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Abstract

We consider an inverse boundary value problem for the heat equation with
a non-smooth coefficient of conductivity which models the displacement of a
moving body inside a nonhomogeneous background. We prove the unique-
ness of the moving inclusion from the knowledge of the Dirichlet-to-Neumann
operator by using a dynamical probe method.
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1 Introduction

1.1 Inverse heat conductivity problem

Let T > 0 and let Ω be a bounded domain in R3, with a lipschitzian boundary
Γ = ∂Ω. Let us consider the anisotropic heat equation

∂tv − div (a∇v) = 0 in Ω0,T ≡ Ω× (0, T ), (1)

where the operators div, the divergence, and ∇, the gradient, are relative to the
spatial variable x. In our model, the conductivity a = (aij)1≤i,j≤3 is a 3 × 3 real
symmetric matrix with positive bounded measurable coefficients of x. It satisfies
the uniform elliptic condition:
there exists γ∞ > 0 such that

γ−1
∞ |ξ|2 ≤ aξ · ξ ≤ γ∞|ξ|2, ξ ∈ R3. (2)

It is well-known that, for all f ∈ L2(0, T ;H1/2(Γ)) and v0 ∈ L2(Ω), there exists
only one solution v = v(a, v0; f) ∈ H1((0, T );L2(Ω))∩L2((0, T );H1(Ω)) of (1) with
the following initial boundary value problem:{

v = f on Γ0,T ≡ Γ× (0, T ),
v
∣∣
t=0

= v0 on Ω.
(3)
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See for example the book of Wloka[21]. Then, we can define the Dirichlet-to-
Neumann map (D-N map) as

Λa;v0
: L2((0, T );H1/2(Γ)) 3 f 7→ a∇v(a, v0; f) · ν ∈ L2((0, T );H−1/2(Γ)),

where ν denotes the outer unit normal to Γ. In physical terms, f = f(t, x) is the
temperature distribution on the boundary and Λa,v0

(f) is the resulting heat flux
through the boundary.

In this article we are concerned with the Calderón inverse problem for (1) which
is to determine a from the knowledge of the D-N map Λv0,a. The conductivity a
consists in a non necessarily smooth background and an unknown inclusion t 7→
Dt ⊂ Ω which moves continuously inside the body Ω. Thus, in our inverse problem,
the function a|Ω\Dt coincides with a measurable real matrix-function b ∈ L∞(Ω)
which satisfies (2) and represents the conductivity of a background medium, and
so, is known. The inverse problem we address is to determine the moving inclusion
D = ∪0≤t≤T (Dt × {t}) ⊂ Ω0,T from the knowledge of Λa,v0 .

Remark 1. In our problem the value of the conductivity inside the inclusion, a|Dt ,
and the initial value of v, v0, are unknown but the article does not deal with their
determination.

1.2 Main assumptions

The two following assumptions were already considered by several authors in the
isotropic situation [3],[15],[19].

(H0): there exists a positive constant δ1 such that

(H0a) : b−1 − a−1 ≤ −δ1 < 0, b− a ≥ δ1 > 0 inD,

or

(H0b) : b−1 − a−1 ≥ δ1 > 0, b− a ≤ −δ1 < 0 inD.

(H1): for all t ∈ [0, T ], the set R3 \Dt is connected.

Because of technical limitations of our method when b is not sufficiently smooth,
we need some additional geomerical assumptions on D. For a point x ∈ R3 and a
non-empty set E ⊂ R3 we denote by d(x,E) the quantity infz∈E |x− z| and by |E|
the Lebesgue-measure of E.

(H2): t 7→ Dt is lipschitzian in the following sense:
there exists KD > 0 such that for all x ∈ Ω the mapping t 7→ d(x,Ω\Dt)
is lipschitzian in [0, T ] with lipschitzian constant KD and the mapping
t 7→ d(x,Dt) is lipschitzian at all s ∈ [0, T ] such that Ds 6= ∅ with
lipschitzian constant KD.

(H3):
(H3a): for all t ∈ [0, T ], Dt satisfies the exterior cone property, i.e.,
there exists ρ(t) > 0 such that for all z ∈ ∂Dt, there exists an open cylin-
drical cone Co(z, ρ) ⊂ R3\Dt with summit z, hightness ρ and volume ρ3,

and
(H3b): there exists LD ∈ (0, 1) such that
|Dt ∩B(z, r)| ≥ LD min(|Dt|, |B(z, r)|), ∀r > 0, z ∈ ∂Dt, t ∈ [0, T ].
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The Runge approximation method in the dynamical probe method is based on
the uniqueness property (UC) which holds if the conductivity is constant. However
V. Isakov has shown that (UC) can fail if the conductivity is not sufficiently regular
[15]. Therefore we add the following assumption on b:

(UC) in Ω - Let ω ⊂ Ω be a sufficiently smooth domain, let a < b and let
u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ;H1(Ω)) be such that ∂tu−div(b∇u) = 0
in ω× (a, b) and u = a∇u ·ν = 0 on S× (a, b), where S is an non-empty
open subset of ∂ω. Then, necessarily, u = 0 in ω × (a, b).

Remark 2. The above definition of (UC) is independent of the choice of the time-
interval [0, T ] since in our work we assume that b does not depend on the variable
t.

Remark 3. Condition (UC) holds if b is lipschitzian or piecewise smooth: see the
results of Vessella [20, chap 5].

1.3 Main Result

Here we state our uniqueness result for the above inverse problem. Let v0, v′0 ∈
L2(Ω), be two conductivities a,a′ satisfying (H0)-(H3) and (UC). Let D′ be the
inclusion related to a′.

Theorem 1. Assume that Λv0,a = Λv′0,a′ . Then, D = D′.

Remark 4. Our proof of Theorem 1 is not completely constructive, although it is
based on the same dynamical method developed by the author who showed a (theo-
retical) reconstruction of D from the knowledge of Λv0,a [19].

Remark 5. We shall proof Theorem 1 with the following assumption:

D(t) ⊂ Ω, t ∈ [0, T ].

Therefore we replace (H1) by:
(H1’): one has D(t) ⊂ Ω, and the set Ω \Dt is connected, for all t ∈ [0, T ].

The general proof of Theorem 1 where D(t) may touch ∂Ω is easily get from the
following modification on the case (H1’):

• We consider a large smooth bounded domain Ω′ containing Ω and we put
b = I3 (the 3× 3 identity matrix) in Ω′ \ Ω.

• (If necessary)1 (UC) is assumed with Ω replaced by Ω′.

Remark 6. The proof of Theorem 1 will show that (H0) can be extended to the
following situation:

(H0’) There exist positive constants ε0, δ1, such that for (x, t) ∈ D̄,

b−1(x)−a−1(x) ≤ −δ1 < 0, b(x)−a(x) ≥ δ1 > 0 if d(x, ∂Dt) ≤ ε0,

or

b−1(x)−a−1(x) ≥ δ1 > 0, b(x)−a|Dt(x) ≤ −δ1 < 0 if d(x, ∂Dt) ≤ ε0,
1the question that (UC) in Ω would imply (UC) in Ω′ is out of the scope of this article
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1.4 Outline

In Section 2 we recall the basis of the dynamical probe method, the Runge approxi-
mation method and we construct indicator and pre-indicator functions from special
Cauchy boundary data. In Section 3 we state the lower and upper estimates on the
indicator function from which the proof of our main Theorem 1 can be achieved in
Section 4. In Section 5 we develop the technical results on which the proof of the
estimates of Section 3 is based.

2 The dynamical probe method (DPM) with spe-
cial solutions of the heat equation

2.1 Notations

Let us give some notations for this paper. For E ⊂ R3, a < b, and for U ⊂ R3 ×R,
we put Ea,b = E × (a, b) and Ut ≡ {x ∈ R3 (x, t) ∈ U}.
For non-negative integers p, q or p = 1/2, Hp(Ω) Hp(∂Ω) and Hp,q(Ω(a,b)) denote
the usual Sobolev spaces where the superscripts p and q indicate the regularity with
respect to x and t, respectively. For an open set U ⊂ R4 with Lipschitz boundary
∂U , Hp,q(U) is defined likewise. More precisely, g ∈ Hp,q(U) if and only if there
exists G ∈ Hp,q(R4) with G = g in U . If it is the case, ‖g‖Hp,q(U) is defined to be

‖g‖Hp,q := inf ‖G‖Hp,q(R4),

where the infimum is taken over all G such that G = g in U . Let X be a normed
space of functions. A function f(x, t) is said to be in L2((0, T );X) if f(·, t) ∈ X for
almost all t ∈ (0, T ) and

‖f‖2L2((0,T );X) :=

∫ T

0

‖f(·, t)‖2L2(X)dt <∞.

(For more details, we refer to J.L. Lions and E. Magenes [17]).
We write La := ∂t−div (a∇·), so LI := ∂t−∆ for the homogeneous case. Similarly,
we consider operator for the backward related heat equation, L∗a := −∂t−div (a∇·).
We denote by B(r) any ball of radius r > 0 in R3. The open ball {x ∈ R3; |y−x| <
r}, r > 0, is denoted B(y, r).
We denote by d(t) the distance between y(t) and Dt if Dt 6= ∅, i.e., d(t) =
d(y(t), Dt). If Dt = ∅ then we put d(t) = +∞, 1/d(t) = 0.
If ξ ∈ R3 then |ξ| denotes the euclidian norm of ξ and if m is a 3 × 3 real matrix
then |m| := supξ∈R3, |ξ|=1 |mξ · ξ|.

