
1

2
c2z +W (ζ). (29)

Then, for each ε ∈ [Wmin,∞), the range of ζ is as follows:
{

[ζa(ε), ∞) for ε ≥ 0,

[ζa(ε), ζb(ε)] for Wmin ≤ ε < 0,
(30)

where ζa(ε) is the solution of ε = W (ζ) for ε ≥ 0, and ζa(ε) and ζb(ε) are the two solutions
of the same equation satisfying ζa(ε) ≤ ζmin ≤ ζb(ε) for Wmin ≤ ε < 0. The locations of
ζa(ε) and ζb(ε) are shown schematically in Fig. 2.

(a) (b)

Figure 2: The locations of ζa(ε) and ζb(ε). (a) ε ≥ 0, (b) Wmin ≤ ε < 0.

Using (29), we transform the independent variables from (ζ, cz) to (ζ, ε) and define

F±(ζ, ε) = F
(

ζ,±
√

2[ε −W (ζ)]
)

. (31)

Note that F+ corresponds to cz > 0, and F− to cz < 0. Then, the problem (28) is
transformed to

±
√

2[ε−W (ζ)]
∂ F±(ζ, ε)

∂ζ
=

1

τ(ζ)
[n(ζ)M(ζ, ε)− F±(ζ, ε)] , (32a)

n(ζ) =

∫ ∞

W (ζ)
[F−(ζ, ε) + F+(ζ, ε)]

dε
√

2[ε−W (ζ)]
, (32b)

M(ζ, ε) = (2π)−1/2 exp (−ε+W (ζ)) , (32c)

F−(ζ, ε) → F∞(−
√
2ε), for ε > 0, as ζ → ∞, (32d)

8



where M(ζ, ε) is the expression of M(cz) in (28c) in terms of ζ and ε. In addition, we
need to assume the continuity condition

F+ (ζa(ε), ε) = F− (ζa(ε), ε) , for ε > Wmin, (33a)

F− (ζb(ε), ε) = F+ (ζb(ε), ε) , for Wmin < ε < 0, (33b)

at ζ = ζa(ε) and ζb(ε) to complete the half-space problem in the new variables (ζ, ε). The
conditions (33a) and (33b) are natural because the molecules with energy ε reaching the
points ζ = ζa(ε) and ζb(ε) stop (cz = 0) there and then change the direction of motion.

In the problem (28) or (32), the dependence on cx and cy has been averaged out
because of (27). However, once the solution F (ζ, cz) or F±(ζ, ε) is obtained, the density
n(ζ) is also known. Therefore, (26a) reduces to a PDE, which can be solved in response to
the boundary condition (26d). Therefore, the problem (26) and the problem (28) or (32)
are equivalent. Here, we note that [F±(ζ, ε), W (ζ), n(ζ), M(ζ, ε), F∞(−

√
2ε), τ(ζ)] in

this subsection are equal to [φ±(ζ, ε), ŵ(ζ), n̂(ζ), m̂m(ζ, ε), φ∞(−
√
2ε), τ̂ph(ζ)] in Sec. VI

A in [6].

2.5 Iteration scheme

On the basis of (32), the following iteration scheme is defined:

±
√

2[ε−W (ζ)]
∂ F k

±(ζ, ε)

∂ζ
=

1

τ(ζ)

[

nk−1(ζ)M(ζ, ε)− F k
±(ζ, ε)

]

, (34a)

nk(ζ) =

∫ ∞

W (ζ)
[F k

−(ζ, ε) + F k
+(ζ, ε)]

dε
√

2[ε −W (ζ)]
, (34b)

F k
−(ζ, ε) → F∞(−

√
2ε), for ε > 0, as ζ → ∞, (34c)

F k
+ (ζa(ε), ε) = F k

− (ζa(ε), ε) , for ε > Wmin, (34d)

F k
− (ζb(ε), ε) = F k

+ (ζb(ε), ε) , for Wmin < ε < 0, (34e)

where F k
± and nk are the kth iteration corresponding to F± and n, respectively. This

scheme, starting from the zero initial values, i.e.,

F 0
± = n0 = 0, (35)

will be used in the proofs in Sec. 3. In [6], essentially the same scheme with different
initial values has been used in the numerical analysis of the problem (32), as well as in
the construction of a model of the boundary condition for the Boltzmann equation.
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From (34), F k
± can be solved in terms of nk−1 as follows:

F k
+(ζ, ε) = θ(ζa(ε), ζ; ε)

(

F k
−(ζa(ε), ε)

+

∫ ζ

ζa(ε)
θ(s, ζa(ε); ε)

nk−1(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

, (36a)

F k
−(ζ, ε) = 1ε>0 θ(ζ,∞; ε)

(

F∞(−
√
2ε)

+

∫ ∞

ζ
θ(∞, s; ε)

nk−1(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

+ 1Wmin<ε<0 θ(ζ, ζb(ε); ε)

(

F k
+(ζb(ε), ε)

+

∫ ζb(ε)

ζ
θ(ζb(ε), s; ε)

nk−1(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

, (36b)

where

θ(a, b; ε) = exp

(

−
∫ b

a

ds

τ(s)
√

2[ε−W (s)]

)

, (37)

and 1S is the indicator function of the set S, that is, 1S = 1 for w ∈ S and 1S = 0 for
w /∈ S with w being the relevant variable. It should be noted that F k

−(ζ, ε) and thus
F k
+(ζ, ε) are generally discontinuous at ε = 0, i.e., limε→0− F k

±(ζ, ε) 6= limε→0+ F k
±(ζ, ε).

If necessary, the value of F±(ζ, ε) at ε = 0 may naturally be defined by limε→0+ F±(ζ, ε).
We should also note that 1ε>0 and 1Wmin<ε<0 in (36) implicitly mean 1ε>01ζ>ζa(ε) and
1Wmin<ε<01ζa(ε)<ζ<ζb(ε), respectively, since the range of ζ is given by (30). This convention
will be used unless confusion arises.

One easily checks that

θ(a, b; ε) θ(b, c; ε) = θ(a, c; ε), θ(b, a; ε) = θ(a, b; ε)−1, (38a)

a < b =⇒ 0 < θ(a, b; ε) < 1, a > b =⇒ θ(a, b; ε) > 1. (38b)

On the other hand, defining

µ(s, ε) :=
1

τ(s)
√

2[ε−W (s)]
> 0, (39)

one readily obtains

∂aθ(a, b; ε) = θ(a, b; ε)µ(a, ε), ∂bθ(a, b; ε) = −θ(a, b; ε)µ(b, ε). (40)

These properties of the function θ(a, b; ε) will be used repeatedly in Sec. 3.

3 Mathematical properties of half-space problem for the

physisorbate layer

In this section, we prove some mathematical properties of the half-space problem (28) for
the physisorbate layer. The structure of the problem differs from that of the traditional
half-space problems of the linearized Boltzmann equation relevant to Knudsen layers
[7, 21, 8] in the following points:
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(a) the gas molecules are subject to an external attractive-repulsive potential;

(b) the gas molecules interact only with phonons;

(c) there are no gas molecules on the surface ζ = 0 because of the infinite potential
barrier there.

Before getting to the main points, we recall here that the potential W (ζ) and the
relaxation time τ(ζ) appearing in this section are, respectively, assumed to satisfy the
dimensionless version of the conditions (2) and (i)–(iv) in Sec. 2.1 and that of the con-
ditions (7), (v), and (vi) there. We note that the property (c), which has been used in
deriving (20), is a physical consequence from the assumption (2) for the potential. In this
section, we consider the class of solutions to the problem (28) satisfying the property (c)
(cf. Theorem 1 below).

3.1 Main results

The main results are stated as follows:

Theorem 1. Assume that 0 ≤ F∞(cz) ≤ (A/
√
2π) exp(−c2z/2) for some positive con-

stant A. Then, the problem (28) has the unique solution satisfying the inequality 0 ≤
F (ζ, cz) ≤ C(1/

√
2π) exp

(

−c2z/2−W (ζ)
)

for some constant C. Moreover, the limit

limζ→+∞ F (ζ, cz) exists for cz > 0.

In fact, the resulting inequality for F (ζ, cz) indicates that F (ζ, cz) enjoys the property
(c) because limζ→0+ exp

(

−c2z/2−W (ζ)
)

= 0. The existence in Theorem 1 is proved for
the transformed problem (32) and (33), rather than the problem (28), with the help of
the iteration scheme in Sec. 2.5. It is shown that the sequences {nk} and {F k

±}, based on
(34) and (35), converge exponentially fast with respect to the number of iteration k. Let

ℓ =

∫ ∞

0

ds

τ(s)
< +∞, K =

√
2ζmin

τ(0)
+

ℓ√
2
.

Then, we have the following:

Theorem 2. Under the same conditions as in Theorem 1, i.e., 0 ≤ F∞(−
√
2ε) ≤

(A/
√
2π) exp(−ε), the sequence {nk} is nonnegative, nondecreasing in k, and converges

exponentially fast to its limit n (≥ 0) as k → ∞ in L1 (R+; dζ/τ(ζ)):

‖n− nk‖L1(R+;dζ/τ(ζ)) =

∫ ∞

0
|n(ζ)− nk(ζ)| dζ

τ(ζ)
< Aℓe|Wmin|Lk,

where

0 ≤ L ≤ 1− e−K

√
π

∫ ∞

|Wmin|+1

e−u

√
u
du < 1.

In addition, the sequence {F k
±} is nonnegative, nondecreasing in k, and converges expo-

nentially fast as k → ∞ in L1
(

R+ ×R;1ε>W (ζ)dεdζ/τ(ζ)
√

2[ε−W (ζ)]
)

to their limits

11



F± (≥ 0) :

‖F+ − F k
+‖L1

(

R+×R;1ε>W (ζ)dεdζ/τ(ζ)
√

2[ε−W (ζ)]
)

+ ‖F− − F k
−‖L1

(

R+×R;1ε>W (ζ)dεdζ/τ(ζ)
√

2[ε−W (ζ)]
)

=

∫ ∞

0

∫ ∞

−∞

[

|F+(ζ, ε)− F k
+(ζ, ε)| + |F−(ζ, ε)− F k

−(ζ, ε)|
] 1ε>W (ζ)dεdζ

τ(ζ)
√

2[ε −W (ζ)]

< Aℓe|Wmin|Lk.

