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We consider an inverse boundary value problem for the heat equation with a non-smooth coefficient of conductivity which models the displacement of a moving body inside a nonhomogeneous background. We prove the uniqueness of the moving inclusion from the knowledge of the Dirichlet-to-Neumann operator by using a dynamical probe method.

Introduction 1.Inverse heat conductivity problem

Let T > 0 and let Ω be a bounded domain in R 3 , with a lipschitzian boundary Γ = ∂Ω. Let us consider the anisotropic heat equation

∂ t v -div (a∇v) = 0 in Ω 0,T ≡ Ω × (0, T ), (1) 
where the operators div, the divergence, and ∇, the gradient, are relative to the spatial variable x. In our model, the conductivity a = (a ij ) 1≤i,j≤3 is a 3 × 3 real symmetric matrix with positive bounded measurable coefficients of x. It satisfies the uniform elliptic condition: there exists γ ∞ > 0 such that

γ -1 ∞ |ξ| 2 ≤ aξ • ξ ≤ γ ∞ |ξ| 2 , ξ ∈ R 3 . (2) 
It is well-known that, for all f ∈ L 2 (0, T ; H 1/2 (Γ)) and v 0 ∈ L 2 (Ω), there exists only one solution v = v(a, v 0 ; f ) ∈ H 1 ((0, T ); L 2 (Ω)) ∩ L 2 ((0, T ); H 1 (Ω)) of (1) with the following initial boundary value problem: v = f on Γ 0,T ≡ Γ × (0, T ), v t=0 = v 0 on Ω.

(3)

See for example the book of Wloka [START_REF] Wloka | Partial differential equations[END_REF]. Then, we can define the Dirichlet-to-Neumann map (D-N map) as Λ a;v0 : L 2 ((0, T ); H 1/2 (Γ)) f → a∇v(a, v 0 ; f ) • ν ∈ L 2 ((0, T ); H -1/2 (Γ)),

where ν denotes the outer unit normal to Γ. In physical terms, f = f (t, x) is the temperature distribution on the boundary and Λ a,v0 (f ) is the resulting heat flux through the boundary.

In this article we are concerned with the Calderón inverse problem for (1) which is to determine a from the knowledge of the D-N map Λ v0,a . The conductivity a consists in a non necessarily smooth background and an unknown inclusion t → D t ⊂ Ω which moves continuously inside the body Ω. Thus, in our inverse problem, the function a| Ω\Dt coincides with a measurable real matrix-function b ∈ L ∞ (Ω) which satisfies [START_REF] Cristo | Stable determination of the discontinuous conductivity coefficient of a parabolic equation[END_REF] and represents the conductivity of a background medium, and so, is known. The inverse problem we address is to determine the moving inclusion D = ∪ 0≤t≤T (D t × {t}) ⊂ Ω 0,T from the knowledge of Λ a,v0 .

Remark 1. In our problem the value of the conductivity inside the inclusion, a| Dt , and the initial value of v, v 0 , are unknown but the article does not deal with their determination.

Main assumptions

The two following assumptions were already considered by several authors in the isotropic situation [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF], [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF], [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

(H0): there exists a positive constant δ 1 such that (H0a

) : b -1 -a -1 ≤ -δ 1 < 0, b -a ≥ δ 1 > 0 in D, or (H0b) : b -1 -a -1 ≥ δ 1 > 0, b -a ≤ -δ 1 < 0 in D.
(H1): for all t ∈ [0, T ], the set R 3 \ D t is connected.

Because of technical limitations of our method when b is not sufficiently smooth, we need some additional geomerical assumptions on D. For a point x ∈ R 3 and a non-empty set E ⊂ R 3 we denote by d(x, E) the quantity inf z∈E |x -z| and by |E| the Lebesgue-measure of E.

(H2): t → D t is lipschitzian in the following sense: there exists K D > 0 such that for all x ∈ Ω the mapping t → d(x, Ω\D t ) is lipschitzian in [0, T ] with lipschitzian constant K D and the mapping t → d(x, D t ) is lipschitzian at all s ∈ [0, T ] such that D s = ∅ with lipschitzian constant K D .

(H3): (H3a): for all t ∈ [0, T ], D t satisfies the exterior cone property, i.e., there exists ρ(t) > 0 such that for all z ∈ ∂D t , there exists an open cylindrical cone C o (z, ρ) ⊂ R 3 \D t with summit z, hightness ρ and volume ρ 3 , and (H3b): there exists L D ∈ (0, 1) such that

|D t ∩ B(z, r)| ≥ L D min(|D t |, |B(z, r)|), ∀r > 0, z ∈ ∂D t , t ∈ [0, T ].
The Runge approximation method in the dynamical probe method is based on the uniqueness property (UC) which holds if the conductivity is constant. However V. Isakov has shown that (UC) can fail if the conductivity is not sufficiently regular [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF]. Therefore we add the following assumption on b:

(UC) in Ω -Let ω ⊂ Ω be a sufficiently smooth domain, let a < b and let u ∈ H1 (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)) be such that ∂ t u-div(b∇u) = 0 in ω × (a, b) and u = a∇u • ν = 0 on S × (a, b), where S is an non-empty open subset of ∂ω. Then, necessarily, u = 0 in ω × (a, b).

Remark 2. The above definition of (UC) is independent of the choice of the timeinterval [0, T ] since in our work we assume that b does not depend on the variable t. 

Main Result

Here we state our uniqueness result for the above inverse problem. Let v 0 , v 0 ∈ L 2 (Ω), be two conductivities a, a satisfying (H0)-(H3) and (UC). Let D be the inclusion related to a . Theorem 1. Assume that Λ v0,a = Λ v 0 ,a . Then, D = D . Remark 4. Our proof of Theorem 1 is not completely constructive, although it is based on the same dynamical method developed by the author who showed a (theoretical) reconstruction of D from the knowledge of Λ v0,a [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

Remark 5. We shall proof Theorem 1 with the following assumption:

D(t) ⊂ Ω, t ∈ [0, T ].
Therefore we replace (H1) by: (H1'): one has D(t) ⊂ Ω, and the set Ω \ D t is connected, for all t ∈ [0, T ].

The general proof of Theorem 1 where D(t) may touch ∂Ω is easily get from the following modification on the case (H1'):

• We consider a large smooth bounded domain Ω containing Ω and we put b = I 3 (the 3 × 3 identity matrix) in Ω \ Ω.

• (If necessary) 1 (UC) is assumed with Ω replaced by Ω .

Remark 6. The proof of Theorem 1 will show that (H0) can be extended to the following situation:

(H0') There exist positive constants ε 0 , δ 1 , such that for

(x, t) ∈ D, b -1 (x) -a -1 (x) ≤ -δ 1 < 0, b(x) -a(x) ≥ δ 1 > 0 if d(x, ∂D t ) ≤ ε 0 , or b -1 (x) -a -1 (x) ≥ δ 1 > 0, b(x) -a| Dt (x) ≤ -δ 1 < 0 if d(x, ∂D t ) ≤ ε 0 ,

Outline

In Section 2 we recall the basis of the dynamical probe method, the Runge approximation method and we construct indicator and pre-indicator functions from special Cauchy boundary data. In Section 3 we state the lower and upper estimates on the indicator function from which the proof of our main Theorem 1 can be achieved in Section 4. In Section 5 we develop the technical results on which the proof of the estimates of Section 3 is based.

2 The dynamical probe method (DPM) with special solutions of the heat equation

Notations

Let us give some notations for this paper. For E ⊂ R 3 , a < b, and for

U ⊂ R 3 × R, we put E a,b = E × (a, b) and U t ≡ {x ∈ R 3 (x, t) ∈ U }.
For non-negative integers p, q or p = 1/2, H p (Ω) H p (∂Ω) and H p,q (Ω (a,b) ) denote the usual Sobolev spaces where the superscripts p and q indicate the regularity with respect to x and t, respectively. For an open set U ⊂ R 4 with Lipschitz boundary ∂U , H p,q (U ) is defined likewise. More precisely, g ∈ H p,q (U ) if and only if there exists G ∈ H p,q (R 4 ) with G = g in U . If it is the case, g H p,q (U ) is defined to be

g H p,q := inf G H p,q (R 4 ) ,
where the infimum is taken over all G such that G = g in U . Let X be a normed space of functions. A function f (x, t) is said to be in L 2 ((0, T ); X) if f (•, t) ∈ X for almost all t ∈ (0, T ) and

f 2 L 2 ((0,T );X) := T 0 f (•, t) 2 L 2 (X) dt < ∞.
(For more details, we refer to J.L. Lions and E. Magenes [START_REF] Lions | Non-homogeneous boundary value problems and applications II Berlin[END_REF]). We write L a := ∂ t -div (a∇•), so L I := ∂ t -∆ for the homogeneous case. Similarly, we consider operator for the backward related heat equation, L * a := -∂ t -div (a∇•). We denote by B(r) any ball of radius r > 0 in R 3 . The open ball {x ∈ R 3 ; |y -x| < r}, r > 0, is denoted B(y, r). We denote by d(t) the distance between y(t) and

D t if D t = ∅, i.e., d(t) = d(y(t), D t ). If D t = ∅ then we put d(t) = +∞, 1/d(t) = 0. If ξ ∈ R 3 then |ξ| denotes the euclidian norm of ξ and if m is a 3 × 3 real matrix then |m| := sup ξ∈R 3 , |ξ|=1 |mξ • ξ|.