2.2 Brief history of the determination of an inclusion from
the D-N map

The determination of a sufficiently smooth moving inclusion inside an homogeneous
body was stated by A. Elayyan and V. Isakov [4]. Their proof is by contradiction.
DPM for (1) is an extension of Ikehata’s probe method which was developed for
the elliptic equation div(a∇v) = 0 where a may be tensorial [13]. In the parabolic
situation, DPM was firstly presented by Y. Daido, H. Kang and G. Nakamura in
the case where the background is homogeneous and Dt ∈ C2 for all t [3]. But there,
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although a part of DPM works for all spatial dimension n, the reconstruction of D
was proved only in the case n = 1. DPM of Y. Daido, H. Kang and G. Nakamura
made the Runge approximation of the fundamental solution of the operator LI .
(Note that an error in this work was corrected by V. Isakov, K. Kim, G. Nakamura
[15]). Unlike to the DPM of Y. Daido, H. Kang, G. Nakamura, extending the
method of A. Elayyan and V. Isakov by a more quantitative version which requires
more regularity, M. Di Cristo and S. Vessella proved the log-stability of Λa,0 7→ D
in the scalar case (a = aI3) [2].

Returning to DPM, the author used ”special solutions” for the classical heat
operator which are more convenient functions than the basic fundamental solutions
Γ(x − y, t − s), because their behaviour in time and space are sufficiently sepa-
rated [19]. Since the background was homogeneous, the DPM of the author can
reconstruct any spatially irregular inclusion as in the elliptic situation [19].

However, in our situation we are limited to inclusions with some kind of lip-
schitzian regularitiy (see (H2), (H3)). Moreover the negative part ”−CMd(t)2”
in (30) makes the reconstruction process unclear so the proof of Theorem 1 is by
contradiction only.

2.3 Runge approximation method

The Runge approximation method for the operator unperturbed operator LI with
the homogeneous conductivity a = I3 was developed first by Y. Daido, H. Kang,
G. Nakamura, then by V. Isakov, K. Kim, G. Nakamura [3], [15].

Let Σ : [0, T ] 3 t 7→ y(t) ∈ R3 \Dt be a lipschitzian curve which does not touch
D. We extend Σ to t ∈ R by putting y(t) = y(T ) for t ≥ T and y(t) = y(0) for
t ≤ 0. Then, thanks to (H1’), there exists an open set U ⊂ Ω×R containing D and
satisfying 

∂U is lipschitzian,
dist(U,Σ) := inf{|x− y|; x ∈ U, y ∈ Σ} > 0,
Ω \ Ut is connected, t ∈ R.

The Runge approximation method works thanks to (UC) notably, and gives the
following result [3, 15, 19]. For τ > 0 we denote Στ = ∪t∈RB(y(t), 1/τ)× {t}.

Proposition 1. Assume (H1’) and (UC). Let Σ and U be as above. Let u ∈
H1,0(Ω(0,T )) ∩H0,1(Ω(0,T )) be a solution of Lbu = 0 in Ω(−1,T+1) \ Στ . Then for
τ > inf{r > 0 | dist(U,Σr) > 0} there exists a sequence uj ∈ H1,0(Ω(−1,T+1)) ∩
H0,1(Ω(−1,T+1)) such that Lbuj = 0 in Ω(−1,T+1),

uj → u in H1,0(U) ∩H0,1(U),
uj(0) = u(0) in L2(Ω).

2.4 Heat Kernels

In many researchs devoted to inverse problems for parabolic equations, the back-
ground is homogeneous, i.e, b = I3. In such a classical situation, the heat operator
is ∂t −∆ and its usual kernel Γ(x, t) has many properties, as

1. It is explicit:

Γ(x, t) =
1

(4πt)3/2
e
−x2

4t , t > 0, x ∈ R3.
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2. It satisfies

Γ(x, t) ≤ C√
t
|∇Γ(x, t)|, t > 0, x ∈ R3,

for some C > 0. Hence, Γ(x, t) is small compared to |∇Γ(x, t)| as t→ 0.

3. Thanks to the Laplace transform
∫∞

0
·e−τ2tdt of ∂t−∆, we consider similarily

the elliptic operator −∆+τ2 with the (large) real parameter τ > 0. Its kernel
E(x; τ) is explicit too:

E(x; τ) =

∫ ∞
0

Γ(x, t)e−τ
2tdt =

e−τ |x|

4π|x|
, x ∈ R3.

4. It satisfies
E(x; τ) ≤ τ |∇E(x; τ)|, x ∈ R3.

Hence, E(x; τ) is small compared to |∇E(x; τ)| as τ → ∞, uniformly in all
bounded set of R3 \ {0}. This fact was exploited by the author [19].

Let us come back to the heat equation with a general conductivity b. We put
b(x) = I3 for x ∈ R3 \ Ω.

For y ∈ R3, we denote by Gy ∈ C(R;L2(R3)) the fundamental solution of

LbGy = δ(y,0),

which satisfies
Gy(x, t) = 0, t < 0.

We have the estimate:

κe−
|x−y|2

4κ2t

t3/2
≤ Gy(x, t) ≤ e−

κ2|x−y|2
4t

κt3/2
, x ∈ R3, t > 0, (4)

for some constant κ = κ(b) ∈ (0, 1). See the famous results of D. G. Aronson and
J. Nash [1, 18].
For τ > 0 we put the Laplace Transform of Gy(x, t) as

pτ (x; y) := e−τ
2t

∫ t

−∞
eτ

2sGy(x, t− s)ds =

∫ ∞
0

e−τ
2sGy(x, s)ds. (5)

Let us observe that pτ (·; y) belongs to H1
loc(R3 \ {y}) and, thanks to (4), satisfies

(−div (b∇·) + τ2)pτ (·; y) = δy(·), (6)

2
√
π
κ2e−

τ
κ |x−y|

|x− y|
≤ pτ (x; y) ≤ 2

√
π
e−κτ |x−y|

κ2|x− y|
, x ∈ R3 \ {y}. (7)

This is also a consequence of the works of Nash and Aronson.



7

2.5 Special solutions

Let us consider a lipschitzian curve Σ ⊂ R3×R as in Section 2.3, and fix θ ∈ (0, T ).
Let µ ≥ 1 be another positive parameter that we shall precise later.

The author considered special solutions related to the following functions (with
other notations and with b ≡ I3):

UOP (x, t) := eτ
2(T+t)

∫ ∞
0

eτµ(|t−θ−s|−|t−θ|)Γ(x− y(t− s), s)e−τ
2sds,

U∗OP (x, t) := e−τ
2(T+t)

∫ ∞
0

eτµ(|t−θ+s|−|t−θ|)Γ(x− y(t+ s), s)e−τ
2sds,

[19]. In fact, UOP and U∗OP are respectively solutions of the following forward and
backward heat equations:

LIUOP (x, t) = eτ
2(t+T )e−τµ|t−θ|pτ (x; y(t)) in R3 × R,

L∗IU∗OP (x, t) = e−τ
2(t+T )e−τµ|t−θ|pτ (x; y(t)) in R3 × R.

Moreover they satisfies

UOP (x, t) = ϕ(x, t)eτ
2(t+T )e−τµ|t−θ|pτ (x; y(t)),

U∗OP (x, t) = ϕ∗(x, t)e−τ
2(t+T )e−τµ|t−θ|pτ (x; y(t)),

such that, for some C = C(R,µ) > 0 and all τ ≥ C,

1

C
≤ |ϕ(x, t)|+ |ϕ∗(x, t)| ≤ C inB(0, R)× R, (8)

|∇ϕ(x, t)|+ |∇ϕ∗(x, t)| ≤ C inB(0, R)× R, (9)

[19, Lemma 1]. With the general conductivity b, we construct here special solutions
uτ and u∗τ as follows. Let us put

mτ (x, t) = M0(τ |x− y(t)|), t ∈ R, (10)

where M0 is defined by M0(r) = |1− r| 1|r|≤1. Hence mτ is a lipschitzian function
with support closed to Σ as τ >> 1. We then put, for (x, t) ∈ R3 × R,

uτ (x, t) =

∫
s∈R

∫
y∈R3

eτ
2(s+T )e−τµ|s−θ|m(y, s)Gy(x, t− s)dyds (11)

=

∫ ∞
s=0

∫
y∈R3

eτ
2(T+t−s)e−τµ|t−θ−s|m(y, t− s)Gy(x, s)dyds,

u∗τ (x, t) =

∫
s∈R

∫
y∈R3

e−τ
2(T+s)e−τµ|s−θ|mτ (y, s)Gy(x, s− t)dyds (12)

=

∫ ∞
s=0

∫
y∈R3

e−τ
2(T+t+s)e−τµ|t−θ+s|mτ (y, t+ s)Gy(x, s)dyds.