3.2 Proof of uniqueness

Here, we prove the uniqueness in Theorem 1.

Lemma 1. If the problem (28) has a solution F (ζ, cz) satisfying the inequality |F (ζ, cz)| ≤
Ce−W (ζ)M(cz) for some constant C, then the solution is unique.

Proof. Let us denote ∂ζ = ∂/∂ζ, ∂cz = ∂/∂cz , G′(ζ) = dG(ζ)/dζ, where G(ζ) is an
arbitrary function of ζ, and

E(ζ, cz) = e−W (ζ)M(cz).

This is indeed a modified Maxwellian that is a natural equilibrium solution to the layer
equation (28a). By linearity of the problem (28), it suffices to consider the problem
with F∞(cz) = 0 and to prove that the only possible solution satisfying the condition
|F (ζ, cz)| ≤ CE(ζ, cz) is F (ζ, cz) = 0.

If we multiply both sides of (28a) by F (ζ, cz)/E(ζ, cz) and take account of the relations
∂ζ [1/E(ζ, cz)] = W ′(ζ)/E(ζ, cz) and ∂cz [1/E(ζ, cz)] = cz/E(ζ, cz), we have

∂ζ

(

1

2
cz
F (ζ, cz)

2

E(ζ, cz)

)

− ∂cz

(

1

2
W ′(ζ)

F (ζ, cz)
2

E(ζ, cz)

)

=
eW (ζ)

τ(ζ)

(

n(ζ)F (ζ, cz)−
F (ζ, cz)

2

M(cz)

)

. (41)

Integrating this equation with respect to ζ and cz over (0,+∞) and (−∞,+∞), respec-
tively, leads to

[
∫ ∞

−∞

1

2
cz
F (ζ, cz)

2

E(ζ, cz)
dcz

]ζ=+∞

ζ=0

−
[
∫ ∞

0

1

2
W ′(ζ)

F (ζ, cz)
2

E(ζ, cz)
dζ

]cz=+∞

cz=−∞

=

∫ ∞

0

eW (ζ)

τ(ζ)

(

n(ζ)2 −
∫ ∞

−∞

F (ζ, cz)
2

M(cz)
dcz

)

dζ. (42)

Because 0 ≤ F (ζ, cz)
2/E(ζ, cz) < C2e−W (ζ)M(cz), we find

∣

∣

∣

∣

∫ ∞

−∞

1

2
cz
F (ζ, cz)

2

E(ζ, cz)
dcz

∣

∣

∣

∣

≤ C2e−W (ζ)

∫ ∞

−∞

1

2
|cz |M(cz)dcz → 0,

as ζ → 0+ and

∣

∣

∣

∣

∫ ∞

0

1

2
W ′(ζ)

F (ζ, cz)
2

E(ζ, cz)
dζ

∣

∣

∣

∣

≤ C2M(cz)

∫ ∞

0

1

2
|W ′(ζ)|e−W (ζ)dζ → 0,
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as |cz | → +∞. In addition, since F∞(cz) = 0, it follows that

lim
ζ→+∞

∫ ∞

−∞

1

2
cz
F (ζ, cz)

2

E(ζ, cz)
dcz = lim

ζ→+∞

∫ ∞

0

1

2
cz
F (ζ, cz)

2

E(ζ, cz)
dcz ≥ 0.

Therefore, with the help of (28b) and
∫∞
−∞M(cz)dcz = 1, (42) gives

I :=

∫ ∞

0

eW (ζ)

τ(ζ)

[

(

∫ ∞

−∞
F (ζ, cz)dcz

)2

−
∫ ∞

−∞
M(cz)dcz

∫ ∞

−∞

F (ζ, cz)
2

M(cz)
dcz

]

dζ ≥ 0.

On the other hand, it follows from the Cauchy–Schwarz inequality that

I ≤ 0.

This means that we are in the equality case in the Cauchy–Schwarz inequality for a.e. ζ >
0, so that F (ζ, ·) must be proportional to M:

F (ζ, cz) = c(ζ)M(cz), so that c(ζ) = n(ζ) =

∫ ∞

−∞
F (ζ, cz)dcz.

The substitution of this form into (28a) leads to

czM(cz)[n
′(ζ) +W ′(ζ)n(ζ)] = 0,

which gives

n(ζ) = Be−W (ζ),

for some constant B. Therefore, letting ζ → +∞, one finds that

F (ζ, cz) = Be−W (ζ)M(cz) → BM(cz), as ζ → +∞,

since W (ζ) → 0 as ζ → +∞. Then, the boundary condition (28d) with F∞(cz) = 0
implies that B = 0, so that we have F (ζ, cz) = 0.

3.3 Proof of existence

In this section, we prove the existence of the solution and its limit as ζ → ∞ in Theorem
1. The existence proof is based on the approximating sequence {F k

±} constructed by (36)
with (35).

3.3.1 Computing F k
±(ζa(ε), ε) and F k

±(ζb(ε), ε)

In the case where ε > 0, one obtains from (36b) and (34d)

F k
±(ζa(ε), ε)

= θ(ζa(ε),∞; ε)F∞(−
√
2ε) +

∫ ∞

ζa(ε)
θ(ζa(ε), s; ε)

nk−1(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

= θ(ζa(ε),∞; ε)F∞(−
√
2ε) +

∫ ∞

ζa(ε)
θ(ζa(ε), s; ε)µ(s, ε)n

k−1(s)M(s, ε)ds

= θ(ζa(ε),∞; ε)F∞
(

−
√
2ε
)

−
∫ ∞

ζa(ε)
∂sθ(ζa(ε), s; ε)n

k−1(s)M(s, ε)ds. (43)
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On the other hand, if Wmin < ε < 0, we first use (36b) to compute

F k
−(ζa(ε), ε) = θ(ζa(ε), ζb(ε); ε)

(

F k
+(ζb(ε), ε)

+

∫ ζb(ε)

ζa(ε)
θ(ζb(ε), s; ε)

nk−1(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

,

and then inject in the r.h.s. the following expression of F k
+(ζb(ε), ε), obtained from (36a):

F k
+(ζb(ε), ε) = θ(ζa(ε), ζb(ε); ε)

(

F k
−(ζa(ε), ε)

+

∫ ζb(ε)

ζa(ε)
θ(s, ζa(ε); ε)

nk−1(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

.

This leads us to the equality

F k
±(ζa(ε), ε)[1 − θ(ζa(ε), ζb(ε); ε)

2]

= θ(ζa(ε), ζb(ε); ε)

∫ ζb(ε)

ζa(ε)
θ(ζb(ε), s; ε)µ(s, ε)n

k−1(s)M(s, ε)ds

+ θ(ζa(ε), ζb(ε); ε)
2

∫ ζb(ε)

ζa(ε)
θ(s, ζa(ε); ε)µ(s, ε)n

k−1(s)M(s, ε)ds, (44)

with the help of (34d) and (39). Likewise

F k
±(ζb(ε), ε)[1 − θ(ζa(ε), ζb(ε); ε)

2]

= θ(ζa(ε), ζb(ε); ε)

∫ ζb(ε)

ζa(ε)
θ(s, ζa(ε); ε)µ(s, ε)n

k−1(s)M(s, ε)ds

+ θ(ζa(ε), ζb(ε); ε)
2

∫ ζb(ε)

ζa(ε)
θ(ζb(ε), s; ε)µ(s, ε)n

k−1(s)M(s, ε)ds, (45)

with the help of (34e) and (39).
Equation (44) can be recast as follows: for Wmin < ε < 0,

F k
±(ζa(ε), ε) θ(ζa(ε), ζb(ε); ε) [θ(ζb(ε), ζa(ε); ε) − θ(ζa(ε), ζb(ε); ε)]

= θ(ζa(ε), ζb(ε); ε)

∫ ζb(ε)

ζa(ε)
[−∂sθ(ζb(ε), s; ε)

+ ∂sθ(s, ζb(ε); ε)]n
k−1(s)M(s, ε)ds,

or, equivalently,

F k
±(ζa(ε), ε) =

∫ ζb(ε)

ζa(ε)

∂sθ(s,ζb(ε);ε)−∂sθ(ζb(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

nk−1(s)M(s, ε)ds. (46)

Similarly, (45) leads to the following expression: for Wmin < ε < 0,

F k
±(ζb(ε), ε) =

∫ ζb(ε)

ζa(ε)

∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

nk−1(s)M(s, ε)ds. (47)
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One easily checks that

∂sθ(s,ζb(ε);ε)−∂sθ(ζb(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

≥ 0, ∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

≥ 0,

and

∫ ζb(ε)

ζa(ε)

∂sθ(s,ζb(ε);ε)−∂sθ(ζb(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

ds = 1,

∫ ζb(ε)

ζa(ε)

∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

ds = 1.

Thus F k
±(ζa(ε), ε) and F k

±(ζb(ε), ε) are averages of nk−1(s)M(s, ε) for s ∈ [ζa(ε), ζb(ε)].