Brief history of the determination of an inclusion from the D-N map

The determination of a sufficiently smooth moving inclusion inside an homogeneous body was stated by A. Elayyan and V. Isakov [START_REF] Elayyan | On uniqueness of the recovery of the discontinuous conductivity coefficient of a parabolic equation[END_REF]. Their proof is by contradiction. DPM for ( 1) is an extension of Ikehata's probe method which was developed for the elliptic equation div(a∇v) = 0 where a may be tensorial [START_REF] Ikehata | Size estimation of inclusion[END_REF]. In the parabolic situation, DPM was firstly presented by Y. Returning to DPM, the author used "special solutions" for the classical heat operator which are more convenient functions than the basic fundamental solutions Γ(x -y, t -s), because their behaviour in time and space are sufficiently separated [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF]. Since the background was homogeneous, the DPM of the author can reconstruct any spatially irregular inclusion as in the elliptic situation [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

However, in our situation we are limited to inclusions with some kind of lipschitzian regularitiy (see (H2), (H3)). Moreover the negative part "-C M d(t) 2 " in (30) makes the reconstruction process unclear so the proof of Theorem 1 is by contradiction only.

Runge approximation method

The Runge approximation method for the operator unperturbed operator L I with the homogeneous conductivity a = I 3 was developed first by Y. Daido, H. Kang, G. Nakamura, then by V. Isakov, K. Kim, G. Nakamura [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF], [START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF].

Let Σ : [0, T ] t → y(t) ∈ R 3 \ D t be a lipschitzian curve which does not touch D. We extend Σ to t ∈ R by putting y(t) = y(T ) for t ≥ T and y(t) = y(0) for t ≤ 0. Then, thanks to (H1'), there exists an open set

U ⊂ Ω × R containing D and satisfying    ∂U is lipschitzian, dist(U, Σ) := inf{|x -y|; x ∈ U, y ∈ Σ} > 0, Ω \ U t is connected, t ∈ R.
The Runge approximation method works thanks to (UC) notably, and gives the following result [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF][START_REF] Isakov | Reconstruction of an unknown inclusion by thermography[END_REF][START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF]. For τ > 0 we denote Σ τ = ∪ t∈R B(y(t), 1/τ ) × {t}.

Proposition 1. Assume (H1') and (UC). Let Σ and U be as above. Let u ∈ H 1,0 (Ω (0,T ) ) ∩ H 0,1 (Ω (0,T ) ) be a solution of

L b u = 0 in Ω (-1,T +1) \ Σ τ . Then for τ > inf{r > 0 | dist(U, Σ r ) > 0} there exists a sequence u j ∈ H 1,0 (Ω (-1,T +1) ) ∩ H 0,1 (Ω (-1,T +1) ) such that    L b u j = 0 in Ω (-1,T +1) , u j → u in H 1,0 (U ) ∩ H 0,1 (U ), u j (0) = u(0) in L 2 (Ω).

Heat Kernels

In many researchs devoted to inverse problems for parabolic equations, the background is homogeneous, i.e, b = I 3 . In such a classical situation, the heat operator is ∂ t -∆ and its usual kernel Γ(x, t) has many properties, as 1. It is explicit:

Γ(x, t) = 1 (4πt) 3/2 e -x 2 4t , t > 0, x ∈ R 3 . 2. It satisfies Γ(x, t) ≤ C √ t |∇Γ(x, t)|, t > 0, x ∈ R 3 ,
for some C > 0. Hence, Γ(x, t) is small compared to |∇Γ(x, t)| as t → 0.

3. Thanks to the Laplace transform ∞ 0 •e -τ 2 t dt of ∂ t -∆, we consider similarily the elliptic operator -∆ + τ 2 with the (large) real parameter τ > 0. Its kernel E(x; τ ) is explicit too:

E(x; τ ) = ∞ 0 Γ(x, t)e -τ 2 t dt = e -τ |x| 4π|x| , x ∈ R 3 . 4. It satisfies E(x; τ ) ≤ τ |∇E(x; τ )|, x ∈ R 3 .
Hence, E(x; τ ) is small compared to |∇E(x; τ )| as τ → ∞, uniformly in all bounded set of R 3 \ {0}. This fact was exploited by the author [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

Let us come back to the heat equation with a general conductivity b. We put b(x

) = I 3 for x ∈ R 3 \ Ω. For y ∈ R 3 , we denote by G y ∈ C(R; L 2 (R 3 )) the fundamental solution of L b G y = δ (y,0) ,
which satisfies G y (x, t) = 0, t < 0.

We have the estimate:

κe -|x-y| 2 4κ 2 t t 3/2 ≤ G y (x, t) ≤ e -κ 2 |x-y| 2 4t κt 3/2 , x ∈ R 3 , t > 0, (4) 
for some constant κ = κ(b) ∈ (0, 1). See the famous results of D. G. Aronson and J. Nash [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF][START_REF] Nash | Continuity of solutions of a parabolic and elliptic equations[END_REF]. For τ > 0 we put the Laplace Transform of G y (x, t) as

p τ (x; y) := e -τ 2 t t -∞ e τ 2 s G y (x, t -s)ds = ∞ 0 e -τ 2 s G y (x, s)ds. (5) 
Let us observe that p τ (•; y) belongs to H 1 loc (R 3 \ {y}) and, thanks to (4), satisfies

(-div (b∇•) + τ 2 )p τ (•; y) = δ y (•), (6) 2 
√ π κ 2 e -τ κ |x-y| |x -y| ≤ p τ (x; y) ≤ 2 √ π e -κτ |x-y| κ 2 |x -y| , x ∈ R 3 \ {y}. (7) 
This is also a consequence of the works of Nash and Aronson.

Special solutions

Let us consider a lipschitzian curve Σ ⊂ R 3 × R as in Section 2.3, and fix θ ∈ (0, T ). Let µ ≥ 1 be another positive parameter that we shall precise later.

The author considered special solutions related to the following functions (with other notations and with b ≡ I 3 ):

U OP (x, t) := e τ 2 (T +t) ∞ 0 e τ µ(|t-θ-s|-|t-θ|) Γ(x -y(t -s), s)e -τ 2 s ds, U * OP (x, t) := e -τ 2 (T +t)
∞ 0 e τ µ(|t-θ+s|-|t-θ|) Γ(x -y(t + s), s)e -τ 2 s ds, [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF]. In fact, U OP and U * OP are respectively solutions of the following forward and backward heat equations:

L I U OP (x, t) = e τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)) in R 3 × R, L * I U * OP (x, t) = e -τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)) in R 3 × R.
Moreover they satisfies

U OP (x, t) = ϕ(x, t)e τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)), U * OP (x, t) = ϕ * (x, t)e -τ 2 (t+T ) e -τ µ|t-θ| p τ (x; y(t)),
such that, for some C = C(R, µ) > 0 and all τ ≥ C,

1 C ≤ |ϕ(x, t)| + |ϕ * (x, t)| ≤ C in B(0, R) × R, (8) 
|∇ϕ(x, t)| + |∇ϕ * (x, t)| ≤ C in B(0, R) × R, (9) 
[19, Lemma 1]. With the general conductivity b, we construct here special solutions u τ and u * τ as follows. Let us put

m τ (x, t) = M 0 (τ |x -y(t)|), t ∈ R, (10) 
where

M 0 is defined by M 0 (r) = |1 -r| 1 |r|≤1 . Hence m τ is a lipschitzian function with support closed to Σ as τ >> 1. We then put, for (x, t) ∈ R 3 × R, u τ (x, t) = s∈R y∈R 3 e τ 2 (s+T ) e -τ µ|s-θ| m(y, s)G y (x, t -s)dyds (11) = ∞ s=0 y∈R 3 e τ 2 (T +t-s) e -τ µ|t-θ-s| m(y, t -s)G y (x, s)dyds, u * τ (x, t) = s∈R y∈R 3 e -τ 2 (T +s) e -τ µ|s-θ| m τ (y, s)G y (x, s -t)dyds (12) = ∞ s=0 y∈R 3 e -τ 2 (T +t+s) e -τ µ|t-θ+s| m τ (y, t + s)G y (x, s)dyds.
The functions u τ and u * τ (x, t) are positive and satisfy

L b u τ (x, t) = e τ 2 (t+T ) e -τ µ|t-θ| m(x, t) in R 3 × R, (13) 
L * b u * τ (x, t) = e -τ 2 (T +t) e -τ µ|t-θ| m τ (x, t) in R 3 × R.
Remark 7. If m τ (x, t) was replaced by δ(x-y(t)) then it would be difficult to make the estimation of ẏ(s)∇ y G y(t-s) (x, t) that would appear in the expression of ∂ t u τ .

