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Abstract

During their lifetime, structures are usually subjected to some mechanical

shocks that generate high levels of vibration that can damage the structure

itself as well as the embedded devices. However, the characteristics of these

shocks (location, time history, maximum intensity, . . . ) are often unknown

due to the inaccessibility of the excitation region for direct force measure-

ments or the inability to instrument the system. Therefore, inverse meth-

ods have been developed to quantify these complex excitations. Recently, a

Bayesian formulation of the input-state estimation problem for linear systems

has been proposed by the authors, which unifies most of the state-of-the-art

filters. In this paper, we present two novel Bayesian filters derived from this

framework: (a) the Correlated Dual Kalman Filter (CDKF), which is one of

the filters that naturally follows from the unified Bayesian formulation, and

(b) the Component Bayesian Filter (CBF), which promotes spatial sparsity

of the input vector. Essentially, these filters differ in the prior distributions

used to convey information about the spatial distribution of the input vec-

tor to be identified. The performance of these filters is evaluated through a
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numerical experiment and a real-world application aimed at reconstructing

a sparse and transient excitation acting on a linear structure. A comparison

of these original filters with other Bayesian filters proposed in the literature

is also proposed. In particular, the numerical experiment allows to study the

performance of the proposed filters in different scenarios, such as the number

of sensors, the measurement noise level or the sensor configuration, while the

real-world application allows to test them in operational conditions. More

specifically, it is shown that filters promoting the spatial sparsity of the input

vector, such as CBF, lead to a consistent identified excitation profile when

acceleration measurements are the only available data.

Keywords: Linear inverse problem, Force localization, Space-time

approach, Bayesian filter, Kalman filter.

1. Introduction

Force identification is a recurring topic in structural dynamics due to the

lack of knowledge of the mechanical excitations acting on a structure, which

is one of the prerequisites to improve its design, monitor its performance or

increase its lifetime. For example, a mechanical shock, whether intentional or

not, can damage structures and cause integrated equipment to fail, which can

interrupt operations. However, the actual impact is usually difficult to char-

acterize due to the difficulty of instrumenting the area of interest with force

sensors or the lack of knowledge of its space-time characteristics (location,

duration and intensity). These practical considerations make it necessary

to implement inverse identification methods to estimate the sources of exci-

tation from the measurement of kinematic quantities (strain, displacement,

2



velocity or acceleration). Unfortunately, this inverse problem is mathemati-

cally ill-posed and leads to significant reconstruction errors when solved in a

naive manner.

For time-domain applications, this negative side effect has been addressed

by the development of specific solution strategies [1–9], especially in the case

of linear systems. Among all the existing methods in the literature, the

most widely used are Tikhonov-like regularization and Kalman-like filter-

ing. These two approaches were developed in the early 1960’s in the re-

spective works of Andrey Tikhonov [10] and Rudolf Kalman [11]. Despite

some obvious differences, they still share some common features. First, the

Kalman gain can be viewed as an inverse regularization operator, similar to

the one defined by Tikhonov. Second, both methods can be derived from

the Bayesian formalism [12, 13], which provides a better understanding of

the main assumptions underlying these strategies and opens the way to new

developments and analyses. More precisely, Tikhonov-like regularization is a

particular type of Bayesian regularization, while Kalman-like filters belong to

the general class of Bayesian filters. Whereas Tikhonov-like regularization is

generally performed on the whole set of measurements, Kalman-like filtering

solves the inverse problem recursively, using a prediction/estimation scheme

at each time step. As it is recursive, faster and computationally cheaper than

the regularization, it has been widely developed. Several filters have been

proposed in the literature to solve the input-state estimation problem for

linear systems. They can be divided into two types: the joint filters and the

sequential ones. Here, the joint filters refer to Bayesian filters within which

the estimations of both the state and the input vectors are made together, in
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the same computation step, as opposed to the sequential ones, where these

estimations are made one after another, successively. In fact, the joint filters

aggregate the filters where an augmented state including the input is gener-

ated, as the Augmented Kalman Filter (AKF) of Lourens et al. [14] or the fil-

ters based on a Gaussian Process Latent Force Model [15, 16]. The sequential

filters include the one developed by Gillijns and De Moor (GDF) [17, 18], the

Sequential Bayesian Filter (SBF) developed by Sedehi et al. [19] or the Dual

Kalman Filter (DKF) proposed by Eftekhar Azam et al. [20], where state

estimation and input estimation compete in the same time step. Although

some prior information about the spatial distribution of the input vector

is introduced in the literature examples, it often does not sufficiently con-

strain the resulting estimates. Thus, despite the reasonable performance of

these filters, it induces errors in the identification of the excitation field when

the mechanical sources are spatially sparse and transient. Therefore, when

only acceleration measurements are used for the input estimation, a drift

effect appears in several state-of-the-art filters, which increases the global

reconstruction error and quickly makes these filters inaccurate online [21].

To counterbalance this aspect, the authors introduced the Sparse adaptive

Bayesian Filter (SaBF), in which a generalized Gaussian distribution over

the input vector is assumed during the prediction step [21]. This original

filter avoids the drift effect and promotes the spatial sparsity of the force to

be identified, while remaining purely recursive. The proposed approach to

address this challenge is based on a Bayesian formulation of the problem of

estimating both the input and the state vectors in a sequential manner. In-

spired by the work of Sedehi et al. [19], it unifies most of the state-of-the-art
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filters under the same Bayesian formulation [21].

Finally, although it is beyond the scope of this paper, which focuses on the

force identification problem and is limited to linear Bayesian filtering, it is

worth mentioning some extensions related to input-state-parameter estima-

tion problems in order to give the reader a better overview of the advances in

the field. This kind of problems generally leads to a nonlinear filtering pro-

cess for which an Extended Kalman Filter [22–25] or an Unscented Kalman

Filter [26, 27] is usually implemented to solve the nonlinear part of the for-

mulation.

In the present paper, two original sequential filters derived from the afore-

mentioned unified Bayesian vision are presented, although they are widely

influenced by the literature. First, a generalization of the predictive dis-

tribution over the input proposed in SBF combined with the relaxation of

some assumptions made in DKF, leads to the Correlated Dual Kalman Fil-

ter (CDKF), in which the state and input vectors are estimated sequentially

but not independently as in DKF. Then, based on the same formalism, an

alternative version of SaBF, called Component Bayesian Filter (CBF), is

introduced. In this formulation, the components of the input vector are as-

sumed to be independent and to follow a generalized Gaussian distribution.

Here, all the hyperparameters are automatically selected from a Bayesian op-

timization that estimates at each time step their most probable value given

the available data. In order to properly introduce the two proposed linear

Bayesian filters and to highlight their originality with respect to the existing

literature, the present paper is divided into five parts. Sections 2 and 3 are

dedicated to the definition of the state-space representation used throughout
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the paper, as well as a reminder of the unified Bayesian formulation of the se-

quential state-input estimation problem. Section 4 focuses on the derivation

of CDKF and CBF, which belong to a larger family of sequential Bayesian

filters. Finally, sections 5 and 6 set up a numerical experiment and a real-

world application to evaluate the validity of the proposed approaches for

the reconstruction of a hammer impact based on acceleration measurements.