3.3.2 Simplifying the formulas (36)

Next we plug (43), (46), and (47) in (36). Then, (36a) leads to

F k
+(ζ, ε) = θ(ζa(ε), ζ; ε)F

k
−(ζa(ε), ε) +

∫ ζ

ζa(ε)
θ(s, ζ; ε)µ(s, ε)nk−1(s)M(s, ε)ds

= θ(ζa(ε), ζ; ε)F
k
−(ζa(ε), ε) +

∫ ζ

ζa(ε)
∂sθ(s, ζ; ε)n

k−1(s)M(s, ε)ds

= 1ε>0 θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)F∞(−
√
2ε)

− 1ε>0 θ(ζa(ε), ζ; ε)

∫ ∞

ζa(ε)
∂sθ(ζa(ε), s; ε)n

k−1(s)M(s, ε)ds

+ 1Wmin<ε<0 θ(ζa(ε), ζ; ε)

×
∫ ζb(ε)

ζa(ε)

∂sθ(s,ζb(ε);ε)−∂sθ(ζb(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

nk−1(s)M(s, ε)ds

+ 1W (ζ)<ε

∫ ζ

ζa(ε)
∂sθ(s, ζ; ε)n

k−1(s)M(s, ε)ds,
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while (36b) is recast as

F k
−(ζ, ε)

= 1ε>0 θ(ζ,∞; ε)

(

F∞(−
√
2ε) +

∫ ∞

ζ
θ(∞, s; ε)n

k−1(s)M(s,ε)ds

τ(s)
√

2[ε−W (s)]

)

+ 1Wmin<ε<0 θ(ζ, ζb(ε); ε)

(

F k
+(ζb(ε), ε)

+

∫ ζb(ε)

ζ
θ(ζb(ε), s; ε)

nk−1(s)M(s,ε)ds

τ(s)
√

2[ε−W (s)]

)

= 1ε>0 θ(ζ,∞; ε)F∞(−
√
2ε) + 1ε>0

∫ ∞

ζ
θ(ζ, s; ε)µ(s, ε)nk−1(s)M(s, ε)ds

+ 1Wmin<ε<0 θ(ζ, ζb(ε); ε)

×
∫ ζb(ε)

ζa(ε)

∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

nk−1(s)M(s, ε)ds

+ 1Wmin<ε<0

∫ ζb(ε)

ζ
θ(ζ, s; ε)µ(s, ε)nk−1(s)M(s, ε)ds

= 1ε>0 θ(ζ,∞; ε)F∞(−
√
2ε)− 1ε>0

∫ ∞

ζ
∂sθ(ζ, s; ε)n

k−1(s)M(s, ε)ds

+ 1Wmin<ε<0 θ(ζ, ζb(ε); ε)

×
∫ ζb(ε)

ζa(ε)

∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

nk−1(s)M(s, ε)ds

− 1Wmin<ε<0

∫ ζb(ε)

ζ
∂sθ(ζ, s; ε)n

k−1(s)M(s, ε)ds.

Summarizing, we have proved that

F k
+(ζ, ε) = 1ε>0 θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)F∞(−

√
2ε)

+

∫ ∞

0
K+(ζ, s, ε)n

k−1(s)M(s, ε)ds, (48a)

F k
−(ζ, ε) = 1ε>0 θ(ζ,∞; ε)F∞(−

√
2ε)

+

∫ ∞

0
K−(ζ, s, ε)n

k−1(s)M(s, ε)ds, (48b)
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where

K+(ζ, s, ε) := −1ε>01ζ>ζa(ε) θ(ζa(ε), ζ, ε) ∂sθ(ζa(ε), s, ε)1s>ζa(ε)

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε) θ(ζa(ε), ζ, ε)

× ∂sθ(s,ζb(ε);ε)−∂sθ(ζb(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

1ζa(ε)<s<ζb(ε)

+ 1ε>0∂sθ(s, ζ, ε)1ζa(ε)<s<ζ

+ 1Wmin<ε<0∂sθ(s, ζ, ε)1ζa(ε)<s<ζ<ζb(ε), (49a)

K−(ζ, s, ε) := −1ε>0∂sθ(ζ, s; ε)1s>ζ>ζa(ε)

− 1Wmin<ε<0 ∂sθ(ζ, s; ε)1ζa(ε)<ζ<s<ζb(ε)

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε)θ(ζ, ζb(ε); ε)

× ∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

1ζa(ε)<s<ζb(ε). (49b)

Since both position variables ζ and s appear in (49), the indicator functions for these
variables, such as 1ζ>ζa(ε), 1s>ζa(ε), and 1ζa(ε)<ζ<s<ζb(ε), are shown explicitly to avoid
confusion.

3.3.3 Properties of K±(ζ, s, ε)

Equations (39) and (40) show that −∂sθ(ζ, s; ε) > 0 and ∂sθ(s, ζ; ε) > 0, so that

K±(ζ, s, ε) ≥ 0.

On the other hand
∫ ∞

0
K+(ζ, s, ε)ds

= 1ε>01ζ>ζa(ε)θ(ζa(ε), ζ; ε)[1 − θ(ζa(ε),∞; ε)]

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε) θ(ζa(ε), ζ; ε)

+ (1Wmin<ε<01ζa(ε)<ζ<ζb(ε) + 1ε>01ζ>ζa(ε))[1− θ(ζa(ε), ζ; ε)],

or, equivalently,
∫ ∞

0
K+(ζ, s, ε)ds

= (1Wmin<ε<01ζa(ε)<ζ<ζb(ε) + 1ε>01ζ>ζa(ε)) θ(ζa(ε), ζ; ε)

+ (1Wmin<ε<01ζa(ε)<ζ<ζb(ε) + 1ε>01ζ>ζa(ε))[1− θ(ζa(ε), ζ; ε)]

− 1ε>01ζ>ζa(ε) θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)

= 1W (ζ)<ε − 1ε>01ζ>ζa(ε) θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε). (50)

Likewise, one easily finds that
∫ ∞

0
K−(ζ, s, ε)ds

= 1ε>01ζ>ζa(ε)[1− θ(ζ,∞; ε)]

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε)[1− θ(ζ, ζb(ε); ε)]

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε) θ(ζ, ζb(ε); ε)

= 1ε>01ζ>ζa(ε) + 1Wmin<ε<01ζa(ε)<ζ<ζb(ε) − 1ε>01ζ>ζa(ε)θ(ζ,∞; ε)

= 1W (ζ)<ε − 1ε>01ζ>ζa(ε)θ(ζ,∞; ε). (51)
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3.3.4 Monotonicity of the approximating sequence

In this section, we seek to prove the following result for the approximating sequences
{F k

±} and {nk} based on (34) and (35).

Lemma 2. Assume that 0 ≤ F∞(−
√
2ε) ≤ Ae−ε/

√
2π. Then

0 = F 0
±(ζ, ε) ≤ F 1

±(ζ, ε) ≤ F 2
±(ζ, ε) ≤ . . . ≤ F k

±(ζ, ε) ≤ . . . ≤ Ae−ε/
√
2π.

Therefore

0 = n0(ζ) ≤ n1(ζ) ≤ n2(ζ) ≤ . . . ≤ nk(ζ) ≤ . . . ≤ Ae−W (ζ).

Proof. Since

F k+1
+ (ζ, ε)− F k

+(ζ, ε) =

∫ ∞

0
K+(ζ, s, ε)[n

k(s)− nk−1(s)]M(s, ε)ds,

F k+1
− (ζ, ε)− F k

−(ζ, ε) =
∫ ∞

0
K−(ζ, s, ε)[n

k(s)− nk−1(s)]M(s, ε)ds,

with K±(ζ, s, ε) ≥ 0, one has

nk ≥ nk−1 =⇒ F k+1
± ≥ F k

±.

On the other hand, by definition of nk(ζ), one has

nk(ζ)− nk−1(ζ) =

∫ ∞

W (ζ)
[F k

+(ζ, ε)− F k−1
+ (ζ, ε)]

dε
√

2[ε−W (ζ)]

+

∫ ∞

W (ζ)
[F k

−(ζ, ε)− F k−1
− (ζ, ε)]

dε
√

2[ε−W (ζ)]
,

so that
F k
± ≥ F k−1

± =⇒ nk ≥ nk−1 =⇒ F k+1
± ≥ F k

±.

Besides

F 1
+(ζ, ε) = 1ε>0 θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)F∞(−

√
2ε) ≥ 0 = F 0

+(ζ, ε),

F 1
−(ζ, ε) = 1ε>0 θ(ζ,∞; ε)F∞(−

√
2ε) ≥ 0 = F 0

−(ζ, ε),

so that, by induction, we conclude that

0 = F 0
±(ζ, ε) ≤ F 1

±(ζ, ε) ≤ F 2
±(ζ, ε) ≤ . . . ≤ F k

±(ζ, ε) ≤ . . . ,

0 = n0(ζ) ≤ n1(ζ) ≤ n2(ζ) ≤ . . . ≤ nk(ζ) ≤ . . . .

It remains to prove the upper bound. Here again, we proceed by induction. Clearly

F 0
± = 0 =⇒ n0 = 0 =⇒ F 0

± ≤ Ae−ε/
√
2π and n0M(ζ, ε) ≤ Ae−ε/

√
2π.

Next we prove that

nk−1(ζ)M(ζ, ε) ≤ Ae−ε/
√
2π =⇒ F k

± ≤ Ae−ε/
√
2π.
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Indeed, by the use of (50) and (51), the following inequalities follow from (48a) and (48b):

F k
+(ζ, ε) = 1ε>0 1ζ>ζa(ε) θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)F∞(−

√
2ε)

+

∫ ∞

0
K+(ζ, s, ε)n

k−1(s)M(s, ε)ds

≤ 1ε>0 1ζ>ζa(ε) θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)Ae−ε/
√
2π

+

[
∫ ∞

0
K+(ζ, s, ε)ds

]

Ae−ε/
√
2π

≤ 1ε>0 1ζ>ζa(ε) θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)Ae−ε/
√
2π

+ [1W (ζ)<ε − 1ε>01ζ>ζa(ε)θ(ζa(ε), ζ; ε) θ(ζa(ε),∞; ε)]Ae−ε/
√
2π

= 1W (ζ)<εAe
−ε/

√
2π

≤ Ae−ε/
√
2π,

while

F k
−(ζ, ε) = 1ε>0 1ζ>ζa(ε) θ(ζ,∞; ε)F∞(−

√
2ε) +

∫ ∞

0
K−(ζ, s, ε)n

k−1(s)M(s, ε)ds

≤ 1ε>0 1ζ>ζa(ε) θ(ζ,∞; ε)Ae−ε/
√
2π +

[
∫ ∞

0
K−(ζ, s, ε)ds

]

Ae−ε/
√
2π

≤ 1ε>0 1ζ>ζa(ε) θ(ζ,∞; ε)Ae−ε/
√
2π

+ [1W (ζ)<ε − 1ε>01ζ>ζa(ε)θ(ζ,∞, ε)]Ae−ε/
√
2π

= 1W (ζ)<εAe
−ε/

√
2π

≤ Ae−ε/
√
2π,

where 1ε>0 in (48) has been replaced with the more explicit representation 1ε>0 1ζ>ζa(ε)

in consistency with the expressions (50) and (51).
It remains to prove that

F k
± ≤ Ae−ε/

√
2π =⇒ nk(ζ)M(ζ, ε) ≤ Ae−ε/

√
2π.