The functions uτ and u∗τ (x, t) are positive and satisfy

Lbuτ (x, t) = eτ
2(t+T )e−τµ|t−θ|m(x, t) in R3 × R, (13)

L∗bu∗τ (x, t) = e−τ
2(T+t)e−τµ|t−θ|mτ (x, t) in R3 × R.
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Remark 7. If mτ (x, t) was replaced by δ(x−y(t)) then it would be difficult to make
the estimation of ẏ(s)∇yGy(t−s)(x, t) that would appear in the expression of ∂tuτ .

We then expect that

uτ (x, t)
τ→∞' eτ

2(T+t)e−τµ|t−θ|τ−3pτ (x, y(t)), (14)

u∗τ (x, t)
τ→∞' e−τ

2(T+t)e−τµ|t−θ|τ−3pτ (x, y(t)), (15)

where the meaning of ”'” will be clarified shortly. Since the comparison requires
the time-derivatives of uτ (x, t) or u∗τ (x, t) and remembering Remark 7, we introduce
the following smooth approximation of pτ (x; y(t)):

Pτ (x, t) :=

∫ ∞
0

∫
R3

e−τ
2smτ (y, t)Gy(x, s)dyds. (16)

We then put

qτ (x, t) := e−τ
2(T+t)uτ (x, t)− e−τµ|t−θ|Pτ (x, t), (17)

q∗τ (x, t) := eτ
2(T+t)u∗τ (x, t)− e−τµ|t−θ|Pτ (x, t). (18)

The main difficulty in the proof of Theorem 1 is to prove that the quantity

R0 :=

∫
D

(|∇qτ (x, t)|2 + |∇q∗τ (x, t)|2) dxdt, (19)

is negligible compared to
∫
D
τ−6e−2τµ|t−θ||∇pτ (x, t)|2 dxdt or, in an equivalent way

(see Lemmas 5.3 and 5.4), to
∫
D
τ−4e−2τµ|t−θ||pτ (x, t)|2 dxdt. We shall prove in

Appendix the following Lemma.

Lemma 2.1. (Estimate of ∇qτ in Dt). Let M > 0 and assume that |ẏ|∞ ≤ M .
There exist positive constants CM , τ0(Σ) such that if t ∈ [0, T ] and τ > τ0 then∫

Dt

(|∇qτ (x, t)|2 + |∇q∗τ (x, t)|2)dx ≤ CMd(t)2τ−4e−2τµ|t−θ|
∫
Dt

|pτ (x, y(t))|2dx.

(20)

(Remember that d(t) = d(y(t), Dt).) So R0 is effectively ”negligible” when
the curve Σ is sufficiently close to D at least at time θ. This constraint is new
compared to consequences of (8) and (9) (for which Assumption (H3) is in addition
superfluous) and makes a theoritical reconstruction of D problematic, as opposite
to the possible reconstruction proposed by the author [19].

2.6 Pre-indicator sequence and indicator function

As in section 2.3, we can consider sequences (uj)j and (u∗j )j such that uj → uτ and
u∗j → u∗τ in the sense of Proposition 1. Considering vj = v(a, v0;uj |Γ(0,T )

) and the

solution vτ ∈ H1((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)) of
Lavτ = Lbuτ ,
vτ = uτ on Γ0,T ,

vτ
∣∣
t=0

= v0 on Ω,
(21)
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we put
wτ = vτ − uτ (22)

and

Ij(τ) :=

∫
Γ×[0,T ]

(Λa;v0
(uj |Γ[0,T ]

)− b∇uj · ν) u∗j |Γ×[0,T ] dσ(x)dt,

I∞(τ) :=

∫
Ω×[0,T ]

(a− b)∇vτ∇u∗τ dxdt+

∫
Ω

[wτu
∗
τ ]
T
0 dx, (23)

where dσ(x) is the usual measure on the boundary Γ. The knowledge of Λa;v0

involves that of Ij(τ)’s. Furthermore, as for the proofs in similar situations, Propo-
sition 1 implies that

Ij(τ)→ I∞(τ) ∈ R as j →∞, (24)

For a proof, see the works based on DPM [3, 19]. Hence, if (UC) holds, then the
knowledge of Λa;v0

involves that of I∞(τ)’s.

3 Estimates on the indicator function

In the following results the positive constants c, C,C1 may depend on T , Ω, µ, on
the the conductivity, but not on τ . We indicate when they depend on an upper
bound M of |ẏ|∞ or on the initial data v0.

Lemma 3.1. Under assumption (H0b) we have

I∞(τ) ≤ C

∫
D

e−2τµ|t−θ||∇Pτ (x, t)|2 dxdt (25)

+C

∫
D

(|∇qτ |2 + |∇q∗τ |2) dxdt+ 10(‖v0‖2L2(Ω) + dΩ)e−τµmin(T−θ,θ),

and

I∞(τ) ≥ 1

C

∫
D

e−2τµ|t−θ||∇Pτ (x, t)|2 dxdt (26)

−C
∫
D

(|∇qτ |2 + |∇q∗τ |2) dxdt− 10(‖v0‖2L2(Ω) + dΩ)e−τµmin(T−θ,θ),

for some C ≥ 1, for all τ > µ+ 1, µ > 0.

Proof in Appendix.

We put also

dΩ := sup{|x− y|; x, y ∈ Ω}, (27)

εΣ := inf
t∈[0,T ]

d(t) > 0. (28)

Lemma 3.2. Let M > 0 and assume that |ẏ|∞ ≤ M . Then, under assumption
(H0b), there exist positive constants c = c(M), C1 = C1(v0), CM , τ0 = τ0(Σ), such
that if τ > τ0 we then have

I∞(τ) ≤ cτ−4

∫
D

e−2τµ|t−θ||pτ (x, y(t))|2 dxdt (29)

+C1e
−τµmin(T−θ,θ),
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and

I∞(τ) ≥ 1

c
τ−4

∫
D

(
1− CMd(t)2

)
e−2τµ|t−θ||pτ (x, y(t))|2 dxdt (30)

−C1e
−τµmin(T−θ,θ).

The proof of Lemma 3.2 requires the developments of Section 5. Let us extend
the function ln to (−∞, 0] by putting ln(I) = −∞ if I ≤ 0.

Lemma 3.3. We assume that (H0b) is true. Let θ ∈ (0, T ). Let us fix µ ≥
4κ−1dΩ max((T − θ)−1, θ−1).

1) Let Σ be a lipschitzian curve such that εΣ > 0. We then have

lim sup
τ→∞

τ−1 ln(I∞(τ)) ≤ −2κεΣ. (31)

2) Assume that Dθ 6= ∅. Let M > 0, α > 0. Let (Σ = Σ(ε))0<ε≤α2 be a familly
of curves as in Section2.3, such that we have

|ẏ(·)|∞ ≤ M,
d(t) ≤ 2

α3 ε for |t− θ| ≤ ε,
d(t) ∈ [ 1

2α |t− θ|,
2
α3 |t− θ|] for ε ≤ |t− θ| ≤ α2,

d(t) ≥ α/2 for |t− θ| ≥ α2,

(32)

where d(t) := d(y(t), Dt). Then there exists ε1 ∈ (0, α2] such that for 0 < ε ≤ ε1

we have

lim inf
τ→∞

τ−1 ln(I∞(τ)) ≥ −(8κ−1α−3 + 4µ)ε. (33)

Proof in Appendix.

4 Proof of Theorem 1

We may assume that (H0b) holds, since the case where (H0a) holds is similar.
Thanks to Remark 5 we have Dt ∪D′t ⊂ Ω, t ∈ [0, T ]. Let us assume that D 6= D′.
Then there exists (z, θ) ∈ Ω × [0, T ] with Dθ 6= ∅, z ∈ ∂Dθ and z 6∈ D′θ or with
D′θ 6= ∅, z ∈ ∂D′θ and z 6∈ Dθ. Thus, we consider for simplicity that z ∈ ∂Dθ

and z 6∈ D′θ. Thanks to (H2), t 7→ (Dt, D
′
t) is continuous so we consider also that

0 < θ < T . In fact let us explain why can consider also that z ∈ ∂Dθ \ D′t if
|t − θ| < β for some β > 0. If D′t is void for |t − θ| sufficiently small then it is
immediate, but if D′t is not void for |t− θ| sufficiently small then we can’t be sure
that d(z,D′t) > 0 when t ' θ. However, in such a case, thanks to (H2), there exists
a sequence θn → θ satisfying D′θn 6= ∅ and Dθn \D′θn 6= ∅. We then replace (z, θ)

by another couple (zn, θn) with zn ∈ ∂Dθn \D′θn . Then, since D′θn 6= ∅ and thanks
to (H2), we have zn 6∈ ∂D′t if t ' θn.
So we can consider that

z ∈ ∂Dθ \D′t if |t− θ| ≤ β for some β > 0. (34)

Let us construct a familly of curves Σ = Σ(ε) for 0 < ε ≤ α2, for some positive α
such that (32) and