We then expect that

u τ (x, t) τ →∞ e τ 2 (T +t) e -τ µ|t-θ| τ -3 p τ (x, y(t)), (14) 
u * τ (x, t) τ →∞ e -τ 2 (T +t) e -τ µ|t-θ| τ -3 p τ (x, y(t)), (15) 
where the meaning of " " will be clarified shortly. Since the comparison requires the time-derivatives of u τ (x, t) or u * τ (x, t) and remembering Remark 7, we introduce the following smooth approximation of p τ (x; y(t)):

P τ (x, t) := ∞ 0 R 3 e -τ 2 s m τ (y, t)G y (x, s)dyds. (16) 
We then put

q τ (x, t) := e -τ 2 (T +t) u τ (x, t) -e -τ µ|t-θ| P τ (x, t), (17) 
q * τ (x, t) := e τ 2 (T +t) u * τ (x, t) -e -τ µ|t-θ| P τ (x, t). (18) 
The main difficulty in the proof of Theorem 1 is to prove that the quantity

R 0 := D (|∇q τ (x, t)| 2 + |∇q * τ (x, t)| 2 ) dxdt, (19) 
is negligible compared to D τ -6 e -2τ µ|t-θ| |∇p τ (x, t)| 2 dxdt or, in an equivalent way (see Lemmas 5.3 and 5.4), to D τ -4 e -2τ µ|t-θ| |p τ (x, t)| 2 dxdt. We shall prove in Appendix the following Lemma.

Lemma 2.1. (Estimate of ∇q τ in D t ). Let M > 0 and assume that | ẏ| ∞ ≤ M . There exist positive constants C M , τ 0 (Σ) such that if t ∈ [0, T ] and τ > τ 0 then Dt (|∇q τ (x, t)| 2 + |∇q * τ (x, t)| 2 )dx ≤ C M d(t) 2 τ -4 e -2τ µ|t-θ| Dt |p τ (x, y(t))| 2 dx. (20) 
(Remember that d(t) = d(y(t), D t ).) So R 0 is effectively "negligible" when the curve Σ is sufficiently close to D at least at time θ. This constraint is new compared to consequences of ( 8) and ( 9) (for which Assumption (H3) is in addition superfluous) and makes a theoritical reconstruction of D problematic, as opposite to the possible reconstruction proposed by the author [START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF].

Pre-indicator sequence and indicator function

As in section 2.3, we can consider sequences (u j ) j and (u * j ) j such that u j → u τ and u * j → u * τ in the sense of Proposition 1. Considering

v j = v(a, v 0 ; u j | Γ (0,T ) ) and the solution v τ ∈ H 1 ((0, T ); L 2 (Ω)) ∩ L 2 ((0, T ); H 1 (Ω)) of    L a v τ = L b u τ , v τ = u τ on Γ 0,T , v τ t=0 = v 0 on Ω, (21) 
we put

w τ = v τ -u τ (22) 
and

I j (τ ) := Γ×[0,T ] (Λ a;v0 (u j | Γ [0,T ] ) -b∇u j • ν) u * j | Γ×[0,T ] dσ(x)dt, I ∞ (τ ) := Ω×[0,T ] (a -b)∇v τ ∇u * τ dxdt + Ω [w τ u * τ ] T 0 dx, ( 23 
)
where dσ(x) is the usual measure on the boundary Γ. The knowledge of Λ a;v0 involves that of I j (τ )'s. Furthermore, as for the proofs in similar situations, Proposition 1 implies that

I j (τ ) → I ∞ (τ ) ∈ R as j → ∞, (24) 
For a proof, see the works based on DPM [START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF][START_REF] Poisson | Recovering time-dependent inclusion in heat conductive bodies using a dynamical probe method[END_REF]. Hence, if (UC) holds, then the knowledge of Λ a;v0 involves that of I ∞ (τ )'s.

Estimates on the indicator function

In the following results the positive constants c, C, C 1 may depend on T , Ω, µ, on the the conductivity, but not on τ . We indicate when they depend on an upper bound M of | ẏ| ∞ or on the initial data v 0 .

Lemma 3.1. Under assumption (H0b) we have

I ∞ (τ ) ≤ C D e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt (25) +C D (|∇q τ | 2 + |∇q * τ | 2 ) dxdt + 10( v 0 2 L 2 (Ω) + d Ω )e -τ µ min(T -θ,θ) ,
and

I ∞ (τ ) ≥ 1 C D e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt (26) -C D (|∇q τ | 2 + |∇q * τ | 2 ) dxdt -10( v 0 2 L 2 (Ω) + d Ω )e -τ µ min(T -θ,θ) , for some C ≥ 1, for all τ > µ + 1, µ > 0.
Proof in Appendix.

We put also

d Ω := sup{|x -y|; x, y ∈ Ω}, ( 27 
)
ε Σ := inf t∈[0,T ] d(t) > 0. ( 28 
)
Lemma 3.2. Let M > 0 and assume that | ẏ| ∞ ≤ M . Then, under assumption (H0b), there exist positive constants c = c(M ),

C 1 = C 1 (v 0 ), C M , τ 0 = τ 0 (Σ), such that if τ > τ 0 we then have I ∞ (τ ) ≤ cτ -4 D e -2τ µ|t-θ| |p τ (x, y(t))| 2 dxdt (29)
+C 1 e -τ µ min(T -θ,θ) , and

I ∞ (τ ) ≥ 1 c τ -4 D 1 -C M d(t) 2 e -2τ µ|t-θ| |p τ (x, y(t))| 2 dxdt (30) -C 1 e -τ µ min(T -θ,θ) .
The proof of Lemma 3.2 requires the developments of Section 5. Let us extend the function ln to (-∞, 0] by putting ln

(I) = -∞ if I ≤ 0. Lemma 3.3. We assume that (H0b) is true. Let θ ∈ (0, T ). Let us fix µ ≥ 4κ -1 d Ω max((T -θ) -1 , θ -1 ).
1) Let Σ be a lipschitzian curve such that ε Σ > 0. We then have

lim sup τ →∞ τ -1 ln(I ∞ (τ )) ≤ -2κε Σ . (31) 
2) Assume that D θ = ∅. Let M > 0, α > 0. Let (Σ = Σ(ε)) 0<ε≤α 2 be a familly of curves as in Section2.3, such that we have

       | ẏ(•)| ∞ ≤ M, d(t) ≤ 2 α 3 ε for |t -θ| ≤ ε, d(t) ∈ [ 1 2α |t -θ|, 2 α 3 |t -θ|] for ε ≤ |t -θ| ≤ α 2 , d(t) ≥ α/2 for |t -θ| ≥ α 2 , (32) 
where d(t) := d(y(t), D t ). Then there exists ε 1 ∈ (0, α 2 ] such that for 0 < ε ≤ ε 1 we have

lim inf τ →∞ τ -1 ln(I ∞ (τ )) ≥ -(8κ -1 α -3 + 4µ)ε. ( 33 
)
Proof in Appendix.

Proof of Theorem 1

We may assume that (H0b) holds, since the case where (H0a) holds is similar. Thanks to Remark 5 we have

D t ∪ D t ⊂ Ω, t ∈ [0, T ]. Let us assume that D = D . Then there exists (z, θ) ∈ Ω × [0, T ] with D θ = ∅, z ∈ ∂D θ and z ∈ D θ or with D θ = ∅, z ∈ ∂D θ and z ∈ D θ .
Thus, we consider for simplicity that z ∈ ∂D θ and z ∈ D θ . Thanks to (H2), t → (D t , D t ) is continuous so we consider also that 0 < θ < T . In fact let us explain why can consider also that z ∈ ∂D θ \ D t if |t -θ| < β for some β > 0. If D t is void for |t -θ| sufficiently small then it is immediate, but if D t is not void for |t -θ| sufficiently small then we can't be sure that d(z, D t ) > 0 when t θ. However, in such a case, thanks to (H2), there exists a sequence θ n → θ satisfying D θn = ∅ and D θn \ D θn = ∅. We then replace (z, θ) by another couple (z n , θ n ) with z n ∈ ∂D θn \ D θn . Then, since D θn = ∅ and thanks to (H2), we have z n ∈ ∂D t if t θ n . So we can consider that

z ∈ ∂D θ \ D t if |t -θ| ≤ β for some β > 0. ( 34 
)
Let us construct a familly of curves Σ = Σ(ε) for 0 < ε ≤ α 2 , for some positive α such that (32) and

ε Σ := inf 0≤t≤T d(y(t), D t ) ≥ α/2 (35) 
hold. In fact, since D θ and D θ satisfy Assumptions (H1') and (H3b) then there exists a lipschitzian curve ỹ : [0, 1] s → ỹ(s) ∈ R 3 with Lipschitz constant M such that ỹ(0) = z, ỹ(1) ∈ Ω, ỹ(s) ∈ D θ for s = 0 and ỹ(s) ∈ D t for s ∈ [0, 1] and |t -θ| ≤ β. Thanks to (H2), (H3a) and to (34) we have for all s ∈ [0, 1]

d(ỹ(s), D t ) ≥ α -K D |t -θ|, d(ỹ(s), D t ) ∈ [αs -K D |t -θ|, 1 α s + K D |t -θ|], (36) 
where α > 0 is sufficiently small. We may consider that