Their relative performances in terms of peak reconstruction, input location

and appearance of the drift phenomenon are compared with each other and

with AKF. It is shown that SaBF and the proposed CBF strategies provide

better results in terms of input estimation accuracy by avoiding the drift

effect. CDKF brings a slight improvement over AKF by reducing the global

drift deviation.

2. Discretized state-space representation of dynamical systems

Bayesian filtering is based on the state-space representation of the dynam-

ical system of interest. Here, only time-invariant linear mechanical systems

are considered. Formally, this implies that the discretized state-space repre-

sentation can be expressed in the following generic form:xk+1 = Axk +Buk +wx
k

yk = Cxk +Duk + vk

, (1)

where xk, uk and yk are the state, input and output vectors at time step k,

while A, B, C and D are, respectively, the constant discretized state, input,

output and feedthrough matrices. Here, wx
k denotes the Gaussian process

noise with zero mean and covariance matrix Qx
k and vk is the Gaussian mea-
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surement noise with zero mean and covariance matrix Rk.

From a Bayesian perspective, the previous discretized state-space repre-

sentation can be expressed as [13]:xk+1 ∼ p(xk+1|xk,uk) = N (xk+1|Axk +Buk,Q
x
k)

yk ∼ p(yk|xk,uk) = N (yk|Cxk +Duk,Rk)

, (2)

where N (x|µ,Σ) is the multivariate normal distribution with mean µ and

covariance matrix Σ associated to the random vector x.

3. Bayesian formulation of the sequential input-state estimation

problem

This section briefly recalls the unified Bayesian formulation of the sequen-

tial state-input estimation problem in order to make the paper self-sufficient.

In this formulation, inspired by the work of Sedehi et al. [19] and further

developed by the authors in [21], the state vector xk and the input vector uk

are computed sequentially, meaning that these two estimations are correlated

as the next one needs the previous one to be estimated.

From a general point of view, the unified Bayesian approach to the sequential

estimation of the input and state vectors can be divided into the following

five steps (interested readers can refer to Ref. [21] for further details):

1. Initialization at k = 0

The initialization of the input and state vectors consists in defining the

prior probability distributions over the initial input vector, u0, and the
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initial state vector, x0. Here, these prior probability distributions are

defined as follows:

p(u0) = N (u0|û0,P
u
0 ) and p(x0) = N (x0|x̂0,P

x
0 ), (3)

where the mean vectors, û0 and x̂0, and the covariance matrices, Pu
0

and Px
0 , are known quantities. To complete the initialization step, one

has to compute the predictive distribution p(x1|y0), assuming that the

initial vectors are statistically independent :

p(x1|y0) = N (x1|x̃1, P̃
x
1 ), (4)

where x̃1 = Ax̂0 + Bû0 is the predicted state and P̃x
1 = APx

0A
T +

BPu
0B

T +Q0, its covariance matrix.

2. Prediction of the input vectors at time step k

To make a prediction of the input vector, the predictive distribution

p(uk|y1:k−1) must be defined. If no assumptions are made about the

spatial distribution of the input vector, this distribution is unknown.

Existing sequential filters typically differ at this stage. To make the

proposed Bayesian filter more general and applicable to a wider range of

literature, it is assumed without any simplification that the probability

distribution is a multivariate Gaussian law with a mean and covariance

matrix ũk and covariance matrix P̃u
k , that is:

p(uk|y1:k−1) = N (uk|ũk, P̃
u
k ). (5)

3. Estimation of the input vectors at time step k
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The estimation of the input vector requires the filtering probability dis-

tribution p(uk|y1:k). By applying the Bayes’ rule to p(uk|xk,y1:k) and

marginalizing the results over xk, the filtering probability distribution

over the input vector becomes:

p(uk|y1:k) = N (uk|ûk,P
u
k ), (6)

where

ûk = ũk +Ku
k i

u
k , (7a)

Pu
k = (I−Ku

kD)P̃u
k +Ku

kCP̃x
kC

TKuT
k , (7b)

Ku
k = P̃u

kD
T(DP̃u

kD
T +Rk)

−1, (7c)

iuk = yk −Cx̃k −Dũk. (7d)

4. Estimation of the state vector at time step k

As for the input vector, the estimation of the state vector requires

the filtering probability distribution p(xk|y1:k), corresponding to the

following marginal distribution:

p(xk|y1:k) = N (xk|x̂k,P
x
k), (8)

where

x̂k = x̃k +Kx
k i

x
k , (9a)

Px
k = (I−Kx

kC)P̃x
k +Kx

kDPu
kD

TKxT
k , (9b)

Kx
k = P̃x

kC
T(CP̃x

kC
T +Rk)

−1, (9c)

ixk = yk −Cx̃k −Dûk. (9d)
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At this stage, it is possible to compute the cross-covariance matrix Pxu
k :

Pxu
k = E

[
(xk − x̂k)(uk − ûk)

T
]
= −Kx

kDPu
k . (10)

where E(x) is the expected value of the random vector x.

5. Prediction of the state vector at time step k + 1

The last step of the sequential Bayesian Filter is the computation of

the predictive distribution over the state vector at time step k + 1 to

continue the recursive process:

p(xk+1|y1:k) = N (xk+1|x̃k+1, P̃
x
k+1), (11)

where

x̃k+1 = Ax̂k +Bûk, (12a)

P̃x
k+1 =

[
A B

] Px
k Pxu

k

Pxu
k

T Pu
k

AT

BT

+Qk. (12b)

This general Bayesian formulation allows to obtain the sequential filters

existing in the literature, namely GDF, SBF and DKF, by modifying the

general hypotheses made on the choice of the predictive distribution (see

step 2). The various assumptions used for deriving a particular filter will not

be developed here, but explanations are available in Ref. [21]. However, it

can be stated here that these filters behave quite similarly when identifying

transient sparse sources from a dense array of acceleration measurements,

especially with respect to the well-known drift effect.
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4. Development of a new family of Sequential Bayesian Filters

The previous section described the general formulation of the sequential

input-state estimation problem. This formulation allows to retrieve most of

the existing state-of-the-art filters. More precisely, the proposed Bayesian

formalism shows that existing Kalman-like sequential filters use different as-

sumptions to define the predictive probability distribution over the input

vector p(uk|y1:k−1). This observation is the main motivation behind the pro-

posed family of sequential Bayesian filters, which aim to incorporate prior

information about the spatial distribution of the input vector into the for-

mulation during the prediction step. Here, the predictive probability distri-

bution is chosen to add a restrictive constraint on the shape of the input.

This addition has the effect of forcing the estimation to take into account

our prior knowledge of the sources to be identified. The different hypotheses

as well as their influence on the implementation are developed here after.