Observe that

nk(ζ) =

∫ ∞

W (ζ)
[F k

−(ζ, ε) + F k
+(ζ, ε)]

dε
√

2[ε−W (ζ)]

≤ 2A√
2π

∫ ∞

W (ζ)

e−εdε
√

2[ε−W (ζ)]
=

2Ae−W (ζ)

√
2π

∫ ∞

0

e−udu√
2u

=
Ae−W (ζ)

√
π

Γ

(

1

2

)

= Ae−W (ζ),

where Γ(x) =
∫∞
0 sx−1e−sds is Euler’s gamma function. Thus, it follows that

F k
± ≤ Ae−ε/

√
2π =⇒ nk(ζ) ≤ Ae−W (ζ) =⇒ nk(ζ)M(ζ, ε) ≤ Ae−ε/

√
2π.

This completes the proof of monotonicity of the approximating sequence.
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3.3.5 Existence proof for problem (32)

Using Lemma 2 and applying the monotone convergence theorem, we find that F k
±(ζ, ε) →

F±(ζ, ε) and nk(ζ) → n(ζ) as k → ∞. Then, we pass to the limit as k → ∞ in the formulas
(36) to obtain

F+(ζ, ε) = θ(ζa(ε), ζ; ε)

(

F−(ζa(ε), ε)

+

∫ ζ

ζa(ε)
θ(s, ζa(ε); ε)

n(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

,

F−(ζ, ε) = 1ε>0 θ(ζ,∞; ε)

(

F∞(−
√
2ε)

+

∫ ∞

ζ
θ(∞, s; ε)

n(s)M(s, ε)ds

τ(s)
√

2[ε−W (s)]

)

+ 1Wmin<ε<0 θ(ζ, ζb(ε); ε)

(

F+(ζb(ε), ε)

+

∫ ζb(ε)

ζ
θ(ζb(ε), s; ε)

n(s)M(s, ε)ds

τ(s)
√

2[ε −W (s)]

)

.

It is readily seen that these equations are equivalent to (32) and (33). In other words, the
nondecreasing sequence {F k

±} converges to a solution of the problem (32), which shows
the existence of a solution F± of (32) satisfying the inequality

0 ≤ F±(ζ, ε) ≤ Ae−ε/
√
2π.

As for the uniqueness of such a solution, it has already been proved in Lemma 1.

3.3.6 Convergence as ζ → ∞

We investigate the limit of F±(ζ, ε) as ζ → ∞ on the basis of the expressions (48) and
(49). Therefore, it is sufficient to consider the case of ε > 0. Let us recall the definition
(37) of the function θ(a, b; ε) and its properties (38) and (40), as well as the definitions
(32c) for M(s, ε) and (39) for µ(s, ε).

Choose ε > 0 to be kept fixed. Then, it follows from (49a) that

0 ≤ K+(ζ, s, ε)

= 1ζa(ε)<s<ζθ(s, ζ; ε)µ(s, ε)

+ 1ζ>ζa(ε)1s>ζa(ε)θ(ζa(ε), ζ; ε)θ(ζa(ε), s; ε)µ(s, ε)

≤ 1ζ>ζa(ε)1s>ζa(ε) 2µ(s, ε),

and

lim
ζ→+∞

K+(ζ, s, ε)

= 1s>ζa(ε)µ(s, ε)[θ(s,+∞; ε) + θ(ζa(ε),+∞; ε) θ(ζa(ε), s; ε)].

Similarly, (49b) leads to

0 ≤ K−(ζ, s, ε) = 1s>ζ>ζa(ε)θ(ζ, s; ε)µ(s, ε) ≤ 1s>ζ>ζa(ε)µ(s, ε),
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so that
lim

ζ→+∞
K−(ζ, s, ε) = 0.

Assume that
0 ≤ F∞(−

√
2ε) ≤ Ae−ε/

√
2π,

so that we know from Lemma 2 that

0 ≤ F±(ζ, ε) ≤ Ae−ε/
√
2π and 0 ≤ n(ζ) ≤ Ae−W (ζ).

Then

0 ≤ K+(ζ, s, ε)n(s)M(s, ε)

≤ 21ζ>ζa(ε)1s>ζa(ε)µ(s, ε)Ae
−W (s) 1√

2π
e−ε+W (s)

= A
√

2
πe

−ε1ζ>ζa(ε)1s>ζa(ε)µ(s, ε)

≤ A
√

2
π1ζ>ζa(ε)1s>ζa(ε)µ(s, ε),

while

0 ≤ K−(ζ, s, ε)n(s)M(s, ε)

≤ 1s>ζ>ζa(ε)µ(s, ε)Ae
−W (s) 1√

2π
e−ε+W (s)

= A√
2π
e−ε1s>ζ>ζa(ε)µ(s, ε)

≤ A√
2π
1s>ζ>ζa(ε)µ(s, ε).

Since
∫ ∞

0
1s>ζa(ε)µ(s, ε)ds < ∞,

we conclude by dominated convergence that, for each ε > 0, one has

lim
ζ→+∞

∫ ∞

0
K+(ζ, s, ε)n(s)M(s, ε)ds

=

∫ ∞

0
1s>ζa(ε)µ(s, ε)[θ(s,+∞, ε)

+ θ(ζa(ε),+∞, ε)θ(ζa(ε), s, ε)]n(s)M(s, ε)ds,

lim
ζ→+∞

∫ ∞

0
K−(ζ, s, ε)n(s)M(s, ε)ds = 0.

Hence, for each ε > 0,

lim
ζ→+∞

F+(ζ, ε)

= θ(ζa(ε),∞; ε)2F∞(−
√
2ε)

+

∫ ∞

ζa(ε)
µ(s, ε)[θ(s,+∞, ε)

+ θ(ζa(ε),+∞, ε)θ(ζa(ε), s, ε)]n(s)M(s, ε)ds, (52a)

lim
ζ→+∞

F−(ζ, ε) = F∞(−
√
2ε). (52b)

Equation (52b) confirms that the boundary condition (28d) in the problem (28) is sat-
isfied, while (52a) shows that the limit of the solution F (ζ, cz) to the problem (28) as
ζ → ∞ exists for cz > 0.

21



3.4 Proof of exponential convergence of approximating sequence {F k
±}

We finally prove Theorem 2. Let us return to the integral transformation (48). Multi-
plying each side of both equalities by µ(ζ, ε)τ(ζ) and integrating in ε > W (ζ), one finds
that

nk(ζ) =

∫ ∞

0
K(ζ, s)nk−1(s)ds+N(ζ) , n0 = 0, (53)

where

K(ζ, s) := τ(ζ)

∫ ∞

W (ζ)
[K+(ζ, s, ε) +K−(ζ, s, ε)]µ(ζ, ε)M(s, ε)dε, (54)

and

N(ζ) := τ(ζ)

∫ ∞

W (ζ)
1ε>0 [θ(ζa(ε), ζ; ε)θ(ζa(ε),∞; ε)

+ θ(ζ,∞; ε)]F∞(−
√
2ε)µ(ζ, ε)dε. (55)

The following two things suggest considering the quantity

∫ ∞

0
nk(ζ)

dζ

τ(ζ)
:

• if nk(ζ) converges to a limit nk
∞ > 0 as ζ → +∞, the weight 1/τ(ζ), known to be

integrable on the half-line, will make the function ζ 7→ nk(ζ)/τ(ζ) also integrable;
and

• there is the prefactor τ(ζ) in the definition (54) of K(ζ, s) as well as in the definition
(55) of N(ζ).

Thus, multiplying both sides of (53) by 1/τ(ζ), integrating in ζ over the half-line, and
exchanging the order of integration in ζ and in s in the first integral on the right-hand
side of (53), we arrive at the equality

∫ ∞

0
nk(ζ)

dζ

τ(ζ)
=

∫ ∞

0

(
∫ ∞

0
K(ζ, s)

τ(s)

τ(ζ)
dζ

)

nk−1(s)
ds

τ(s)
+

∫ ∞

0
N(ζ)

dζ

τ(ζ)
. (56)

Therefore, we are left with the task of computing

∫ ∞

0
K(ζ, s)

dζ

τ(ζ)

=

∫ ∞

0

∫ ∞

W (ζ)
[K+(ζ, s, ε) +K−(ζ, s, ε)]µ(ζ, ε)M(s, ε)dεdζ

=

∫ ∞

0
M(s, ε)

(

∫ ∞

ζa(ε)
[K+(ζ, s, ε)+K−(ζ, s, ε)]µ(ζ, ε)dζ

)

dε

+

∫ 0

Wmin

M(s, ε)

(

∫ ζb(ε)

ζa(ε)
[K+(ζ, s, ε)+K−(ζ, s, ε)]µ(ζ, ε)dζ

)

dε. (57)
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3.4.1 Computing the inner integrals in (57)

We recall from (49a) and (49b) that

µ(ζ, ε)K+(ζ, s, ε)

= 1ε>01ζ>ζa(ε)1s>ζa(ε)[−∂ζθ(ζa(ε), ζ; ε)]θ(ζa(ε), s; ε)µ(s, ε)