α ≤ min(1, (2K D ) -1 , (2K D ) -1 , d(∂Ω, D t ), d(∂Ω, D t )), t ∈ [0, T ]. ( 37 
)
Then we have

d(ỹ(s), D t ) ≥ α/2 for |t -θ| ≤ α 2K D , s ∈ [0, 1]. ( 38 
)
We put y 0 (t) = ỹ(|t -θ|/α 2 ) for |t -θ| ≤ α 2 and y 0 (t) = ỹ(1) for |t -θ| ≥ α 2 . From (37), ( 38) or (36), and since y 0 (r) ∈ Ω for |r -θ| ≥ α 2 we obtain

d(y 0 (r), D t ) ≥ α/2, for t, r ∈ [0, T ], (39) d 
(y 0 (r), D t ) ≥ α/2, for t, r ∈ [0, T ], |r -θ| ≥ α 2 . ( 40 
)
Then for all ε ∈ (0, α 2 ] we put

y(t) = y 0 (θ + ε) for |t -θ| ≤ ε y 0 (t) for |t -θ| ≥ ε.
Thanks to (37), (36) (39), (40) we then obtain all the conditions of (32) with M = M /α 2 , and (35).

Let us denote by I ∞ (τ ) the indicator function for the conductivity a . Thanks to (31) of Lemma 3.3 we have lim sup

τ →∞ τ -1 ln(I ∞ (τ )) ≤ -κα,
and there exists ε 1 ∈ (0, α 2 ) such that for ε ∈ (0, ε 1 ] we have, from (33), lim inf

τ →∞ τ -1 ln(I ∞ (τ )) ≥ -(8κ -1 α -3 + 4µ)ε. Then, I ∞ (τ ) = I ∞ (τ ) for all ε < min(ε 1 , κα 8κ -1 α -3 +4µ
) and τ sufficiently large. The result at §2.6 implies that Λ v0,a = Λ v 0 ,a .

Technical Results

Basic estimates

Lemma 5.1. Let t ∈ [0, T ] be such that D t = ∅. Then there exists a non empty finite familly I, and points x i ∈ D t , i ∈ I, such that Proof. The lemma is a straightforwardly consequence of the compactness of D t and Vitali's lemma.

∪ i∈I B i (1/τ ) ⊂ D t ⊂ ∪ i∈I B i (3/τ ),
and B i (1/τ )∩B j (1/τ ) = ∅ if i, j ∈ I, i = j,
We have the following proposition: Proposition 2. (Parabolic Harnack's inequality). There exists c > 0 such that if r > 0, t ∈ R, and if y ∈ R 3 \ B(2r) or 0 ∈ (t -r 2 , t + r 2 ) then we have

max x∈B(r),s∈[t-3 4 r 2 ,t-1 4 r 2 ] G y (x, s) ≤ c min x∈B(r),s∈[t+ 1 4 r 2 ,t+r 2 ] G y (x, s). ( 41 
)
For a proof, see for example the work of E.B. Fabes and D.W. Stroock [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash[END_REF].

Let us remember that p τ is defined by [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash[END_REF]. From Proposition 2, we prove the following Lemma. 

Proof. Applying (41) with s = t, r = β/τ , we have, for all x, z ∈ B(β/τ ),

p τ (z; y) = ∞ 0 e -τ 2 s G y (z, s)ds = ∞ 1 2 β 2 /τ 2 e -τ 2 (s-1 2 β 2 /τ 2 ) G y (z, s - 1 2 β 2 /τ 2 )ds ≤ ∞ 1 2 β 2 /τ 2 e -τ 2 (s-1 2 β 2 /τ 2 ) cG y (x, s)ds ≤ ce 1 2 β 2 ∞ 0 e -τ 2 s G y (x, s)ds = ce 1 2 β 2 p τ (x; y).
We then obtain (42).

Let us remember that y(•) and Σ were defined in Section 2.5 and P τ by [START_REF] Kawakami | Uniqueness in shape identification of a time-varying domain and related parabolic equations on non-cylindrical domains[END_REF].

Lemma 5.3. (Caccioppoli's inequality for P τ ). Let P τ be defined by [START_REF] Kawakami | Uniqueness in shape identification of a time-varying domain and related parabolic equations on non-cylindrical domains[END_REF]. Let β > 0. Then there exists c > 0 such that for all τ > 0, if B(β/τ ) ∩ B(y(t); 1 τ ) = ∅ we then have

1 c B( β 4τ ) τ 2 P 2 τ (x, t)dx ≤ B( β 2τ ) |∇P τ | 2 (x, t)dx ≤ c B( β τ ) τ 2 P 2 τ (x, t)dx. (43) 
Proof in Appendix.

5.2 Comparison between u τ , P τ and p τ Lemma 5.4. (Comparison between P τ and p τ ). There exists c > 0 such that for all τ > 0, t ∈ R, if x ∈ B(y(t); 2 κ 5 τ ) we then have

1 c τ 3 P τ (x, t) ≤ p τ (x, y(t)) ≤ cτ 3 P τ (x, t), ( 44 
)
where κ is the constant of ( 4) or [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF].

Proof in Appendix.

Lemma 5.5. (Comparison between u τ and p τ ). Let M > 0 and assume that | ẏ| ∞ ≤ M . Then there exist positive constants C(M ), C 1 (M ), τ 0 (M ) such that for τ ≥ τ 0 , t ∈ [0, T ], x ∈ Ω \ B(y(t), C 1 /τ ), we have:

e -τ 2 (T +t) u τ (x, t) ≤ Ce -τ µ|t-θ| τ -3 p τ (x, y(t)). (45) 
Proof in Appendix.

Lemma 5.6. Let t ∈ [0, T ]. Let M > 0 and assume that | ẏ| ∞ ≤ M . Then there exist positive constants C(M ), C 1 (M ), τ 0 (M ) such that for τ ≥ τ 0 , t ∈ [0, T ] and x ∈ Ω \ B(y(t), C 1 /τ ) we have:

|∂ t (e -τ 2 (t+T ) u τ (x, t))| ≤ Ce -τ µ|t-θ| τ -2 p τ (x, y(t)). (46) 
Proof in Appendix.

Let us remember that q τ is defined by [START_REF] Lions | Non-homogeneous boundary value problems and applications II Berlin[END_REF].

Lemma 5.7. (Estimate of q τ ). Let t ∈ [0, T ]. Let M > 0, assume that | ẏ| ∞ ≤ M .
Then there exist positive constants C(M ), C 1 (M ), τ 0 (M ) such that for τ ≥ τ 0 , t ∈ [0, T ] and x ∈ Ω \ B(y(t), C 1 /τ ), we have

|q τ (x, t)| ≤ Cτ -3 e -τ µ|t-θ| |x -y(t)| p τ (x, y(t)). (47) 
Proof in Appendix. 

Estimates of special function in

= τ 0 (Σ) such that if τ > τ 0 , t ∈ [0, T ], then Dt |∇q τ | 2 (x, t)dx ≤ C M τ -4 e -2τ µ|t-θ| Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx. (49) 
Proof in Appendix.

Lemma 5.10. There exist positive constant C, τ 0 (Σ) such that for τ > τ 0 , t ∈ [0, T ], we have

Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx ≤ Cd(t) 2 Dt |p τ (x, y(t))| 2 dx. (50) 
Proof in Appendix. Now we are ready to prove Lemma 3.2.

Proof of Lemma 3.2

We obtain (30) and ( 29) from ( 26), ( 25), (20) of Lemma 2.1, (48) of Lemma 5.8.