4.1. Correlated Dual Kalman Filter – CDKF

This filter follows naturally from the unified Bayesian formulation recalled

in section 3, since it mainly consists in directly specifying the mean vector

and the covariance matrix of the predictive distribution defined in Eq. (5) of

step 2. To do so, a fictitious equation is added to the state-space representa-

tion of the Eq. (1) on the input vector, so that the input vector is following

a random walk as for AKF and DKF, that is:

uk+1 = uk +wu
k , (13)

Hence a new hypothesis on the input model is done, as the variable follows a

Gaussian distribution with mean uk and a to-be-determined covariance Qu
k ,
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associated the process noise wu
k . In practice, this covariance matrix is chosen

to be isotropic, meaning that only a single variance parameter, σ2
u, has to be

estimated [14, 20]. As for SBF, the methodology developed in section 3 is

perfectly followed for the implementation of this filter. Thus, the predictive

distribution becomes:

p(uk|y1:k−1) = N (uk|ũk, P̃
u
k ) = N (ũk|ûk−1,Q

u
k−1 +Pu

k−1) (14)

Except for this minor change, all of the equations defined in steps 3 to 5

remain unchanged. Compared to SBF, the mean of this prior distribution

is no longer the zero vector, while the predictive covariance matrix is also

changed, with the addition of noise covariance matrix Qu
k−1. Furthermore,

unlike DKF1, CDKF preserves the cross-correlation between the state and

input vectors, making their estimation coupled. In this sense, CDKF can

seen as a generalization or an hybrid of SBF and DKF.

4.2. Sparse Adaptive Bayesian Filter – SaBF

Since the SaBF has been fully introduced by the authors in their own

paper [21], only the basic equations and principles will be recalled here.

This remainder is proposed for pedagogical purposes and to highlight the

connection of this filter with the Component Bayesian Filter introduced in

the next section.

For SaBF, the choice of the predictive probability distribution aims at

promoting either the sparsity or the smoothness of the spatial distribution

1For further information about the assumptions used for deriving DKF, the reader can

refer to Ref. [21]
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of the input vector. This requirement leads us to choose a multivariate

generalized Gaussian distribution with zero mean:

p(uk|y1:k−1) = Ng(uk|0, τk, qk)

=

 q
1− 1

qk
k

2Γ( 1
qk
)

Nu

τ
Nu
qk
k exp

(
−τk
qk
∥uk∥qkqk

)
,

(15)

with qk ∈ R+∗, the shape parameter of the distribution at the time step k;

∥ • ∥q, the ℓq-norm (q ≥ 1) or quasi-norm (q < 1); τk, the scale parameter

of the distribution at the time step k; Nu, the number of components of the

input vector; Γ(x), the gamma function.

It is worth mentioning here that the choice of the previous multivariate

Gaussian distribution offers some flexibility for encoding one’s prior knowl-

edge of the spatial distribution of the input vector, since it allows enforcing

the sparsity of the input vector when qk ≤ 1 or its smoothness when qk ≥ 2

[28].

To comply with the Bayesian formulation presented in section 3, the

following Gaussian approximation is used [29]:

Ng(uk|0, τk, qk) ∝ N (uk|0,W−1
k /τk). (16)

This relation is valid for a suitable choice of the scale and shape parameters

(τk, qk) and the matrix Wk. This matrix has to satisfy the Mercer’s condi-

tions (positive, definite, symmetric).
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From this proposed predictive distribution and the previous equation, the

estimation becomes:

ûk = (DR−1
k DT + τkWk)

−1DTR−1
k iuk , (17)

where iuk = yk −Cx̃k is the innovation vector.

The latter equation allows identifying the Kalman gain Ku
k and the pre-

dictive covariance matrix P̃u
k as:

Ku
k = (DR−1

k DT + τkWk)
−1DTR−1

k and P̃u
k = (τkWk)

−1. (18)

The hyperparameters qk, τk and Wk are computed following a nested Bayesian

optimization, which leads to the most probable values of all the parameters

of the problem, resulting in ûk and the corresponding covariance matrix P̂u
k .

All expressions and ideas are given in [21].

4.3. Component Bayesian Filter – CBF

Like SaBF, CBF aims to promote spatial sparsity in the input vector.

However, unlike SaBF, the idea here is to operate in a component-wise fash-

ion, assuming that each component of the input vector is independent and

follows a univariate generalized Gaussian distribution with zero mean and

precision parameter τki. Consequently, the predictive distribution over the

input vector is such that:

p(uk|y1:k−1) =
Nu∏
i=1

Ng(uki|0, τki, qk)

=

 q
1− 1

qk
k

2Γ( 1
qk
)

Nu
Nu∏
i=1

τk
1
qk
i exp

(
−τki

qk
|uki|qk

)
.

(19)
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In doing so, it is expected to have a greater flexibility than for SaBF in select-

ing of the hyperparameters of the problem and thus a better reconstruction

accuracy, but at the cost of an increase in the number of hyperparameters to

estimate.

Thus, the idea of SaBF is duplicated Nu times and the computation of the

optimal values is performed similarly by a dedicated Bayesian optimization,

which aims to identify the most probable values of all the parameters involved

in the problem at each time step, given the available data. One of the goals of

this optimization procedure is to determine the scale and shape parameters

(τki, qk) and the matrix Wk that best fit the Gaussian approximation defined

as:
Nu∏
i=1

Ng(uki|0, τki, qk) ∝ N (uk|0, (TkWk)
−1), (20)

with Tk = diag(τk1, . . . , τkNu
), in order to comply with the Bayesian formu-

lation presented in section 3.

Like SaBF, the Bayesian optimization procedure consists in computing

the Maximum A Posteriori (MAP) estimator of the following posterior prob-

ability distribution:

(ûk, τ̂ki, q̂k) = argmax
(uk,τki,qk)

p(uk, τki, qk|iuk )

= argmax
(uk,τki,qk)

p(iuk |uk) p(uk|τki, qk) p(τki) p(qk),
(21)

where the prior distribution p(uk|τki, qk) = p(uk|y1:k−1). All the calculations

are not developed in this paper for reasons of brevity, but some elements are

given below. Interested readers may refer to Ref. [21] for further details.
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The solution of the previous optimization problem is obtained by max-

imizing the full conditional probability distributions associated to each pa-

rameter. However, the prior probability distribution over the scale and shape

parameters, τk and qk, and the likelihood function p(iuk |uk) remain to be

specified. These probability distributions are the same as for SaBF [21],

i.e. a Gamma distribution for the scale parameter τki and a truncated in-

verse Gamma distribution for the shape parameter qk in the interval ]0, 2],

as expressed in the following equations:

G(τk|αt, βt) =
βαt
t

Γ(αt)
ταt−1
t exp(−βtτk),

IGT (qk|αq, βq) =
β
αq
q

Γ(αq)
(1/qk)

αq+1 exp(−βq/qk)I[lb,ub](qk),

(22)

where I[lb,ub](qk) is the truncation function on the interval [lb, ub], αt and βt

are respectively the scale parameter and the rate parameters of the Gamma

distribution, while αq and βq are respectively the scale parameter and the

rate parameter of the inverse Gamma distribution. To avoid biasing the es-

timation, one sets αt = αq = 1 and βt = βq = 10−18. In addition, even if qk

is given in the interval ]0, 2], its true value is only approximately known. To

translate this information into mathematical terms, (lb, ub) = (0.01, 2).

Practically, as the full conditional probability distributions are available,

the solution of the previous optimization problem can be computed by solving
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iteratively the optimization subproblems defined by Eq. (23):

τ̂ki = argmin
qk

(
βt +

|uki|qk
qk

)
τki +

(
1− αt −

1

qk

)
log τki, (23a)

q̂k = argmin
qk

f(qk|uk, τki), (23b)

ûk = argmin
uk

1

2
∥iuk −Duk∥2Rk

+
Nu∑
i=1

τki
qk
|uki|qk . (23c)

In the previous set of equations ∥x∥2Q = xTQ−1x is the squared Mahalanobis

distance, while f(qk|uk, τki) is given by:

f(qk|uk, τki) = Nu log Γ(1/qk) +
1

qk

Nu∑
i=1

(τki|uki|qk − log τki)

+
βq

qk
+

(
αq + 1−Nu

(
1− 1

qk

))
log qk,

(24)

for qk ∈ [lb, ub].