ε′Σ := inf
0≤t≤T

d(y(t), D′t) ≥ α/2 (35)
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hold. In fact, since Dθ and D′θ satisfy Assumptions (H1’) and (H3b) then there

exists a lipschitzian curve ỹ : [0, 1] 3 s 7→ ỹ(s) ∈ R3 with Lipschitz constant M̃
such that ỹ(0) = z, ỹ(1) 6∈ Ω, ỹ(s) 6∈ Dθ for s 6= 0 and ỹ(s) 6∈ D′t for s ∈ [0, 1] and
|t− θ| ≤ β. Thanks to (H2), (H3a) and to (34) we have for all s ∈ [0, 1]

d(ỹ(s), D′t) ≥ α−KD′ |t− θ|,

d(ỹ(s), Dt) ∈ [αs−KD|t− θ|,
1

α
s+KD|t− θ|], (36)

where α > 0 is sufficiently small. We may consider that

α ≤ min(1, (2KD)−1, (2KD′)
−1,d(∂Ω, Dt),d(∂Ω, D′t)), t ∈ [0, T ]. (37)

Then we have

d(ỹ(s), D′t) ≥ α/2 for |t− θ| ≤ α

2KD′
, s ∈ [0, 1]. (38)

We put y0(t) = ỹ(|t − θ|/α2) for |t − θ| ≤ α2 and y0(t) = ỹ(1) for |t − θ| ≥ α2.
From (37), (38) or (36), and since y0(r) 6∈ Ω for |r − θ| ≥ α2 we obtain

d(y0(r), D′t) ≥ α/2, for t, r ∈ [0, T ], (39)

d(y0(r), Dt) ≥ α/2, for t, r ∈ [0, T ], |r − θ| ≥ α2. (40)

Then for all ε ∈ (0, α2] we put

y(t) =

{
y0(θ + ε) for |t− θ| ≤ ε

y0(t) for |t− θ| ≥ ε.

Thanks to (37), (36) (39), (40) we then obtain all the conditions of (32) with M =
M̃/α2, and (35).

Let us denote by I ′∞(τ) the indicator function for the conductivity a′. Thanks
to (31) of Lemma 3.3 we have

lim sup
τ→∞

τ−1 ln(I ′∞(τ)) ≤ −κα,

and there exists ε1 ∈ (0, α2) such that for ε ∈ (0, ε1] we have, from (33),

lim inf
τ→∞

τ−1 ln(I∞(τ)) ≥ −(8κ−1α−3 + 4µ)ε.

Then, I ′∞(τ) 6= I∞(τ) for all ε < min(ε1,
κα

8κ−1α−3+4µ ) and τ sufficiently large. The
result at §2.6 implies that Λv0,a 6= Λv′0,a′ .

5 Technical Results

5.1 Basic estimates

Lemma 5.1. Let t ∈ [0, T ] be such that Dt 6= ∅. Then there exists a non empty
finite familly I, and points xi ∈ Dt, i ∈ I, such that

∪i∈IBi(1/τ) ⊂ Dt ⊂ ∪i∈IBi(3/τ),

and Bi(1/τ)∩Bj(1/τ) = ∅ if i, j ∈ I, i 6= j, where Bi(R) denotes the open euclidian
ball of radius R > 0 and centered at xi.
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Proof. The lemma is a straightforwardly consequence of the compactness of Dt

and Vitali’s lemma.

We have the following proposition:

Proposition 2. (Parabolic Harnack’s inequality). There exists c > 0 such that if
r > 0, t ∈ R, and if y ∈ R3 \B(2r) or 0 6∈ (t− r2, t+ r2) then we have

max
x∈B(r),s∈[t− 3

4 r
2,t− 1

4 r
2]
Gy(x, s) ≤ c min

x∈B(r),s∈[t+ 1
4 r

2,t+r2]
Gy(x, s). (41)

For a proof, see for example the work of E.B. Fabes and D.W. Stroock [5].
Let us remember that pτ is defined by (5). From Proposition 2, we prove the

following Lemma.

Lemma 5.2. (Elliptic Harnack’s inequality). Let β > 0. There exists c > 0 such
that for all τ > 0, for all ball B(β/τ) ⊂ RN , if y 6∈ B(2β/τ) we then have

max
x∈B(β/τ)

pτ (x; y) ≤ c min
x∈B(β/τ)

pτ (x; y). (42)

Proof. Applying (41) with s = t, r = β/τ , we have, for all x, z ∈ B(β/τ),

pτ (z; y) =

∫ ∞
0

e−τ
2sGy(z, s)ds

=

∫ ∞
1
2β

2/τ2

e−τ
2(s− 1

2β
2/τ2)Gy(z, s− 1

2
β2/τ2)ds

≤
∫ ∞

1
2β

2/τ2

e−τ
2(s− 1

2β
2/τ2)cGy(x, s)ds

≤ ce
1
2β

2

∫ ∞
0

e−τ
2sGy(x, s)ds

= ce
1
2β

2

pτ (x; y).

We then obtain (42).

Let us remember that y(·) and Σ were defined in Section 2.5 and Pτ by (16).

Lemma 5.3. (Caccioppoli’s inequality for Pτ ). Let Pτ be defined by (16). Let
β > 0. Then there exists c > 0 such that for all τ > 0, if B(β/τ) ∩ B(y(t); 1

τ ) = ∅
we then have

1

c

∫
B( β4τ )

τ2P 2
τ (x, t)dx ≤

∫
B( β2τ )

|∇Pτ |2(x, t)dx ≤ c
∫
B( βτ )

τ2P 2
τ (x, t)dx. (43)

Proof in Appendix.

5.2 Comparison between uτ , Pτ and pτ

Lemma 5.4. (Comparison between Pτ and pτ ). There exists c > 0 such that for
all τ > 0, t ∈ R, if x 6∈ B(y(t); 2

κ5τ ) we then have

1

c
τ3Pτ (x, t) ≤ pτ (x, y(t)) ≤ cτ3Pτ (x, t), (44)

where κ is the constant of (4) or (7).
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Proof in Appendix.

Lemma 5.5. (Comparison between uτ and pτ ). Let M > 0 and assume that
|ẏ|∞ ≤M . Then there exist positive constants C(M), C1(M), τ0(M) such that for
τ ≥ τ0, t ∈ [0, T ], x ∈ Ω \B(y(t), C1/τ), we have:

e−τ
2(T+t)uτ (x, t) ≤ Ce−τµ|t−θ|τ−3pτ (x, y(t)). (45)

Proof in Appendix.

Lemma 5.6. Let t ∈ [0, T ]. Let M > 0 and assume that |ẏ|∞ ≤ M . Then there
exist positive constants C(M), C1(M), τ0(M) such that for τ ≥ τ0, t ∈ [0, T ] and
x ∈ Ω \B(y(t), C1/τ) we have:

|∂t(e−τ
2(t+T )uτ (x, t))| ≤ Ce−τµ|t−θ|τ−2pτ (x, y(t)). (46)

Proof in Appendix.

Let us remember that qτ is defined by (17).

Lemma 5.7. (Estimate of qτ ). Let t ∈ [0, T ]. Let M > 0, assume that |ẏ|∞ ≤M .
Then there exist positive constants C(M), C1(M), τ0(M) such that for τ ≥ τ0,
t ∈ [0, T ] and x ∈ Ω \B(y(t), C1/τ), we have

|qτ (x, t)| ≤ Cτ−3e−τµ|t−θ||x− y(t)| pτ (x, y(t)). (47)

Proof in Appendix.

5.3 Estimates of special function in Dt

Lemma 5.8. (Estimates of Pτ in Dt). Let t ∈ [0, T ]. Then, there exists c ≥ 1 such
that for all τ > 12

κ5d(t)
, we have

1

c

∫
Dt

τ−4p2
τ (x, y(t))dx ≤

∫
Dt

|∇Pτ (x, t)|2dx ≤ c
∫
Dt

τ−4p2
τ (x, y(t))dx. (48)

Proof in Appendix.

Lemma 5.9. (Estimate of ∇qτ in Dt). Let M > 0, assume that |ẏ|∞ ≤M . Then
there exist two positive constants CM and τ0 = τ0(Σ) such that if τ > τ0, t ∈ [0, T ],
then ∫

Dt

|∇qτ |2(x, t)dx ≤ CMτ−4e−2τµ|t−θ|
∫
Dt

|x− y(t)|2|pτ (x, y(t))|2dx. (49)

Proof in Appendix.

Lemma 5.10. There exist positive constant C, τ0(Σ) such that for τ > τ0, t ∈
[0, T ], we have∫

Dt

|x− y(t)|2|pτ (x, y(t))|2dx ≤ Cd(t)2

∫
Dt

|pτ (x, y(t))|2dx. (50)

Proof in Appendix.

Now we are ready to prove Lemma 3.2.
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5.4 Proof of Lemma 3.2

We obtain (30) and (29) from (26), (25), (20) of Lemma 2.1, (48) of Lemma 5.8.