Conclusion

So we have proven the injectivity of D → Λ v0,a by extending the Dynamical Probe Method. We already know that, in the case where a is scalar and the background b = 1, the DPM is effective in reconstructing the inclusion D from the Dirichletto-Neumann mapping Λ v0,a even when D t has no regularity according to the space variable. But in the more general case where b is not constant the behaviour of the special functions u τ , u * τ as τ tends to infinity is not so obvious anymore, which technically requires us to prove that the product ∇u τ ∇u * τ is positive not punctually but in a weaker sense, and with additional conditions. In our work the main new constraint that allows the uniqueness proof to work is on the geometry of D: some kind of uniform lipschitzian regularity of D t , t ∈ [0, T ]. By looking carefully at the various technical elements of the multiple Lemmas we can hope to improve this condition a little, perhaps by replacing it by a geometric constraint of the Holder type with coefficient in ( 12 , 1). The question of reconstructing D from Λ v0,a remains delicate for two reasons. First, the negative term C M d(t) 2 in (30) forces the curve to be partly sufficiently close enough to the inclusion to obtain a good lower bound of the indicator function I ∞ (τ ), which complicates a strategy for detecting the unknown D. Then, Runge's method allows only a theoretical reconstruction. Nevertheless, the reconstruction of points of D sufficiently close to the lateral boundary of the cylinder becomes possible, and this without the use of the Runge approximation. However, such a study would burden the article. Another question is to be able to weaken the condition that t → D t is lipschitzian. It is open. and

R 1 := Ω [w τ u * τ ] T 0 dx, R 2 := Ω×[0,T ] (a -b)∇v τ ∇(e τ 2 (T +t) u * τ -e -τ 2 (T +t) u τ ) dx e -τ 2 (t+T ) dt = Ω×[0,T ] (a -b)∇v τ • (∇q * τ (x, t) -∇q τ (x, t)) dx e -τ 2 (t+T ) dt, R 3 := 1 2 Ω w 2 τ e -2τ 2 (T +t) T 0 dx.
Step 1. We prove that

I ∞ (τ ) = X 1 + B 1 + B 3 + R 1 + R 2 + R 3 , (53) 
I ∞ (τ ) = X 2 -B 2 -B 3 + R 1 + R 2 -R 3 . (54) 
From ( 23) we have

I ∞ (τ ) = Ω×[0,T ] (a -b)∇v τ ∇u τ dxe -2τ 2 (T +t) dt + R 1 + R 2 . ( 55 
)
1. We put

A 1 := Ω×[0,T ] a -1 Ψ τ • (a -b)∇u τ dx e -2τ 2 (T +t) dt, A 2 := Ω×[0,T ] ∇w τ Ψ τ dx e -2τ 2 (T +t) dt.
Then, since (a -b)∇u τ = Ψ τ -a∇w τ , we then have

A 1 = B 1 -A 2 .
By integration by parts we have

A 2 = - Ω×[0,T ] w τ divΨ τ dxe -2τ 2 (T +t) dt = - Ω×[0,T ] w τ ∂ t w τ dxe -2τ 2 (T +t) dt = -B 3 -R 3 . ( 56 
)
We thus have

A 1 = B 1 + B 3 + R 3 . ( 57 
)
For any 3 × 3 real matrix m we have

m∇u τ • ∇u τ = m S ∇u τ • ∇u τ . Then, thanks to ∇v τ = a -1 Ψ τ + a -1 b∇u τ , (58) 
we obtain (53) from ( 55) and (57).

2. We consider (55) again. Thanks to (51) then to (52) we have

(a -b)∇v τ ∇u τ = (a -b)∇u τ ∇u τ + a∇w τ ∇u τ -b∇w τ ∇u τ = (a -b)∇u τ ∇u τ + a∇w τ (∇v τ -∇w τ ) -b∇w τ ∇u τ = (a -b)∇u τ ∇u τ -a∇w τ ∇w τ + ∇w τ Ψ τ .
Hence

I ∞ (τ ) = Ω×[0,T ] (a -b)(∇u τ ) 2 dxe -2τ 2 (T +t) dt -B 2 + A 2 + R 1 + R 2 ,
which gives (54) with the help of (56).

Step 2. We put

X 0 := D e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt ( 59 
)
and

R 4 := 1 2 Ω e 4τ 2 T |u * τ (T )| 2 dx + 1 2 Ω e 2τ 2 T |u * τ (0)| 2 dx +2 Ω e -2τ 2 T |u τ (0)| 2 dx + 2 Ω e -2τ 2 T |v 0 | 2 dx, R 5 := D |∇q τ | 2 dxdt, R * 5 := D |∇q * τ | 2 dxdt.
Thanks to (2) and to Assumption (H0b) we have the following estimates:

I ∞ (τ ) ≥ CX 0 + 1 2 B 1 + B 3 -2R 4 - 1 C (R 5 + R * 5 ), (60) 
I ∞ (τ ) ≤ 1 C X 0 - 1 2 B 2 -B 3 + 2R 4 + 1 C (R 5 + R * 5 ), (61) 
for some C ∈ (0, 1). Proof. Thanks to Cauchy-Minkovski inequality and to the definition (22) we have

R 1 + R 3 = Ω (w τ u * τ + 1 2 w 2 τ e -4τ 2 T )| t=T dx - Ω (w τ u * τ + 1 2 w 2 τ e -2τ 2 T )| t=0 dx ≥ -R 4 . ( 62 
)
Similarly we have

R 1 -R 3 ≤ R 4 . ( 63 
)
We observe that, thanks to (53) and (54),

X 1 = I ∞ (τ ) -B 1 -B 3 -R 1 -R 2 -R 3 , (64) 
X 2 = I ∞ (τ ) + B 2 + B 3 -R 1 -R 2 + R 3 . ( 65 
)
Thanks to (58) again we have

|R 2 | ≤ Ω×[0,T ] e -τ 2 (T +t) |a -b||a -1 ||Ψ τ | |∇q * τ -∇q τ | dxdt + Ω×[0,T ] e -τ 2 (T +t) |a -b||a -1 | |b||∇u τ | |∇q * τ -∇q τ | dxdt ≤ 1 2 B 1 + 1 2 X 1 + C(R 5 + R * 5 ). ( 66 
)
From ( 64) and (66) we get

|R 2 | ≤ 1 2 I ∞ (τ ) - 1 2 (B 3 + R 3 + R 1 + R 2 ) + C(R 5 + R * 5 ). ( 67 
)
Estimates ( 53), ( 62) and (67) imply

I ∞ (τ ) ≥ 1 2 X 1 + 1 2 B 1 + B 3 -R 4 -C(R 5 + R * 5 ). ( 68 
)
By using ( 17), ( 18), (H0b), and the basic estimate

a 2 ≥ 1 2 (a + b) 2 -b 2 , we have X 1 ≥ D δ 1 e -2τ µ|t-θ| |∇P τ (x, t)| 2 dxdt - Ω×[0,T ] |b| |a -1 ||a -b| |∇q τ | 2 dxdt ≥ CX 0 - 1 C R 5 ,
for some C ∈ (0, 1). Then with (68) we obtain (60). Similarly, by using ( 54), ( 59), (65) we obtain (61).

Step 3. We prove that for τ > µ + 1 we have

|R 4 | ≤ (2 v 0 2 L 2 (Ω) + 5d Ω )e -τ µ min(T -θ,θ) . ( 69 
)
Proof. Firstly, we have

0 ≤ u τ (x, 0) = ∞ 0 R 3 e τ 2 (T -s) e -τ µ|θ+s| m(y, -s)G y (x, s)dyds ≤ e τ 2 T e -τ µθ ∞ 0 R 3 e -τ 2 s G y (x, s)dyds = 1 τ 2 e τ 2 T e -τ µθ .
Here we used the notorious relation

R 3 G y (x, s)dy = 1. ( 70 
) Hence 0 ≤ e -τ 2 T u τ (x, 0) ≤ e -τ µθ , τ ≥ 1. ( 71 
)
Similarly we have

0 ≤ e 2τ 2 T u * τ (x, T ) ≤ e -τ µ(T -θ) , τ ≥ 1. ( 72 
)
Secondly, since τ > µ + 1 > 1 we have

0 ≤ u * τ (x, 0) = ∞ 0 R 3 e -τ 2 (T +s) e -τ µ|θ-s| m(y, s)G y (x, s)dyds ≤ e -τ 2 T e -τ µθ ∞ 0 e -(τ 2 -τ µ)s R 3 G y (x, s)dyds = 1 τ 2 -τ µ e -τ 2 T e -τ µθ ≤ e -τ 2 T e -τ µθ . (73) 
From ( 73), ( 72), (71), we obtain for τ > µ + 1 > 1:

R 4 ≤ 2 v 0 2 L 2 (Ω) e -2τ 2 T + 2d Ω e -τ µ(T -θ) + 3d Ω e -τ µθ ,
which implies (69). Estimates ( 26) and (25) come immediately from (60), ( 61), (69) and the fact that B j ≥ 0 for j = 1, 2, 3.