It should be noted here that the solution of the optimization problem

given by Eq. (23a) is calculated analytically in a straightforward manner,

and that Eq. (23b) is solved efficiently using a brute force approach. As for

the matrix Wk, it is a by-product of the previous optimization process, since:

Wk = diag(wk1, . . . , wkn, . . . , wkNu
) with wkn = max (ϵ, |ûkn|)q̂k−2 , (25)

where ϵ is a small positive number avoiding infinite values and ûkn is the n-th

component of the optimal input vector ûk.

Finally, to complete the estimation step of the proposed Bayesian filter

(see step 3 of section 3), it remains to compute the Kalman gain Ku
k and the

predictive covariance matrix P̃u
k . By identification with Eq. (18), it comes:

Ku
k = (DR−1

k DT +TkWk)
−1DTR−1

k and P̃u
k = (TkWk)

−1. (26)
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As a side note, since the optimization process is iterative, it is important

to tell that it is initialized with the optimal shape parameter and input vector

obtained at the previous time step, namely q̂k−1 and ûk−1. Note also that

the solution of Eq. (23c) requires the implementation of another iterative

process, whose solution at iteration j for a given set of parameters (τ̂ (j)ki , q̂
(j)
k )

is given by :

û
(j)
k = Ku

k
(j) iuk , (27)

where Ku
k
(j) =

(
DR−1

k DT + TkW
(j−1)
k

)−1
DTR−1

k is the Kalman gain com-

puted at the j-th iteration, while W
(j)
k is expressed as in Eq. (25).

4.4. Computational algorithms

The previously introduced sequential filters are developed through several

algorithms. Alg. 1 is the computational version of the framework expressed

in section 3 where the estimated input vector can be computed through the

three different ways, for CDKF, SaBF and CBF. For CBF, Alg. 2 introduced

an algorithmic view of the method to compute the targeted input vector ûk

and the predictive covariance matrix P̃u
k .

The optimization method used for the calculation of the estimated input

in SaBF is fully expressed in [21], hence the references in the algorithm

below concern only CBF. However, the architecture of the optimization as

well as the employed method are very similar. The tolerance set to stop

the iterative algorithm is fixed at 10−3 for the experiments developed in the

following sections. It corresponds to the value of the relative error δ between

two successive iterations (see Alg. 2). Finally, it has been observed that
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Algorithm 1: Generalized algorithm of Bayesian Filter
Input : yk, A, B, C, D, û0, P

u
0 , x̂0, P

x
0 , Q

x
k , Rk, q̂0

Output : ûk, P
u
k , x̂k, P

x
k

0. Initialization

x̃1 = Ax̂0 +Bû0 and P̃x
1 = APx

0A
T +BPu

0B
T +Qx

0

for each time step k > 0

1. Input estimation

ik = yk −Cx̃k

(a) For CDKF:

P̃u
k = Qu

k−1 +Pu
k−1

Ku
k = P̃u

kD
T
(
DP̃u

kD
T +Rk

)−1

ûk = ũk +Ku
k (ik −Dũk)

(b) For SaBF and CBF:(
ûk,K

u
k , P̃

u
k , q̂k

)
= EstimationProcedure

(D, ik,Rk, ûk−1, q̂k−1)

Pu
k = (I−Ku

kD) P̃u
k (I−Ku

kD)T +Ku
k

(
CP̃x

kC
T +Rk

)
Ku

k
T

2. State estimation

Kx
k = P̃x

kC
T
(
CP̃x

kC
T +Rk

)−1

x̂k = x̃k +Kx
k (ik −Dûk)

Px
k = (I−Kx

kC) P̃x
k (I−Kx

kC)T +Kx
k

(
DPu

kD
T +Rk

)
Kx

k
T

Pxu
k = −Kx

kDPu
k

3. State prediction

x̃k+1 = Ax̂k +Bûk

P̃x
k+1 =

[
A B

] Px
k Pxu

k

Pxu
k

T Pu
k

AT

BT

+Qx
k

end for
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taking a lower value of the tolerance does not significantly affect the results

of the estimation.

Algorithm 2: EstimationProcedure function for CBF
Input : D, ik, Rk, ûk−1, q̂k−1

Output : ûk, Ku
k , P̃u

k , q̂k

0. Initialization – q̂
(0)
k = q̂k−1, û

(0)
k = ûk−1, δ = 1

while δ > tol = 10−3

j ← j + 1

1. Compute τ̂
(j)
ki given û

(j−1)
k and q̂

(j−1)
k from Eq. (23a).

2. Compute q̂
(j)
k given û

(j−1)
k and τ̂

(j)
ki from Eqs. (23b).

3. Compute û
(j)
k and W

(j)
k given q̂

(i)
k and τ̂

(j)
ki from Eqs. (23c) and (25).

4. Convergence monitoring: δ =

∥∥∥û(j)
k −û

(j−1)
k

∥∥∥2
2∥∥∥û(ji−1)

k

∥∥∥2
2

end while

ûk = û
(J)
k , q̂k = q̂

(J)
k , τ̂ki = τ̂

(J)
ki and Wk = W

(J)
k

Compute Ku
k and P̃u

k from Eq. (26)

4.5. Discussion

The developed methods, particularly SaBF and CBF, offer several signifi-

cant advantages in solving the effort estimation problem when the excitation

field to be identified is spatially sparse. First, they operate online, which

theoretically allows them to provide real-time estimates. In addition, they

impose additional constraints on the solution (here the spartial sparsity of
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the input vector), which allows to relax some conditions such as those related

to the instantaneous inversion or the numerical stability [30], while providing

high quality results. However, it is important to note that these advantages

come with a higher algorithmic complexity, which may limit their practical

use for real-time applications, where computational speed is essential. There-

fore, their practical implementation needs to be carefully evaluated according

to the specific time constraints of each application. As for CDKF, given the

assumptions made, performances similar to AKF and DKF can be expected.

Taking into account the correlation between state and input is an advantage

for this method, but, as for AKF and DKF, it also requires the adjustment

of the input covariance σ2
u, which makes the method rather offline, since the

optimization is performed over the entire reconstruction window [14, 20].

More generally, the proposed Bayesian formulation imposes the presence of

a feedforward matrix D, so at least one accelerometer must be used, while

these methods require a measurement to be collocated with the excitation

to achieve better performance (see sections 5.2 and 5.6). These requirements

can be a disadvantage in certain practical situations where the installation of

accelerometers is difficult or costly and the excitation region is inaccessible.

5. Numerical experiment

This section presents the application of the sequential filters developed

above in a purely numerical context. Their performance is compared with

each other, with special attention to the appearance of drift when only ac-

celeration measurements are available. The focus of this application is on

estimating the input vector, rather than the state vector, which may be
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more relevant in some applications. Therefore, this problem is specifically

dedicated to the force identification problem at sensor locations, rather than

state reconstruction from the measurements.

5.1. Problem definition

The structure considered here is a stainless steel simply supported beam.