Conclusion

So we have proven the injectivity of D 7→ Λv0,a by extending the Dynamical Probe
Method. We already know that, in the case where a is scalar and the background
b = 1, the DPM is effective in reconstructing the inclusion D from the Dirichlet-
to–Neumann mapping Λv0,a even when Dt has no regularity according to the space
variable. But in the more general case where b is not constant the behaviour
of the special functions uτ , u∗τ as τ tends to infinity is not so obvious anymore,
which technically requires us to prove that the product ∇uτ∇u∗τ is positive not
punctually but in a weaker sense, and with additional conditions. In our work the
main new constraint that allows the uniqueness proof to work is on the geometry
of D: some kind of uniform lipschitzian regularity of Dt, t ∈ [0, T ]. By looking
carefully at the various technical elements of the multiple Lemmas we can hope to
improve this condition a little, perhaps by replacing it by a geometric constraint of
the Holder type with coefficient in (1

2 , 1). The question of reconstructing D from
Λv0,a remains delicate for two reasons. First, the negative term CMd(t)2 in (30)
forces the curve to be partly sufficiently close enough to the inclusion to obtain a
good lower bound of the indicator function I∞(τ), which complicates a strategy
for detecting the unknown D. Then, Runge’s method allows only a theoretical
reconstruction. Nevertheless, the reconstruction of points of D sufficiently close to
the lateral boundary of the cylinder becomes possible, and this without the use of
the Runge approximation. However, such a study would burden the article.
Another question is to be able to weaken the condition that t 7→ Dt is lipschitzian.
It is open.

Appendix

Proof of Lemma 3.1. We put

X1 :=

∫
Ω×[0,T ]

(b−1 − a−1)(b∇uτ )2dxe−2τ2(T+t)dt,

X2 :=

∫
Ω×[0,T ]

(a− b) (∇uτ )2 dxe−2τ2(T+t)dt,

wτ := vτ − uτ , (51)

Ψτ := (a− b)∇vτ + b∇wτ = a∇vτ − b∇uτ (52)

= (a− b)∇uτ + a∇wτ ,

B1 :=

∫
Ω×[0,T ]

a−1(Ψτ )2 dx e−2τ2(T+t)dt

B2 :=

∫
Ω×[0,T ]

a(∇wτ )2 dx e−2τ2(T+t)dt,

B3 :=

∫
Ω×[0,T ]

τ2w2
τ dx e−2τ2(T+t)dt,
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and

R1 :=

∫
Ω

[wτu
∗
τ ]
T
0 dx,

R2 :=

∫
Ω×[0,T ]

(a− b)∇vτ∇(eτ
2(T+t)u∗τ − e−τ

2(T+t)uτ ) dx e−τ
2(t+T )dt

=

∫
Ω×[0,T ]

(a− b)∇vτ · (∇q∗τ (x, t)−∇qτ (x, t)) dx e−τ
2(t+T )dt,

R3 :=
1

2

∫
Ω

[
w2
τe
−2τ2(T+t)

]T
0

dx.

Step 1. We prove that

I∞(τ) = X1 +B1 +B3 +R1 +R2 +R3, (53)

I∞(τ) = X2 −B2 −B3 +R1 +R2 −R3. (54)

From (23) we have

I∞(τ) =

∫
Ω×[0,T ]

(a− b)∇vτ∇uτ dxe−2τ2(T+t)dt+R1 +R2. (55)

1. We put

A1 :=

∫
Ω×[0,T ]

a−1Ψτ · (a− b)∇uτ dx e−2τ2(T+t)dt,

A2 :=

∫
Ω×[0,T ]

∇wτΨτ dx e−2τ2(T+t) dt.

Then, since (a− b)∇uτ = Ψτ − a∇wτ , we then have A1 = B1 −A2.

By integration by parts we have

A2 = −
∫

Ω×[0,T ]

wτ divΨτ dxe−2τ2(T+t)dt

= −
∫

Ω×[0,T ]

wτ ∂twτ dxe−2τ2(T+t)dt = −B3 −R3. (56)

We thus have
A1 = B1 +B3 +R3. (57)

For any 3× 3 real matrix m we have m∇uτ · ∇uτ = mS∇uτ · ∇uτ . Then, thanks
to

∇vτ = a−1Ψτ + a−1b∇uτ , (58)

we obtain (53) from (55) and (57).
2. We consider (55) again. Thanks to (51) then to (52) we have

(a− b)∇vτ∇uτ = (a− b)∇uτ∇uτ + a∇wτ∇uτ − b∇wτ∇uτ
= (a− b)∇uτ∇uτ + a∇wτ (∇vτ −∇wτ )− b∇wτ∇uτ

= (a− b)∇uτ∇uτ − a∇wτ∇wτ +∇wτΨτ .
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Hence

I∞(τ) =

∫
Ω×[0,T ]

(a− b)(∇uτ )2 dxe−2τ2(T+t)dt−B2 +A2 +R1 +R2,

which gives (54) with the help of (56).

Step 2. We put

X0 :=

∫
D

e−2τµ|t−θ||∇Pτ (x, t)|2 dxdt (59)

and

R4 :=
1

2

∫
Ω

e4τ2T |u∗τ (T )|2dx+
1

2

∫
Ω

e2τ2T |u∗τ (0)|2dx

+2

∫
Ω

e−2τ2T |uτ (0)|2dx+ 2

∫
Ω

e−2τ2T |v0|2dx,

R5 :=

∫
D

|∇qτ |2 dxdt, R∗5 :=

∫
D

|∇q∗τ |2 dxdt.

Thanks to (2) and to Assumption (H0b) we have the following estimates:

I∞(τ) ≥ CX0 +
1

2
B1 +B3 − 2R4 −

1

C
(R5 +R∗5), (60)

I∞(τ) ≤ 1

C
X0 −

1

2
B2 −B3 + 2R4 +

1

C
(R5 +R∗5), (61)

for some C ∈ (0, 1).
Proof. Thanks to Cauchy-Minkovski inequality and to the definition (22) we

have

R1 +R3 =

∫
Ω

(wτu
∗
τ +

1

2
w2
τe
−4τ2T )|t=Tdx

−
∫

Ω

(wτu
∗
τ +

1

2
w2
τe
−2τ2T )|t=0dx

≥ −R4. (62)

Similarly we have

R1 −R3 ≤ R4. (63)

We observe that, thanks to (53) and (54),

X1 = I∞(τ)−B1 −B3 −R1 −R2 −R3, (64)

X2 = I∞(τ) +B2 +B3 −R1 −R2 +R3. (65)

Thanks to (58) again we have

|R2| ≤
∫

Ω×[0,T ]

e−τ
2(T+t)|a− b||a−1||Ψτ | |∇q∗τ −∇qτ |dxdt

+

∫
Ω×[0,T ]

e−τ
2(T+t)|a− b||a−1| |b||∇uτ | |∇q∗τ −∇qτ |dxdt

≤ 1

2
B1 +

1

2
X1 + C(R5 +R∗5). (66)
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From (64) and (66) we get

|R2| ≤
1

2
I∞(τ)− 1

2
(B3 +R3 +R1 +R2) + C(R5 +R∗5). (67)

Estimates (53), (62) and (67) imply

I∞(τ) ≥ 1

2
X1 +

1

2
B1 +B3 −R4 − C(R5 +R∗5). (68)

By using (17), (18), (H0b), and the basic estimate a2 ≥ 1
2 (a+ b)2 − b2, we have

X1 ≥
∫
D

δ1e
−2τµ|t−θ||∇Pτ (x, t)|2 dxdt

−
∫

Ω×[0,T ]

|b| |a−1||a− b| |∇qτ |2 dxdt

≥ CX0 −
1

C
R5,

for some C ∈ (0, 1). Then with (68) we obtain (60).
Similarly, by using (54), (59), (65) we obtain (61).

Step 3. We prove that for τ > µ+ 1 we have

|R4| ≤ (2‖v0‖2L2(Ω) + 5dΩ)e−τµmin(T−θ,θ). (69)

Proof. Firstly, we have

0 ≤ uτ (x, 0) =

∫ ∞
0

∫
R3

eτ
2(T−s)e−τµ|θ+s|m(y,−s)Gy(x, s)dyds

≤ eτ
2T e−τµθ

∫ ∞
0

∫
R3

e−τ
2sGy(x, s)dyds =

1

τ2
eτ

2T e−τµθ.

Here we used the notorious relation∫
R3

Gy(x, s)dy = 1. (70)

Hence
0 ≤ e−τ

2Tuτ (x, 0) ≤ e−τµθ, τ ≥ 1. (71)

Similarly we have

0 ≤ e2τ2Tu∗τ (x, T ) ≤ e−τµ(T−θ), τ ≥ 1. (72)

Secondly, since τ > µ+ 1 > 1 we have

0 ≤ u∗τ (x, 0) =

∫ ∞
0

∫
R3

e−τ
2(T+s)e−τµ|θ−s|m(y, s)Gy(x, s)dyds

≤ e−τ
2T e−τµθ

∫ ∞
0

e−(τ2−τµ)s

∫
R3

Gy(x, s)dyds

=
1

τ2 − τµ
e−τ

2T e−τµθ ≤ e−τ
2T e−τµθ. (73)
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From (73), (72), (71), we obtain for τ > µ+ 1 > 1:

R4 ≤ 2‖v0‖2L2(Ω)e
−2τ2T + 2dΩe

−τµ(T−θ) + 3dΩe
−τµθ,

which implies (69).
Estimates (26) and (25) come immediately from (60), (61), (69) and the fact

that Bj ≥ 0 for j = 1, 2, 3.