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε)1ζa(ε)<s<ζb(ε)[−∂ζθ(ζa(ε), ζ; ε)]

× [θ(s,ζb(ε);ε)+θ(ζb(ε),s;ε)]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

+ (1ε>01ζa(ε)<s<ζ + 1Wmin<ε<01ζa(ε)<s<ζ<ζb(ε))[−∂ζθ(s, ζ; ε)]µ(s, ε), (58)

and

µ(ζ, ε)K−(ζ, s, ε)

= (1ε>01ζa(ε)<ζ<s + 1Wmin<ε<01ζa(ε)<ζ<s<ζb(ε)) ∂ζθ(ζ, s; ε)µ(s, ε)

+ 1Wmin<ε<01ζa(ε)<ζ<ζb(ε)1ζa(ε)<s<ζb(ε) ∂ζθ(ζ, ζb(ε); ε)

× [θ(s,ζa(ε);ε)+θ(ζa(ε),s;ε)]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

. (59)

Observe that we have used (40) to transform the terms

∂sθ(s,ζb(ε);ε)−∂sθ(ζb(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

and ∂sθ(s,ζa(ε);ε)−∂sθ(ζa(ε),s;ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

into
[θ(s,ζb(ε);ε)+θ(ζb(ε),s;ε)]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

and [θ(s,ζa(ε);ε)+θ(ζa(ε),s;ε)]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

,

respectively, and the terms

µ(ζ, ε)θ(ζa(ε), ζ; ε) and µ(ζ; ε)θ(ζ, ζb(ε); ε)

into
−∂ζθ(ζa(ε), ζ; ε) and ∂ζθ(ζ, ζb(ε); ε),

respectively.
Then, for ε > 0, one has

∫ ∞

ζa(ε)
K+(ζ, s, ε)µ(ζ, ε)dζ

= 1ε>01s>ζa(ε)[1− θ(ζa(ε),∞; ε)]θ(ζa(ε), s; ε)µ(s, ε)

+ 1ε>01ζa(ε)<s[1− θ(s,∞; ε)]µ(s, ε), (60a)
∫ ∞

ζa(ε)
K−(ζ, s, ε)µ(ζ, ε)dζ = 1ε>01ζa(ε)<s[1− θ(ζa(ε), s; ε)]µ(s, ε), (60b)

while, for Wmin < ε < 0,
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∫ ζb(ε)

ζa(ε)
K+(ζ, s, ε)µ(ζ, ε)dζ

= 1Wmin<ε<01ζa(ε)<s<ζb(ε)[1− θ(s, ζb(ε); ε)]µ(s, ε)

+ 1Wmin<ε<01ζa(ε)<s<ζb(ε)[1− θ(ζa(ε), ζb(ε); ε)]

× [θ(s,ζb(ε);ε)+θ(ζb(ε),s;ε)]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

, (61a)
∫ ζb(ε)

ζa(ε)
K−(ζ, s, ε)µ(ζ, ε)dζ

= 1Wmin<ε<01ζa(ε)<s<ζb(ε)[1− θ(ζa(ε), s; ε)]µ(s, ε)

+ 1Wmin<ε<01ζa(ε)<s<ζb(ε)[1− θ(ζa(ε), ζb(ε); ε)]

× [θ(s,ζa(ε);ε)+θ(ζa(ε),s;ε]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

. (61b)

We here note that the integral in ζ over (ζa(ε),∞) and that over (ζa(ε), ζb(ε)) in (57) are
expressed in the unified form

∫ ∞

0
[K+(ζ, s, ε)+K−(ζ, s, ε)]µ(ζ, ε)dζ, (62)

because of the expressions (58) and (59). Using (60) and (61), this integral is expressed
as

∫ ∞

0
[K+(ζ, s, ε) +K−(ζ, s, ε)]µ(ζ, ε)dζ

= 1ε>01ζa(ε)<s[1− θ(ζa(ε),∞; ε)θ(ζa(ε), s; ε) + 1− θ(s,∞; ε)]µ(s, ε)

+ 1Wmin<ε<01ζa(ε)<s<ζb(ε)[1− θ(s, ζb(ε); ε) + 1− θ(ζa(ε), s; ε)]µ(s, ε)

+ 1Wmin<ε<01ζa(ε)<s<ζb(ε)[1− θ(ζa(ε), ζb(ε); ε)]

× [θ(s,ζb(ε);ε)+θ(s,ζa(ε);ε)+θ(ζb(ε),s;ε)+θ(ζa(ε),s;ε)]µ(s,ε)
θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

. (63)

We shall simplify the last two lines significantly: set

X := θ(s, ζa(ε); ε) > 1 and Λ := θ(ζb(ε), ζa(ε); ε) > 1

for ζa(ε) < s < ζb(ε), so that

θ(ζa(ε), s; ε) = 1/X, θ(ζb(ε), s; ε) = Λ/X, θ(s, ζb(ε); ε) = X/Λ.

Then, one has

[1− θ(s, ζb(ε); ε) + 1− θ(ζa(ε), s; ε)]

+ [1− θ(ζa(ε), ζb(ε); ε)]
θ(s,ζb(ε);ε)+θ(s,ζa(ε);ε)+θ(ζb(ε),s;ε)+θ(ζa(ε),s;ε)

θ(ζb(ε),ζa(ε);ε)−θ(ζa(ε),ζb(ε);ε)

= (2− X
Λ − 1

X ) + (1− 1
Λ)

X
Λ +X + Λ

X + 1
X

Λ− 1
Λ

= (2− X
Λ − 1

X ) + (1− 1
Λ)

(XΛ + 1
X )(1 + Λ)

(Λ+1)(Λ−1)
Λ

= (2− X
Λ − 1

X ) + (1− 1
Λ)

X
Λ + 1

X
Λ−1
Λ

= 2.
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Therefore,

∫ ∞

0
[K+(ζ, s, ε) +K−(ζ, s, ε)]µ(ζ, ε)dζ

= 1ε>01ζa(ε)<s[2− θ(ζa(ε),∞, ε)θ(ζa(ε), s; ε) − θ(s,∞; ε)]µ(s, ε)

+ 21Wmin<ε<01ζa(ε)<s<ζb(ε)µ(s, ε). (64)

On the other hand, setting

L := θ(ζa(ε),∞; ε) and Z := θ(s,∞; ε),

one has
θ(ζa(ε), s; ε) = L/Z , L < Z < 1.

Thus,
θ(ζa(ε),∞, ε)θ(ζa(ε), s; ε) + θ(s,∞; ε) = L2

Z + Z ≥ 2L,

since
ζa(ε) < s =⇒ 0 < θ(ζa(ε), s; ε) = L/Z < 1

and Z 7→ L2

Z + Z is increasing on [L, 1]. Thus, it follows that

2− θ(ζa(ε),∞; ε)θ(ζa(ε), s; ε) − θ(s,∞; ε) ≤ 2[1− θ(ζa(ε),∞, ε)].

Summarizing, we have proved the following inequality:

∫ ∞

0
[K+(ζ, s, ε) +K−(ζ, s, ε)]µ(ζ, ε)dζ

≤ 2µ(s, ε)1W (s)<ε[1− θ(ζa(ε),∞, ε)1ε>0]. (65)

3.4.2 Bounding (57)

As noted in the process of deriving (63), the integrals with respect to ζ in (57) are unified
in the form (62), so that (57) is recast as

∫ ∞

0
K(ζ, s)

dζ

τ(ζ)

=

∫ ∞

Wmin

M(s, ε)

(
∫ ∞

0
[K+(ζ, s, ε)+K−(ζ, s, ε)]µ(ζ, ε)dζ

)

dε. (66)

Next, integrating (65) multiplied by M(s, ε) in ε from Wmin to ∞ and using the resulting
inequality in (66), we arrive at the following inequality:

∫ ∞

0
K(ζ, s)

τ(s)

τ(ζ)
dζ

≤ 2

∫ ∞

W (s)
M(s, ε)τ(s)µ(s, ε)dε

− 2

∫ ∞

0
θ(ζa(ε),∞; ε)M(s, ε)τ(s)µ(s, ε)1ζa (ε)<sdε

= 1− 2

∫ ∞

0
θ(ζa(ε),∞; ε)M(s, ε)τ(s)µ(s, ε)1ζa (ε)<sdε

=: Υ(s). (67)
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Indeed,

∫ ∞

W (s)
M(s, ε)τ(s)µ(s, ε)dε =

1√
2π

∫ ∞

W (s)

eW (s)−εdε
√

2[ε−W (s)]

=
1√
2π

∫ ∞

0

e−udu√
2u

=
1

2
√
π
Γ(12 ) =

1

2
.

Our aim is to find an upper bound for Υ(s), which amounts to finding a lower bound
for the integral in the fourth line of (67), i.e.,

∫ ∞

0
θ(ζa(ε),∞; ε)M(s, ε)τ(s)µ(s, ε)1ζa (ε)<sdε.

In order to do so, we first seek a lower bound for

θ(ζa(ε),∞, ε) = exp

(

−
∫ ∞

ζa(ε)

dt

τ(t)
√

2[ε−W (t)]

)

,

or, equivalently, an upper bound for the integral in the exponential.
This step will use some of the specifics of the potential, summarized in (2) and items

(i)–(iv) in Sec. 2.1. Note that the statements in Sec. 2.1 are for the dimensional potential,
whereas the potential W considered here is dimensionless [cf. (9) and (25)]. Therefore,
we rephrase the specific properties of W that will be used in the following:

• W is decreasing and convex downward on (0, ζmin), and tends to +∞ at 0+;

• W is continuous and increasing on (ζmin,+∞), and tends to 0− at +∞.

Thus, for each ε > 0, the point ζa(ε) is uniquely defined by

W (ζa(ε)) = ε , 0 < ζa(ε) < ζa(0) < ζmin;

besides
Wmin = W (ζmin) = min

ζ>0
W (ζ) < 0.

