

Genetic structure of codling moth populations from worldwide to farm spatial scales

Pierre Franck – Bertrand Gauffre – Jérôme Olivarès Plantes & Système de cultures Horticoles, Avignon, France

ICE, codling moth symposium : Helsinki, July 2022, 19th

Codling moth ecology & evolution

- > Damage on fruit caused by larva Apple – Pear – Quince – Walnut (Barnes, 1991)
- > One to five generations per year

Depending on temperature and latitude (Shel'Deshova, 1967)

> Insecticide resistances

Depending on the intensity of pesticide treatments (Reyes et al., 2007; Eberle & Jehle, 2006)

> Dispersal at adult stage after mating and selection Depending on landscape features (Mani & Wildbolz, 1977)

Population genetic structure: spatial levels analysed

At worldwide level

(Franck et al, 2007 and news results)

Apple and walnut orchards in temparate zones 17 countries, 25 orchards, 715 moths ,13 µsat loci

> Biogeography

Population genetic structure: spatial levels analysed

At worldwide level (Franck et al, 2007 and news results) Apple and walnut orchards in temparate zones 17 countries, 25 orchards, 715 moths ,13 µsat loci

> Biogeography

At a river basin level (unplublished results)

Apple orchards in the Basse Durance Valley (70 km2)

51 orchards, 2 years, 900+545=1445 moths, 20 µsat loci

> Landscape ecology

Population genetic structure: spatial levels analysed

At worldwide level (Franck et al, 2007 and news results) Apple and walnut orchards in temparate zones 17 countries, 25 orchards, 715 moths ,13 µsat loci

> Biogeography

Apple orchards in the Basse Durance Valley (70 km2)

51 orchards, 2 years, 900+545=1445 moths, 20 µsat loci

> Landscape ecology

At a farm level

(Franck et al, 2011)

Gotheron farm (80 hectares)

8 orchards, 1097 moths, 4 generations, 13 µsat loci

> Population dynamics

Methodology

Sampling: corrugated cardboard traps

(Ricci et al., 2009)

- > 30-50 trees sampled per orchard
- 10-30 CM diapausing larvae selected per orchard

Methodology

Sampling: corrugated cardboard traps

(Ricci et al., 2009)

- > 30-50 trees sampled per orchard
- 10-30 CM diapausing larvae selected per orchard

Genotyping: microsatellite loci

Selection of 13-20 loci:

- No linkage disequilibrium
- > Up to 3 loci on the same chromosome
- Less than 10% null allele per locus per population

Methodology

Sampling: corrugated cardboard traps

(Ricci et al., 2009)

- > 30-50 trees sampled per orchard
- 10-30 CM diapausing larvae selected per orchard

Genotyping: microsatellite loci

Selection of 13-20 loci:

- No linkage disequilibrium
- Up to 3 loci on the same chromosome
- Less than 10% null allele per locus per population

Genetic analyses

- Population approaches: genetic diversity, allele richness indicators
- Classification approaches based on individual genotypes: STRUCTURE, COLONY
- Genetic distances approaches: Fst, relatedness (Ritland, 1996)
 - Isolation by distance : auto-correlogram (Rousset 1997; Vekemans & Hardy 2004)

(Franck et al., 2007; 2011)

At worldwide level: genetic structure

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

menie 4 Strie 4 Strie 4 Strie 4 Middle East: Armenia, Syria, Turkey

Huge genetic differentiation between populations from countries in the apple domestication origin zones

At worldwide level: genetic structure

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

High genetic differentiation between populations in Europe linked with high levels of admixture

At worldwide level: genetic structure

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

Several additional centers of differentiation in Magreb

At worldwide level: genetic diversity

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

5 allele richness (average per locus and per population)

High genetic differentiation between populations from New and Old Worlds: *Fst*>0.15
Multiple colonization events of New World linked with bottleneck 5

At worldwide level: host-plant differentiation

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

Apple orchards (A)

At worldwide level: host-plant differentiation

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

Apple orchards (A)

+ Walnut orchards (W)

At worldwide level: host-plant differentiation

715 individuals, 25 orchards, 13 μ sat loci Classification using Structure : *K*=19

Apple orchards (A)