Proof of Lemma 5.3. We observe that for all t, the function

P τ (•; t) is the unique solution in H 1 (R 3 ) of (-div (b∇•) + τ 2 )P τ (•; t) = m τ (•, t). ( 74 
) Let φ ∈ C 1 (R; [0, 1]) with φ(r) = 1 for |r| ≤ 1/2 and φ(r) = 0 for |r| ≥ 1. Put ψ(x) = φ(τ (x -x 0 )/β
) where x 0 is the center of the ball B(β/τ ). We multiply (74) by P τ (•, t)ψ 2 and integrate it over Ω. Since supp (ψ) ∩ supp (m τ (•, t)) has Lebesgue measure zero, we then have

Ω [b(∇P τ (•, t)) 2 ψ 2 + 2b∇P τ (•, t)ψ P τ (•, t)∇ψ + τ 2 P 2 τ (•, t)ψ 2 ] = 0. (75) 
Then, from Cauchy-Minkovski's inequality,

Ω [b(∇P τ (, t)) 2 ψ 2 + τ 2 P 2 τ (•, t)ψ 2 ] ≤ Ω |2b∇P τ (•, t)ψ P τ (•, t)∇ψ| ≤ Ω [ 1 2 b(∇P τ (•, t)) 2 ψ 2 + 2bP 2 τ (•, t)(∇ψ) 2 ].
Thus, for some C > 0,

Ω [|∇P τ (, t)| 2 + τ 2 P 2 τ (•, t)]ψ 2 (x)dx ≤ C Ω P 2 τ (•, t)|∇ψ| 2 (x)dx. Since supp ψ ⊂ B(β/τ ) with |∇ψ(x)| ≤ τ β max |φ |, ψ ≥ 0, and ψ = 1 in B( β 2τ ), we then have B( β 2τ ) |∇P τ (•, t)| 2 (x)dx ≤ C τ 2 B( β τ ) P 2 τ (•, t)dx,
which proves the second inequality in (43). From (75) and thanks to Cauchy-Minkovski's inequality we have also

Ω [b(∇P τ (•, t)) 2 ψ 2 + τ 2 P 2 τ (•, t)ψ 2 ] ≤ Ω |2b∇P τ (•, t)∇ψ P τ (•, t)ψ| ≤ Ω [ 2 τ 2 γ 2 ∞ |∇P τ (•, t)| 2 |∇ψ| 2 + 1 2 τ 2 P 2 τ (•, t)ψ 2 ].
Thus,

Ω τ 2 P 2 τ (•, t)ψ 2 (x)dx ≤ Cτ -2 Ω |∇P τ (•, t)| 2 |∇ψ| 2 (x)dx.
We then obtain

B( β 2τ ) τ 2 P 2 τ (•, t)dx ≤ C B( β τ ) |∇P τ (•, t)| 2 dx
which proves the first inequality in (43) with β replaced by 2β.

Proof of Lemma 5.4. Since G x (y, s) = G y (x, s) and thanks to (41) with r = 1/τ , we have for all x ∈ B(y(t), 2/τ ):

B(y(t),1/τ ) G y (x, s)dy = B(y(t),1/τ ) G x (y, s)dy ≤ |B(1/τ )| max B(y(t),1/τ ) G x (•, s) ≤ cτ -3 G x (y(t), s + 1 2τ 2 ) = cτ -3 G y(t) (x, s + 1 2τ 2 ).
Then, since τ |x -y(t)| ≥ 2/κ 5 ≥ 2, since m τ ≤ 1 and supp m τ = B(y(t), 1 τ ) we have

P τ (x, t) ≤ ∞ 0 e -τ 2 s B(y(t), 1 τ ) G y (x, s)dyds (76) ≤ cτ -3 ∞ 0 e -τ 2 s G y(t) (x, s + 1 2τ 2 )ds = cτ -3 ∞ 1 2τ 2 e -τ 2 (s-1 2τ 2 ) G y(t) (x, s)ds ≤ c τ -3 ∞ 0 e -τ 2 s G y(t) (x, s)ds = c τ -3 p τ (x; y(t)).
We obtain the first inequality of (44). Let us prove the second one. Since m τ ≥ 1/2 in B(y(t), 1 2τ ) we then have

P τ (x, t) ≥ 1 2 ∞ 0 e -τ 2 s B(y(t), 1 2τ ) 
G y (x, s)dyds

≥ cτ -3 ∞ 0 e -τ 2 s inf y∈B(y(t), 1 2τ ) 
G y (x, s)ds.

By applying (41) with r = 1/τ and observing that G y (x, s) = G x (y, s) we then have for all x ∈ B(y(t), 2/τ ):

P τ (x, t) ≥ cτ -3 ∞ 0 e -τ 2 s inf y∈B(y(t), 1 2τ ) G y (x, s)ds ≥ cτ -3 ∞ 0 e -τ 2 s G y(t) (x, s - 1 2τ 2 )ds = cτ -3 ∞ 1 2τ 2 e -τ 2 (s+ 1 2τ 2 ) G y(t) (x, s)ds = c τ -3 p τ (x, y(t)) - 1 2τ 2 0 e -τ 2 s G y(t) (x, s)ds , (77) 
where c > 0. We put R := 1 2τ 2 0 e -τ 2 s G y(t) (x, s)ds. Thanks to (4) and [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF] we have

R ≤ 1 2τ 2 0 e -κ 2 |x-y(t)| 2 4s κs 3/2 ds ≤ √ 2κ -1 τ ∞ 1 e -κ 2 |x-y(t)| 2 τ 2 r/2 dr = 2 √ 2κ -3 τ -1 |x -y(t)| -2 e -κ 2 |x-y(t)| 2 τ 2 /2 ≤ 1 2 p τ (x, y(t)) 2 κ 5 τ |x -y(t)| exp(-κ -1 τ |x -y(t)|(κ 2 τ |x -y(t)|/2 -1)).
Since τ |x -y(t)| ≥ 2/κ 5 > 2/κ 2 , we then have R ≤ 1 2 p τ (x, y(t)). Hence

P τ (x, t) ≥ 1 2 c τ -3 p τ (x, y(t)).
The conclusion follows.

Proof of Lemma 5.5. Let us observe that e -τ µ|t-θ-s| ≤ e -τ µ|t-θ| e τ µs s > 0, t ∈ R.

Hence

e -τ 2 (T +t) u τ (x, t) = ∞ 0 e -τ 2 s e -τ µ|t-θ-s| R 3 m τ (y, t -s)G y (x, s)dyds ≤ e -τ µ|t-θ| H, (79) 
where we put Since τ ≥ 2κ -1 M , |x -y(t)| ≥ 1/τ , we then have |x -y(t)| ≥ M /τ and so we can apply (41) where x and y are exchanged and with r = M /(2τ ). Hence

H := ∞ 0 e -(τ 2 -τ µ)s B(y(t-s),1/τ ) G y (x, s)dyds ≡ H 1 + H 2 (80) 
H 2 ≤ ce µλ ∞ 0 e -τ 2 s |B(y(t), M /τ )|G y(t) (x, s + M 2 /(2τ 2 ))ds ≤ ce µλ ∞ 0 e -τ 2 s (2M ) 3 |B(y(t), 1/(2τ ))|G y(t) (x, s + M 2 /(2τ 2 ))ds = ce µλ (2M ) 3 ∞ M 2 /(2τ 2 )
e -τ 2 (s-M 2 /(2τ 2 )) |B(y(t), 1/(2τ ))|G y(t) (x, s)ds

= ce µλ+M 2 /2 M 3 τ -3 (p τ (x, y(t)) -R), with R := M 2 /(2τ 2 ) 0
e -τ 2 s G y(t) (x, s)ds and c is the constant (41). Thanks to (4) we have

R ≤ M 2 2τ 2 0 e -κ 2 |x-y(t)| 2 4s κs 3/2 ds ≤ √ 2κ -1 τ M -1 ∞ 1 e -κ 2 |x-y(t)| 2 τ 2 r/(2M 2 ) dr = 2 √ 2M κ -3 τ -1 |x -y(t)| -2 e -κ 2 |x-y(t)| 2 τ 2 /(2M 2 ) ≤ 1 2 p τ (x, y(t)) M κ 5 τ |x -y(t)| exp(-κ -1 τ |x -y(t)|(M -2 κ 2 τ |x -y(t)|/2 -1)). Since τ |x -y(t)| ≥ C 1 then M -2 κ 2 τ |x -y(t)| ≥ 2 and M -1 κ 5 τ |x -y(t)| ≥ 1. Hence R ≤ 1 2 p τ (x, y(t))
and

H 2 ≤ CM 3 e 2κ -1 µ|x-y(t)| τ -3 p τ (x, y(t)) ≤ CM 3 e 2κ -1 µdΩ τ -3 p τ (x, y(t)), (x, t) ∈ Ω 0,T = C (M ) τ -3 p τ (x, y(t)), (x, t) ∈ Ω 0,T . (81) 
Let us estimate H 1 . Since G y (x, s) ≤ κ -1 s -3/2 and τ ≥ 2µ we then have

H 1 ≤ κ -1 τ -3 s>λ/τ
s -3/2 e -τ 2 s/2 ds ≤ κ -1 τ -3 s>λ/τ (λ/τ ) -3/2 e -τ 2 s/2 ds = 2(λ/τ ) -3/2 τ -2 e -τ λ/2 s>λ/τ s -3/2 e -τ λ/2 ds = 2(λ/τ ) -1/2 e -τ λ/2 .

Hence

H 1 ≤ 2κ -1 λ -1 τ -3 e -τ λ/2 .
Thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF] we then obtain

H 1 ≤ κ -2 τ -3 p τ (x, y(t)), (x, t) ∈ Ω 0,T . (82) 
Then, thanks to Lemma 5.4 and from (82), (81), (79), the conclusion follows.