On the other hand, we recall, from the properties of the dimensional relaxation time
τph,s(ζ) in (7) and below in Sec. 2.1, that

τ(ζ) ≥ τ(0) > 0 , and ℓ :=

∫ ∞

0

ds

τ(s)
< +∞,

for its dimensionless counterpart τ(ζ) considered here.
We first decompose the integral contained in the function θ(ζa(ε),∞; ε) as

∫ ∞

ζa(ε)

dt

τ(t)
√

2[ε −W (t)]

=

∫ ζmin

ζa(ε)

dt

τ(t)
√

2[ε−W (t)]
+

∫ ∞

ζmin

dt

τ(t)
√

2[ε−W (t)]

= I + J,

and estimate I and J separately.
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The easiest term to bound is J : indeed, for ε > 0, one has

W |(ζmin,+∞) ≤ 0 =⇒ J ≤
∫ ∞

ζmin

dt

τ(t)
√
2ε

≤ ℓ√
2ε

.

Bounding the term I is slightly more involved. We first use the convexity of W on
the interval (0, ζmin), which implies that

W (t) = W
(

ζmin−t
ζmin−ζa(ε)

ζa(ε) +
t−ζa(ε)

ζmin−ζa(ε)
ζmin

)

≤ ζmin−t
ζmin−ζa(ε)

W (ζa(ε)) +
t−ζa(ε)

ζmin−ζa(ε)
W (ζmin),

or, equivalently,

W (t) ≤ W (ζa(ε)) − W (ζa(ε))−W (ζmin)
ζmin−ζa(ε)

[t− ζa(ε)]

= ε− ε−Wmin
ζmin−ζa(ε)

[t− ζa(ε)].

The geometric interpretation of this inequality is as follows: it means that the graph of
W is below the chord joining the point of coordinates (ζa(ε), ε) to the point of coordinates
(ζmin,Wmin). This is indeed an obvious consequence of the convexity of W on the interval
(0, ζmin).

Thus
t ∈ (ζa(ε), ζmin) =⇒ ε−W (t) ≥ ε−Wmin

ζmin−ζa(ε)
[t− ζa(ε)],

and hence

I ≤ 1
τ(0)

√

ζmin−ζa(ε)
2(ε−Wmin)

∫ ζmin

ζa(ε)

dt√
t−ζa(ε)

= 2
τ(0)

ζmin−ζa(ε)√
2(ε−Wmin)

≤ 2ζmin

τ(0)
√
2ε

.

Therefore
∫ ∞

ζa(ε)

dt

τ(t)
√

2[ε−W (t)]
≤
(

2ζmin

τ(0)
+ ℓ

)

1√
2ε

,

so that

θ(ζa(ε),∞; ε) ≥ e−K/
√
ε, with K :=

√
2ζmin

τ(0)
+

ℓ√
2
. (68)

Now, we insert the lower bound (68) in the definition of Υ(s) included in (67), that is,

1−Υ(s)

2
=

∫ ∞

0
θ(ζa(ε),∞; ε)M(s, ε)τ(s)µ(s, ε)1ζa (ε)<sdε

≥
∫ ∞

0
e−K/

√
εM(s, ε)τ(s)µ(s, ε)1ζa(ε)<sdε

=
1√
2π

∫ ∞

0

e−K/
√
εeW (s)−ε1ζa(ε)<s

√

2[ε−W (s)]
dε

=
1√
2π

∫ ∞

W (s)+

e−K/
√
εeW (s)−ε

√

2[ε−W (s)]
dε,

with the notation X+ = max(X, 0) and X− = max(−X, 0). Change variables in the last
integral, setting u = ε−W (s). Since

W (s) = W (s)+ −W (s)−,
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one has

1−Υ(s)

2
≥ 1√

2π

∫ ∞

W (s)−

e−K/
√

u+W (s)e−u

√
2u

du

≥ 1√
2π

∫ ∞

|Wmin|+1

e−K/
√

u+W (s)e−u

√
2u

du

since W (s)− ≤ |Wmin| ≤ |Wmin|+ 1.
Next, observe that the function v 7→ e−K/

√
v is increasing on (0,+∞), so that

u ≥ |Wmin|+ 1 =⇒ e−K/
√

u+W (s) ≥ e−K/
√

1+|Wmin|+W (s) ≥ e−K .

Therefore

1−Υ(s)

2
=

∫ ∞

0
θ(ζa(ε),∞; ε)M(s, ε)τ(s)µ(s, ε)1ζa (ε)<sdε

≥ 1√
2π

∫ ∞

|Wmin|+1

e−Ke−u

√
2u

du > 0.

Summarizing, we have proved the following inequality

0 ≤
∫ ∞

0
K(ζ, s)

τ(s)

τ(ζ)
dζ

≤ 1− 2

∫ ∞

0
θ(ζa(ε),∞, ε)M(s, ε)τ(s)µ(s, ε)1ζa (ε)<sdε

= Υ(s) ≤ L,

where

L = 1− e−K

√
π

∫ ∞

|Wmin|+1

e−u

√
u
du < 1.

3.4.3 Exponential convergence of nk and of F k
±

Now we recall (56) and pass to the limit as k → ∞ in both sides of this equality. Since
nk → n a.e. on (0,+∞) by monotone convergence (cf. Lemma 2), one has

∫ ∞

0
n(ζ)

dζ

τ(ζ)
=

∫ ∞

0

(
∫ ∞

0
K(ζ, s)

τ(s)

τ(ζ)
dζ

)

n(s)
ds

τ(s)
+

∫ ∞

0
N(ζ)

dζ

τ(ζ)
,

so that

0 ≤
∫ ∞

0
[n(ζ)− nk(ζ)]

dζ

τ(ζ)

=

∫ ∞

0

(
∫ ∞

0
K(ζ, s)

τ(s)

τ(ζ)
dζ

)

[n(s)− nk−1(s)]
ds

τ(s)

≤ L
∫ ∞

0
[n(s)−nk−1(s)]

ds

τ(s)
≤ Lk

∫ ∞

0
[n(s)−n0(s)]

ds

τ(s)

= Lk

∫ ∞

0
n(s)

ds

τ(s)
≤ ALk

∫ ∞

0
e−W (s) ds

τ(s)
≤ Aℓe|Wmin|Lk.

This proves the first half of Theorem 2.
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This result is easily transformed into an exponential convergence statement on F k
±.

Indeed, by Lemma 2, we know that F k
± is nondecreasing in k and converges pointwise to

F±, so that

∫ ∞

0

∫ ∞

−∞

[

|F+(ζ, ε)− F k
+(ζ, ε)|+ |F−(ζ, ε)− F k

−(ζ, ε)|
] 1ε>W (ζ)dεdζ

τ(ζ)
√

2[ε−W (ζ)]

=

∫ ∞

0

∫ ∞

W (ζ)

[

F+(ζ, ε)− F k
+(ζ, ε) + F−(ζ, ε) − F k

−(ζ, ε)
] dεdζ

τ(ζ)
√

2[ε−W (ζ)]

=

∫ ∞

0
[n(ζ)− nk(ζ)]

dζ

τ(ζ)
≤ Aℓe|Wmin|Lk.

This completes the proof of Theorem 2.

4 Numerical results

In our previous paper [6], the problem (26) was solved approximately to construct models
of the boundary condition (24) and also numerically to assess the constructed models.
The actual numerical analysis was basically carried out for (32) using a finite-difference
method, the details of which are found in Appendix C in [6].

In [6], the presented results were mostly regarding the output distribution function
f̂(ζ → ∞, ĉz > 0) in response to the input f̂(ζ → ∞, ĉz < 0) in (23), since the attention
was focused on the boundary condition (24) for the Boltzmann equation. In this section,
using the same numerical scheme as in [6], we give some numerical results that visualize
the mathematical properties given in Sec. 3 as well as that demonstrate the behavior of
the gas in the physisorbate layer.

4.1 Preliminaries

In order to carry out actual numerical computations for the problem (32), one has to
specify the interaction potential W (ζ) and the relaxation time τ(ζ) explicitly. Following
[6], we adopt the Lennard-Jones (LJ) (12, 6) and (9, 3) potentials:

W (ζ) = 4κ

(

1

ζ12
− 1

ζ6

)

, (69a)

W (ζ) =
3
√
3

2
κ

(

1

ζ9
− 1

ζ3

)

, (69b)

and the relaxation times of algebraic and exponential type:

τ(ζ) = κτ

(

1 +
σ

ν
ζ
)ν

, (70a)

τ(ζ) = κτ exp(σζ), (70b)

where κ, κτ , ν, and σ are parameters. Note that (69a), (69b), (70a), and (70b) are in
dimensionless form and correspond to (85), (88), (91), and (96) in [6]. The reader is
referred to [6] for the related quantities; for instance, ζa(ε) and ζb(ε) for (69a) are given
by (86) in [6] and those for (69b) are given by (89) there. It is noted that the LJ(9, 3)
potential (69b) is more realistic as a potential of interactions between a gas molecule and
a crystal surface [27, 10, 24]. In fact, it results from a continuous model of the crystal
after volume integration.
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In addition, the input velocity distribution F∞(cz) in (28d) should be specified. Here,
we assume the following shifted Maxwellian:

F∞(cz) =
1√

2πT∞
exp

(

−(cz − vz∞)2

2T∞

)

, (71)

where vz∞ and T∞ are the parameters to be specified.
In this Sec. 4, the parameters κ in (69) and κτ and σ in (70) are set to be

(κ, κτ , σ) = (1, 1, 1) (72)

as in [6].

4.2 Monotonicity and exponential convergence with respect to k

The numerical method used in [6] is based on an iteration scheme essentially the same as
(34) except that the superscript k on the right-hand side of (34e) is replaced by k − 1.
We also check that the numerical solution enjoys the mathematical properties established
in Sec. 3.