Proof of Lemma 5.3. We observe that for all t, the function Pτ (·; t) is the unique
solution in H1(R3) of

(−div (b∇·) + τ2)Pτ (·; t) = mτ (·, t). (74)

Let φ ∈ C1(R; [0, 1]) with φ(r) = 1 for |r| ≤ 1/2 and φ(r) = 0 for |r| ≥ 1. Put
ψ(x) = φ(τ(x−x0)/β) where x0 is the center of the ball B(β/τ). We multiply (74)
by Pτ (·, t)ψ2 and integrate it over Ω. Since supp (ψ)∩ supp (mτ (·, t)) has Lebesgue
measure zero, we then have∫

Ω

[b(∇Pτ (·, t))2ψ2 + 2b∇Pτ (·, t)ψ Pτ (·, t)∇ψ + τ2P 2
τ (·, t)ψ2] = 0. (75)

Then, from Cauchy-Minkovski’s inequality,∫
Ω

[b(∇Pτ (, t))2ψ2 + τ2P 2
τ (·, t)ψ2] ≤

∫
Ω

|2b∇Pτ (·, t)ψ Pτ (·, t)∇ψ|

≤
∫

Ω

[
1

2
b(∇Pτ (·, t))2ψ2 + 2bP 2

τ (·, t)(∇ψ)2].

Thus, for some C ′ > 0,∫
Ω

[|∇Pτ (, t)|2 + τ2P 2
τ (·, t)]ψ2(x)dx ≤ C ′

∫
Ω

P 2
τ (·, t)|∇ψ|2(x)dx.

Since supp ψ ⊂ B(β/τ) with |∇ψ(x)| ≤ τ
β max |φ′|, ψ ≥ 0, and ψ = 1 in B( β2τ ), we

then have ∫
B( β2τ )

|∇Pτ (·, t)|2(x)dx ≤ C ′′τ2

∫
B( βτ )

P 2
τ (·, t)dx,

which proves the second inequality in (43).
From (75) and thanks to Cauchy-Minkovski’s inequality we have also∫

Ω

[b(∇Pτ (·, t))2ψ2 + τ2P 2
τ (·, t)ψ2] ≤

∫
Ω

|2b∇Pτ (·, t)∇ψ Pτ (·, t)ψ|

≤
∫

Ω

[
2

τ2
γ2
∞|∇Pτ (·, t)|2|∇ψ|2 +

1

2
τ2P 2

τ (·, t)ψ2].

Thus, ∫
Ω

τ2P 2
τ (·, t)ψ2(x)dx ≤ Cτ−2

∫
Ω

|∇Pτ (·, t)|2|∇ψ|2(x)dx.

We then obtain ∫
B( β2τ )

τ2P 2
τ (·, t)dx ≤ C ′

∫
B( βτ )

|∇Pτ (·, t)|2dx
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which proves the first inequality in (43) with β replaced by 2β.

Proof of Lemma 5.4. Since Gx(y, s) = Gy(x, s) and thanks to (41) with r = 1/τ ,
we have for all x 6∈ B(y(t), 2/τ):∫

B(y(t),1/τ)

Gy(x, s)dy =

∫
B(y(t),1/τ)

Gx(y, s)dy ≤ |B(1/τ)| max
B(y(t),1/τ)

Gx(·, s)

≤ cτ−3Gx(y(t), s+
1

2τ2
) = cτ−3Gy(t)(x, s+

1

2τ2
).

Then, since τ |x − y(t)| ≥ 2/κ5 ≥ 2, since mτ ≤ 1 and supp mτ = B(y(t), 1
τ ) we

have

Pτ (x, t) ≤
∫ ∞

0

e−τ
2s

∫
B(y(t), 1

τ )

Gy(x, s)dyds (76)

≤ cτ−3

∫ ∞
0

e−τ
2sGy(t)(x, s+

1

2τ2
)ds

= cτ−3

∫ ∞
1

2τ2

e−τ
2(s− 1

2τ2 )Gy(t)(x, s)ds

≤ c′τ−3

∫ ∞
0

e−τ
2sGy(t)(x, s)ds = c′τ−3 pτ (x; y(t)).

We obtain the first inequality of (44). Let us prove the second one. Since mτ ≥ 1/2
in B(y(t), 1

2τ ) we then have

Pτ (x, t) ≥ 1

2

∫ ∞
0

e−τ
2s

∫
B(y(t), 1

2τ )

Gy(x, s)dyds

≥ cτ−3

∫ ∞
0

e−τ
2s inf
y∈B(y(t), 1

2τ )
Gy(x, s)ds.

By applying (41) with r = 1/τ and observing that Gy(x, s) = Gx(y, s) we then have
for all x 6∈ B(y(t), 2/τ):

Pτ (x, t) ≥ cτ−3

∫ ∞
0

e−τ
2s inf
y∈B(y(t), 1

2τ )
Gy(x, s)ds

≥ cτ−3

∫ ∞
0

e−τ
2sGy(t)(x, s−

1

2τ2
)ds

= cτ−3

∫ ∞
1

2τ2

e−τ
2(s+ 1

2τ2 )Gy(t)(x, s)ds

= c′τ−3

(
pτ (x, y(t))−

∫ 1
2τ2

0

e−τ
2sGy(t)(x, s)ds

)
, (77)

where c′ > 0. We put R :=
∫ 1

2τ2

0 e−τ
2sGy(t)(x, s)ds. Thanks to (4) and (7) we have

R ≤
∫ 1

2τ2

0

e−
κ2|x−y(t)|2

4s

κs3/2
ds ≤

√
2κ−1τ

∫ ∞
1

e−κ
2|x−y(t)|2τ2r/2dr

= 2
√

2κ−3τ−1|x− y(t)|−2e−κ
2|x−y(t)|2τ2/2

≤ 1

2
pτ (x, y(t))

2

κ5τ |x− y(t)|
exp(−κ−1τ |x− y(t)|(κ2τ |x− y(t)|/2− 1)).
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Since τ |x− y(t)| ≥ 2/κ5 > 2/κ2, we then have R ≤ 1
2pτ (x, y(t)). Hence

Pτ (x, t) ≥ 1

2
c′τ−3pτ (x, y(t)).

The conclusion follows.

Proof of Lemma 5.5. Let us observe that

e−τµ|t−θ−s| ≤ e−τµ|t−θ|eτµs s > 0, t ∈ R. (78)

Hence

e−τ
2(T+t)uτ (x, t) =

∫ ∞
0

e−τ
2se−τµ|t−θ−s|

∫
R3

mτ (y, t− s)Gy(x, s)dyds

≤ e−τµ|t−θ|H, (79)

where we put

H :=

∫ ∞
0

e−(τ2−τµ)s

∫
B(y(t−s),1/τ)

Gy(x, s)dyds ≡ H1 +H2 (80)

with

H1 :=

∫
s>λ/τ

e−(τ2−τµ)s

∫
B(y(t−s),1/τ)

Gy(x, s)dyds,

H2 :=

∫ λ/τ

0

e−(τ2−τµ)s

∫
B(y(t−s),1/τ)

Gy(x, s)dyds,

and where λ := 2|x − y(t)|/κ. We put also M ′ := Mλ + 1, C1 = max(1, 8κ−7(1 +
M2d2

Ω)). Since |y(t−s)−y(t)| ≤Ms, we then have B(y(t−s), 1/τ) ⊂ B(y(t),Ms+
1/τ) and so

H2 ≤ eµλ
∫ λ/τ

0

e−τ
2s

∫
B(y(t),Ms+1/τ)

Gy(x, s)dyds

≤ eµλ
∫ λ/τ

0

e−τ
2s

∫
B(y(t),M ′/τ)

Gy(x, s)dyds.

Since τ ≥ 2κ−1M , |x− y(t)| ≥ 1/τ , we then have |x− y(t)| ≥M ′/τ and so we can
apply (41) where x and y are exchanged and with r = M ′/(2τ). Hence

H2 ≤ ceµλ
∫ ∞

0

e−τ
2s|B(y(t),M ′/τ)|Gy(t)(x, s+M ′

2
/(2τ2))ds

≤ ceµλ
∫ ∞

0

e−τ
2s(2M ′)3|B(y(t), 1/(2τ))|Gy(t)(x, s+M ′

2
/(2τ2))ds

= ceµλ(2M ′)3

∫ ∞
M ′2/(2τ2)

e−τ
2(s−M ′2/(2τ2))|B(y(t), 1/(2τ))|Gy(t)(x, s)ds

= ceµλ+M ′2/2M ′
3
τ−3(pτ (x, y(t))−R),
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with R :=
∫M ′2/(2τ2)

0
e−τ

2sGy(t)(x, s)ds and c is the constant (41). Thanks to (4)
we have

R ≤
∫ M′2

2τ2

0

e−
κ2|x−y(t)|2

4s

κs3/2
ds ≤

√
2κ−1τM ′

−1
∫ ∞

1

e−κ
2|x−y(t)|2τ2r/(2M ′2)dr

= 2
√

2M ′κ−3τ−1|x− y(t)|−2e−κ
2|x−y(t)|2τ2/(2M ′2)

≤ 1

2
pτ (x, y(t))

M ′

κ5τ |x− y(t)|
exp(−κ−1τ |x− y(t)|(M ′−2

κ2τ |x− y(t)|/2− 1)).

Since τ |x − y(t)| ≥ C1 then M ′
−2
κ2τ |x − y(t)| ≥ 2 and M ′

−1
κ5τ |x − y(t)| ≥ 1.