Proof of Lemma 5.6. We have

∂ t (e -τ 2 (t+T ) u τ (x, t)) = Y 1 + Y 2 ,
with

Y 1 := -τ µ t s=0 e -τ 2 s sign(t -θ -s)e -τ µ|t-θ-s| R 3 m τ (y, t -s)G y (x, s)dyds, Y 2 := t s=0 e -τ 2 s e -τ µ|t-θ-s| R 3 ∂ t m τ (y, t -s)G y (x, s)dyds.
Let us estimate Y 1 . We have

|Y 1 (x, t)| ≤ τ µ ∞ s=0
e -τ 2 s e -τ µ|t-θ-s| R 3 m τ (y, t -s)G y (x, s)dyds = τ µ e -τ 2 (t+T ) u τ (x, t).

Thanks to Lemma 5.5 we obtain

|Y 1 (x, t)| ≤ Ce -τ µ|t-θ| τ -2 p τ (x, y(t)). (83) 
Let us estimate Y 2 . Remember that supp m τ (•, t) ⊂ B(y(t), 1/τ ) and that

|∂ t m τ (y, t)| = τ | ẏ(t)∇M 0 (τ (y -y(t)))| ≤ M τ.
Hence we have , as in the estimates of (76) we obtain

|Y 2 | ≤ Cτ ∞ s=0 e -τ 2 s e -τ µ|t-θ-s| B(y(t-s),1/τ ) G y (x, s)dyds ≤ e -τ µ|t-θ| H,
where H is defined by (80). Hence

|Y 2 | ≤ C e -τ µ|t-θ| τ -2 p τ (x, y(t)). (84) 
From ( 83), (84) we obtain (46).

Proof of Lemma 5.7. We write q τ (x, t)

= ∞ 0 e -τ 2 s R 3 (A-B)G y (x, s)dyds with A ≡ e -τ µ|t-θ-s| m τ (y, t -s), B ≡ e -τ µ|t-θ| m τ (y, t).
Let us observe that, since e τ µs -1 ≤ µτ se τ µs and thanks to (78), then |A -B| ≤ e -τ µ|t-θ| µτ se τ µs 1 B(y(t-s),1/τ ) +M τ s max(1 B(y(t),1/τ ) , 1 B(y(t-s),1/τ ) ) .

Hence

|q τ (x, t)| ≤ τ e -τ µ|t-θ| (µR

1 + M R 2 ) (85) 
with As for the estimate of H 1 in the proof of Lemma 5.5 we have

R 1 := ∞ 0 e -τ 2 s B(y(t-s),1/τ ) sG y (x, s)dyds, (86) 
|R 22 | ≤ 2κ -1 τ -3 ∞ λ/τ s -1/2 e -τ 2 s/2 ds ≤ 2κ -1 τ -3+1/2 λ -1/2 ∞ λ/τ e -τ 2 s/2 ds = 4κ -1 τ -5+1/2 λ -1/2 e -τ λ/2 = 2 √ 2κ -1/2 τ -5+1/2 |x -y(t)| -1/2 e -τ κ -1 |x-y(t)| .
Thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF] and since τ |x -y(t)| ≥ 1 we then have

|R 22 | ≤ κ -5/2 τ -4 (τ |x -y(t)|) -1/2 |x -y(t)|p τ (x, y(t)) ≤ Cτ -4 |x -y(t)|p τ (x, y(t)). (88) 
For s ≤ λ/τ we have B ⊂ B(y(t), M /τ ) with M := λM + 1. Hence, as for the estimate of H 2 in the proof of Lemma 5.5 and since τ |x -y(t)| ≥ 2M 2 κ -5 we then have

|R 21 | ≤ λτ -1 λ/τ 0 e -τ 2 s B(y(t),M /τ ) G y (x, s)dyds ≤ λτ -1 C(M )τ -3 p τ (x, y(t)) ≤ C(M )τ -4 |x -y(t)|p τ (x, y(t)). (89) 
From ( 88) and (89), we obtain that for τ |x -y(t)| ≥ 2M 2 κ -5 we have

|R 2 | ≤ C(M )τ -4 |x -y(t)|p τ (x, y(t)). (90) 
Now, we estimate R 1 as R 2 by splitting the integral in (87) with s < λ/τ or s > λ/τ . We observe that τ = τ 1 -µτ

-1 ≥ 1 √ 2 τ . Hence R 1 = R 11 + R 12 with, since τ |x -y(t)| ≥ √ 2κ -5 and τ ≥ 2µ, |R 12 | ≤ τ -3+1/2 λ -1/2 ∞ λ/τ e -τ 2 s/2 ds = 2κ -1 τ -2 τ -3+1/2 λ -1/2 e -τ λ+λµ ≤ Cτ -4 |x -y(t)|p τ (x, y(t)). (91) 
Finally, since τ |x -y(t)| ≥ 2κ -5 , we have, as for the estimate of R 21 ,

|R 11 | ≤ λτ -1 e λµ λ/τ 0 e -τ 2 s B(y(t),1/τ ) G y (x, s)dyds ≤ C(M )τ -4 |x -y(t)|p τ (x, y(t)). (92) 
Thanks to (91) and (92), we obtain

|R 1 | ≤ C(M )τ -4 |x -y(t)|p τ (x, y(t)). (93) 
Thanks to (93) and ( 90), (85), we obtain (47) for τ ≥ 2µ, t ∈ [0, T ] and x ∈ Ω \ B(y(t), C 1 /τ ).

Proof of Lemma 5.8. We consider a familly of balls B i (1/τ ), i ∈ I, as in Lemma 5.1. By using (42) (with β = 6), ( 43) and (44), and by observing that B i (6/τ ) ∩ B(y(t), 2κ 5 /τ ) = ∅ for τ > 12κ -5 d(t) -1 , we can write

Dt |∇P τ | 2 (x, t)dx ≤ i∈I Bi(3/τ ) |∇P τ | 2 (x, t)dx ≤ C 1 i∈I Bi(6/τ ) τ 2 P 2 τ (x, t)dx ≤ C 2 i∈I Bi(6/τ ) τ -4 p 2 τ (x, y(t))dx ≤ C 3 i∈I |B i (6/τ )|τ -4 p 2 τ (x i , y(t)) ≤ C 4 i∈I |B i (1/τ )|τ -4 min Bi(1/τ ) p 2 τ (•, y(t)) ≤ C 5 i∈I Bi(1/τ ) τ -4 p 2 τ (x, y(t))dx ≤ C 5 Dt τ -4 p 2 τ (x, y(t))dx. (94) 
Hence, the second inequality of (48) is proved. The proof of the first one is similar.

Proof of Lemma 5.9. We put C 1 (M ) = C 1 + 6, C 2 = max(C 1 , 12κ -5 ) where C 1 (M ) is the constant in Lemma 5.7. We consider again the balls B(1/τ ), B(3/τ ), defined in Lemma 5.1. Thus

J := Dt |∇q τ (x, t)| 2 dx ≤ i Bi(3/τ ) |∇q τ (x, t)| 2 dx. ( 95 
)
Let us fix i and denote B(3/τ ) = B i (3/τ ). We consider again the functions φ ∈ C 1 (R; [0, 1]) and ψ(x) = φ(τ (x -x 0 )/6) where x 0 is the center of a ball B(6/τ ), as in the proof of Lemma 5.3 (with β = 6). Thanks to Lemma 5.6, there exists a positive constant C(M ) such that for τ

≥ 2µ, t ∈ [0, T ], x ∈ Ω \ B(y(t); C 1 /τ ), we have (-div b∇ + τ 2 )q τ (x, t) = ∂ t (e -τ 2 (t+T ) u τ (x, t)) ≤ Cτ -2 e -τ µ|t-θ| p τ (x, y(t)). (96) 
We observe that

x ∈ supp (ψ) = B(6/τ ) ⇒ |x -y(t)| ≥ |x 0 -y(t))| -6/τ ≥ d(t) -6/τ > C 1 /τ -6/τ = C 1 /τ.
Hence we can multiply (96) by q τ (x, t)ψ 2 (x) and integrate it over Ω. This implies

Ω b(∇q τ (•, t)) 2 ψ 2 + 2b∇q τ (•, t)ψ q τ (•, t)∇ψ + τ 2 q 2 τ (•, t)ψ 2 ≤ Cτ -2 e -τ µ|t-θ| Ω |q τ (•, t)|p τ (•, y(t))ψ 2 .
Then, from Cauchy-Minkovski's inequality, and as in the proof of Lemma 5.3, we obtain

Ω (|∇q τ (, t)| 2 + τ 2 q 2 τ (•, t))ψ 2 ≤ C Ω q 2 τ (•, t)(∇ψ) 2 + Ce -τ µ|t-θ| τ -2 • Ω |q τ (•, t)| 2 ψ 2 1/2 Ω |p τ (•, y(t))| 2 ψ 2 1/2 .
Since supp ψ = B(6/τ ) with |∇ψ(x)| ≤ τ max |φ |/6, ψ ≥ 0, and ψ = 1 in B( 3 τ ), we then have

B( 3 τ ) |∇q τ (•, t)| 2 ≤ Cτ 2 B( 6 τ ) q 2 τ (•, t) + Ce -τ µ|t-θ| τ -2 • • B( 6 τ ) |q τ (•, t)| 2 1/2 B( 6 τ ) |p τ (•, y(t))| 2 1/2 .
Thanks to Lemma 5.7 and by using τ -1 ≤ C 1 |x -y(t)| for x ∈ B( 6 τ ), we then have This with (98) prove (49).