The beam has a length of L = 3 m, with a cross-sectional area of S = 1060

mm2 and a second moment of area of I = 171 mm4. The material properties

are E = 210 GPa for the Young’s modulus and ρ = 7850 kg/m3 for the

density.

In the present numerical application, it is supposed that the beam under-

goes a hammer impact at location xexc = 0.98 m, measured from its left end.

This type of excitation can be modeled by a Gamma-like function of shape

parameter p and scale parameter θ [31], that is:

uref(t) = u0

( t

pθ

)p

exp
(
− t

θ
+ p

)
, (28)

where u0 is the force intensity. In this example, it is assumed that the

structure is excited by a hammer equipped with a soft rubber tip, that excites

only the low frequency modes of the beam. To reflect this assumption, the

parameters of the input excitation are chosen such that u0 = 15 N, p = 8.7

and θ = 0.6 ms. In addition, a pre-trigger delay of 8 ms is applied at the

beginning of the signal. This reference force is shown in Fig. 1a. Note that

the applied hammer excitation has a cutoff frequency around 500 Hz, as

shown in the Fig. 1b.

This excitation profile is used to generate the vibration response of the

structure. Here, the acceleration data is measured by twenty sensors, dis-
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Figure 1: Synthesized hammer impact excitation signal - (a) Time domain representation

and (b) Frequency domain representation.

tributed along the beam as shown in Fig. 2. This distribution is intentionally

not symmetric to avoid configurations where some information may be lost

or redundant.

1 2 20191817161514131211109876543

Figure 2: Location of the accelerometers and the impact location on the beam – (■)

Hammer impact and (•) Accelerometers

A finite element model, consisting of 20 beam elements, is used to syn-

thesize the measured data assuming a structural damping ratio of 0.01. The

noiseless acceleration data are computed over 1 second using an uncondition-

ally stable and second-order accurate Newmark’s integration scheme with a

time step size of 10 µs. The computed data is then corrupted by an additive
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Gaussian white noise to simulate the measurement process, with a controlled

signal-to-noise ratio (SNR) of 25 dB.

As for the discretized state-space representation, a zero-order hold dis-

cretization method combined with a modally reduced order model of the

beam, containing all the vibration modes with a natural frequency below 1

kHz (i.e. 53 modes), is used to derive the system matrices A, B, C and

D [14, 20, 32]. For the state-space model, a constant modal damping ratio

is assumed and set to 0.01. It is also important to note at this stage that

a collocated configuration is being considered, meaning that the inputs are

identified at the sensor locations.

To properly implement the filters compared in this paper, it remains to

define the initial conditions (x̂0,P
x
0 ) and (û0,P

u
0 ) as well as the covariance

matrices Qx
k and Rk. The initial state and input vectors x̂0 and û0 are zero

vectors because the structure is initially at a rest and no force is applied on

the structure before 8 ms. The corresponding covariance matrices Px
0 and

Pu
0 are assumed to be isotropic with a variance set to 10−20, reflecting our

confidence in knowing the initial conditions of the system. The noise co-

variance matrices Qx
k and Rk are also assumed to be isotropic and constant

over time, with respective values of 10−20, which was manually tuned and

represents the high fidelity of the mechanical model, and 10−2, which is the

order of magnitude of the actual variance used to synthesize the noisy accel-

eration signals. Although the process noise and measurement noise variances

have been set manually, it should be noted that their automatic estimation

remains an active area of research [19, 33, 34]. That being said, for SaBF
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and CBF, the initial shape parameter must also be specified. Here, q̂0 is set

to 1, because the spatial distribution of the input vector should be sparse,

but it has been shown that this initial value has no real effect on the final

result [21]. For AKF and CDKF, the covariance matrix associated with the

fictitious equation on the input vector is assumed to be isotropic. Its vari-

ance, σ2
u, is automatically adjusted using a specific criterion J(σ2

u). Here,

σ2
u is sought so as to minimize the mean squared error of the obervations

over the entire time window as in Refs. [20, 35]. For CDKF, this criterion is

mathematically expressed as:

J(σ2
u) =

1

nt

nt∑
k=1

∥yk −Cx̂k −Dûk∥22, (29)

where nt is the number of time steps.

Finally, three indicators are introduced to evaluate the quality of the es-

timated input vector. They provide an efficient way to measure the accuracy

of the estimated vector compared to the actual excitation field.

First, the Global Relative Error (GRE) is an indicator that provides a mea-

sure of how close the estimated input vector is to the true input vector over

the entire structure. The GRE equation is used to compare the estimated

vector to the actual input values, providing a measure of the accuracy of the

estimation:

GRE =
∥û− uref∥1
∥uref∥1

. (30)

uref and û represent respectively the reference and estimated input vectors

defined over the entire estimation duration.

In addition to the Global Relative Error (GRE), two other indicators are

proposed to locally measure the accuracy of the estimated input vector. The
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Peak Error (PE) is a local indicator used to evaluate the accuracy of the

estimated peak value. It compares the maximum intensity of the hammer

impact estimated at the actual point force location ûexc with that of the

reference one uexc
ref . This indicator is mathematically expressed as:

PE =
ûexc − uexc

ref

uexc
ref

. (31)

The sign of PE indicates whether the estimated value is higher or lower than

the target value.

The last indicator used to measure the accuracy of the estimated input vector

is the Correlation Coefficient (CC). This indicator provides a measure of the

overall accuracy of the estimated excitation history, ûexc, when compared to

the reference one, uexc
ref , at the actual impact point location. It is given by:

CC =
uexc

ref ûexcT

∥uexc
ref ∥2 ∥ûexc∥2

. (32)

5.2. Identification of the hammer impact

As a first application, the filters are compared with each other and with

AKF [18] on the configuration described in the previous section. The estima-

tion of the input time history presented in Fig. 3 shows that the peak value

estimated by all the filters is close to the reference value of 15 N, although

it is underestimated by about 50 mN for SaBF and CBF. On this figure, the

AKF and CDKF are almost superimposed, as expected, since their hypothe-

ses are somewhat similar. It is the same for SaBF and CBF, although CBF

is slightly better than SaBF.

Furthermore, another very important aspect of the identification is the

input behavior after the hammer impact has been identified: there is a resid-

ual value that causes the filter to diverge instead of remaining constant. This
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Figure 3: Time history of the estimated input for a duration of 1s and restricted to 0.1s

for clarity - (—) Reference, (−−) SaBF, (−−) CBF, (−−) CDKF and (· · · ) AKF. SaBF

and CDKF results are overlaid like those of AKF and CDKF.
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phenomenon is called the drift effect, which characterizes the tendency of the

identified variable to deviate from a constant value, in this case zero. This

drift is clearly observed on AKF and CDKF immediately after the impact,

when t > 60 ms. These two curves are quite superimposed, their respective

maximum drift values are around 4 N after the impact, i.e. while t > 20

ms, at the excitation node. Their standard deviations are 1.70 N for both

CDKF and AKF. On the contrary, no drift is observed for SaBF and CBF:

the estimates stagnate after the actual shock, with a standard deviation that

does not exceed 0.2 mN for SaBF and CBF.

Moreover, as shown in Fig. 3, both SaBF and CBF produce a more ac-

curate identification of the impact than CDKF and AKF. Nevertheless, all

filters identify the impact location well. Fig. 4 shows the estimated location

and time history of the impact, according to each filter. As can be seen from

the estimated input distributions of CDKF and AKF, the total duration of

the estimation combined with the drift effect leads to a significant error in

the estimated force: the drift effect 7.44 N over 1 s for both CDKF and AKF.