Hence R ≤ 1
2pτ (x, y(t)) and

H2 ≤ CM ′
3
e2κ−1µ|x−y(t)|τ−3pτ (x, y(t))

≤ CM ′
3
e2κ−1µdΩτ−3pτ (x, y(t)), (x, t) ∈ Ω0,T

= C ′(M) τ−3pτ (x, y(t)), (x, t) ∈ Ω0,T . (81)

Let us estimate H1. Since Gy(x, s) ≤ κ−1s−3/2 and τ ≥ 2µ we then have

H1 ≤ κ−1τ−3

∫
s>λ/τ

s−3/2e−τ
2s/2ds

≤ κ−1τ−3

{ ∫
s>λ/τ

(λ/τ)−3/2e−τ
2s/2ds = 2(λ/τ)−3/2τ−2e−τλ/2∫

s>λ/τ
s−3/2e−τλ/2ds = 2(λ/τ)−1/2e−τλ/2

.

Hence
H1 ≤ 2κ−1λ−1τ−3e−τλ/2.

Thanks to (7) we then obtain

H1 ≤ κ−2τ−3pτ (x, y(t)), (x, t) ∈ Ω0,T . (82)

Then, thanks to Lemma 5.4 and from (82), (81), (79), the conclusion follows.

Proof of Lemma 5.6. We have

∂t(e
−τ2(t+T )uτ (x, t)) = Y1 + Y2,

with

Y1 := −τµ
∫ t

s=0

e−τ
2ssign(t− θ − s)e−τµ|t−θ−s|

∫
R3

mτ (y, t− s)Gy(x, s)dyds,

Y2 :=

∫ t

s=0

e−τ
2se−τµ|t−θ−s|

∫
R3

∂tmτ (y, t− s)Gy(x, s)dyds.

Let us estimate Y1. We have

|Y1(x, t)| ≤ τµ

∫ ∞
s=0

e−τ
2se−τµ|t−θ−s|

∫
R3

mτ (y, t− s)Gy(x, s)dyds

= τµ e−τ
2(t+T )uτ (x, t).
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Thanks to Lemma 5.5 we obtain

|Y1(x, t)| ≤ Ce−τµ|t−θ|τ−2pτ (x, y(t)). (83)

Let us estimate Y2. Remember that supp mτ (·, t) ⊂ B(y(t), 1/τ) and that

|∂tmτ (y, t)| = τ |ẏ(t)∇M0(τ(y − y(t)))| ≤Mτ.

Hence we have , as in the estimates of (76) we obtain

|Y2| ≤ Cτ

∫ ∞
s=0

e−τ
2se−τµ|t−θ−s|

∫
B(y(t−s),1/τ)

Gy(x, s)dyds

≤ e−τµ|t−θ|H,

where H is defined by (80). Hence

|Y2| ≤ C ′e−τµ|t−θ|τ−2pτ (x, y(t)). (84)

From (83), (84) we obtain (46).

Proof of Lemma 5.7. We write qτ (x, t) =
∫∞

0
e−τ

2s
∫
R3(A−B)Gy(x, s)dyds with

A ≡ e−τµ|t−θ−s|mτ (y, t− s),
B ≡ e−τµ|t−θ|mτ (y, t).

Let us observe that, since eτµs − 1 ≤ µτseτµs and thanks to (78), then

|A−B| ≤ e−τµ|t−θ|
(
µτseτµs1B(y(t−s),1/τ)

+Mτsmax(1B(y(t),1/τ), 1B(y(t−s),1/τ))
)
.

Hence
|qτ (x, t)| ≤ τe−τµ|t−θ|(µR1 +MR2) (85)

with

R1 :=

∫ ∞
0

e−τ̃
2s

∫
B(y(t−s),1/τ)

sGy(x, s)dyds, (86)

R2 :=

∫ ∞
0

e−τ
2s

∫
B̃

sGy(x, s)dyds, (87)

where τ̃ :=
√
τ2 − τµ and B̃ := B(y(t− s), 1/τ) ∪B(y(t), 1/τ).

Let us put again λ = 2κ−1|x− y(t)|. We write R2 = R21 +R22 with

R21 :=

∫ λ/τ

0

e−τ
2s

∫
B̃

sGy(x, s)dyds,

R22 :=

∫ ∞
λ/τ

e−τ
2s

∫
B̃

sGy(x, s)dyds.

As for the estimate of H1 in the proof of Lemma 5.5 we have

|R22| ≤ 2κ−1τ−3

∫ ∞
λ/τ

s−1/2e−τ
2s/2ds

≤ 2κ−1τ−3+1/2λ−1/2

∫ ∞
λ/τ

e−τ
2s/2ds = 4κ−1τ−5+1/2λ−1/2e−τλ/2

= 2
√

2κ−1/2τ−5+1/2|x− y(t)|−1/2e−τκ
−1|x−y(t)|.
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Thanks to (7) and since τ |x− y(t)| ≥ 1 we then have

|R22| ≤ κ−5/2τ−4(τ |x− y(t)|)−1/2|x− y(t)|pτ (x, y(t))

≤ Cτ−4|x− y(t)|pτ (x, y(t)). (88)

For s ≤ λ/τ we have B̃ ⊂ B(y(t),M ′/τ) with M ′ := λM + 1. Hence, as for the

estimate of H2 in the proof of Lemma 5.5 and since τ |x− y(t)| ≥ 2M ′
2
κ−5 we then

have

|R21| ≤ λτ−1

∫ λ/τ

0

e−τ
2s

∫
B(y(t),M ′/τ)

Gy(x, s)dyds

≤ λτ−1C(M)τ−3pτ (x, y(t))

≤ C(M)τ−4|x− y(t)|pτ (x, y(t)). (89)

From (88) and (89), we obtain that for τ |x− y(t)| ≥ 2M ′
2
κ−5 we have

|R2| ≤ C(M)τ−4|x− y(t)|pτ (x, y(t)). (90)

Now, we estimate R1 as R2 by splitting the integral in (87) with s < λ/τ or

s > λ/τ . We observe that τ̃ = τ
√

1− µτ−1 ≥ 1√
2
τ . Hence R1 = R11 + R12 with,

since τ̃ |x− y(t)| ≥
√

2κ−5 and τ ≥ 2µ,

|R12| ≤ τ−3+1/2λ−1/2

∫ ∞
λ/τ

e−τ̃
2s/2ds

= 2κ−1τ̃−2τ−3+1/2λ−1/2e−τλ+λµ

≤ Cτ−4|x− y(t)|pτ (x, y(t)). (91)

Finally, since τ |x− y(t)| ≥ 2κ−5, we have, as for the estimate of R21,

|R11| ≤ λτ−1eλµ
∫ λ/τ

0

e−τ
2s

∫
B(y(t),1/τ)

Gy(x, s)dyds

≤ C(M)τ−4|x− y(t)|pτ (x, y(t)). (92)

Thanks to (91) and (92), we obtain

|R1| ≤ C(M)τ−4|x− y(t)|pτ (x, y(t)). (93)

Thanks to (93) and (90), (85), we obtain (47) for τ ≥ 2µ, t ∈ [0, T ] and x ∈
Ω \B(y(t), C1/τ).

Proof of Lemma 5.8. We consider a familly of balls Bi(1/τ), i ∈ I, as in Lemma
5.1. By using (42) (with β = 6), (43) and (44), and by observing that Bi(6/τ) ∩
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B(y(t), 2κ5/τ) = ∅ for τ > 12κ−5d(t)−1, we can write∫
Dt

|∇Pτ |2(x, t)dx ≤
∑
i∈I

∫
Bi(3/τ)

|∇Pτ |2(x, t)dx

≤ C1

∑
i∈I

∫
Bi(6/τ)

τ2P 2
τ (x, t)dx

≤ C2

∑
i∈I

∫
Bi(6/τ)

τ−4p2
τ (x, y(t))dx

≤ C3

∑
i∈I
|Bi(6/τ)|τ−4p2

τ (xi, y(t))

≤ C4

∑
i∈I
|Bi(1/τ)|τ−4 min

Bi(1/τ)
p2
τ (·, y(t))

≤ C5

∑
i∈I

∫
Bi(1/τ)

τ−4p2
τ (x, y(t))dx

≤ C5

∫
Dt

τ−4p2
τ (x, y(t))dx. (94)

Hence, the second inequality of (48) is proved. The proof of the first one is similar.

Proof of Lemma 5.9. We put C ′1(M) = C1 + 6, C2 = max(C ′1, 12κ−5) where
C1(M) is the constant in Lemma 5.7. We consider again the balls B(1/τ), B(3/τ),
defined in Lemma 5.1. Thus

J :=

∫
Dt

|∇qτ (x, t)|2dx ≤
∑
i

∫
Bi(3/τ)

|∇qτ (x, t)|2dx. (95)

Let us fix i and denote B(3/τ) = Bi(3/τ). We consider again the functions φ ∈
C1(R; [0, 1]) and ψ(x) = φ(τ(x− x0)/6) where x0 is the center of a ball B(6/τ), as
in the proof of Lemma 5.3 (with β = 6).
Thanks to Lemma 5.6, there exists a positive constant C(M) such that for τ ≥ 2µ,
t ∈ [0, T ], x ∈ Ω \B(y(t);C1/τ), we have∣∣(−divb∇+ τ2)qτ (x, t)

∣∣ =
∣∣∣∂t(e−τ2(t+T )uτ (x, t))

∣∣∣
≤ Cτ−2e−τµ|t−θ|pτ (x, y(t)). (96)

We observe that

x ∈ supp (ψ) = B(6/τ)⇒ |x− y(t)| ≥ |x0 − y(t))| − 6/τ ≥
d(t)− 6/τ > C ′1/τ − 6/τ = C1/τ.