In the numerical computation in [6], initial values different from (35) were used for the
iteration. In order to mimic the mathematical proofs in Sec. 3, we redo the computation
using the scheme in [6] but starting from the initial values (35), i.e., F 0

± = n0 = 0.
The computation is performed in the cases summarized in Table 1. To be more

specific, “LJ(12, 6)” indicates (69a), and “LJ(9, 3)” (69b); “algebraic” indicates (70a)
(with ν = 4 and 7), and “exponential” (70b); and the parameters T∞ and vz∞ are chosen
as shown in the table. The case (viii) corresponds to the equilibrium solution. Recall
that the parameters κ, κτ , and σ are set as (72).

Table 1: Computational cases and values of a and b.
(T∞, vz∞) a b

(i) LJ(12,6), algebraic (ν = 7) (1, −0.5) 0.06556 −1.127
(ii) LJ(12,6), exponential (1, −0.5) 0.06226 −1.221
(iii) LJ(9,3), algebraic (ν = 4) (1, −0.5) 0.08827 −0.7568
(iv) LJ(9,3), exponential (1, −0.5) 0.08193 −0.9159
(v) LJ(9,3), algebraic (ν = 4) (1, 0.5) 0.08827 −1.932
(vi) LJ(9,3), algebraic (ν = 4) (0.6, 0) 0.08827 −1.466
(vii) LJ(9,3), algebraic (ν = 4) (0.6, −0.5) 0.08827 −0.8125
(viii) LJ(9,3), algebraic (ν = 4) (1, 0) 0.08827 −1.266

Figures 3 and 4 show the difference nk(ζ)−nk−1(ζ) versus k at four different positions
ζ in the semi-logarithmic scale. Figure 3 contains the cases (i)–(iv) in Table 1, whereas
Fig. 4 the cases (v)–(viii) there. The green, red, blue, and orange solid lines indicate the
results at ζ = 1.371, 1.122 (= ζmin), 1, and 0.934, respectively, in panels (a) and (b) in
Fig. 3 and indicate the results at ζ = 2.293, 1.201 (= ζmin), 1, and 0.901, respectively, in
panels (c) and (d) in Fig. 3 as well as in all panels in Fig. 4. In Fig. 3, the pair of panels
(a) and (b) and that of panels (c) and (d) show the effect of different relaxation times
τ(ζ), whereas the pair of panels (a) and (c) and that of panels (b) and (d) show the effect
of different potentials W (ζ). Figure 4 shows the effect of the difference in the parameters
(T∞, vz∞) in the input velocity distribution (71).
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In each panel in Figs. 3 and 4, the four solid lines corresponding to the four different
positions seem to be straight and parallel for large k. Therefore, it is likely that nk(ζ)−
nk−1(ζ) for large k is expressed in the following form:

nk(ζ)− nk−1(ζ) = e−ak+b, (for large k),

where a and b depend on the parameters, but a is independent of ζ. The values of a and b
determined by the least square fitting using the numerical data at ζ = ζmin for k ≥ 50 are
shown in Table 1 for each case, and the line Ce−ak with a in Table 1 and an appropriate
constant C is shown by the black dashed line in each panel.

It is seen from Figs. 3 and 4 that nk(ζ)−nk−1(ζ) is always positive. In addition, it is
likely from these figures and the above discussion that nk(ζ) − nk−1(ζ) decreases expo-
nentially in k with the convergence rate independent of ζ. This also indicates that nk(ζ)
is likely to converge to n(ζ) exponentially fast in k with the same uniform convergence
rate, i.e,

n(ζ)− nk(ζ) ≃ N(ζ)e−ak,

for large k, where N(ζ) is an appropriate positive function of ζ. These observations
numerically confirm a part of the statements in Lemma 2 and Theorem 2, i.e., the fact
that the sequence {nk(ζ)} increases monotonically in k and converges exponentially fast
in k. Table 1 shows that the convergence rate is relatively small and is less than 0.1.
Although Theorem 2 shows the exponential convergence of nk in a L1 norm, the numerical
result suggests a pointwise convergence in k with a convergence rate uniform in ζ.

4.3 Behavior in the physisorbate layer

In this section, we give some numerical results for the behavior of the gas and physisorbed
molecules inside the physisorbate layer.

4.3.1 Profiles of macroscopic quantities

We recall that n(ζ) indicates the dimensionless number density of the gas molecules at
the zeroth order in ǫ because of the notation agreement in Secs. 2.3 and 2.4 (that is, the
superscript 〈0〉 as well as the hat has been omitted) and is expressed as (28b) in terms
of the reduced velocity distribution function F (ζ, cz).

Figure 5 shows n(ζ) versus ζ in the cases (i)–(viii) in Table 1; panel (a) contains the
cases (i)–(iv), and panel (b) the cases (v)–(viii). The number density naturally increases
in the physisorbate layer and exhibits the maximum concentration around ζ = ζmin. The
result for the case (viii) recovers the equilibrium solution n(ζ) = e−W (ζ). In this way, the
profiles of n(ζ) visualizes the physisorbate layer.

Let us denote by c⋆v̂ and TwT̂ the (dimensional) flow (or macroscopic) velocity and the
(dimensional) temperature, respectively. We follow the notation agreement in Secs. 2.3
and 2.4 and regard v and T as the dimensionless flow velocity and temperature at the
zeroth order in ǫ. Then, they are expressed as

v =
1

n

∫

R3

cfdc, T =
1

3n

∫

R3

|c− v|2fdc. (73)

It follows from the particle conservation (20) that

vz =
1

n

∫

R3

czfdc =
1

n

∫ ∞

−∞
czF (ζ, cz)dcz = 0,
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at any ζ, that is, there is no macroscopic motion of the gas molecules in the normal
direction in the physisorbate layer. Then, T is expressed as

T =
1

3n

∫

R3

[c2z + (cx − vx)
2 + (cy − vy)

2]fdc.

This indicates that the temperature T is obtained not by the reduced distribution function
F (ζ, cz) but by the full distribution f(ζ, c‖, cz). However, once F (ζ, cz) is obtained, f can
be reconstructed as described in the last paragraph in Sec. 2.4. Here, in order to simplify
the presentation, we consider, instead of the full temperature T , the normal temperature
T⊥ defined by

T⊥(ζ) =
1

n

∫

R3

c2zf(ζ, c‖, cz)dc =
1

n

∫ ∞

−∞
c2zF (ζ, cz)dcz.

The profile of T⊥(ζ) is shown in Fig. 6, where panel (a) contains the cases (i)–(iv)
in Table 1 and panel (b) the cases (v)–(viii) there. Since F (ζ, cz) → 0 as ζ → 0, the
normal temperature T⊥ becomes 0/0 as ζ → 0 and does not make sense in the numerical
point of view. Therefore, T⊥ is shown only for ζ ≥ 1 in Fig. 6. The result for the case
(viii) recovers the equilibrium solution T⊥ = 1. The profile for each of the cases (i)–(iv)
exhibits a sharp downward peak close to ζ = 1, whereas that for each of the cases (v)–(vii)
exhibits a sharp upward peak there.

4.3.2 Behavior of velocity distribution function

Next, we consider the reduced velocity distribution function F (ζ, cz). In Figs. 7–10,
F (ζ, cz) versus cz is plotted at various values of ζ for the cases (iii) and (v)–(vii) in Table
1, respectively. In each figure, panel (a) shows the profiles for 2.239 ≤ ζ ≤ ∞, (b) for
1.201 ≤ ζ ≤ 2.293, (c) for 1 ≤ ζ ≤ 1.201, and (d) for 0.901 ≤ ζ ≤ 1. The vertical dotted
line indicates the discontinuities in F (ζ, cz).

The profiles of F (ζ, cz) in Figs. 7–10 exhibit discontinuities at ε = c2z/2 +W (ζ) = 0,
namely, at cz = ±

√

−2W (ζ) (for ζ ≥ 1). The mechanism of generation and propagation
of the discontinuity is explained in detail, for the case (iv) in Table 1, in Sec. VII of [6].
Here, we repeat a brief explanation.

Let us consider the characteristic line c2z/2 +W (ζ) = ε = 0 of (28a) for cz < 0. The
cases ε = 0+ and 0− correspond, respectively, to F−(ζ, 0+) and F−(ζ, 0−) in the (ζ, ε)
representation. As ζ → ∞, F−(ζ, 0+) approaches F∞(0−) because of (32d), whereas
F−(ζ, 0−) approaches F+(ζb(0

−), 0−) because of (33b). Since F∞(0−) and F+(ζb(0
−), 0−)

are generally different, F−(ζ, ε) is discontinuous at ζ = ∞ and ε = 0, or equivalently,
F (ζ, cz) is discontinuous at ζ = ∞ and cz = 0. This discontinuity propagates along
the characteristic line c2z/2 + W (ζ) = 0 for cz ≤ 0, decaying slowly because of the
interaction of gas molecules with phonons, toward the solid surface and reaches the turning
point (ζ, cz) = (ζa(0), 0) = (1, 0). Then, it propagates back along the characteristic line
c2z/2 + W (ζ) = 0 for cz > 0, continuing to decay slowly, toward infinity and finally
reaches infinity. The discontinuity does not enter the range ζ < ζa(0) = 1 because the
characteristic line c2z/2+W (ζ) = 0 does not enter there. This behavior is well represented
by the profiles in Figs. 7–10. The short vertical dotted-line segment at cz = 0 and ζ = 1 in
panels (c) and (d) in each of Figs. 7–10, which is upward in Figs. 7 and 10 and downward
in Figs. 8 and 9, indicates the height of the discontinuity in F (ζ, cz) at ζ = 1.
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4.4 Boundary condition for the Boltzmann equation

In this paper, special attention has been focused on the half-space problem (28) for the
reduced distribution function F (ζ, cz) for the physisorbate layer. The main purpose was
to establish some rigorous mathematical results summarized in Theorems 1 and 2 for
the problem (28). In addition, some numerical results visualizing rigorous mathematical
properties as well as showing the behavior of the gas inside the physisorbate layer were
presented. Here, recalling that the original aim of considering the half-space problem (28)
or (26) was to establish the boundary condition for the Boltzmann equation, we touch
on this aspect of the problem.