Furthermore, as shown in Table 1, the correlation between the results

provided by SaBF and CBF and the actual force is very close to 100%, which

is much higher than that of AKF and CDKF at about 33%. Meanwhile, the

global error of the latter two is not in the same order of magnitude as the

GRE of SaBF and CBF, at about 2%. The peak is always estimated with

an error of about 0.5%.

Finally, the identification of impacts cannot be done online with CDKF
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(a) (b)

(c) (d)

Figure 4: Estimated input distribution – (a) SaBF, (b) CBF, (c) CDKF and (d) AKF.

Table 1: Indicators value for each tested filter in the reference configuration over 1 s.

Filter GRE (%) PE (%) CC (%)

SaBF 1.96 -0.38 99.99

CBF 1.51 -0.35 99.99

CDKF 517.37 0.07 33.07

AKF 517.38 0.07 33.10

29



and AKF, since they require a proper tuning of the covariance matrix Qu
k .

The functional J(σ2
u) used to select the variance parameter σ2

u for AKF and

CDKF is shown in Fig. 5 for information. It can be observed that the func-

tional has the same form for AKF and CDKF. Although the optimal values

differ by several orders of magnitude, it can be observed, as in Ref [36], that

the value of the functional is relatively flat from σ2
u ≈ 1010, meaning that in

this case σ2
u can take any value between 1010 and 1040 without affecting the

estimation of the mean state and input vectors. In particular, σ2
u could be

chosen as the corner of the L-shaped curves. In addition, even if a shock is

initially identified in terms of its intensity and location, in the long run, the

input estimate may change in the instant immediately following, potentially

leading to misunderstandings about the actual phenomenon that is occurring.

(a) (b)

Figure 5: Plot of the functional to be minimized for (a) AKF and (b) CDKF – (—) J(σ2
u)

and (◦) minimum of the functional (σ2
u = 3×1018 for AKF and σ2

u = 1.5×1030 for CDKF).
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5.3. Influence of the measurement noise

In engineering practice, certain parameters can significantly influence the

quality of the estimated solutions. One such parameter is the measurement

noise level, which is of particular interest. Therefore, the aim of this section

is to evaluate the influence of this parameter on the performance of the filters

discussed in this paper.

The noise added to the acceleration data is artificially increased to the

point where the SNR has dropped from 25 dB to 15 dB. This change is

reflected in the results, especially in the time history. As shown in Fig. 6,

both AKF and CDKF drift up after the impact (almost superimposed), while

the time histories of the SaBF and CBF remain almost constant around

0 N with a standard deviation around 2.7 mN and 6.9 mN, respectively,

while it spikes up to around 5.43 N for AKF and CDKF. As in the initial

configuration, the estimates using AKF and CDKF, as well as SaBF and

CBF, are superimposed.

Comparing the results of AKF and CDKF with those previously obtained

with a higher SNR, it can be concluded that the higher the noise, the steeper

the slope of this drift, and thus, the influence of the drift along the total du-

ration increases. The maximum estimated values are slightly lower than the

expected value of 15 N, around 0.18 N. Furthermore, although the impact is

correctly located on Fig. 7, the drift reappears at almost all the identification

points, with its own deviations and slopes. For the sake of clarity, all the

figures presented in the rest of this section will only show the results of the
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Figure 6: Time history of the estimated input with a SNR of 15 dB for a duration of 1s

and restricted to 0.1 s for clarity - (—) Reference, (−−) SaBF, (−−) CBF, (−−) CDKF

and (· · · ) AKF. SaBF and CDKF results are overlaid like those of AKF and CDKF.
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filters on a duration of 0.3 s. However, the indicators remain computed over

the whole duration, here 1 s.

Since SaBF and CBF eliminate the drift, the global error in the identi-

fication of the mechanical excitation is approximately reduced compared to

that of AKF or CDKF. The maximum absolute value of the drift reaches

about 34 N for CDKF and AKF at the end of the numerical experiment,

when t = 1 s.

This large error, due to the high level of noise in the data, is unacceptable

to answer the force identification problem. Therefore, the development of

strategies such as SaBF and CBF, which are based on new hypotheses during

the prediction step, makes a lot of sense, as they provide accurate results in

terms of time history and location of the impact, while not drifting up (or

down).

As expected, all the indicators in Table 2 are favorable to SaBF and CBF,

their correlation coefficients remain close to 100% while it drops to 11% for

CDKF and AKF. This can also be observed on the GRE indicator, since tha

values obtained for AKF and CDKF dramatically increase due to the high

influence of the drift.

5.4. Influence of the number of sensors

The number of sensors determines the amount of data available for the

input-state estimation process. As the number of sensors increases, the com-

putation time increases due to the larger amount of information to process.

However, a larger number of sensors does not obviously lead to a better re-

construction of the impact, as the problem is mathematically ill-posed. Here
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(a) (b)

(c) (d)

Figure 7: Estimated input distribution for a SNR of 15 dB – (a) SaBF, (b) CBF, (c)

CDKF and (d) AKF.
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Table 2: Indicators values for each tested filter for a SNR of 15 dB.

Filter GRE (%) PE (%) CC (%)

SaBF 8.62 -0.28 99.99

CBF 6.05 0.06 99.99

CDKF 1636 1.23 11.14

AKF 1636 1.23 11.15

after, the number of sensors is reduced to four, distributed along the struc-

ture. The following Fig. 8 shows the estimated input at the impact node.

The maximum identified value is close to the real impacting one of 15 N,

with an error less than 64 mN for each filter.

As shown in Fig. 9, the impact is well located and its time history is very

similar to the reference one. The reduction in the number of sensors does not

significantly affect the quality of the estimation for SaBF and CBF, although

the standard deviation is slightly better than that found with the 20-sensor

configuration at 0.8 mN for both filters. However, it has a significant positive

effect on AKF and CDKF, as the standard deviation is now found to be

around 0.1 N and the drift almost disappears over the whole 1 s duration.

Finally, Table 3 summarizes all the indicators used to objectively compare

the four filters. Once again, both SaBF and CBF provide better results than

AKF and CDKF, with the lowest Global Relative Error and the highest

Correlation Coefficient. However, it is worth noting that the indicators values

for AKF and CDKF improve significantly when the number of sensors is

limited.
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Figure 8: Time history of the estimated input with six sensors mounted on the structure -

(—) Reference, (−−) SaBF, (−−) CBF, (−−) CDKF and (· · · ) AKF. All the curves are

almost superimposed.

Table 3: Indicators values for each tested filter for a set of four sensors over 1 s.

Filter GRE (%) PE (%) CC (%)

SaBF 1.35 -0.43 99.99

CBF 1.33 -0.42 99.99

CDKF 6.21 -0.27 98.82

AKF 6.21 -0.27 98.81
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(a) (b)

(c) (d)

Figure 9: Estimated input distribution for a set of four sensors – (a) SaBF, (b) CBF, (c)

CDKF and (d) AKF.
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5.5. Case of a non-transient excitation

To complete the numerical experiment, a sinusoidal signal is added at the

measurement point xs = 1.74 m, so that the configuration remains collocated.