Hence we can multiply (96) by qτ (x, t)ψ2(x) and integrate it over Ω. This implies∫
Ω

(
b(∇qτ (·, t))2ψ2 + 2b∇qτ (·, t)ψ qτ (·, t)∇ψ + τ2q2

τ (·, t)ψ2
)

≤ Cτ−2e−τµ|t−θ|
∫

Ω

|qτ (·, t)|pτ (·, y(t))ψ2.
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Then, from Cauchy-Minkovski’s inequality, and as in the proof of Lemma 5.3, we
obtain∫

Ω

(|∇qτ (, t)|2 + τ2q2
τ (·, t))ψ2 ≤ C

∫
Ω

q2
τ (·, t)(∇ψ)2 + Ce−τµ|t−θ|τ−2 ·( ∫

Ω

|qτ (·, t)|2ψ2
)1/2( ∫

Ω

|pτ (·, y(t))|2ψ2
)1/2

.

Since supp ψ = B(6/τ) with |∇ψ(x)| ≤ τ max |φ′|/6, ψ ≥ 0, and ψ = 1 in B( 3
τ ),

we then have∫
B( 3

τ )

|∇qτ (·, t)|2 ≤ Cτ2

∫
B( 6

τ )

q2
τ (·, t) + Ce−τµ|t−θ|τ−2 ·

·
( ∫

B( 6
τ )

|qτ (·, t)|2
)1/2( ∫

B( 6
τ )

|pτ (·, y(t))|2
)1/2

.

Thanks to Lemma 5.7 and by using τ−1 ≤ C1|x− y(t)| for x ∈ B( 6
τ ), we then have∫

B( 3
τ )

|∇qτ (·, t)|2 ≤ Cτ−4e−2τµ|t−θ|
∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx+

Cτ−5e−2τµ|t−θ| ·
( ∫

B( 6
τ )

|x− y(t)|2|pτ (x, y(t))|2dx
)1/2 ·

·
( ∫

B( 6
τ )

|pτ (x, y(t))|2dx
)1/2

≤ C ′e−2τµ|t−θ|τ−4

∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx. (97)

By putting (97) in (95) we obtain

J ≤ C ′e−2τµ|t−θ|τ−4
∑
i

∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx. (98)

Finally, as in (94) we have∑
i

∫
B( 6

τ )

|x− y(t)|2|pτ (x, y(t))|2dx ≤ C
∫
Dt

|x− y(t)|2|pτ (x, y(t))|2dx.

This with (98) prove (49).

Proof of Lemma 5.10. We can assume that Dt 6= ∅. We put λ = 2κ−2d(t) and

J :=

∫
Dt

|x− y(t)|2|pτ (x, y(t))|2dx = J1 + J2,

J1 :=

∫
Dt∩B(y(t),λ)

|x− y(t)|2|pτ (x, y(t))|2dx,

J2 :=

∫
Dt\B(y(t),λ)

|x− y(t)|2|pτ (x, y(t))|2dx,

J̃ :=

∫
Dt

|pτ (x, y(t))|2dx.
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We then have

J1 ≤ λ2J̃ = 4κ−4d(t)2J̃ . (99)

On the one hand thanks to (7) we have

J2 ≤ |Dt|4πκ−4 exp(−2κλτ),

and, on the other hand,

J2 ≤ 4πκ−4

∫
|x−y(t)|>λ

e−2κτ |x−y(t)|dx ≤ 16π2κ−4

∫
r>λ

e−2κτrr2dr

≤ 20π2λ2κ−5τ−1 exp(−2κτλ) ≤ 20π2λ3κ−4 exp(−2κτλ)

≤ 20π2κ−10(2d(t))3 exp(−2κτλ).

Here we used λ ≥ κ−1τ−1. Hence

J2 ≤ 4πκ−4 min(40πκ−6d(t)3, |Dt|) exp(−2κτλ). (100)

Let us fix x0 ∈ ∂Dt such that d(t) = |x0 − y(t)|. Then B(y(t), 2d(t)) ⊃ B(x0,d(t))
so, thanks to (7) and to (H3b), we have

J̃ ≥
∫
Dt∩B(y(t),2d(t))

|pτ (x, y(t))|2dx

≥ |Dt ∩B(y(t), 2d(t))|4πκ4(2d(t))−2 exp(−4κ−1τd(t))

≥ πκ4|Dt ∩B(x0,d(t))|d(t)−2 exp(−2κτλ)

≥ πκ4LD min(|Dt|, |B(x0,d(t))|)d(t)−2 exp(−2κτλ)

≥ πκ4LD min(|Dt|,
4

3
πd(t)3)d(t)−2 exp(−2κτλ).

Then
J2

d(t)2J̃
≤ CL−1

D κ−14, (101)

for some numerical parameter C > 0. From (101) and (99) we obtain

J ≤ C ′L−1
D d(t)2J̃ ,

which is the estimate to prove.

Proof of Lemma 2.1. It is the direct consequence of Lemma 5.9 and Lemma
5.10.

Proof of Lemma 3.3
1) Thanks to (7) and to Lemma 3.2 we have, for all τ > τ0,

I∞(τ) ≤ cτ−4

∫ T

0

∫
Dt

16κ−4ε−2
Σ e−2κτεΣdxdt+ C1e

−4κ−1dΩτ

≤ C2ε
−2
Σ τ−4e−2κεΣτ .

We then obtain (31).
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2) Let us fix T1 ∈ (0,min(α|Dθ|1/3, 1
2θ,

1
2 (T − θ), α2, α3

√
8CM

)) sufficiently small

such that we have, thanks to (H2),

|Dt| ≥
1

2
|Dθ| > 0 for |t− θ| ≤ T1. (102)

Thanks to (30) in Lemma 3.2 we have, for τ > τ0,

I∞(τ) ≥ I0 −R0

with

R0 :=
1

c
τ−4

∫
|t−θ|≥T1

CMd(t)2e−2τµ|t−θ|
∫
Dt

p2
τ (x, y(t))dxdt

+C1e
−τµmin(θ,T−θ),

I0 :=
1

c
τ−4

∫
|t−θ|≤T1

(1− CMd(t)2)e−2τµ|t−θ|
∫
Dt

p2
τ (x, y(t))dxdt.

Thanks to (7) we have

R0 ≤ C3(Σ, v0)τ−4e−2τµT1 .

By observing that, thanks to (32), |t− θ| ≤ T1 implies d(t) ≤ 2
α3T1 ≤ 1√

2CM
. Thus,

putting

B(t) :=

∫
Dt∩B(y(t),2d(t))

e−4τκ−1d(t)dx, ε ≤ |t− θ| ≤ 2ε,

and restricting ε to the interval (0, T1/2), we obtain

I0 ≥ 1

2c′
sup

0≤r≤T
{d(y(r), Dr)}−2τ−4

∫
|t−θ|≤T1

e−2τµ|t−θ|B(t)dt

≥ c(M,α,Ω, T, κ)τ−4

∫
ε≤|t−θ|≤2ε

e−2τµ|t−θ|B(t)dt.

Let us give a lower bound for B(t), ε ≤ |t− θ| ≤ 2ε. We have, thanks to (32),

Dt ∩B(y(t), 2d(t)) ⊃ Dt ∩B(x(t),d(t)) ⊃ Dt ∩B(x(t),
ε

2α
),

for some x(t) ∈ ∂Dt. Thanks to (H3b) we have

|Dt ∩B(x(t),d(t))| ≥ LD min(|Dt|,
πε3

6α3
).

Thus, thanks to (102) and since ε ≤ 1
2T1 ≤ 1

2α|Dθ|1/3, we have

|Dt| ≥
1

2
|Dθ| ≥

πε3

6α3
for ε ≤ |t− θ| ≤ 2ε,

and so

|Dt ∩B(y(t), 2d(t))| ≥ LD
πε3

6α3
, ε ≤ |t− θ| ≤ 2ε. (103)
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Then, thanks to (32),

B(t) ≥ LD
πε3

6α3
e−4τκ−1d(t) ≥ LD

πε3

6α3
e−8τκ−1α−3ε, ε ≤ |t− θ| ≤ 2ε.

Finally we obtain

I0 ≥ C(Σε)τ
−4e−(8κ−1α−3+4µ)ετ , (104)

with C(Σε) > 0. Let us put ε1 = min( 1
2T1,

µT1

κ−1α−3+4µ ). For ε ∈ (0, ε1] we then
have

R0/I0 ≤ C ′(Σ)e−τµT1 ,

and so R0/I0 ≤ 1
2 for τ ≥ τ0 (eventually modified). Thus, for ε ∈ (0, ε1],

I∞(τ) ≥ 1

2
C(Σε)τ

−4e−(8κ−1α−3+4µ)ετ

which implies (33).
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