+ Walnut orchards (W)

- Low differentiation between populations from apple and walnut orchards in the same country:
 - Fst apple-apple: 0.04
 - Fst walnut-walnut: 0.02
 - Fst apple-walnut: 0.02

At a river bassin level: genetic structure

900 individuals, 51 orchards (2006), 20 µsat loci Classification using Structure : *K*=10 *Fst* between orchards: 0,01; *Fst* between clusters: 0.09 Gene diversity: 0.65

Classification of 900 individuals according to 10 clusters

At a river bassin level: genetic structure

900 individuals, 51 orchards (2006), 20 µsat loci Classification using Structure : *K*=10 *Fst* between orchards: 0,01; *Fst* between clusters: 0.09 Gene diversity: 0.65

Classification of 900 individuals according to 10 clusters

- Low genetic structure between orchards, which is spatially organized
- Population structure correlated to the number of pesticide treatments (Franck et al. 2007)

Spatial distribution of the 10 clusters

At a river bassin level: landscape effect on genetic diversity

Land use characterization in 1km² around each orchard: 51 buffers

1km² buffer

crop, orchard (organic/conventional), woodland, meadow, urban

Landscape in 51 buffers

Population genetic prediction:

At a river bassin level: genetic structure

Statistical Model (GLM):

Allele richness ~ Landscape in 1km² buffer [Urban, Conventional orchard, Hedgerow]

Results:

Urban +

=> Moth are attracted by urban lights, which increase population diffusion

Conventional Orchards –

=> Moth population sizes are reduced by pesticide treatments in conventional orchards

=> Individual-based (at landscape or farm level) or population-based genetic approaches (at continental level)

⁽Franck et al., 2007)

=> Individual-based (at landscape or farm level) or population-based genetic approaches (at continental level)

(Franck et al., 2007)

At a river basin level: Basse Durance Valley

=> Individual-based (at landscape or farm level) or population-based genetic approaches (at continental level)

(Franck et al., 2007)

At a river basin level: Basse Durance Valley

=> Individual-based (at landscape or farm level) or population-based genetic approaches (at continental level)

(Franck et al., 2007)

At a river basin level: Basse Durance Valley

- Isolation at continental level between populations distant by more than 100 km
- gene flow between orchards distant by less than 1 km
- Area-wide pest management at territory and landscape levels
 ~ 100-1000 Km²

At farm level: full sibs inference and population size estimate

Kinship inferences

1063 individuals, 7 orchards, 4 generations, 13 µsat loci Classification using Structure : 302 full sib pairs in total Proportion of full sibs per generation: 0.7%-1.9% *Fst* between orchards: 0.01

(Franck et al., 2011)

At farm level: full sibs inference and population size estimate

Kinship inferences

1063 individuals, 7 orchards, 4 cohorts, 13 µsat loci Classification using Structure : 302 full sib pairs in total Proportion of full sibs per generation: 0.7%-1.9% *Fst* between orchards: 0.01

(Franck et al., 2011)

Classification of individual pairs into family clusters

(Baudry et al., 1998)

> Adjusting number of full-sibs by family to a Poisson law

>> λ estimates the average number of offspring by mother in the sample of size *N*

>> estimates of the effective number of mothers in the population $Nf = N / \lambda$

At farm level: female fertility estimates

Genetic estimates of the number of mothers

1st generation larvae were sibs of ~ 130 mothers2nd generation larvae were sibs of ~ 230 mothers

Up to 150 mothers by orchard - Up to 40 mothers by tree

Estimate of the fecundity rates (r ~ 20)

4000

3000

Number of larvae

5000

6000

Mother = 0,05 x Larvae

 $r^2 = 0.83$

1000

2000

300

200

100

0

0

Number of mothers

- No difference of fecundities between generations and host-plants
- Around twice higher in non-treated than conventional apple orchards

Acknowledgement & Funding

Etienne Klein Lionel Roques Emily Walker Olivier Bonnefon Olivier Martin

Jérôme Olivares Claire Lavigne Bertrand Gauffre

PEERLESS

Predictive Ecological Engineering for Landscape Ecosystem Services and Sustainability

Thank you for your attention!

pierre.franck@inrae.fr