In [6], analytical models of the boundary conditions for the Boltzmann equation were
proposed. The models were constructed as the first and second approximations for the
iteration scheme for (26). The scheme is essentially the same as the scheme (36) for (32)
[see (51) in [6]], so that it is omitted here. The point is that the iteration starts not from
zero [cf. (35)] but from the equilibrium solution

f0 = β
1

(2π)3/2
exp

(

−|c|2
2

−W (ζ)

)

,

where f0 indicates the zeroth guess for the approximating sequence {fk} (k = 1, 2, . . . )
obtained by the iteration scheme mentioned above, and β is a constant to be determined
in such a way that the particle conservation (20) is satisfied in each fk.

The model of the boundary condition (24), based on the first iteration, is obtained in
the following form [6]:

fg(z, cz) = [1− α(c2z)]fg(z,−cz) + α(c2z)β (2π)−3/2 exp
(

−|c|2/2
)

,

for cz > 0, at z = 0, (74)

where

α(c2z) = 1−
[

θ
(

ζa(c
2
z/2),∞; c2z/2

)]2

= 1− exp

(

−
√
2

∫ ∞

ζa(c2z/2)

dξ

τ(ξ)
√

c2z/2−W (ξ)

)

, (75)

β = −
√
2π

[
∫ ∞

0
czα(c

2
z) exp

(

−c2z/2
)

dcz

]−1 ∫

cz<0
czα(c

2
z)fg(0, cz)dc. (76)

Here, ζa(c
2
z/2) is the solution of W (ζ) = c2z/2, and note that 0 < α(c2z) < 1 holds. In

addition, it should be recalled that (74)–(76) are dimensionless and that the arguments
t, x‖, and c‖ are omitted in fg in (74) and (76). The correspondence of the notation here
and in [6] is as follows:

(

fg, α, β, x = (x, y, z), c = (cx, cy, cz), τ, W
)

(here)

⇐⇒
(

f̂g, α̂, β̂, x̂ = (x̂, ŷ, ẑ), ĉ = (ĉx, ĉy , ĉz), τ̂ph, ŵ
)

(in [6]).

The reader is referred to [6] for the dimensional form of (74)–(76) as well as for the
generalization, such as the cases of varying wall temperature and curved boundary. The
model based on the second iteration, which is also obtained in [6] and detailed in [22], is
less explicit, so that it is omitted here.

As one can see from (74), the dependence on cx and cy of the reflected distribution
fg(0, cz) (cz > 0) is determined partially by that of the incident distribution fg(0, cz)
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(cz < 0) and partially by the thermalizing term exp(−|c|2/2). This tendency is more or
less the same for the original half-space problem (26). In other words, the problem (26)
determines the cz-dependence of the reflected molecules crucially but not the cx- and
cy-dependence.

For this reason and in consistency with the main discussions in this paper, we consider
the models of the boundary condition only for the reduced distribution function F (ζ, cz).
Denoting

Fg(z, cz) =

∫ ∞

−∞

∫ ∞

−∞
fg(z, c‖, cz)dcxdcy, (77)

and integrating (74) with respect to cx and cy each from −∞ to ∞, one obtains

Fg(z, cz) = [1− α(c2z)]Fg(z,−cz) + α(c2z)β (2π)−1/2 exp
(

−c2z/2
)

,

for cz > 0, at z = 0, (78)

where α(c2z) is given by (75), and β is recast as

β = −
√
2π

[
∫ ∞

0
czα(c

2
z) exp

(

−c2z/2
)

dcz

]−1 ∫ 0

−∞
czα(c

2
z)Fg(0, cz)dcz. (79)

Figure 11 shows the reduced velocity distribution for the reflected molecules Fg(0, cz)
(cz > 0) in response to that for the incident molecules Fg(0, cz) (cz < 0) when the latter
is given by (71), i.e.,

Fg(0, cz) =
1√

2πT∞
exp

(

−(cz − vz∞)2

2T∞

)

, for cz < 0, (80)

for the cases (iii) and (v)–(vii) in Table 1; panels (a), (b), (c), and (d) correspond to the
cases (iii), (v), (vi), and (vii), respectively. In the figure, the thin line indicates the result
based on the first iteration model, i.e., (78) with (75) and (79), the thick line for cz > 0
that based on the second iteration model (see [6, 22] for its form), and the small circles
that based on the numerical solution taken from Figs. 7–10, i.e., F (ζ, cz) for ζ = ∞ for
cz > 0. The thick line for cz < 0 indicates the incident distribution (80). At least in the
cases (iii) and (v)–(vii) in Table 1, the model based on the second iteration shows very
good agreement with the numerical solution.

5 Concluding remarks

The present study concerns a kinetic model of gas-surface interactions and resulting
boundary conditions for the Boltzmann equation on a solid surface [6]. In the process of
the construction of the boundary conditions, a half-space problem of a kinetic equation
describing the behavior of the gas molecules in a thin layer on the solid surface (ph-
ysisorbate layer), in which the molecules are subject to an attractive-repulsive potential
and interacting with phonons, plays a crucial role. To be more specific, the solution of
this half-space problem establishes the relation between the velocity distribution for the
incident molecules and that for the outgoing molecules at infinity, and this relation is
nothing but the boundary condition for the Boltzmann equation that is valid outside
the physisorbate layer. In [6], this fact was clarified by a formal asymptotic analysis
of the kinetic model for gas-surface interactions, and the half-space problem was solved

34



approximately and numerically to establish the boundary condition for the Boltzmann
equation.

In the present paper, we have deepened the analysis and established rigorously the
essential mathematical properties of the physisorbate-layer problem. The results are
summarized in Theorems 1 and 2 in Sec. 3.1. To be more specific, the existence and
uniqueness of the solution have been established. The existence was proved by using an
approximating sequence, which turned out to be non-decreasing and to have an upper
bound. Furthermore, the approximating sequence was proved to converge to the solution
exponentially fast with an explicit estimate of the convergence rate.

In addition to the rigorous mathematical discussions in Sec. 3, we have also carried
out some numerical computations, using the method introduced in [6], for some spe-
cific potentials and gas-phonon relaxation times, to visualize a part of the mathematical
properties shown in Theorems 1 and 2 as well as to demonstrate the behavior of the ve-
locity distribution function and the macroscopic quantities inside the physisorbate layer
(Sec. 4). In this connection, the analytical models of the boundary condition for the
Boltzmann equation, established in [6] on the basis of first and second approximations
for the half-space problem for the physisorbate layer, were also mentioned (Sec. 4.4).

The kinetic approach in [6], which is based on the kinetic scaling in contrast to the fluid
scaling considered in [5, 2, 3, 4], can be generalized in various directions. For instance, it
would be more practical to consider a confinement potential with a periodic modulation
along the solid surface. It would also be important to include chemisorption in addition
to physisorption and to consider situations where the phonons are not in equilibrium.
Each direction should pose new mathematical problems for relevant kinetic equations,
and the mathematical analysis performed in this paper would provide good and useful
guidelines for them.
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Figure 3: The difference nk(ζ)− nk−1(ζ) versus k at four different positions. Panels (a)–
(d) correspond to the cases (i)–(iv) in Table 1. The green, red, blue, and orange solid lines
indicate the results at ζ = 1.371, 1.122 (= ζmin), 1, and 0.934, respectively, in panels (a)
and (b) and indicate the results at ζ = 2.293, 1.201 (= ζmin), 1, and 0.901, respectively,
in panels (c) and (d). The function Ce−ak with a in Table 1 and an appropriate constant
C is shown by the black dashed line.
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Figure 4: The difference nk(ζ) − nk−1(ζ) versus k at four different positions. Panels
(a)–(d) correspond to the cases (v)–(viii) in Table 1. The green, red, blue, and orange
solid lines indicate the results at ζ = 2.293, 1.201 (= ζmin), 1, and 0.901, respectively.
The function Ce−ak with a in Table 1 and an appropriate constant C is shown by the
black dashed line.
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Figure 5: The number density n versus ζ. (a) cases (i)–(iv) in Table 1, (b) cases (v)–(viii)
there.
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Figure 6: The normal temperature T⊥ versus ζ for ζ ≥ 1. (a) cases (i)–(iv) in Table 1,
(b) cases (v)–(viii) there.
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Figure 7: The reduced velocity distribution F (ζ, cz) versus cz in the case (iii) in Table 1.
(a) 2.239 ≤ ζ ≤ ∞, (b) 1.201 ≤ ζ ≤ 2.293, (c) 1 ≤ ζ ≤ 1.201, and (d) 0.901 ≤ ζ ≤ 1.
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Figure 8: The reduced velocity distribution F (ζ, cz) versus cz in the case (v) in Table 1.
(a) 2.239 ≤ ζ ≤ ∞, (b) 1.201 ≤ ζ ≤ 2.293, (c) 1 ≤ ζ ≤ 1.201, and (d) 0.901 ≤ ζ ≤ 1.
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Figure 9: The reduced velocity distribution F (ζ, cz) versus cz in the case (vi) in Table 1.
(a) 2.239 ≤ ζ ≤ ∞, (b) 1.201 ≤ ζ ≤ 2.293, (c) 1 ≤ ζ ≤ 1.201, and (d) 0.901 ≤ ζ ≤ 1.
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Figure 10: The reduced velocity distribution F (ζ, cz) versus cz in the case (vii) in Table
1. (a) 2.239 ≤ ζ ≤ ∞, (b) 1.201 ≤ ζ ≤ 2.293, (c) 1 ≤ ζ ≤ 1.201, and (d) 0.901 ≤ ζ ≤ 1.
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Figure 11: Fg(0, cz) versus cz. Panels (a), (b), (c), and (d) correspond to the cases (iii),
(v), (vi), and (vii) in Table 1, respectively. The thin line indicates the result based on
the first iteration model, i.e., (78) with (75) and (79), the thick line for cz > 0 that based
on the second iteration model (see [6, 22] for its form), and the circles that based on the
numerical solution. The thick line for cz < 0 indicates the incident distribution (80).
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