B( 3 τ ) |∇q τ (•, t)| 2 ≤ Cτ -4 e -2τ µ|t-θ| B( 6 
Proof of Lemma 5.10. We can assume that D t = ∅. We put λ = 2κ -2 d(t) and J := We then have

J 1 ≤ λ 2 J = 4κ -4 d(t) 2 J. ( 99 
)
On the one hand thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF] we have Here we used λ ≥ κ -1 τ -1 . Hence J 2 ≤ 4πκ -4 min(40πκ -6 d(t) 

Then J 2 d(t) 2 J ≤ CL -1 D κ -14 , (101) 
for some numerical parameter C > 0. From ( 101) and (99) we obtain

J ≤ C L -1 D d(t) 2 J,
which is the estimate to prove.

Proof of Lemma 2.1. It is the direct consequence of Lemma 5.9 and Lemma 5.10.

Proof of Lemma 3.3 1) Thanks to [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF] and to Lemma 3.2 we have, for all τ > τ 0 ,

I ∞ (τ ) ≤ cτ -4 T 0 Dt 16κ -4 ε -2 Σ e -2κτ εΣ dxdt + C 1 e -4κ -1 dΩτ ≤ C 2 ε -2 Σ τ -4 e -2κεΣτ .
We then obtain (31).

2) Let us fix T 1 ∈ (0, min(α|D θ | 1/3 , 1 2 θ, 1 2 (T -θ), α 2 , α 3 √ 8C M

)) sufficiently small such that we have, thanks to (H2), 6α 3 e -8τ κ -1 α -3 ε , ε ≤ |t -θ| ≤ 2ε.

Finally we obtain

I 0 ≥ C(Σ ε )τ -4 e -(8κ -1 α -3 +4µ)ετ , (104) 
with C(Σ ε ) > 0. Let us put ε 1 = min( 1 2 T 1 , µT1 κ -1 α -3 +4µ ). For ε ∈ (0, ε 1 ] we then have R 0 /I 0 ≤ C (Σ)e -τ µT1 , and so R 0 /I 0 ≤ 1 2 for τ ≥ τ 0 (eventually modified). Thus, for ε ∈ (0, ε 1 ],

I ∞ (τ ) ≥ 1 2
C(Σ ε )τ -4 e -(8κ -1 α -3 +4µ)ετ which implies (33).

Remark 3 .

 3 Condition (UC) holds if b is lipschitzian or piecewise smooth: see the results of Vessella [20, chap 5].

  where B i (R) denotes the open euclidian ball of radius R > 0 and centered at x i .

Lemma 5 . 2 .

 52 (Elliptic Harnack's inequality). Let β > 0. There exists c > 0 such that for all τ > 0, for all ball B(β/τ ) ⊂ R N , if y ∈ B(2β/τ ) we then have max x∈B(β/τ ) p τ (x; y) ≤ c min x∈B(β/τ ) p τ (x; y).

with H 1

 1 := s>λ/τ e -(τ 2 -τ µ)s B(y(t-s),1/τ ) G y (x, s)dyds, H 2 := λ/τ 0 e -(τ 2 -τ µ)s B(y(t-s),1/τ ) G y (x, s)dyds, and where λ := 2|x -y(t)|/κ. We put also M := M λ + 1, C 1 = max(1, 8κ -7 (1 + M 2 d 2 Ω )). Since |y(t -s) -y(t)| ≤ M s, we then have B(y(t -s), 1/τ ) ⊂ B(y(t), M s + 1/τ ) and so H 2 ≤ e µλ λ/τ 0 e -τ 2 s B(y(t),M s+1/τ ) G y (x, s)dyds ≤ e µλ λ/τ 0 e -τ 2 s B(y(t),M /τ ) G y (x, s)dyds.

R 2 := ∞ 0 e

 0 -τ 2 s B sG y (x, s)dyds,(87)where τ := τ 2 -τ µ and B := B(y(t -s),1/τ ) ∪ B(y(t), 1/τ ). Let us put again λ = 2κ -1 |x -y(t)|. We write R 2 = R 21 + R 22 with R 21 := λ/τ 0 e -τ 2 s B sG y (x, s)dyds, R 22 := ∞ λ/τe -τ 2 s B sG y (x, s)dyds.

  Dt |x -y(t)| 2 |p τ (x, y(t))| 2 dx = J 1 + J 2 , J 1 := Dt∩B(y(t),λ) |x -y(t)| 2 |p τ (x, y(t))| 2 dx,J 2 := Dt\B(y(t),λ) |x -y(t)| 2 |p τ (x, y(t))| 2 dx, J := Dt |p τ (x, y(t))| 2 dx.

J 2 ≤

 2 |D t |4πκ -4 exp(-2κλτ ), and, on the other hand,J 2 ≤ 4πκ -4 |x-y(t)|>λ e -2κτ |x-y(t)| dx ≤ 16π 2 κ -4 r>λ e -2κτ r r 2 dr ≤ 20π 2 λ 2 κ -5 τ -1 exp(-2κτ λ) ≤ 20π 2 λ 3 κ -4 exp(-2κτ λ) ≤ 20π 2 κ -10 (2d(t)) 3 exp(-2κτ λ).

|D t | ≥ 1 2 C( 1 - 3 T 1 ≤ 1 √

 21311 |D θ | > 0 for |t -θ| ≤ T 1 . (102)Thanks to (30) in Lemma 3.2 we have, for τ > τ 0 ,I ∞ (τ ) ≥ I 0 -M d(t) 2 e -2τ µ|t-θ| Dt p 2 τ (x, y(t))dxdt +C 1 e -τ µ min(θ,T -θ) , C M d(t) 2 )e -2τ µ|t-θ| Dt p 2 τ (x, y(t))dxdt.Thanks to[START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities -One dimensional case[END_REF] we haveR 0 ≤ C 3 (Σ, v 0 )τ -4 e -2τ µT1 .By observing that, thanks to (32), |t -θ| ≤ T 1 implies d(t) ≤ 2 α 2C M. Thus, puttingB(t) := Dt∩B(y(t),2d(t)) e -4τ κ -1 d(t) dx, ε ≤ |t -θ| ≤ 2ε,and restricting ε to the interval (0, T 1 /2), we obtainI 0 ≥ 1 2c sup 0≤r≤T {d(y(r), D r )} -2 τ -4 |t-θ|≤T1e -2τ µ|t-θ| B(t)dt ≥ c(M, α, Ω, T, κ)τ -4 ε≤|t-θ|≤2ε

  Daido, H. Kang and G. Nakamura in the case where the background is homogeneous and D t ∈ C 2 for all t[START_REF] Daido | A probe method for the inverse boundary value problem of non-stationary heat equations[END_REF]. But there,

	although a part of DPM works for all spatial dimension n, the reconstruction of D
	was proved only in the case n = 1. DPM of Y. Daido, H. Kang and G. Nakamura
	made the Runge approximation of the fundamental solution of the operator L I .
	(Note that an error in this work was corrected by V. Isakov, K. Kim, G. Nakamura
	[15]). Unlike to the DPM of Y. Daido, H. Kang, G. Nakamura, extending the
	method of A. Elayyan and V. Isakov by a more quantitative version which requires
	more regularity, M. Di Cristo and S. Vessella proved the log-stability of Λ a,0 → D
	in the scalar case (a = aI 3 ) [2].

  Let us give a lower bound for B(t), ε ≤ |t -θ| ≤ 2ε. We have, thanks to (32),D t ∩ B(y(t), 2d(t)) ⊃ D t ∩ B(x(t), d(t)) ⊃ D t ∩ B(x(t),

	Then, thanks to (32),		
	B(t) ≥ L D	πε 3 6α 3 e -4τ κ -1 d(t) ≥ L D	πε 3
					ε 2α	),
	for some x(t) ∈ ∂D t . Thanks to (H3b) we have
		|D t ∩ B(x(t), d(t))| ≥ L D min(|D t |,	πε 3 6α 3 ).
	Thus, thanks to (102) and since ε ≤ 1 2 T 1 ≤ 1 2 α|D θ | 1/3 , we have
		|D t | ≥	1 2	|D θ | ≥	πε 3 6α (103)

e -2τ µ|t-θ| B(t)dt.

3 

for ε ≤ |t -θ| ≤ 2ε, and so

|D t ∩ B(y(t), 2d(t))| ≥ L D πε 3 6α 3 , ε ≤ |t -θ| ≤ 2ε.

the question that (UC) in Ω would imply (UC) in Ω is out of the scope of this article

Appendix

Proof of Lemma 3.1. We put

a(∇w τ ) 2 dx e -2τ 2 (T +t) dt,

τ 2 w 2 τ dx e -2τ 2 (T +t) dt,