The continuous excitation is a four-period sine wave, with an amplitude of

15 N, the same as the hammer impact, and a frequency of 20 Hz and starting

at 5 ms. As shown in Figs. 10 and 11, both the hammer impact and the

sinusoidal oscillation are correctly estimated for the sparse filters, both in

terms of location and time history. Their respective standard deviations at

the non-excited points are still around 60 mN for SaBF and 42 mN for CBF.

However, this is not the case for both AKF and CDKF, for which the drift

appears immediately after the end of the excitation signals. Finally, the

analysis of the indicators collected in Table 4 confirms the results obtained

in the previous sections, since CBF performs slightly better than SaBF, while

AKF and CDKF give identical results.

Table 4: Indicators values for each tested filter in case of multiple excitation signals over

1 s.

Filter GRE (%) CC (hammer - %) CC (Sine - %)

SaBF 5.36 99.96 99.99

CBF 3.79 99.98 99.99

CDKF 944.83 10.37 47.29

AKF 944.84 10.37 47.29
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Figure 10: Time history of the estimated (a) hammer excitation and (b) the sine wave

excitation - (—) Reference, (−−) SaBF, (−−) CBF, (−−) CDKF and (· · · ) AKF. SaBF

and CDKF results are overlaid like those of AKF and CDKF.

5.6. Case of a non-collocated configuration

A non-collocated configuration is created by moving the accelerometers

by of a few centimeters to the left. The spacing is set to 3.2 cm, which

is a quarter of the distance between two sensors. The results obtained by

SaBF, CBF and CDKF are shown in Figs. 12 and 13. In fact, the automatic

selection procedure of the input variance parameter σ2
u (see Eq. (29)) does

not allow to obtain convergent results for AKF, as shown in Table 5.

In the case of a small gap with the actual impact location, it does not

induce any large differences with the collocated configuration, since the es-

timation remains consistent with the results exposed in the sections above.

The impact is actually well located and its intensity is well identified, the

standard variations after impact have not been affected as they remain be-

low 0.3 mN for both SaBF and CBF. Finally, Table 5 shows that here again
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(a) (b)

(c) (d)

Figure 11: Spatial distribution of the estimated impact of the hammer and the estimated

oscillating signal with the same intensity of 15 N – (a) SaBF, (b) CBF, (c) CDKF and (d)

AKF.
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Figure 12: Time history of the estimated input in a non-collocated configuration - (—)

Reference, (−−) SaBF, (−−) CBF, (−−) CDKF and (· · · ) AKF. SaBF and CDKF results

are overlaid.
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(a) (b)

(c)

Figure 13: Spatial distribution of the estimated impact of the hammer in a non-collocated

configuration – (a) SaBF, (b) CBF and (c) CDKF
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CBF performs slightly better than SaBF. For CDKF, the estimated excita-

tion field is oversmoothed, which explains the poor values of the GRE and

PE indicators. However, no drift is observed, as shown by the value of the

CC indicator.

Table 5: Indicators values for each tested filter in a non-collocated configuration over 1 s.

Filter GRE (%) PE (%) CC (%)

SaBF 2.35 -0.06 99.99

CBF 1.61 -0.02 99.99

CDKF 108.80 -70.48 86.69

AKF 8.5×106 9.08×105 2.8×10−3

As already reported in the literature, it has been observed that if the

distance between the measurement point and the actual impact is too large

(typically half of the distance between two sensors), the estimation becomes

erroneous, because the ill-conditioning of the problem increases [14].

5.7. State reconstruction

State estimation can be of primary interest in some applications, so this

section will shed some light on the performance of the considered filters for

estimating the system state variables, although this is not the main purpose

of the paper.

The time history of the displacement and velocity at x = 1.74 m is shown

in Fig. 14. From a qualitative point of view, all the filters identify the system

state very accurately. This local observation is globally confirmed by the

analysis of the GRE indicator, summarized in Table 6, which shows that

43



SaBF and CBF perform slightly better than CDKF and AKF. The latter

information is interesting to note because the estimate of the input vector

obtained from AKF and CDKF experience a large drift (see section 5.2).
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(b)

Figure 14: Reconstruction of the state variables at x = 1.74 m for each filter: (a) Dis-

placement and (b) Velocity - (—) Reference, (−−) SaBF, (−−) CBF, (−−) CDKF and

(· · · ) AKF. SaBF and CDKF results are overlaid like those of AKF an CDKF.

6. Real-world application

The purpose of this section is to confirm the results of the numerical

experiment in a real environment. The objective of this experiment is to

evaluate the performance of the proposed filters in real operating conditions.

This will help to determine the validity and usefulness of the filter through

a real force identification case of a hammer impact.
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Table 6: GRE values of the state variables for each tested filter in the reference configu-

ration.

Filter GRE (Displacement - %) GRE (Velocity - %)

SaBF 0.46 0.86

CBF 0.36 0.67

CDKF 3.01 1.32

AKF 3.01 1.32

6.1. Description of the experimental set-up

The structure is a thin aluminum plate mounted on a dedicated support

that reproduces the simply supported boundary conditions as accurately as

possible. The plate is 420 mm long, 360 mm wide and 3 mm thick. The edges

of the plate are glued to thin blades that are clamped in a rigid frame. These

blades must have the right balance between flexibility and stiffness: they

must be able to satisfy the degrees of freedom of rotation while supporting

the weight of the plate and restraining the translation of the plate.

In this experiment, five 352C22 PCB Piezotronics sensors are mounted

on the plate: 4 are located at points that are neither vibration nodes nor

anti-nodes as much as possible, the last is collocated with the excitation in

order to satisfy the instantaneous inversion constraint [30]. The excitation

is generated by an impact hammer equipped with a load cell and connected

to a vibration analyzer. A rubber tip is used to excite all the low frequency

modes of the structure, i.e. below 2 kHz. The positions of the sensors as well

as the impacted node are shown in Fig. 15, the real experimental setup is also

provided next to the schematic representation for a better understanding.
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(a) (b)

Figure 15: Location of the accelerometers and the hammer impact on the grid used to

perform the EMA – – (•) EMA grid, (■) Hammer impact and (•) Accelerometers

Fig. 16 is composed of the time history of the hammer impact and its

frequency domain representation. Its maximum value is 27.78 N and it was

recorded for a duration of 1 s, with a sampling frequency of 8192 Hz. This

figure shows in particular that most of the impact energy is concentrated

below 2 kHz. In this respect, and following the recommendations of Lourens

et al. [14], the acquired vibration data are filtered at 2 kHz (eigenfrequency

of the last mode considered in the modal analysis) with an eighth-order

Chebyshev type I and resampled at twice this value with the nearest power

of 2, i.e. 4096 Hz. These filtering and resampling steps are used to attenuate

the influence of the out-of-band modes that are actually present but not

considered in the model. In other words, this signal processing allows to

reduce the size of the modal model used to define the state-space matrices

A, B, C and D of the system.

The modal model of the structure is derived from an Experimental Modal

Analysis (EMA). Frequency Response Functions (FRF) are recorded for the
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(a) (b)

Figure 16: Hammer impact measured at node 96 – (a) Time history and (b) Frequency

spectrum

set of available sensors and the first vibration modes of the plate are ex-

tracted. The frequencies of the eigenmodes as well as the modal damping

factors are thus obtained and reported in Table 7. The theoretical values are

also included in for comparison. The small existing gap can be explained by

the difference between the model used to compute these eigenmodes (geome-

try, boundary conditions, . . . ) and the real experimental setup. Considering

the cut-off frequency of the excitation (see Fig. 16), only the first 23 modes

are considered as interesting for the reconstruction.

Finally, as for the integration scheme used to derive the discretized state-

space model, the explicit generalized-α scheme was chosen to compute the

modally reduced state-space matrices of the plate, because of its second-order

accuracy property [31].
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Table 7: Table of the frequencies and damping coefficients for the vibration modes retained

in the modal basis.

Mode ID
Theoretical

eigenfrequency (Hz)

Experimental

eigenfrequency (Hz)

Experimental

damping factor (%)

1 98,2 106,2 7,85

2 222,9 226,7 0,26

3 267,9 271,7 0,59

4 392,6 392,1 0,17

5 430,7 432,2 0,11

6 550,8 547,8 0,13

7 600,5 598,0 0,24

8 675,5 670,3 0,08

9 721,7 719,8 0,08

10 883,4 872,2 0,27

11 891,4 890,3 0,18

12 946,9 934,5 0,18

13 1071,6 1061,4 0,07

14 1095,8 1090,8 0,08

15 1174,3 1159,1 0,07

16 1265,6 1253,7 0,07

17 1456,1 1448,2 0,30

18 1553,1 1539,5 0,06

19 1580,8 1559,0 0,09

20 1722,8 1699,3 0,08

21 1788,7 1761,5 0,07

22 1944,5 1913,9 0,09

23 2005,7 1971,9 0,07
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6.2. Reconstruction of the hammer impact

As in section 5, a comparison is made between the sequential filters

proposed in this paper and the mainstream filter existing in the literature,

namely AKF. The results of SaBF, CBF and CDKF are again superimposed

on those of AKF to evaluate their performance.

In order to use the filters properly, the initial state and input conditions

must be defined, as well as the covariance matrices associated with the pro-

cess and measurement noises. The initial state and input vectors x̂0 and

û0 are zero vectors because the structure is initially at a rest and no force

is applied to the structure before 5 ms. The corresponding covariance ma-

trices Px
0 and Pu

0 are assumed to be isotropic with a variance set to 10−20,

reflecting our confidence in knowing the initial conditions of the system. The

noise covariance matrices Qx
k and Rk are also assumed to be isotropic and

constant over time, with respective values of 10−20, due to the signal pro-

cessing implemented to build an accurate state-space model, and 10−1, which

has been estimated from the post-processed acceleration signals. For SaBF

and CBF, the initial shape parameter must also be specified. Here, q̂0 is set

to 1, because the spatial distribution of the input vector should be sparse.

For AKF and CDKF, the covariance matrix associated with the fictitious

equation on the input vector is assumed to be isotropic. As in the numerical

experiment, its variance is automatically adjusted by minimizing the MSE

of the observations over the whole time window.

The location of the impact as well as the time history are estimated thanks

to the measurements of the five sensors over a time window of 1 s. This
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window can be reduced to 0.05 s for clarity, which is a sufficient duration

to represent the estimation of the time history. As shown in Fig. 17, the

solutions provided by SaBF and CBF outperform the other estimates, as

expected after the numerical experiments. The maximum intensity of the

peak is well identified by all the different filters, with an absolute error lower

than 0.1 N. However, the behavior thereafter, which is still not acceptable for

CDKF and AKF: the drift effect appears with almost the same slope for both

filters. SaBF and CBF remain close to the value after the shock at t > 10

ms, with a standard deviation of about 0.2 N. This is due to the sparsity

constraint imposed on the input vector during the filtering process.

As for the estimated excited node, all filters provide an accurate estimate

of the location of the impact. In terms of force intensity, the time history of

the force actually experienced by node 96 is shown in Fig. 18 for the entire

structure. For SaBF and CBF, the drift effect is canceled at each identifi-

cation point, with a total standard deviation of 0.1 N. The drift appears in

the results of AKF and CDKF, with the highest slope at the impacted node.

The drift increases to 4.53 N for CDKF and 6.01 N for AKF after only 0.05

s.

To fully compare the filters, the indicators developed in section 5.1 are

also used in this experimental case. It can be seen that SaBF and CBF

produce a more accurate identification in almost all categories presented in

Table 8, as expected after the numerical experiment. With a better Global

Relative Error and therefore a better Correlation Coefficient, SaBF and CBF

identify the impact more accurately. Note that the GRE and CC values can’t

be compared with those from the numerical study because the total time is
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Figure 17: Time history of the estimated impact of the hammer locally on node 96 - (—)

Reference, (−−) SaBF, (· · · ) CBF, (− · −) CDKF and (−−) AKF. SaBF and CDKF

results are overlaid like those of AKF an CDKF.
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(a) (b)

(c) (d)

Figure 18: Spatial distribution of the estimated impact of the hammer for an estimated

SNR of 22dB – (a) SaBF, (b) CBF, (c) CDKF and (d) AKF.
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not the same, so the influence of the drift on both these two indicators is

relatively small. CDKF gives slightly worse results than the AKF in this

particular scenario : the error on the maximum intensity of the peak (PE) is

the worst, and it has quadrupled with respect to the numerical study, while

the PE of the other filters has remained constant (below 1%). Finally, the

Correlation Coefficient of these two filters are almost equivalent.

Table 8: Indicators values for each tested filter for the considered experiment.

Filter GRE (%) PE (%) CC (%)

SaBF 4.76 -0.79 99.88

CBF 4.53 -0.72 99.87

CDKF 37.82 -4.61 86.80

AKF 55.41 0.66 84.35

7. Conclusion

This paper presents two novel sequential Bayesian filters, the Correlated

Dual Kalman Filter (CDKF) and the Component Bayesian Filter (CBF), for

solving the input-state estimation problem. The goal of this work is to in-

corporate prior knowledge about the spatial distribution of the sources that

excite a structure, while maintaining a sequential approach. To achieve this,

we used a general Bayesian formulation of the problem, and extended it by

introducing new hypotheses to develop the proposed filters.

CDKF is based on a generalization and a correction of two sequential filters

developed in the literature, namely the Sequential Bayesian Filter and the
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Dual Kalman Filter. As shown in this paper, it provides quite accurate re-

sults, barely better than those of AKF, which is certainly one of the most

cited filters in the literature. This can be explained by the fact that the prob-

ability distribution maintains a non-zero mean and the correlation between

the state and input vectors during the filtering process. Nevertheless, this

original filter is still affected by the drift effect. To mitigate this problem,

an improvement of the Sparse Adaptive Bayesian Filter (SaBF) presented in

a previous work has been proposed through its component version (CBF).

These approaches involve multiple parameters that are optimally estimated

using a nested Bayesian optimization procedure. The results show that CBF

is slightly more accurate than SaBF for force identification, and it outper-

forms AKF as well as CDKF. However, its computational cost is higher due

to the optimization of a larger number of parameters. An interesting side

effect of this sparsity adaption property is that it helps to avoid drift when

only acceleration measurements are used.

Overall, the results presented in this paper demonstrate the effectiveness of

the proposed filters in identifying spatially sparse excitation sources. The in-

corporation of prior knowledge about the spatial distribution of the sources

that excite a structure results in more accurate and efficient filters.
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